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Mélanie Muncha,∗, Patrice Buchea,d, Stéphane Dervauxb, Juliette Dibieb,
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Abstract

This paper presents a workflow for the design of transformation processes us-
ing different kinds of expert’s knowledge. It introduces POND (Process and
observation ONtology Discovery), a workflow dedicated to answer expert’s
questions about processes. It addresses two main issues: 1) how to represent
the processes inner complexity, and 2) how to reason about processes taking
into account uncertainty and causality. First, we show how to use a semantic
model, an ontology, and its associated data to answer some of the expert’s
questions concerning the processes, using semantic web languages and tech-
nologies. Then, we describe how to learn a predictive model, to discover new
knowledge and provide explicative models by integrating the semantic model
into a probabilistic relational model. The result is a complete workflow able
to extensively analyse transformation processes through all their granularity
levels and answer expert’s questions about their domains. An example of
this workflow is given on biocomposites manufacturing for food packaging.

Keywords: Ontologies, Probabilistic Relational Models, Knowledge
Discovery, Causality

1. Introduction

In industry, a production process defines the steps through which raw
materials (or inputs) are transformed into a final product (or output). The
particularity -and difficulty- of its analysis lays on its heterogeneity (different
variables, different scales) and time-dependent flow of information. Indeed,
in order to analyse or to compare different processes, there is the need to
represent the measurements (or observations) that estimate or calculate the
value of a property (denoted as characteristics or attribute), associated either
with an input/output, either with a step. In this paper we will use the term
observation for a group of one or more attributes1 having a result that may
have a qualitative value or a quantitative value.

Analysing a process often requires to discover new knowledge. For in-
stance, given a cooking recipe, it might be interesting to see whether modify-
ing the quantity of sugar or the oven’s temperature would have an influence

1Attributes will be denoted as variables if integrated in a probabilistic model.
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over the final product. To answer this question, we would first need mul-
tiple repetitions of the recipe to have a good dataset able to represent the
different situations. However, depending on external conditions, the preci-
sion of the different measures can vary: sometimes the measured quantity of
sugar might be slightly off, or a hot weather might have an influence over the
cake’s cooking. These small variations, that characterize uncertainty, need
to be addressed by the model. On another hand, defining the impact of a pa-
rameter over others can be a complex task, that requires interventions (Pearl,
2009) (i.e. assessing whether a variable is influenced by another by forcing
some values). If those are sometimes easy to do (I can force the temperature
of my oven), in some cases, they are impossible to assess (I can’t force my
cake’s final taste to check whether the quantity of sugar is influenced). As
a consequence, we want our model to be able to integrate causal knowledge
in order to discover such relations without having to rely on interventions.
For all these reasons, discovering new knowledge within a transformation
process requires, on top of a robust system to represent and organize all of
the concepts seen before, a reasoning model, able to deal with both (1) the
uncertainty that stems from the variability of transformation processes and
(2) the eventual causality needed for in-depth analysis.

In this article we present the workflow POND (Process and ob-
servation ONtology Discovery) that provides tools to represent and
reason about a transformation process in its overall complexity.

To do so, POND needs to address two main challenges:

• The representation of the transformation processes and their inherent
complexity and heterogeneity;

• The representation of uncertainty in coherent models able to answer
specific (sometimes causal) questions about the domain.

In order to address the first challenge and to provide data and knowl-
edge integration, a relevant solution is the use of an ontology (Doan et al.,
2012). An ontology gives a structured and formalized representation of the
specific vocabulary from a domain (Gruber, 2016; Guarino et al., 2009),
using some logical language (e.g. Description Logic (DL) (Baader et al.,
2017)) and allowing logical operation (e.g. inference for deducing new in-
formation). Lots of methods, technologies and tools exist for building and
using ontologies, some of them becoming standards promoted either by the
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OBO Foundry (OBO), a community development of interoperable ontolo-
gies for the biological sciences, or by the World Wide Web Consortium
(W3C) (W3C), an international community that develops open standards
to ensure the long-term growth of the Web. Moreover, publishing ontolo-
gies on the Linked Open Data (LOD) cloud (LOD) and building networks
of interconnected ontologies (Suárez-Figueroa et al., 2012) should facilitate
data integration and data sharing, such as giving access to data from specific
disciplines or data produced within specific geographic regions (Bizer, 2013).

In order to address the second challenge, we propose the use of two proba-
bilistic models, the Bayesian Network (BN) (Pearl, 1985) and the Probabilis-
tic Relational Model (PRM) (Friedman et al., 1999), that allow to represent
variables and their influence on each other. The main idea is to use the se-
mantic knowledge encompassed in the ontologies to guide the learning of the
probabilistic model, which has already been proposed in our previous works
Munch et al. (2017, 2019a). The introduction of expert’s knowledge allows
us to introduce causal constraints which give a new overview on the data and
a framework for causal discovery.

The goal of the POND workflow is to propose a way of representing and
reasoning on data extracted from different sources about a specific trans-
formation process. Our originality stems from (1) the adaptability of the
representation part, that allows the combination of two knowledge sources
(the ontology on one hand, and the expert’s inputs on the other); and (2)
the scope of the questions that can be answered through this workflow, some
being answered by directly querying the data, and others by analysing a
model, learned for the occasion, that is able to reason with the transforma-
tion process’s complexity. In this article, we denote as expert a person (or
group of persons) who possesses knowledge on a specific domain that can
be represented in the Process and Observation Ontology (PO2). Experts
are considered at the same time as users of POND (they express their wish
to reason about a transformation process and use POND at this purpose),
and as providers of expert knowledge (necessary for the workflow). Their
different interventions are summarized in Figure 2.

The paper is organized as follows. Section 2 presents the state of the
art necessary to introduce both the ontologies and the PRMs. Section 3
describes the POND system and its architecture. It focuses on three parts:
the PO2 ontology, the mapping between the ontology and the PRM, and
the exploitation of the PRM. The fourth section, Section 4, presents the
application of the POND workflow for the design of biomass transformation
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processes. Finally, Section 5 discusses the results and Section 6 concludes
this paper.

2. State of the art

This article presents POND, a workflow dedicated to structure and ex-
ploit knowledge to reason about transformation processes. In this section
we introduce the concepts of ontologies, BNs, PRMs, required to build our
workflow. As we will see in more details in Section 3, ontologies can be
used to address both the structuration issue as well as to answer complex
or simple descriptive questions about the data. However, to deal with more
complex queries (for instance those introducing uncertainty), in this section,
we introduce as well an overview on the combination of ontology and PRM
and on causal discovery.

2.1. Ontologies

In the context of computer and information sciences, ontology is the term
used to refer to a shared understanding of some domain of interest and it is
often conceived as a set of classes, attributes (or properties), and relationships
(or relations among class members) (Gruber, 2016; Guarino et al., 2009). An
ontology is usually specified in languages corresponding to first-order logic
fragments, allowing abstraction from data structures and implementation,
and providing reasoning capabilities. Therefore, ontologies are considered
as semantic models and are used for integrating heterogeneous databases,
enabling interoperability among disparate systems, and specifying interfaces
to independent, knowledge-based services.

There exists standard languages to define ontologies (e.g. Open Biomedi-
cal Ontology (OBO) format (OBO) and the Web Ontology Language (OWL)
(OWL)), methodologies guiding how to build an ontology (e.g. NeOn method-
ology (Suárez-Figueroa et al., 2012) and Linked Open Terms (LOT) Method-
ology (Poveda-Villalón et al., 2019)), Ontology Designed Patterns (Gangemi
& Presutti, 2009) as modeling solutions that address recurrent ontology de-
sign problems, repositories storing ontologies (e.g. BioPortal (Bio), OBO
Foundry (OBO), Linked Open Vocabularies (LOV)) and a variety of com-
mercial and open source tools for creating and using ontologies.

The first step in building an ontology is to define its requirements spec-
ification, i.e. to define its scope and its end-users and to generate a list of
competency questions (Suárez-Figueroa et al., 2012; Poveda-Villalón et al.,
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2019). When tackling the problem of the representation of a transformation
process in food industry, the following requirements must be addressed: i) de-
scribe each step of the process by a set of experimental observations available
for the inputs and outputs, ii) represent in a precise, quantitative manner
the inputs and the outputs using some characteristics of interest (attributes),
and iii) allow the comparison of different transformation processes in order
to enhance product formulation.

In the OBO Foundry (OBO) there exists some ontologies that covers the
subject of process modelling in biology: there are some generic ontologies, e.g.
Information Artifact Ontology (IAO) (IAO), Relations ontology (RO) (RO)
and Basic Formal Ontology (BFO) (BFO), and more specific ontologies, e.g.
Ontology for Biomedical Investigations (OBI) (Bandrowski et al., 2016). The
Core Ontology for Biology and Biomedicine (COB) (COB) is an under de-
velopment ontology aiming to merge key classes and relations of the OBO
Foundry ontologies.

The FoodOn Ontology (Dooley et al., 2018) aims to be an harmonized
food ontology, that inherits the terms from the LanguaL Thesaurus (Ireland
& Møller, 2010; Lan), a well known vocabulary and a system used to describe
data about food (Ireland & Møller, 2000, 2016). Several working groups are
restructuring FoodOn sub-hierarchies, one of them concerning 250 existing
food transformation processes (Dooley et al., 2021).

The Semantic Sensor Network (SSN) (SSN) ontology is an ontology for
describing sensors and their observations, the involved procedures, the stud-
ied features of interest, the samples used to do so and the observed properties,
as well as actuators. It includes a lightweight but self-contained core ontology
called SOSA (Sensor, Observation, Sample, and Actuator) (Janowicz et al.,
2018; SOS). SSN and SOSA are the current recommendations promoted by
the Open Geospatial Consortium (OGC) (OGC) and by the World Wide
Web Consortium (W3C) (W3C).

A simple-to-use generic ontological model to represent transformation
processes is well suited to manage data extraction from heterogeneous liter-
ature sources as shown in Lousteau-Cazalet et al. (2016). Moreover, repre-
senting relations between data in this ontological core model as n-ary rela-
tions Buche et al. (2013) facilitates the usage by end-users who are familiar
with entering and manipulating data in spreadsheets. Yet, this simple model,
based on a tabular representation, becomes insufficient when it is necessary
to model complex transformation processes requiring to link output compo-
nents of a step to input component of others. The Ontology for Food Process
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Experiment (OFPE) Muljarto et al. (2014) proposes a generic semantic food
transformation model based on OWL (OWL) which is built on four main
classes: Product, Operation, Attribute and Observation. OFPE is extended
by the PO2 Ontology (Process and Observation Ontology) which allows us
to represent a generic transformation process described by a set of experi-
mental observations available for the inputs and outputs of each step of the
production process. PO2 is based on seven main classes: Component, Step,
Attribute, Observation, Material, Method, Scale. The PO2 version 1.5 pub-
lished in (Ibanescu et al., 2016) evolved into the current 2.2.1 version (PO2,
a), one of the contributions of this paper, described in Section 3.1.1. This
version of the PO2 core model reuses various existing ontologies (BFO (BFO),
SOSA (Janowicz et al., 2018; SOS), IAO (IAO) and Time Ontology (TIM))
enhancing interoperability purposes.

A Food Process Modelling working group started two years ago is try-
ing to compare the different existing process models and to provide a gen-
eralized process ontology. Among the investigated models there are OBI
(Ontology for Biomedical Investigations) (Bandrowski et al., 2016), Exact2
(EXperimental ACTions) (Soldatova et al., 2014), Time Ontology (TIM),
SOSA (Janowicz et al., 2018; SOS) and PO2 (PO2, a). OBI and Exact2 are
reusing BFO, each process having a role, while the time aspect is not con-
sidered. The focus is on categorizing the different processes used in biology
according to the BFO and IAO main concepts. The main limit identified
concerning the use of OBI or Exact2 as a generalized process ontology is
that time is not integrated. SOSA (Janowicz et al., 2018; SOS) is a core on-
tology for the SSN ontology and allows us to represent sensors, observations,
samples and actuators. The latest version of the PO2 Ontology (PO2, a),
contribution of this paper, is reusing concepts from SOSA, from the Time
Ontology and from BFO.

PO2 Ontology as a core ontology is compliant with a set of Competency
Questions (see Section 3) listed by a group of experts in the field of bio-
based product transformation processes in the framework of several national
and international projects. For example, PO2 core ontology is used in this
paper to represent biocomposite manufacturing for food packaging experi-
ments partially produced in H2020 ECOBIOCAP, NOAW and RESURBIS
projects. A supplementary reason to choose the PO2 core model is the de-
velopment of dedicated tools to facilitate knowledge base implementation,
another contribution of this paper: (i) PO2 Manager (Dervaux et al., 2018;
Buche et al., 2020), a standalone application, described in Section 3.1.2, that
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assists domain experts in extending the PO2 core model for a specific do-
main (food packaging making in this paper) and editing data using PO2;
(ii) SPO2Q (Buche et al., 2020), a Web application described in Section 3.2
assisting users in querying data sets structured using the PO2 core model.

2.2. Bayesian Networks and Probabilistic Relational Models

As mentioned before, our problem requires a model able to deal with un-
certainty while offering a good integration of expert knowledge. To do so,
we present in this section two probabilistic graphical models, the Bayesian
Networks (BNs) (Pearl, 1985) and their object-oriented extension, the Proba-
bilistic Relational Models (PRMs) (Friedman et al., 1999). While both allow
to represent domains under the form of directed acyclic graphs, with vari-
ables as nodes and their relations encoded as arcs, PRMs offer one additional
layer in order to better model expert’s knowledge constraints.

A BN’s graph G is defined as G=(V,E), where V and E are respectively
the sets of all its nodes (representing discretized variables) and arcs (repre-
senting the conditional dependencies). To each variable, a conditional proba-
bility table is associated, giving the probability distribution for each possible
value it can take and how the values of its parents (i.e. variables that have an
oriented path toward that variable) influence it. Far from a black box system,
this offers a useful double-reading: given X and Y two variables with an arc
between them (X → Y ), both qualitative (“Has X an influence over Y ?”,
i.e. “Is there a oriented path from X to Y in G?”) and quantitative (“What
is the influence of X over Y ?”, i.e. “What is the impact of X’s value over
Y ’s value according to the conditional probability table?”) questions can be
answered. Since arcs encode independence, a variable’s value only depends
on those of its parents, allowing to clearly see how variables are tied together.

PRMs also use this principle, but they add a layer of description in order
to specify groups of variables and their relations. Indeed, on the contrary of
BNs that are only defined on one level (the directed acyclic graph), the vari-
ables and their relations in a PRM are described on two levels (as illustrated
in Figure 1 (a) and (b)):

• The Relational Schema (Figure 1 (a)) defines groups of attributes
as classes, and relations between those classes. It is important to note
that at this point, there are no relation between attributes: only classes
are linked, through so called relational slots.
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• The Relational Model (Figure 1 (b)) defines the relations between
attributes. These can be intra-class (the two attributes are defined in
the same class, e.g. X and Y in class A), or inter-classes (the attributes
are attached to two different classes, e.g. Y and U). In the case of inter-
classes relations, a constraint is given on its orientation, as it has to
follow the orientation of the relational slot between the two classes. If
there is no relational slot, then there cannot be a relation between the
variables.

Similarly to BNs, the PRM’s different level can be learned or manually
built. However, an interesting feature is that once a relational schema is de-
fined, the relational model can be learned in a similar way to a BN (Getoor
& Taskar, 2007). In our work, we (1) integrate expert knowledge in the rela-
tional schema by manually defining classes of attributes and relational slots;
then (2) automatically learn from data the relational model over the rela-
tional schema defined under these expert constraints, using classical Bayesian
networks learning algorithm2. Once the relational model is defined, the
classes can be instantiated in a system similar to a BN (Figure 1 (c)), allow-
ing us to use tools dedicated to BN’s analysis to reason on the process. As
presented in the following sections, this distinction in two steps allows us to
deduce causal relations from our learned model and compensate the possible
insufficiency of data.

To conclude this part, we have however to point out that despite being
well-equipped to represent correlations between variables, BN (and PRM)’s
relations do not represent causation: given X → Y , there is no direct reading
that allows to tell whether X causes Y or the contrary. Yet, since in our
case they are learned under expert’s knowledge (that we suppose equivalent
to causal constraints), then it becomes possible to deduce some causality
by looking at the Essential Graph (EG) (Madigan et al., 1996), a semi-
directed graph that can be deduced from any BN and which represents its
Markov’s equivalence class. The interest of the EG lies on the fact that,
despite having the same structure as the BN, its arcs orientations reflect
whether they depend on the data used to learn the model or not. If an arc is
oriented both in the BN and its EG, then it means that it cannot be changed
without contradicting the inherent independence of the learning dataset. On

2In this article, we use a classical Greedy Hill Climbing algorithm Chickering (2003)
with the BIC score Schwarz (1978).

9



the contrary, if an arc is not oriented, then it means that its orientation can
be reversed in the BN without contradicting these independences. Since we
are working on a BN learned under causal constraints (thanks to the expert’s
knowledge), we suppose, in the following, that oriented arcs in the EG can be
thought as causal. This supposes a set of specific conditions that we detail
further in Section 2.4.

Figure 1: A PRM is described by two components: (a) the relational schema defines groups
of attributes as classes and their relations; (b) the relational model gives the probabilistic
dependencies between the attributes. Once defined, the classes can be instantiated: the
attributes of each class in the relational model assume the role of a BN variable to allow
to compute probabilities on the model (c).

2.3. Learning Probabilistic Models from Ontologies

Learning a BN is an NP-hard problem whose difficulty drastically in-
creases with the number of variables to consider. Looking at BNs, numerous
related works have established that using constraints with heuristic algo-
rithms effectively improves structure (De Campos et al., 2009; Suzuki, 1996)
and parameters (De Campos & Ji, 2008; Niculescu et al., 2006) learning.
In this work, the relational schema defines structural constraints as an or-
dering between the different variables. Node ordering yields indeed good
results for BNs learning, be it a complete node ordering such as with the K2
algorithm (Cooper & Herskovits, 1992), or a partial oneas such as in (Parvi-
ainen & Koivisto, 2013). In our case, we compose a partial node ordering
from expert’s and ontological knowledge that we automatically transcribe in
a relational schema.

Using ontological knowledge in order to learn BNs has already been pro-
posed in several works and it is a good alternative to asking an expert inputs
that can be time-consuming and prone to mistakes (Druzdzel & Gaag, 2000).
Most of the existing works are based on similar methods, where the ontology
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brings knowledge in order to guide the structure building. Different works
combine object oriented BNs and ontologies (Ben Ishak et al., 2011; Truong
et al., 2005). All these methods, however, do not include expert’s knowledge,
and thus do not offer a lot of flexibility. Moreover, some require the use
of specific ontology’s extensions. These extensions can be used to integrate
probabilistic reasoning in ontologies (such as BayesOWL (Ding et al., 2006;
Zhang et al., 2009) or HyProb-Ontology (Mohammed, 2016), as in (Devitt
et al., 2006)). Despite their good results, all of these methods require to
adapt the ontology we wish to study to these extensions, by adding new
specific concepts. On the contrary, in this article, we want to focus on an
existing ontology, without having to extend or modify it.

Many works are tuned to a specific ontology, but, often, without possi-
bilities of transfer towards another domain. For instance, Bucci et al. (2011)
uses predefined templates to support medical diagnosis, which cannot be ex-
tended to other medical applications; (Zheng et al., 2007; Helsper & Gaag,
2002) require to construct a specific ontology to guide the construction of
the BN’s structure. Our approach, despite the fact that POND is tied to a
single ontology, is flexible enough to represent many different expert’s cases,
thanks to the genericity of the PO2 concepts (components, steps, observa-
tions) which allow more applications than with a classical domain ontology.

In a lot of approaches at the state of the art, the BN’s structure (i.e. the
relations between the variables in the graph) is not learned from the data
but derived from the ontology. This raises some issues as most of the ontolo-
gies do not transcribe direct causal dependencies, nor do the presence of a
property indicates a correlation between the attributes it joins. For instance,
(Fenz, 2012) considers that the object properties directly serve as probabilis-
tic dependencies if they are selected beforehand by an expert. (Ben Messaoud
et al., 2011) assumes that the ontology’s properties are already causal in or-
der to build an Object Oriented BN. Differently from these approaches, in
our work, the pre-existence of properties can help influence the final BN, but
it can never replace the statistical learning. More generally, our approach
relies on statistical learning and we cannot force a relation’s existence: if the
data we have do not allow a relation, then we cannot draw it.

2.4. Causal Discovery from Data

One of our main motivations is to reason about the transformation pro-
cess’s data. This sometimes requires to deal with causality. As we have seen
in Section 2.2, BNs and PRMs coupled with EG can be used for discovering

11



causality. However, the information represented has to be evaluated: since
correlation is not causation, a data set in which we want to discover causal
knowledge must answer some quality criteria. (Spirtes et al., 2000) defines
the causal sufficiency, a set of criteria that guarantees there cannot be
external factors not taken into account during the learning. (Glymour et al.)
defines other criteria that affect the quality of the data used to learn causal
models: it is for instance sensitive to missing data, selection bias, measure-
ment error, non stationary or heterogeneous data and deterministic cases. In
the same way that a bad data processing can lead to erroneous conclusions,
if not all possible events are present in the learning set, or if their proportion
is altered and does not represent reality, then it is impossible to draw good
causal discoveries.

Once the data’s quality has been assured, some algorithms propose to
discover causality by working with independence tests between the vari-
ables (Spirtes et al., 2000; Verny et al., 2017). However, they do not al-
low to introduce external constraints during the learning. Other works have
also proposed the use of EGs to learn causal models: Hauser & Bühlmann
(2014) proposes two optimal strategies for suggesting interventions in order to
learn causal models with score-based methods and the EG; Eberhardt (2008);
Shanmugam et al. (2015); Castelletti & Consonni (2020) use an EG to build
a causal BN while maintaining a limited number of intervention recommen-
dations. These approaches do not require any external knowledge about the
domain. In our case however, the data is structured according to an ontology
and it is not sorted in a way such that a BN can be learned directly. The
method we present is a continuation of Munch et al. (2019b), where expert’s
and ontological knowledge are used to create causal constraints during the
learning to make causal discoveries. Part of this work is detailed in Section
3.3.2.

2.5. Original contributions

The original contribution of this work is to propose a complete workflow
for the knowledge representation and storage of transformation processes in
order to exploit this knowledge and reason about it. The workflow is detailed
in the next section and includes: (1) a new version of PO2, an ontology based
on the BFO foundational ontology and SSN/SOSA W3C standards, able
to represent in a very detailed way experimental transformation processes,
and associated to software tools able to enrich domain ontology and anno-
tate and query data using the ontology; (2) a mapping mechanism between
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PO2 and PRMs allowing to automatically extract comparable information
from heterogeneous experimental transformation processes data; (3) an ex-
pert and ontological knowledge integration part using a PRM’s relational
schema building step; (4) a reasoning step allowing to analyze correlations
between variables of interest, especially interesting to perform (sometimes
causal) knowledge discovery. An application of this workflow, dedicated to
biomass transformation processes to produce biocomposite packaging mate-
rial, is presented in Section 4.

3. The POND Workflow

The functionalities of POND, the workflow proposed in this article, have
been defined in the framework of several interdisciplinary projects involving
computer scientists, data scientists and biomass processing experts for food
and bio-based material production. In this section, we will present them
from a generic point of view, not attached to a specific domain. However, it
is important to note that this plurality of projects have brought us to design
these functionalities with a meta-analysis scope in mind: in order to embrace
this diversity, we need to be able to define and reason with data from different
projects. While the PO2 ontology allows us to define expert knowledge by
unifying it under common semantic terms, reasoning about this heterogeneity
requires to define specific questions that we aim to answer. We denote them
as Expert Queries (EQs), and separate them into two subsets:

• Competency Questions (CQs). In ontology engineering, CQs are
natural-language questions that outline the scope of knowledge repre-
sented by an ontology and the applications exploiting it (Grüninger &
Fox, 1995). CQs represent functional requirements in the sense that the
ontology and the developed ontology-based information system should
be able to answer them. Typical CQs adressed by PO2 are:

CQ1 Which steps compose a given transformation process?

CQ2 Which attribute values are associated with each step?

CQ3 What are the attribute values associated with an input (or output)
for a given step of a given transformation process?

CQ4 What are the changes for an attribute value of an input during a
given step?
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• Knowledge Questions (KQs). Similarly to CQs, these questions
also query the knowledge modeled by the ontology and stored into the
ontology-based system, but require a more in-depth analysis of the
relations between the variables to deal with the uncertainty. KQs can
be expressed in two different ways:

KQ1 Does a given attribute has a (causal) relation with another at-
tribute?

KQ2 How a change in a given attribute’s value (causally) influences the
values’ distribution of another attribute?

The difference between CQs and KQs is that KQs do not rely on a
descriptive aspect, but on the contrary require a two-times analysis,
by (1) building a database representing the attributes of the question
as variables and (2) learning a probabilistic model from this database
to answer the question. Since they depend on this learned probabilis-
tic model (and not directly on the ontology), KQs’ definition is less
domain-oriented than CQs and only rely on the concept of attributes.

More generally, CQs rely on specific concepts from the PO2 ontology,
such as the classes or properties, to be expressed; while KQs require on BNs’
and PRMs’ concepts such as variables that need to be define beforehand. In
order to answer these, POND must implement different functionalities:

F1 The workflow should provide a representation model allowing to express
both expert’s and ontological knowledge useful for meta-analysis and
a tool to structure and store data using such a model.

F2 In a collection of experimental data acquired during different projects,
the workflow should provide a way to extract from the knowledge base,
in a semi-automatic way, attributes of interest for meta-analysis pur-
poses.

F3 The workflow should be able to compute a model able to reason with
variables of interest.

If F1 and F2 are required for both kind of EQs, F3 is specific to KQs.
The three are provided by the following steps of the POND system, presented
in Figure 2:
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Figure 2: Workflow global overview. White boxes indicate actions that require the expert’s
intervention, while grey boxes indicate a concrete object automatically built from expert’s
inputs. Double lines show our contribution in the state of the art.

1. Knowledge Collection (Section 3.1). In this step, expert’s knowledge
is collected under the form of experimental data or expert’s interviews,
and structured using an ontology. PO2 is used to annotate experimental
data and to store it in a RDF database. Knowledge collection also
comprises the definition of an EQs set. Depending on its type, it will
either be processed in Step 2 (Knowledge Base Querying) for CQs
or in Step 3 (PRM Learning) for KQs.

2. Knowledge Base Querying (Section 3.2). This step is dedicated to
express CQs as SPARQL queries executed against the RDF database.
A specific Web application, SPO2Q, has been designed in order to assist
users to query the PO2 RDF database.

3a. Mapping between PO2 and PRM (Section 3.3.1). Answering KQs
requires the learning of a PRM; however, in order to integrate the
expert’s knowledge expressed during the Knowledge Collection, a
mapping is first needed before interrogating the PRM. It is used to
automatically translate expert’s knowledge into constraints to guide
the learning and it is expressed under two forms: first a mapping of
the attributes, then the expression of the precedence constraints.
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3b. PRM Exploitation for Reasoning (Section 3.3.2). Directly follow-
ing the Mapping, this sub-step consists of the PRM’s learning and its
validation by the expert, who can accept or reject the result using tools
to criticize the model. If the model is rejected, the expert is invited to
reconsider the knowledge integration done during the Mapping (step
3a), and a new iteration begins. If, despite those iterations, the ex-
pert cannot validate the model, it means that the expert knowledge
defined in the Knowledge Collection cannot be used to answer the
KQ. In this case, the identified problems (such as a lack of knowledge)
are given to the expert as guideline to improve the learning. On the
contrary, if the model is validated, we continue to the final step, the
Expert Query Analysis.

4. Expert Query Analysis (Section 3.4). This step receives the results
of the SPARQL query formulated in the Knowledge Base Querying
step and the explicative models validated in the PRM Exploitation
for Reasoning step. These results are then analyzed to answer the
EQ: for instance, if no answer has been found, we can find out whether
this is due to a lack of information or a problem within one of the
involved step.

Figure 2 presents these different steps and the different possible sequences.
To be noted, the passage from Step 3b to either 3a or 4 depends on whether
the expert has rejected or validated the learned PRM.

3.1. Knowledge Collection

This first step of the pipeline is dedicated to collect and to model the
collected experimental data using an ontology and to store it into a RDF
database. In this section, we will successively introduce the PO2 ontology,
and two tools developed respectively for integrating data in PO2, PO2 Man-
ager, and querying data, SPO2Q.

3.1.1. PO2 Ontology

The PO2 Ontology (Process and Observation Ontology) is a core model
which allows us to represent a generic transformation process described by a
set of experimental observations available for the inputs and outputs of each
step of the production process. PO2 contains 67 concepts and 79 relations.
As presented in Section 2.1, the current version of the PO2 model is the

16



upper layer for 3 domains ontologies structuring data in 3 different domains
concerning food processing. The main difference between the version 1.5 of
the PO2 model published in (Ibanescu et al., 2016) is that the current version
is aligned with existing standards, allowing thus interoperability:

• SSN/SOSA Janowicz et al. (2018); SOS, a lightweight ontology for
Sensors, Observations, Samples and Actuators, is the result of a joint
working group of the Open Geospatial Consortium (OGC) and the
World Wide Web Consortium (W3C) on Spatial Data on the Web.

• Time Ontology TIM, a candidate recommendation of the W3C, is an
ontology of temporal concepts, for describing the temporal properties
of resources in the world or described in Web pages. The ontology
provides a vocabulary for expressing facts about topological (order-
ing) relations among instants and intervals, together with information
about durations and about temporal position including date-time in-
formation.

• The Basic Formal Ontology (BFO) BFO is a small, upper level ontology
that is designed for use in supporting information retrieval, analysis and
integration in scientific and other domains.

Figure 3 gives an excerpt of PO2 and its relation with SSN/SOSA and
the Time Ontology. The main classes of PO2 and their relationships are:

• The PO2:Transformation Process class represents the sequence of
steps and it is a subclass of the sosa:Actuation class.

• The PO2:Step class represents a unit operation that transforms in-
puts in outputs; it is a subclass of the sosa:Actuation class which
is characterized by a temporal duration, it is performed by a device,
sosa:Actuator (labeled by PO2:Material), using a given method,
sosa:Procedure (labeled by PO2:Method).

• The PO2:Observation class is a subclass of the sosa:Observation

class which is characterized by a temporal duration, it is performed by a
sensor, sosa:Sensor, using a given method, sosa:Procedure, in order
to calculate a value of an observable property, sosa:FeatureOfInte-
rest; the value of the observation is a sosa:Result and concerns a
property, ssn:Property, labeled by PO2:Attribute.

17



• The PO2:Component class represents entities, inputs and outputs of a
step; it is a subclass of the sosa:Feature of interest class.

Figure 3: PO2 ontology.

When designing a new domain ontology based on the PO2 core model,
the seven classes prefixed with PO2: in Figure 3 should be specialized with
concepts from the new domain. This task may be done in a convenient way
with the specific tool, PO2 Manager, presented in Section 3.1.2.

PO2 ontology version 2.0, implemented in OWL 2 OWL, is published on
the AgroPortal ontology library PO2 (b), and is Creative Commons Attri-
bution International (CC BY 4.0) CCB. The last version of PO2 ontology,
version 2.2.1, is available on its home page (PO2, a).

3.1.2. PO2 Manager

PO2Manager (Dervaux et al., 2018; Buche et al., 2020), a standalone
application developed in Java, is a tool designed to assist domain experts
on two tasks: (i) extending the PO2 core concepts with concepts associated
with the application domain; (ii) describing experimental processes using the
concepts of the application domain.

PO2Manager assists users in specializing the core concepts of the PO2

ontology in order to allow annotations of processes in a given application do-
main. For example, in Figure 4, the Softwood concept is defined as a special-
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ization of the PO2 core concept component. As PO2Manager is able to scan
ontology portals as AgroPortal (Jonquet et al., 2018), it is able to automati-
cally align the concept belonging to the PO2 domain ontology with concepts
already defined in available ontologies. In Figure 4, the Softwood concept is
associated with four concepts defined in NALT (NAL), Agrovoc (Agr), CABI
and GACS (Baker et al., 2019) using the skos:exactMatch property.

Figure 4: Domain ontology concept edition with PO2Manager

A graphical user interface (GUI) has been designed in PO2Manager to
allow the manual entering of processes. The left part of Figure 5 shows the
editor which allows to create processes composed of unit operations and input
and output components. For example, in Figure 5, the process Itinerary
20 is composed of three sequential unit operations (namely a centrifugal
milling followed by an extrusion and a film calendering). Pinepark1 is an
input component of the centrifugal milling and CE is a powder which is
the output component of the milling operation. The right part of Figure 5
shows the graphical representation of the process. Moreover, observations
may be associated with unit operations and characterised by measures. In
Figure 6, mechanical characteristics (e.g. stress at break, Young modulus,
etc.) associated with the output component named 2% Pine bark fiber/PHBV
film of the film calendering operation are shown.
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Figure 5: Process edition with PO2Manager

3.2. Knowledge Base Querying

SPO2Q (Buche et al., 2020) is a Web application designed to assist users
to query the PO2 RDF database through its SPARQL endpoint. A set
of SPARQL queries are pre-defined for users which are not familiar with
SPARQL. Those pre-defined queries can be specialized with concepts of the
application domain. In an advanced usage of SPO2Q, complex SPARQL
queries may be defined. An example of use is given in Section 4.2, where
Figure 8 and 9 illustrate CQ2 (presented in Section 3) and its answer, within
a specific domain of application.

3.3. PRM Learning

As we have seen, KQs address the data represented in PO2 on a higher
reasoning level than CQs that considers relations between variables to deal
with uncertainty. They need probabilistic models to be answered. In this
section, we will present the two steps needed to learn those: a first about the
automatic mapping between PO2 and the PRMs, and a second about the
PRM exploitation for reasoning.

3.3.1. Mapping between PO2 and PRM

Since KQs don’t directly rely on the ontology semantics, in addition to
the knowledge already encapsulated in the knowledge base, each KQ requires
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Figure 6: Edition of characteristics associated with a sample in PO2Manager

extra inputs for being answered. Due to their problem-dependent intrinsic
nature, these inputs cannot be formalized in knowledge bases. They however
are required to narrow the learned model with the problem of interest. To
do so, the expert is invited to provide, for each KQ, inputs of two different
forms:

• Attributes Mapping. Building the database to learn the model re-
quires to associate to each variable the corresponding attributes in the
knowledge base. If this problem is sometimes straight-forward (i.e. it
is easy to find a corresponding attribute), it requires sometimes more
information. For instance, one can ask to reason about a “quantity
of flour”; but depending of the recipe, flour may be incorporated in
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multiple times. In this specific case, there is thus a need to define “the
total quantity of flour added”, which might not exist in the knowledge
database. Thanks to this first step, the expert can specify how to define
each variable and which attributes can be associated to them in order
to automatically build the learning database.

• Precedence Constraints Definition. When learning the relations
between different variables, the algorithm pre-supposes that there are
no constraints between them: given A and B two attributes, both rela-
tions A → B and B → A can be learned. On the contrary, by defining
precedence constraints, the expert can force an orientation. This inte-
gration of knowledge guides the learning towards a result closer to the
reality. Moreover, if these constraints are considered as causal, then it
creates a context favorable to causal discovery (Munch et al., 2019a).

If precedence constraints definition can be easily done thanks to the
PRM’s structure and definition of the relational schema (whose relational
slots translate precedence constraints among variables), there is, to our knowl-
edge, no way to automatically map concepts from an ontology (in our case,
the attributes from PO2) to variables of a probabilistic model. In the rest of
this section, we will cover this specific problem by introducing our solution
with a small toy example. Be Process1 a transformation process realized
through two different itineraries (see Fig. 7):

• Itinerary1. A succession of two steps, Step1 and Step3, respectively
associated to two outputs: Component1 and Component3.

• Itinerary2. A succession of two steps, Step2 and Step3, respectively
associated to two outputs: Component2 and Component3.

These two itineraries both have Step3 and Component3: since they bear
the same name, we can infer that they semantically represent the same con-
cept. This is not the case, for instance, for Step1 and Step2: even if they
both precede Step3, their names differ, and thus they are considered as two
distinct concepts. This raises the question of the comparability of the mea-
sures: is the value of temperature of Component1, measured during Step1,
of the same nature than the one of Component2, measured during Step2?
This kind of knowledge cannot be natively added in the ontology, hence the
need for the expert’s definition of variables. For the rest of this example,
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Figure 7: Example of a small transformation process of two different itineraries. This
representation uses a simplified version of the ontology’s semantic to facilitate the reading.

we will consider that the temperatures of Component1 and Component2 are
comparable.

To help the mapping, we ask the expert to indicate, for each variable of
the KQ, the corresponding attribute(s) in the knowledge base and its (their)
location(s), with the help of the ontology to select the interesting values.
Using the ontological concepts of Process, Step, Observation and Attribute,
inherent to the PO2 semantics has two advantages:

• The expert can easily pinpoint the location of the interesting values for
building the variable while relying on known and well-defined vocabu-
lary

• SPARQL queries can be automatically generated using these concepts
to build the database necessary for the learning.

Using the transformation process described in Figure 1, we define the
variables described in Table 1. Each variable is differentiated from the other
thanks to the variable’s label to which it is attributed. This way, multiple at-
tributes can correspond to a same variable. In this example, we have defined
two variables corresponding to two temperatures: one measured during the
first step (either Step1 or Step2), and another measured during the second
step (Step3).

3.3.2. PRM Exploitation for Reasoning

Once the attributes mapped to variables and precedence constraints de-
fined, a PRM can be learned. Yet, while we aim to learn a model representing
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Process Step Observation Attribute Variable’s Label
Process1 Step1 Component1 Temperature Temperature1
Process1 Step2 Component2 Temperature Temperature1
Process1 Step3 Component3 Temperature Temperature2

Table 1: Table used for mapping PO2’s attributes to probabilistic model’s variables.

the reality, we have however no way to directly evaluating the performances
of the learned result. That is why, before using the PRM to answer the KQ,
we submit it to an expert’s validation phase. The main idea is to submit the
learned relations to the expert and verify whether (1) they corroborate them
and (2) causality can be deduced from them. It is important to note that
even if the KQ does not require causal discovery to be answered, this part is
important for the model validation as it gives the expert tools to criticize the
learned model. If a learned relation is causally contradicting expert knowl-
edge, then it indicates that the model cannot be exploited as such. Moreover
causal reasoning can only be done if we consider the causal criteria (such as
the causal sufficiency) defined in Sec. 2.4. In our case, the resulting model can
be seen as the intersection between all the models constrained by the dataset
(expressed by the EG) and all the models constrained by the expert’s causal
knowledge (expressed by the RS). When looking at both the EG and the
RS, we can deduce for each relation whether its causality is validated or not,
following Munch et al. (2019b):

• If the relation is oriented in the EG, then the causality of this arc is
validated by the EG.

• If the relation has been influenced by a precedence constraint, then
its orientation is due to an expert intervention. Thus, its causality is
validated by the expert.

• If the relation is neither influenced by a precedence constraint nor ori-
ented in the EG, then it is impossible to deduce its causality.

In order to answer the KQ, the expert has to verify and validate each
relation. In the case where one or more relations are not validated, the
expert has to reject the learned PRM and return to the Mapping step.
There, they can modify the pool of variables, or specify new precedence
constraints. This back and forth continues until either the PRM is finally
validated, or the database is deemed unfit for answering the KQ.
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3.4. Expert Query Analysis

If this step is common for all EQ, it is important to note that due to the
method’s differences, answering a CQ is not the same as answering a KQ.

3.4.1. Answering Competency Questions

In the case of CQ, the SPARQL query has provided a set of results.
Depending on it, the CQ can then have no answer (i.e., the set of results is
empty), a unique one (i.e., the set’s length is 1), or multiple possible (i.e.,
the set’s length is strictly superior to 1). This answer is then reported to the
expert.

3.4.2. Answering Knowledge Questions

In the case of KQ, the answer can only be computed once the learned
PRM has been validated by the expert. Then, depending of the KQ, the
complexity of the answer might vary:

• Answering KQ1. In order to check whether an attribute has a relation
with another, it is sufficient to check if a path exists between the two
attributes in the learned model. If not, then they are independent.

• Answering KQ2. In order to check how a change in an attribute’s
values influences the values’ distribution of another attribute, we can
use the conditional probability table to see whether a change of the
first’s values modifies the second.

Causal knowledge deduced in the previous section can also be used to
answer more specific KQ about causal relations. For instance, if the causality
of the relation Attribute1 → Attribute2 has been validated, then it means
that changing the value of Attribute1 will have an influence over Attribute2.
This case will be illustrated in the following section.

4. Results

In this section, we present a real world application on the processing of
biocomposites for food packaging materials. Nowadays, the amount of plastic
used each year raises a substantial number of questions about their harm-
ful impact on the environment, the eco-systems and human health. In or-
der to find substitutes, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), called
PHBV, is a promising bacterial bio-polymer that is biodegradable in soil and
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ocean and that can be synthesized from all kinds of carbon residues. The
potential for a quite larger PHBV market will be ensured provided that their
mechanical and thermal properties can be further improved, and their cost
and environmental impacts reduced. The development of biocomposites via
the incorporation of lignocellulosic fillers (LFs) obtained by dry fractiona-
tion of unrecovered organic residues (agricultural, urban, forestry and from
agro-food industries) was proved to reduce the overall cost and environmen-
tal impact of PHBV-based composite materials (David et al., 2020a), while
modulating their functional properties (David et al., 2020b; Berthet et al.,
2015b). However, the introduction of lignocellulosic fibers has a negative im-
pact over the biocomposite’s brittleness and process-ability (Berthet et al.,
2015a). It was shown that decreasing the lignocellulosic filler size down to
several µm allowed to optimize both the cost (maximal highest possible filler
content) and the functional properties of biocomposites. Therefore, the goal
of biocomposites’ processing is to find the right compromise between the
maximum acceptable filler content, the filler size and the resulting proper-
ties.

4.1. Domain Description

We collected data from three projects focused on developing PHBV-based
biocomposites using lignocellulosic fillers (LFs) stemming from organic waste
streams, e.g. crop residues (Chercheur d’avenir region Languedoc-Roussillon
MALICE, H2020 NoAW ) and urban waste (H2020 Resurbis). These in-
terdisciplinary projects involving computer scientists, data scientists and
biomass processing experts for food and bio-based material production, pro-
vided a unique set of experimental data concerning the production of new
bio-materials, with 70 different formulations. Available data concern the
technical process descriptions, including the description of each step, its in-
puts and outputs and the description of different possible itineraries. Some
specific attributes (illustrated in the next sections) are observed/measured
during some specific steps or itineraries. The final database presents 142,688
triples.

In order to elicit the best formulation to produce biocomposite, the ex-
perts want to inquire the impact of the incorporated LFs to the PHBV’s
attributes and, more generally, find the optimal combination that improves
or better preserves the final properties of PHBV-based materials while de-
creasing their overall cost and environmental impact. The above research
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questions may be expressed either as CQs or KQs. In the rest of this article,
we will present how POND can help to answer them.

4.2. Competency Question Answering

We illustrate this part by answering a specific CQ derived from CQ2

(”Which attribute values are associated with each step?”, introduced in Sec-
tion 3), which can be executed with the form presented in Figure 8. This
corresponds to the interrogation: ”Which values are associated to the at-
tribute ”Rotation speed” in the Step Vine shoot - Impact milling 100 UPZ
sieving size 0.3 mm?”. Associated results are presented in Figure 9: in all
itineraries in which the impact milling step has been involved, rotation speed
was always fixed to 18,000 min-1. It can be modified by the user to express
more elaborated queries than those which can be generated from the form
using SPOOQ in (SPARQL) expert mode. More generally, POND allows to
answer any CQ as presented in the introduction of Section 3.

Figure 8: Executing CQ2 with SPOOQ

Figure 9: Results associated with CQ2 in SPOOQ
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4.3. Knowledge Question Answering

In this part, we will answer the following KQ:

KQbio Which parameters explain the thermal degradation temperatures?

In order to do the Attributes Mapping, we select the following at-
tributes from the RDF database and map them into variables3:

• Variables that describe the LFs. LFs are described by three main
categories of variables: biochemical composition, i.e. cellulose , hemi-
cellulose , ash and lignin (in %); apparent median diameter d50 (in
µm); weight filler content (in wt%, that represents the proportion of
incorporated LF).

• Variables that describe the virgin PHBV and the PHBV-
based biocomposites. Those are described by four different cate-
gories of variables: tensile properties (strain at break , stress at
break and young’s modulus), permeability (to water vapour),
thermal properties (crystallization and melting temperatures)
and thermal degradation temperatures (onset and peak tempera-
tures). For each set of biocomposites, all the properties were normalized
with respect to the properties of the corresponding PHBV matrix.

This represents in the end a database of 84 samples of biocomposites
with 15 variables to describe their components and their final properties.
The expert can then organize them in the relational schema presented in
Figure 10. Once the PRM learned, it is instantiated as the BN presented in
Figure 11. As we can see, the peak degradation temperature is explained here
by the filler content and the ash content, while the onset degradation
temperature is only explained by the filler content . The causality of these
links is enforced by the relation schema’s precedence constraints, previously
established by the expert: it is considered here that an attribute defining the
input can have a causal impact over an attribute defining the output, but
not the contrary. Therefore, we can easily answer KQbio by looking at the
learned model, without having to consult the EG - which would have been
relevant for intra-class relations. This shows that the parameters having an

3For the rest of the article, all variables represented in the database are emphasized .
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Peak Temperature
]0.72; 0.95] ]0.95; 1] ]1; 1.16]

Filler Content

]2; 4] 0.09 0.82* 0.09
]4; 11] 0.38 0.52* 0.1
]11; 21] 0.91* 0.09 0
]21; 50] 0.6* 0.2 0.2

Table 2: Conditional Probability Table showing the influence of the Filler Content over
the Peak Temperature distribution. * shows the maximum likelihood.

influence over the thermal degradation temperatures are the filler content
and the ash content.

In order to validate these results, we compare the answer with the do-
main’s state of the art:

• Filler Content → Peak/Onset shows that when increasing the
filler content, the average temperature tends to decrease (Table 2),
which is indeed verified in multiple state of the art works (David et al.,
2020b). This verifies the premise introduced in the previous section:
the goal of optimizing bio-sourced packages processes is to find the right
compromise between the filler content (to decrease the cost of the
PHBV) and the preservation of the mechanical and thermal properties.

• Ash → Peak temperature, on another hand, has not been verified by
any work. In order to validate (or refute) it, more experiments should
be realised to test this hypothesis.

In the end, the expert can use the learned model to reason on possible
compromises, depending on what they prefer. Table 2 for instance presents
the interaction between the filler content and the peak temperature. If
the goal is to augment the filler content to decrease the overall costs, while
not decreasing too much the peak temperature , then choosing a filler at
]4;11] might be the best compromise. However, if the preservation of the
peak temperature is more important, then choosing a filler at ]2;4] is more
interesting, as it guarantees the highest probability (0.82) of having an almost
non-degraded temperature.

More generally, a same reasoning can be applied to each characteristic
of the composite for assessing the best LFs and the optimal filling rate.
Figure 11 shows that the LF’s composition has an impact over the mechanical
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Figure 10: Relational Schema defined for answering KQbio. To increase the readability,
arrows have been summarized: each of the three upper classes has a precedence constraint
directed towards the lower classes. This symbolizes the influence of the input’s attributes
over the output’s attributes.

Figure 11: BN instantiated from the PRM learned using the relational schema defined in
Figure 10.

properties and the peak temperature ; and that the filler content has a
impact over the melting , peak and onset temperatures, as well as the
strain at break .

5. Discussion

In this section, we will cover the discussion over both the overall method,
and the illustration case.

5.1. POND Workflow Discussion

In Section 3 we have presented the different parts of the workflow. As in-
troduced, the first originality of our approach stems from the combination of
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different methods whose efficiency has been demonstrated independently in
state-of-the-art works. The restriction over a single ontology, PO2, although
limiting on the domains that can be studied using POND, allows a better
automation and optimisation of the interactions with the expert. In partic-
ular, it helps us targeting the EQs that POND aims to answer. Those are
distributed between CQs (that had already been defined within the ontology
domain), and KQs (that we defined especially for POND). While this global
description of CQs tends to be general enough for most cases, it might be pos-
sible that future works will bring to light some new expert’s interrogations,
that are not covered by our current definition.

In the same manner, when answering KQs, the integration of expert’s
knowledge has been defined in two different ways, which is a second originality
of our approach: the mapping of the relevant attributes into variables on one
hand, and the integration of precedence constraints on another. The use of
PO2’s vocabulary when integrating this new information allows an automatic
building of the learning database through well-defined SPARQL queries. The
main limit of answering a KQ, however, lies on its deep ties with both the
dataset and the expert’s contribution. We have presented in Section 3.3.2 the
importance of expert’s validation. However, the results learned can be greatly
influenced either by the dataset (usually provided by the expert themselves)
or the expert’s causal constraints. Moreover, the choice of discretization
(made during the variable selection part) can also have a great impact on
the final result. As a consequence, all learned models have to be considered
true under specific conditions, such as the causal sufficiency (presented in
Section 2.4) and the assurance that the knowledge represented in the dataset
and provided by the expert is true and representative.

The third originality of this paper is the development of a new version
of PO2, built upon ontological standards. It is accompanied by two tools
developed to implement it.

5.2. Results Discussion

The application on the processing of biocomposites for food packaging
covers the two kinds of EQs. It first presents different kinds of CQ, as well
as the detailed answer for one of them. In a second time, it presents a
specific KQ, and the walk-through from this query to the learning of a model
dedicated to its answer. In order to showcase POND’s results, we validate
the learned model with a comparison to the state of the art. This validation
has two phases:
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• Validation of the relation between the thermal degradation
temperatures and the filler content. This relation has indeed been
developed in recent state of the art (David et al., 2020b), highlighting
the fact that the more the filler content, the lower the temperatures
of thermal degradation are. It is interesting to note however that the
probability of having the lowest peak temperature is higher for a filler
content ranging from 11 to 21 wt% (probability of 0.91) than for a filler
content ranging from 21 and 50 wt% (probability of 0.6) (Table 2). If
these results are true, this would mean that the probability of obtain-
ing a higher temperature augments with the filler content, which is not
right. This result can be discussed considering that the probability of
obtaining the lowest temperature at ]11;21] is quasi certain (i.e. the
other probability is near zero). This would tend to indicate that some
cases were not present in the learning dataset, and thus were consid-
ered impossible by the algorithm. In order to confirm (or infirm) this
observation, more experimental data should be added in the dataset,
especially at high filler contents. Consequently in this case, the method
identifies possible knowledge gaps which is itself a relevant result for
the expert even if it was not defined as an EQ.

• Validation of the relation between the peak thermal degra-
dation temperature and the ash content. As presented in the
results analysis, this relation does not echo any work from the state
of the art. This would tend to indicate either a bias in the dataset
(that would enforce a spurious correlation between the two variables),
or a new to-be-discovered knowledge. In both cases, new experiments
should be added to the dataset in order to verify this relation.

Considering the quantity of data needed to learn robust models, both of these
conclusions are not surprising. It is however interesting to note that, despite
this lack of precision, the general result can still be validated by the state of
the art. It illustrates another goal for POND, which is the questioning of the
dataset and the indication of potential enrichment.

6. Conclusion

In this article, we have presented POND, a workflow dedicated to the rep-
resentation and the knowledge discovery for transformation processes. After
presenting the main definitions for describing a process, we have introduced
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the two components on which this workflow is built: PO2, an ontology used
for describing transformation processes; and the PRMs, a probabilistic model
able to intuitively integrate expert’s knowledge during its learning. This
workflow is divided in different parts: the knowledge collection, the CQ an-
swering (through the Knowledge Base Querying), and the KQ answering
(through the mapping between PO2 and the PRM and the exploitation of
this for reasoning). These are divided between the different tools and meth-
ods presented throughout this article, and help the expert to gain a new
overview of the studied domain, for instance by suggesting new experiments
or ways to improve the dataset.

This new insight could, for instance, be used to link the knowledge base
with other ontologies that could bring new ways to enrich the dataset. For
instance, Figure 11 shows that the Stress at Break and the Young Mod-
ulus depend on the composition of the used biomass (more specifically, their
composition of Ash, Cellulose and Lignin). Using other ontologies, such
as one presenting new different biomasses, it could be interesting to look for
new propositions that correspond to the values recommended by the learned
models and propose new experiments to the expert. In a more general setting,
it should be interesting to investigate how other ontologies could be linked to
the studied domain given the analysis provided by POND. This could help
establishing matches between ontologies representing different aspects of a
transformation process’s domain.

On another hand, POND could also be used to generate rules (such as
SHACL constraints) that evaluate the data represented in the ontology. For
instance, these rules can be used to define a set of constraints that can
evaluate the quality of potential new data (probable, not probable, etc.)
and help the expert find outliers. Since our model was learned using causal
knowledge, these new constraints would be motivated by causal relations and
then be easily explainable.

Moreover, as we have seen, the quality of the database has a strong in-
fluence over the final model. This could become problematic if it introduces
biases in the result. For now, POND considers all sources as equivalent for
the learning; however, by enriching the knowledge graph with indication of
the data source and its quality, it becomes possible to weight the different
inputs in order to incorporate this reliability in the learning, by favoring data
whose source is more trustworthy.

Finally, we have only considered cases where expert agreed with each
other (i.e. there are no point of disagreement on the studied subject). How-
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ever, it is possible that during the knowledge collection part (such as for the
relational schema building) POND is given multiple contradictory informa-
tion. It should be interesting to develop more our framework to better handle
such cases.
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