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Abstract. We explain in this paper the similarity arising in the
homogenization process of some composite fibered media with the
problem of the reduction of dimension 3d − 1d. More precisely, we
highlight the fact that when the homogenization process leads to a
local reduction of dimension, studying the homogenization problem
in the reference configuration domain of the composite amounts to
the study of the corresponding reduction of dimension in the refer-
ence cell. We give two examples in the framework of the thermal
conduction problem: the first one concerns the reduction of dimen-
sion in a thin parallelepiped of size ε containing another thinner
parallelepiped of size rε ≪ ε playing a role of a «hole ». As in
the homogenization, the one-dimensional limit problem involves a
”strange” term. In addition both limit problems are of the same
structure. In the second example, the geometry is similar but now
we assume a high contrast between the order 1 of the conductivity
in the small parallelepiped of size rε := rε, (r > 0 fixed ) and the
conductivity in the big parallelepiped assumed to be of order ε2.
We prove that the limit problem is a nonlocal problem and that it
has the same structure as the corresponding periodic homogenized
problem.

1. Introduction. During the last years, the study of the homogenization of com-
posite heterogeneous media has given rise to an extensive literature and a significant
part of that works was designed to the homogenization of media characterized by
high heterogeneities, (see [2], [3]), [4], [5], [6], [8], [14]). The pioneer work for prob-
lems of this kind was done in [2] in the study of the double porosity model of single
phase flow. Thereafter, the main idea of [2] was taken up in [1] and [12] to give rise
to the two-scale convergence method. Fibered media is an example of composite
heterogeneous media with high contrasting properties since usually the material
constituting the fibers is very different from the material around it. For instance, in
elasticity one can consider rigid fibers immersed in a soft matrix while in the frame-
work of heat conduction one can consider fibers with high conductivity surrounded
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2 A REMARK ABOUT THE PERIODIC HOMOGENIZATION

by a material with a poor conductivity. Among the first works devoted to the ho-
mogenization of such composite media one can quote [7] where the homogenization
process was performed using asymptotic expansions.

From the mathematical point of view, the contrast between the properties of the
two materials leads to a degenerate problem in the sense that in general it leads
to a lack of compactness. Indeed, the operators under consideration are in general
not uniformly bounded (see [5]) or not uniformly coercive with respect to the small
parameter (see [16]).

In general, the configuration domain of such media may be described by a domain
Ω of R3 which is a periodic replication with a period of size ε of a set of Y ε

i , i ∈ Iε.
More precisely, Y ε

i is assumed to be the union of a fiber F ε
i with its complement

Mε
i ( M stands for matrix ) in Y ε

i .
It is well known that the homogenization process in such degenerate problems

gives rise to homogenized problems with a different form from the equation at the
microscopic level since memory effects, strange terms or nonlocal effects may appear
at the limit (see [3], [5], [6], [8], [9], [11], [16]).

The aim of the present work is to show that in the case of fibered media such
effects at the limit are not due to the homogenization process itself but to the local
structure of the composite media; more precisely, we show that the form of the
homogenized problem is already determined by the study of the 3d− 1d reduction
of dimension which occurs locally. To illustrate that, we give here two examples in
the framework of the thermal conduction. In the first one we show that one can
obtain an extra term (or a strange term, see [11], [3]) in the study of the reduction of
dimension 3d− 1d (see [13]). To prove that result, we consider in section 2 below a
thin domain Ωε := εY ×(0, L) as a copy of the local cell arising in a periodic fibered
medium for which the configuration domain Ω is the union of 1

ε2
such cells, in other

words, Ω :=
∪
i∈Iε

(
(εY +εi)× (0, L)

)
. In fact, in this example the ”fibers” play a role

of vertical parallel holes and we prove that a strange term already appears at the
limit in the 3d− 1d problem under exactly the same assumptions on the size of the
hole as the ones assumed in the corresponding homogenization problem. Further-
more, it is shown that the structure of the homogenized problem is very close to
the one of the limit problem obtained in the reduction of dimension 3d − 1d. The
homogenization problem will be considered in section 3.

In section 4, we consider another example for which the reduction of dimension
3d − 1d leads to a limit problem involving a nonlocal effect; the comparison with
the corresponding homogenization problem is made in section 5 and once again the
similarity between the two limit problems is pointed out.

One can explain the similarity between the homogenization problem and the re-
duction of dimension problem by the fact that the geometry of the fibered medium
is such that the homogenization process implies a local reduction of dimension so
that for such media, the homogenization may be viewed as a repeat of local reduc-
tions of dimension. More precisely, when we assume that the domain Ω is made
from a single cell of size ε, Ω = Ωε := Y ε := εY × (0, L) where for example Y is
the square defined by Y :=

]
− 1

2 ,
1
2

[2 and L > 0, one can denote the variable x in
Ωε by x = (x′, x3) = (εy, x3), y ∈ Y, x3 ∈ (0, L), in such a way that x′ = εy. This
classical dilation transforms the reduction of dimension problem posed in Ωε into a
singular perturbation problem posed on the fixed domain Ω (see [11]) and the limit
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problem (as ε goes to zero) is written in terms of (y, x3). When we study the peri-
odic homogenization with Ω :=

∪
i∈Iε

(
(εY + εi)× (0, L)

)
, the variable x in Ω writes

as x = (x′, x3) with x′ = εy+εi, y ∈ Y, i ∈ Iε, x3 ∈ (0, L). It is well known (see [1],
[10]) that the homogenized problem may be formulated in terms of the variables
(y, x). Of course, it is not reasonable to expect a homogenized problem involving
only x3 as a macroscopic variable since we have many cells distributed in the plane
(x1, x2) so that several reductions of dimension occur. For that reason, the role of
the part x′ = (x1, x2) of the macroscopic variable in the homogenized problem is
restricted to that of a parameter so that the main variables are still (y, x3) as in the
1d- model obtained after the reduction of dimension 3d− 1d. Remarkably, dealing
with one small cylinder or 1

ε2
small cylinders does not affect the form of the limit

problem.
For the sake of simplicity and brevity we consider in this work the case of the

Laplacian but the results remain valid for other more general operators as we will
show in coming works.

2. Strange term in the reduction of dimension. We consider a thin structure
described as follows. Let ε, rε be two decreasing sequences of positive numbers such
that lim

ε→0

rε
ε

= 0 and let Ω̂ε, F̂ε, M̂ε be respectively the parallelepiped, the fiber and
the matrix defined by Ω̂ε = εY × (0, L), Y =

(
]− 1

2 ,
1
2 [
)2
, L > 0, F̂ε = rεD × (0, L) ⊂ Ω̂ε,

whereD(0, r) is the closed disk of radius 0 < r < 1
2 .

(1)

For the sake of brevity, in the sequel the interval (0, L) is sometimes denoted by
I. We will assume Dirichlet condition on the part

∂Ω̂D
ε = {(x′, x3) ∈ R3 : x3 = 0 or x3 = L orx′ ∈ rε∂D} (2)

of the boundary of Ω̂ε and Newmann condition on the rest
∂Ω̂N

ε = ∂Ω̂ε \ ∂Ω̂D
ε (3)

of the boundary. Remark that ∂Ω̂D
ε is made of the upper and the lower faces of the

parallelepiped together with the boundary of the fiber F̂ε which plays here the role
of a hole. We consider the following equation:

−∆ūε = f in Ω̂ε,

ūε = 0 on ∂Ω̂D
ε ,

∂ūε

∂n
= 0 on ∂Ω̂N

ε .

(4)

Introduce the change of variables x′ = εy, uε(y, x3) := ūε(εy, x3) and set

Ω := Y × (0, L), Fε =
1

ε
F̂ε, Ωε = Ω \ Fε, (5)

H1
D(Ωε) := {u ∈ H1(Ω), u(y, 0) = u(y, L) = 0, u = 0 on ∂Fε} (6)

. Finally, denote by ∇′ the gradient with respect to the two first variables y =
(y1, y2). Similarly, ∆′ denotes the Laplacian with respect to the same variables.
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With these notations, one deduces easily that (4) is transformed into an equation
satisfied by uε with the following variational formulation


uε ∈ H1

D(Ωε),

∫
Ωε

( 1

ε2
∇′uε∇′ϕ+

∂uε

∂x3

∂ϕ

∂x3

)
dydx3 =

∫
Ωε

fϕ dydx3,

∀ ϕ ∈ H1
D(Ωε).

(7)

Assuming the source term f ∈ L2(Ω), problem (7) is well-posed; in addition, uε may
be extended by zero inside the hole Fε so that the new sequence still denoted by
uε belongs to H1

D(Ω) := {u ∈ H1(Ω), u(y, 0) = u(y, L) = 0}. Furthermore, taking
ϕ = uε in (7), we obtain easily that there exist u ∈ H1

0 (0, L) (subspace of functions
in H1

D(Ω) depending only on the variable x3) and a subsequence (still denoted by
ε) such that:

uε ⇀ u weakly in H1
D(Ω). (8)

The limit function u depends on the size of the hole and it is characterized by the
following theorem. Indeed, defining f̃(x3) :=

∫
Y

f(y, x3) dy, we have the following:

Theorem 2.1.

If there exists k > 0 such that rε ∼ e−
k
ε2 , the function u

is the unique solution of the one-dimensional problem

u ∈ H1
0 (0, L), −d2u

dx2
3

+
2πr

k
u = f̃ in (0, L),

if rε ≪ e−
k
ε2 , u is the unique solution of

u ∈ H1
0 (0, L), −

d2u

dx2
3

= f̃ in (0, L),

if rε ≫ e−
k
ε2 , then u = 0.

(9)

Sketch of the Proof. Introduce the following function (see [11])

wε(y) =


0 in rε

ε D,

ln(|y|)−ln( rε
ε )

ln(r)−ln( rε
ε )

inD \ rε
ε D,

1 inY \D.

(10)

Then: ∂wε

∂n
=

1

ln( ε
rε
)

on ∂D, −∆′wε = 0 in D\rε
ε
D, wε ⇀ 1 weakly in H1(Y ).

Use as a test function in (7): ϕ(y, x3) = wε(y)ū(x3), ū ∈ H1
0 (I).Then∫ L

0

∫
D\ rε

ε D

1

ε2
∇′uε∇′wεūdydx3 +

∫
Ω

∂uε

∂x3
wε

dū

dx3
dydx3 =

∫
Ω

fwεū dydx3. (11)
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Integrating by parts with respect to y the first integral on the left, and bearing in
mind the property −∆′wε = 0 in D \ rε

ε D, we see that it reduces to the boundary

integral:
∫ L

0

∫
∂D

1

ε2
∂wε

∂n
uεdσūdx3 =

∫
I

∫
∂D

1

ε2
1

ln( ε
rε
)
uεdσūdx3.

Hence, we have the following conclusions in terms of the thickness of the hole:

if rε = e
−k

ε2 , the limit of the last integral is equal to 1

k
|∂D|

∫ L

0

uū dx3 =

2πr

k

∫ L

0

uū dx3, so that the limit equation is the first equation of (9).

If rε ≪ e−
k
ε2 , the limit of that integral is equal to zero in such a way that the

extra term disappears and the limit equation is now the second equation arising in
(9).

Finally, let us prove that u = 0 under the assumption rε ≫ e−
k
ε2 . It is well

known that for given ε > 0, the eigenvalues of the operator − 1

ε2
∆′ − ∂2

∂x2
3

with

eigenvectors in H1
D(Ωε) is an increasing positive sequence of real numbers and that

for f ∈ L2(Ω), the solution of (7) is given by uε =

∞∑
i=1

1

λε
i

(f, vεi )v
ε
i where (λε

i , v
ε
i )i≥1

is the sequence of the eigenelements under consideration and where (, ) denotes the
scalar product of L2(Ω). As a consequence, we deduce the estimate

∥ uε ∥L2(Ω)≤
1

λε
1

∥ f ∥L2(Ω) . (12)

On the other hand, the first eigenvalue is given by λε
1 = min

v∈H1
D(Ωε)\{0}

∫
Ωε

( 1

ε2
|∇′v|2 + | ∂v

∂x3
|2
)
dx∫

Ωε

|v|2 dx.

.

As an immediate consequence, we derive the following inequality

λε
1 ≥ min

v∈H1
D(Ωε)\{0}

∫ L

0

∫
Y \Fε

1

ε2
|∇′v|2 dydx3∫ L

0

∫
Y \Fε

|v|2 dydx3

. (13)

On the other hand, since for x3 ∈ (0, L) any function v ∈ H1
D(Ωε) is such that

v(., x3) ∈ H1(Y ) and v(., x3) = 0 on ∂( rεε D), we can use the following estimate
proved in [14], pages 44-45:

min
v∈H1(Y )\{0},

∫
Y \Fε

1

ε2
|∇′v|2 dy∫

Y \Fε

|v|2 dy

≥ 1

ε2
1∫ 1

2

rε
ε

t dt

∫ 1
2

rε
ε

1

t
dt

. (14)

An easy computation shows that the quantity in the right hand side of (32) goes to
+∞ if rε ≫ e−

k
ε2 and then the result follows from (13) and (12).
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3. Strange term in the homogenization. In order to make easy the comparison
with the results of the last section, we keep here analogous notations; in particular,
Y ×(0, L) and D̄(0, r) denote respectively the parallelepiped and the disk defined in
the previous section. We assume now that Ω is the configuration domain of a set of
parallelepipeds Y i

ε := (εY +εi)×(0, L) distributed with a period εY in the horizontal
x′-directions; each parallelepiped Y i

ε contains another small parallelepiped playing
the role of a hole F i

ε := (rεD̄ + εi)× (0, L). The set of all the holes contained in Ω
will be denoted by Fε. We then define

Ωε = Ω \ Fε, Fε =
∪
i∈Iε

F i
ε , (15)

where Iε denotes as usual Iε := {i = (i1, i2) ∈ Z2, Y i
ε ⊂ Ω}. Note that the anal-

ogous configuration domain in the reduction of the dimension problem is (εY \
rεD̄) × (0, L) denoted there by Ω̂ε (to be distinguished from Ωε denoting there
the domain obtained after scaling). In other words, the real domain (before scal-
ing) of the 3d − 1d problem is nothing but the representative cell of the present
homogenization problem.

The equation we want to homogenize is the following

uε ∈ H1
D(Ωε),

∫
Ωε

∇uε∇ϕ dx =

∫
Ωε

fϕ dx, ∀ ϕ ∈ H1
D(Ωε), (16)

where H1
D(Ωε) := {u ∈ H1(Ω), u(x′, 0) = u(x′, L) = 0, u = 0 on ∂Fε}.

To give the limit problem, we need to define

ΓD := {x = (x′, x3) ∈ Ω, x3 = 0 or x3 = L}, ΓN := ∂Ω \ ΓD, (17)

together with the space

H1
D(Ω) := {u ∈ H1(Ω), u = 0 onΓD}. (18)

We consider a sequence δε of positive numbers such that

rε ≪ δε ≪ ε, lim
ε→0

ε2 ln(δε) = 0. (19)

For example if rε = e−
k
ε2 , k > 0, one can take δε = e−

k
ε . Denote by Cδε the circle

of radius δε
ε centered at the origin and set Ci

δε
= εCδε + εi. Finally, we introduce

the sequence

ũε =
∑
i∈Iε

1

2πδε

∫
Ci

δε

uε dσ χY i
ε
(x′). (20)

The following estimate, proved in [3], will be helpful in the sequel.

Lemma 3.1. There exists a constant C > 0 such that∫
Ω

|uε − ũε|2 dx ≤ Cε2
(
1 + | ln(δε

√
2

ε
)|
) ∫

Ω

|∇uε|2 dx. (21)

We now state the main result of this section through the following theorem.

Theorem 3.2. There exists u ∈ H1
D(Ω) such that the sequence of solutions of (16)

may be extended by zero to H1
D(Ω) on a sequence still denoted by uε such that

uε ⇀ u weakly in H1
D(Ω). (22)
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Furthermore, u is characterized by



If there exists k > 0 such that rε ∼ e−
k
ε2 ,

then u is the unique solution

of the homogenized problem

u ∈ H1
D(Ω), −∆u+

2π

k
u = f in Ω,

∂u

∂n
= 0 on ΓN .

If rε ≪ e−
k
ε2 ,

then u is the unique solution of

u ∈ H1
D(Ω), −∆u = f in Ω,

∂u

∂n
= 0 on ΓN .

If rε ≫ e−
k
ε2 , then u = 0.

(23)

,

Proof. First of all, we remark that the sequence uε of solutions of (16) extended
by zero to the holes is bounded in H1

D(Ω); this can be seen using ϕ = uε as test
function in (16) and then applying the Cauchy-Schwarz inequality in the right hand
side. Therefore, we can assume that there exists u ∈ H1

D(Ω) such that ( up to a
subsequence) uε ⇀ u weakly in H1

D(Ω). We want to find the equation satisfied by
u.

Let ϕ ∈ C∞(Ω) ∩ H1
D(Ω). Define the following sequence of piece-wise constant

functions
ϕε =

∑
i∈Iε

1

πr2ε

∫
Di

rε

ϕ(x′, x3) dx
′χY i

ε
(x′), (24)

where Di
rε denotes the disk of center ε(i1, i2) and of radius rε. Using the regularity

of ϕ, one can check easily by the use of the mean value Theorem that there exists
a constant C > 0 such that |ϕ− ϕε| ≤ Cε in Ω.

Define the function dε(x
′) := dist

(
x′; {εi, i = (i1, i2) ∈ Z2}

)
and denote by Di

δε
the disk with center εi and with radius δε, then we will use the following function
defined for each i ∈ Z2 such that Y i

ε ⊂ Ω (i.e., i ∈ Iε) by:

wε(x
′) =


0 inDi

rε ,

ln(dε(x
′))−ln(rε)

ln(δε)−ln(rε)
inDi

δε
\Di

rε ,

1 inY i
ε \Di

δε
.

(25)
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In view of the definition of wε, one can check easily by the use of cylindrical coordi-
nates in the tube U i

ε := {(x′, x3) ∈ Y i
ε , rε < dε(x

′) < δε, x3 ∈ (0, L)} the following
estimate:

∫
Ω

|∇′wε(x
′)|2 dx ≤ C

ε2 ln( δεrε )
. (26)

Hence, the second equality arising in (19) allows us to conclude that wε is bounded
in H1(Ω) under the hypothesis rε ≈ e−

k
ε2 or the hypothesis rε ≪ e−

k
ε2 . Note

also that the latest hypothesis which corresponds to ”small holes” implies that the
sequence wε which is bounded in H1(Ω) strongly converges to 1 in H1(Ω). If we
assume only the hypothesis rε ≈ e−

k
ε2 , then wε only converges to 1 in the weak

topology of H1(Ω), (see [9]).
We now choose a test function in the form ϕ(x)wε(x

′) in equation (16) with
ϕ ∈ H1

D(Ω) and we get



∫
Ω

∇uε∇
(
wεϕ

)
dx =

∫
Ω

∇uε∇wε(ϕ− ϕε) dx+

∫
Ω

wε∇uε∇ϕ dx +

+

∫
Ω

ϕε∇uε∇wε dx.

(27)

Due to the inequality sup
x∈Ω

|ϕ−ϕε| ≤ Cε pointed out above and due to the bounded-

ness in H1(Ω) of the sequences uε and wε, the first integral in the right hand side
of (27) clearly tends to zero, while the second one converges to

∫
Ω

∇u∇ϕ dx since

one can assume the strong convergence to 1 in L2(Ω) of the sequence wε by the
Rellich Theorem. Hence, it only remains to compute the limit of the third integral.
In view of the definition of wε, that integral reduces to the integral on the tube
U i
ε := {(x′, x3) ∈ Y i

ε , rε < dε(x
′) < δε, x3 ∈ (0, L)}. Using cylindrical coordinates

(r, θ, x3) ∈ (rε, δε)× (0, 2π)× (0, L) and the definition (25) of wε, it is not difficult
to check that one can write in terms of (r, θ, x3)

∇′uε∇′wε =
1

r ln( δεrε )

∂uε

∂r
(r, θ, x3) in U i

ε, (28)
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so that bearing in mind the formula (24 ) and the fact that uε(rε, θ, x3) = 0, we
get: 

∫
Ω

ϕε∇uε∇wε dx =
∑
i∈Iε

∫
Ui

ε

ϕε∇uε∇wε dx

=
∑
i∈Iε

∫ L

0

∫ 2π

0

∫ δε

rε

1

r ln( δεrε )

∂uε

∂r
(r, θ, x3)ϕε(x3) r dr dθdx3

=
1

ln( δεrε )

∑
i∈Iε

∫ L

0

∫ 2π

0

uε(δε, θ, x3)ϕε(x3) dθdx3

=
2π

ln( δεrε )

∑
i∈Iε

∫ L

0

∫ 2π

0

1

2π
uε(δε, θ, x3)ϕε(x3) dθdx3

=
2π

ε2 ln( δεrε )

∑
i∈Iε

∫ L

0

∫
Y i
ε

ũε(x
′, x3)ϕε(x) dx

′dx3

=
2π

ε2 ln( δεrε )

∫
Ω

ũε(x
′, x3)ϕε(x) dx

′dx3,

(29)

where ũε is defined by (20). On the other hand, from Lemma 3.1 and the property
lim
ε→0

δε = 0 we deduce that ũε → u strongly in L2(Ω) since uε converges strongly to
u in L2(Ω). Finally using the property ϕε → ϕ strongly in L2(Ω), we obtain the
first two items of the theorem by passing to the limit in the last term of (29).

We now prove the last part of the theorem using the same idea as in the 3d− 1d
problem showing that the first eigenvalue λ1

ε of the operator under consideration
tends to infinity when ε → 0. We establish a lower bound of λ1

ε as follows

λε
1 = min

v∈H1
D(Ωε)\{0}

∫
Ωε

(
|∇′v|2 + | ∂v

∂x3
|2
)
dx∫

Ωε

|v|2 dx

≥ min
v∈H1

D(Ωε)\{0}

∫
Ωε

|∇′v|2 dx∫
Ωε

|v|2 dx

. (30)

In each cell Y i
ε ⊂ Ω, one can write for all v ∈ H1

D(Ωε) by the use of cylindrical
coordinates as above∫

Y i
ε

|∇′v|2dx ≥
∫ L

0

∫ 2π

0

∫ ε

rε

|∂v
∂r

|2r dr dθ dx3. (31)

As a consequence, we infer∫
Y i
ε

|∇′v|2dx∫
Y i
ε

|v|2dx
≥

∫ L

0

∫ 2π

0

∫ ε

rε

|∂v
∂r

|2r dr dθ dx3∫ L

0

∫ 2π

0

∫ ε

rε

|v|2r dr dθ dx3

. (32)

Using the following inequality proved in [14],∫ ε

rε

|∂v
∂r

|2r dr ≥ 1

γ(ε)

∫ ε

rε

|v(r, θ, x3)|2r dr, a.e. (θ, x3) ∈ (0, 2π)× (0, L), (33)
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where γ(ε) :=

∫ ε

rε

r dr

∫ ε

rε

1

r
dr, we get by integrating over (0, 2π) × (0, L) and

summing up over i ∈ Iε,

min
v∈H1

D(Ωε)\{0}

∫
Ωε

|∇′v|2 dx∫
Ωε

|v|2 dx

≥ 1

γ(ε)
. (34)

One can check that the constant γ(ε) goes to zero under the hypothesis rε ≫ e−
k
ε2

and then the conclusion of the last part of the theorem is a consequence of the
inequality (12) which still holds true in the homogenization problem.

We now give the second example regarding nonlocal effects in the limit problem.
We begin with the reduction of dimension.

4. Nonlocal effects in the reduction of dimension. In order to describe the
heterogeneities of the medium, we need here to introduce some other notations
and change slightly those of section 2. In this section D(0, r) still denotes the disk
defined in the previous sections, Ωε is defined by Ωε = εY ×(0, L) = εY ×I, Y being
defined by (1) and I := (0, L). In addition, we introduce the sets Mε = Ωε \ Fε

where now Fε := εD × (0, L) in such a way that Ωε = Mε ∪ Fε. Similarly, we put
F := D × I, M := Ω \ F, in such a way that Ω = Y × (0, L) = M ∪ F. We still
denote by H1

D(Ω) the space H1
D(Ω) := {u ∈ H1(Ω), u(y, 0) = u(y, L) = 0}.

We then consider the problem

uε ∈ H1
D(Ω),∫

Ω

(
χF + ε2χM

)( 1

ε2
∇′uε∇′ϕ+

∂uε

∂x3

∂ϕ

∂x3

)
dydx3 =

∫
Ω

fϕ dydx3,

∀ ϕ ∈ H1
D(Ω).

(35)

Clearly, problem (35) is the variational formulation in the fixed domain Ω of the
equation satisfied by uε(y, x3) := ūε(εy, x3) and obtained from the equation posed
in the variable domain Ωε and satisfied by ūε. Loosely speaking, equation (35)
takes into account the contrast between the diffusion in the fiber which is assumed
to be of order 1 (before scaling) and the diffusion in the matrix (outside the fiber)
assumed to be of order ε2.

As regards of the asymptotic behaviour of the sequence uε, the main result may
be stated as follows.

Theorem 4.1. The sequence uε of solutions of (35) is such that:

uε → u0(x) + v(x3) strongly in L2(I;H1(Y )),

1
ε∇

′uεχF → 0 strongly in
(
L2(Ω)

)2
, ∂uε

∂x3
χF → dv

dx3
χF in L2(Ω),

∇′uεχM → ∇′u0χM strongly in
(
L2(Ω)

)2
, ε∂uε

∂x3
χM → 0 in L2(Ω),

(36)
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where the pair (u0, v) is the unique solution of

(u0, v) ∈ {ϕ ∈ L2(I;H1(Y )), ϕ(., x3) = 0 inD} ×H1
0 (I),∫

Ω

( dv

dx3

dv̄

dx3
χF +∇′u0∇′ūχM

)
dydx3 =

∫
Ω

f(ū+ v̄) dydx3,

∀ (ū, v̄) ∈ {ϕ ∈ L2(I;H1(Y )), ϕ = 0 inD} ×H1
0 (I).

(37)

Furthermore, the convergence of the energies Eε :=

∫
Ω

(
χF + ε2χM

)( 1

ε2
∇′uε∇′uε+

∂uε

∂x3

∂uε

∂x3

)
dydx3 towards the limit energy E0 :=

∫
Ω

( dv

dx3

dv

dx3
χF+∇′u0∇′u0χM

)
dydx3

holds true.

Proof. Taking ϕ = uε in equation (35), we get

Eε =

∫
Ω

fuε dydx3 ≤ C ∥ uε ∥L2(Ω) . (38)

By the assumption uε(y, L) = uε(y, 0) = 0 one can apply the one dimensional
Poincaré inequality in (0, L) to the function uε(y, .) for a given y ∈ Y to obtain∫ L

0

|uε(y, x3)|2 dx3 ≤ C

∫ L

0

|∂uε

∂x3
(y, x3)|2 dx3, a.e. in Y. (39)

Integrating (39) with respect to y ∈ D and bearing in mind that F = D × (0, L),
we get

∥ uε ∥2L2(F )≤ C ∥ ∂uε

∂x3
χF ∥2L2(Ω)≤ CEε. (40)

On the other hand, for a given x3 ∈ (0, L) the Poincaré-Wirtinger inequality gives
the estimate

∥ uε(., x3)−
1

|D|

∫
D

uε(., x3) dy ∥L2(Y )≤ C ∥ ∇′uε(., x3) ∥L2(Y ) . (41)

Integrating (41) with respect to x3 ∈ (0, L), we derive with the help of (40) and the
fact that ∥ ∇′uε ∥2L2(Ω)≤ Eε for sufficiently small ε, the estimate

∥ uε ∥2L2(Ω≤ CEε. (42)
Turning back to equation (35) and applying the Young inequality in the right hand
side, we deduce that Eε ≤ C which in turn implies by virtue of (42) that

∥ uε ∥L2(Ω≤ C. (43)
From estimate (43) and the boundedness of the sequence Eε, we deduce, up a
subsequence still denoted by ε, the existence of u0 ∈ L2(I;H1(Y )) such that

uε ⇀ u00(y, x3) weakly in L2(I;H1(Y )), (44)
which together with the estimates (which are consequences of Eε ≤ C)

∥ 1

ε
∇′uεχF ∥(L2(Ω))2≤ C,

∥ uε ∥H1(F )≤ C,

(45)

easily implies the existence of v ∈ H1
0 (I) such that

u00(y, x3) = v(x3) inF. (46)
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Therefore we obtain all the convergences stated in (36) except the convergence
1

ε
∇′uεχF ⇀ 0 replacing the strong convergence by the weak convergence, if we

define u0 by
u0(y, x3) = u00(y, x3)− v(x3) inΩ. (47)

To prove that the weak convergences are actually strong convergences, we first
identify the limit problem and then we will prove the convergence of the sequence Eε

to E0. The strong convergence of uε in L2(Ω) will be derived from the convergence
of the sequence Eε with the help of a kind of Poincaré-Wirtinger inequality as it
will be seen below.

The first estimate in (45) amounts to say that the sequence defined by wε :=
1

ε
(uε −

1

|D|

∫
D

uε dy) is bounded in L2(I;H1
m(D)) where H1

m(D) is the subspace of

functions in H1(D) with zero average. Hence, one can assume that for a subsequence
at least, it converges weakly in L2(I;H1

m(D)) to some w. Taking a test function
ϕ in (35) in the form ϕ = ū + v̄ + εw̄ with ū ∈ D(Ω) such that ū = 0 in F and
v̄ ∈ H1

0 (I), w̄ ∈ D(Ω), we can pass to the limit to find the equation∫
Ω

(
(∇′w∇′w̄ +

dv

dx3

dv̄

dx3
)χF +∇′u0∇′ūχM

)
dydx3 =

∫
Ω

f(ū+ v̄) dydx3. (48)

By a density argument we can choose ū = v̄ = 0 and w̄ = w in (48) so that we
get w = 0 and equation (37) is obtained. Note that by the same, the convergence
1

ε
∇′uεχF ⇀ 0 is proved.
Introduce now the sequence

Xε :=

∫
Ω

(
(
1

ε2
|∇′uε|2 +(

∂uε

∂x3
− dv

dx3
)2)χF +(|∇′uε −∇′u0|2 + ε2|∂uε

∂x3
|2)χM

)
. (49)

Choosing ϕ = uε in (35) and (ū, v̄) = (u0, v) in (37) and thanks to the previous
weak convergences, we show that the limit of Xε is zero so that the stated strong
convergences take place. To prove the strong convergence in L2(Ω) of the sequence
uε, we will use the following Poincaré-Wirtinger type inequality: there exists a
positive constant C such that

∥ u ∥L2(Ω)≤ C
(
∥ ∇′u ∥L2(Ω) + ∥ ∂u

∂x3
∥L2(F )

)
,

∀ u ∈ L2(I;H1(Y )) ∩ L2(D;H1
0 (I)).

(50)

The proof may be done arguing by contradiction. Assume that there exists a se-
quence un in that space such that ∥ un ∥L2(Ω)= 1 for all n while the sequence
∥ ∇′un ∥L2(Ω) + ∥ ∂un

∂x3
∥L2(F ) goes to zero. Then the bidimensional Poincar é-

Wirtinger inequality applied to the function un(., x3) for x3 ∈ I together with an
integration over I of such inequality allows one to get the estimate

∥ un − 1

|D|

∫
D

un dy ∥L2(Ω)≤ C ∥ ∇′un ∥L2(Ω), ∀n. (51)

On the other hand, the one dimensional Poincar é Inequality applied to the function
un(y, .) for y ∈ D and then an integration with respect to y ∈ D of that inequality
lead to the estimate

∥ 1

|D|

∫
D

un dy ∥L2(Ω)≤ C ∥ ∂un

∂x3
∥L2(Ω), ∀n. (52)
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From (51) and (52), we deduce that ∥ un ∥L2(Ω) goes to zero and this is a contra-
diction with the assumption.

Applying (50) to the sequence uε − (u0 + v), (recall that u0 = 0 in F ) we get
∥ uε − (u0 + v) ∥L2(Ω)≤ C

(
∥ ∇′uε −∇′u0 ∥L2(M) +

+ ∥ ∇′uε ∥L2(F ) + ∥ ∂uε

∂x3
− dv

dx3
∥L2(F )

)
.

(53)

Applying the previous strong convergences, the right hand side of (53) tends to zero
so that the proof of the theorem is now complete.

One can highlight the nonlocal character of the previous equation. Indeed, define
u(x3) :=

∫
Y

(
u0(x) + v(x3)

)
dy =

∫
Y \D

u0(y, x3) dy + v(x3). Let û be the unique

solution of 

−∆′û = 1 in Y \D,

û = 0 on ∂D,

∂û

∂n
= 0 on ∂Y.

(54)

Define m :=

∫
Y \D

û dy > 0. Then, we have the following result.

Theorem 4.2. Assume that f(y, x3) = f(x3) does not depend on the variable y.
Then u0 given in (36) may be written as u0(x) = f(x3)û(y) and the sequence ūε

defined in the variable domain Ωε = εY × I (recall that uε(y, x3) = ūε(εy, x3) for
(y, x3) ∈ Ω) is such that

1

|εY |

∫
εY

ūε(x
′, x3) dx

′ → u strongly in L2(I),

1

|εM |

∫
εM

ε∇′ūε(x
′, x3) dx

′ → 1

|M |

∫
M

∇′u0(y, x3) dy

strongly in L2(I),

1

|εD|

∫
εD

∂ūε

∂x3
(x) dx′ → dv

dx3
strongly in L2(I).

(55)

The pair (u, v) is the unique solution of the nonlocal one-dimensional problem
(u, v) ∈ L2(I)×H1

0 (I), u(x3)− v(x3) = mf(x3),

−|D|d
2v

dx2
3

= f(x3) in I.
(56)

Proof. Making the change of variable x′ = εy, the strong convergences (55) become
immediate consequences of the convergences (36).

The second equation of (56) is obtained from the equation (37) by choosing ū = 0
and taking into account the fact that F = D × I.
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On the other hand, one can check that the function f(x3)û(y) where û is the
solution of (54), solves the same equation as u0, that is the equation obtained
from (37) by choosing v̄ = 0. By virtue of the uniqueness of u0, we conclude that
u0(y, x3) = f(x3)û(y) and then the first equation of (56) is nothing but the equality
u(x3) :=

∫
Y \D

u0(y, x3) dy + v(x3) which defines u.

5. Nonlocal effects in the homogenization. To describe the geometry of the
medium, we need further notations.

Let D(0, r) be the disk defined in the previous sections and let ω be the square
ω :=] − 1, 1[2. Assume that Ω := ω × (0, L) = ω × I is now the configuration
domain of a set Fε of cylindrical parallel fibers periodically distributed with a period
εY = ε

(
] − 1

2 ,
1
2 [
)2 in the x′-horizontal directions which are surrounded by a poor

conductor occupying the matrix Mε in such a way that

Ω = Fε ∪Mε, Fε =
∪
i∈Iε

F i
ε , F i

ε = (εD̄(0, r) + εi)× I (57)

Mε = Ω \ Fε. (58)
Hence, the medium is now a periodic replication of the one arising in the previous
section. The equation we want to homogenize is the following

uε ∈ H1
D(Ω),

∫
Ω

(
χFε

+ ε2χMε

)
∇uε∇ϕ dx =

∫
Ω

f(x)ϕ(x) dx, ∀ ϕ ∈ H1
D(Ω), (59)

where H1
D(Ω) is still the space defined in the beginning of the previous section.

For the sake of brevity, we consider only the case of a source term not depending
on the microscopic variable but one can handle also that general case as pointed
out in the Remark 5.1 below.

Before stating the main result, we recall the definition of two-scale convergence
(see [12], [1]) a well adapted tool for periodic homogenization. A sequence tε ∈

L2(Ω) two scale converges to a function t ∈ L2(Ω × Y ) if
∫
Ω

tε(x)ϕ(x,
x′

ε
) dx →∫

Ω

∫
Y

t(x, y)ϕ(x, y) dxdy, ∀ϕ ∈ L2(Ω;C#(Y )) where C#(Y ) denotes the space of
functions which are continuous and Y -periodic. It is known that every bounded
sequence in L2(Ω) admits a two-scale converging subsequence.

In the sequel, the notation ⇀⇀ will stand for the two-scale convergence. The
main result may be stated as follows.

Theorem 5.1. The sequence uε of solutions of (59) is such that :

uε ⇀⇀ u0(x, y) + v(x), (60)

1

ε
∇′uεχFε ⇀ 0 weakly inL2(Ω), (61)

∂uε

∂x3
χFε

⇀ |D| ∂v
∂x3

weakly in L2(Ω), (62)

ε∇′uεχMε
⇀⇀ ∇′

yu0χY \D, ε
∂uε

∂x3
χMε

⇀⇀ 0, (63)
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where the pair (u0, v) ∈ {ϕ ∈ L2(Ω;H1
#(Y )), ϕ(x, .) = 0 inD} × L2(ω;H1

0 (I)) is
the unique solution of

∫
Ω×Y

( ∂v

∂x3

∂v̄

∂x3
χD(y) +∇′u0∇′ūχω\D

)
dxdy =

∫
Ω×Y

f(x)(ū+ v̄) dxdy,

∀ (ū, v̄) ∈ {ϕ ∈ L2(Ω;H1
#(Y )), ϕ(x, .) = 0 inD} × L2(ω;H1

0 (I)).

(64)

Furthermore, by the same approach already used in the 3d−1d problem, one can
eliminate the microscopic variable y to derive a formulation of the limit problem
involving only the macroscopic variable x. Indeed, let û be the unique solution of

−∆′
yû = 1 in Y \D,

û = 0 on ∂D,

û is Y − periodic.

(65)

Define m :=

∫
Y \D

û dy > 0.

Theorem 5.2. The function u0 given in (60) may be written as u0(x, y) = f(x)û(y)
and the sequence uε is such that

uε(x) ⇀ u :=

∫
Y \D

u0(x, y) dy + v(x) in L2(Ω), (66)

the pair (u, v) is the unique solution of the nonlocal homogenized problem
(u, v) ∈ L2(Ω)× L2(ω;H1

0 (I)), u(x)− v(x) = mf(x),

−|D|∂
2v

∂x2
3

= f(x) in Ω.
(67)

In the homogenization setting we cannot reasonably expect strong convergences
similar to those obtained in the reduction of dimension due to the oscillations in-
duced by the microscopic variable. However, we have the following result.

Theorem 5.3. Let uε be the sequence of solutions of (59) and let (u0, v) be the
pair defined by (64) , then the sequence

Xε =

∫
Ω

(
(| ∂v
∂x3

−∂uε

∂x3
|2+|1

ε
∇′uε|2)χD(

x′

ε
)+(|∇′

yu0(x,
x′

ε
)−∇′uε|2+|ε∂uε

∂x3
|2)χY \D(

x′

ε
)

(68)
converges to zero.

Remark that this result is a corrector result meaning that uε may be approxi-
mated by v(x) + u0(x,

x′

ε ).
Due to the close similarities between the reduction of dimension problem and the

homogenization problem and for the sake of brevity, we will give only the outline
of the proof of Theorem 5.1.

Proof. As above we take ϕ = uε in the equation (59) and then we prove in the same
way that the L2-norm of uε is dominated up to a positive constant by the energy
which is now defined by Eε :=

∫
Ω

(
χFε + ε2χMε

)(
∇′uε∇′uε +

∂uε

∂x3

∂uε

∂x3

)
dx′dx3.
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Once again, we use the Poincaré-Wirtinger inequality in the reference cell Y to
obtain the inequality∫

Y

|u− 1

|D|

∫
D

u dy|2 dy ≤ C

∫
Y

|∇u|2 dy, ∀u ∈ H1(Y ). (69)

For given ε, i ∈ Iε and x3 ∈ (0, L), we choose u(y) := uε(εy + εi, x3) in (69) and
then we make the change of variables x′ = εy + εi in such a way we derive the
inequality ∫

Y i
ε

|uε −
1

|Di
ε|

∫
Di

ε

uε dx′|2 dx′ ≤ C

∫
Y i
ε

ε2|∇′uε|2 dx′. (70)

On the other hand, similarly to the proof in the reduction of dimension problem and
due to the Dirichlet boundary condition uε(x

′, 0) = uε(x
′, L) = 0, one can apply the

one dimensional Poincaré inequality to the sequence uε(x
′, .) for almost all x′ ∈ ω

to get after an integration with respect to x′ and after summing up over i ∈ Iε,∫
Ω

∑
i∈Iε

| 1

|Di
ε|

∫
Di

ε

uε dx′|2 dx ≤ C
∑
i∈Iε

∫ L

0

∫
Di

ε

|∂uε

∂x3
|2 dx = C

∫
Ω

|∂uε

∂x3
|2χFε

dx.

(71)
Summing up over i ∈ Iε and integrating over (0, L) the inequality (70), we get

with the helph of (71)∫
Ω

|uε|2 dx ≤ C

∫
Ω

(
|∂uε

∂x3
|2χFε

+ ε2|∇′uε|2
)
dx ≤ CEε. (72)

Using (72) in equation (59) in which we take ϕ = uε, we derive easily the estimate
Eε ≤ C. In particular the last inequality implies that the sequence ∂uε

∂x3
χFε

is
bounded in L2(Ω) so that uεχFε

is bounded in L2(ω;H1
0 (0, L)). Therefore one can

extract a subsequence still denoted ε and find functions u00 ∈ L2(Ω;H1
#(Y )), K ∈

(L2(Ω× Y ))2, v ∈ L2(ω;H1
0 (0, L)) such that the following convergences hold true:

uε ⇀⇀ u00, ε∇′uε ⇀⇀ ∇′
yu00,

1

ε
∇′uεχFε

⇀⇀ KχD(y), (73)

Since ∇′uεχFε
strongly converges to zero in L2(Ω), we deduce from (73) that

u00(x, y) = v(x) in Ω×D with some v ∈ L2(Ω).
In addition, there exists v̄ ∈ L2(ω;H1

0 (0, L)) such that

uεχFε
⇀ v̄ weakly in L2(ω;H1

0 (0, L))),
∂uε

∂x3
χFε

⇀
∂v̄

∂x3
weakly in L2(Ω).

(74)
From the first convergence of (73) we deduce v̄(x) :=

∫
Y

u00(x, y)χD(y) dy =

|D|v(x). Hence, v ∈ L2(ω;H1
0 (0, L)).

On the other hand, the Poincaré-Wirtinger inequality applied in H1(D) and the
same change of variables as in the proof of (70) leads to∫

Di
ε

|uε −
1

|Di
ε|

∫
Di

ε

uε dx′|2 dx′ ≤ C

∫
Di

ε

ε2|∇′uε|2 dx′. (75)

Using the boundedness in L2(Ω) of the sequence 1

ε
∇′uεχFε

, we deduce from (75)

that the sequence wε :=
∑
i∈Iε

1

ε
(uε−

1

|Di
ε|

∫
Di

ε

uε dx
′)χDi

ε
is bounded in L2(0, L;H1

m(D))
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and one can assume possibly by extracting a subsequence that it converges weakly
in that space to some w. We then prove that the last limit K arising in (73) is equal
to ∇′

yw.
The function defined by u0(x, y) := u00(x, y) − v(x) in Ω × Y satisfies the con-

vergence (60). Taking in (59) a test function in the form ϕ(x) = ū0(x,
x′

ε ) + v̄(x) +

w̄(x, x′

ε ) with regular ū0, w̄, v̄ and passing to the limit, we obtain the limit equa-
tion(64) by a density argument. Choosing ū0 = v̄ = 0 and w̄ = w in that equation,
we conclude that w = 0 completing the proof of Theorem 5.1.

Remark 1. In order to emphasize the nonlocal effect at the limit, we have assumed
in Theorem 4.2 and in Theorem 5.2 that the function f does not depend on the
variable y. One can handle the general case of a source term f(y, x) depending also
on the variable y; in this case, setting f̂(x) :=

∫
Y

f(y, x) dy, one can check easily

that the solution u0(x, y) of (60) takes the form u0(x, y) = f̂(x)û(y)+û0(x, y) where
û is the solution of (65) and where û0(x, y) is the solution of (60) but with the right
hand side given by f(y, x)−

∫
Y

f(y, x) dy. This is due to the simple remark that any

right hand side f(y, x) of (60) may be written as f(y, x) = f(y, x)−
∫
Y

f(y, x) dy+∫
Y

f(y, x) dy so that the solution u0 is the superposition of the two solutions. Of
course the same remark holds true in the problem of reduction of dimension. In
both cases, the nonlocal effect is due to the term f̂(x)û(y).
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