An Area and Power Efficient Stochastic Number Generator for Bayesian Sensor Fusion Circuits - Archive ouverte HAL
Article Dans Une Revue IEEE Design & Test Année : 2021

An Area and Power Efficient Stochastic Number Generator for Bayesian Sensor Fusion Circuits

Abdelkarim Cherkaoui
  • Fonction : Auteur
  • PersonId : 919817
  • IdRef : 186378637
Raphael Laurent
  • Fonction : Auteur

Résumé

In recent years, stochastic computing became popular in Bayesian circuits implementation because it enables compact and low power architectures. These architectures use Stochastic Number Generators (SNGs) that encode data in random bit-streams. SNGs are composed of Random Number Generators (RNGs) which contribute significantly to the circuit area and power consumption: according to our measurements, up to 29% of the area and 85% of the circuit power consumption, excluding memories. In this paper, we compare SNG implementations in terms of accuracy, area and power consumption. Furthermore, we propose a new SNG architecture that uses a single RNG for the whole design in order to generate the required stochastic bit-streams. The proposed architecture  allows to save up to 11% of area and 58% of power consumption compared to the state of the art, with no significant accuracy loss.

Fichier principal
Vignette du fichier
DT_DTSI-2020-06-0098.R1_Belot.pdf (332.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03662193 , version 1 (09-05-2022)

Licence

Identifiants

Citer

Jérémy Belot, Abdelkarim Cherkaoui, Raphael Laurent, Laurent Fesquet. An Area and Power Efficient Stochastic Number Generator for Bayesian Sensor Fusion Circuits. IEEE Design & Test, 2021, 38 (6), pp.69-77. ⟨10.1109/mdat.2021.3050694⟩. ⟨hal-03662193⟩

Collections

UGA CNRS TIMA
42 Consultations
127 Téléchargements

Altmetric

Partager

More