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Limit models for thin heterogeneous
structures with high contrast∗

A. Gaudiello† A. Sili‡

Abstract

We investigate two linear diffusion problems, with strongly contrasting diffusivity,
in a thin heterogeneous cylinder with a small cross-section of radius hn, n in N. In
this cylinder we distinguish an inner cylindrical core Ĉn with cross-section of radius
rn << hn and its complementary annulus În and we treat two complementary cases.
In the first case we consider a low conductivity of order δ2n in the core Ĉn and a
conductivity of order 1 in the annulus În; the opposite situation in the second case.
We study the asymptotic behavior of these problems as hn → 0, rn → 0, rn

hn
→ 0, and

δn → 0. In the first case we prove that the inner core has not any influence on the
limit behavior. In the second case, we pinpoint three different limit regimes depending
on the ratio µ = limn

δn
hn

, according to µ = 0, 0 < µ < +∞, or µ = +∞. We obtain

L2-strong convergence for the solution and its gradient. We examine the limit problems
and compare them with other models.

Keywords: Thin structure; contrasting diffusivity; degenerating equation; correctors.

2020 AMS subject classifications: 35J25, 35J70

1 Introduction

In this paper we investigate two linear diffusion problems, with strongly contrasting diffu-
sivity, in a thin heterogeneous cylinder.

In what follows, x′ (resp. y′) denotes a generic element (x1, x2) (resp. (y1, y2)) of R2,
moreover (x′, x3) (resp. (y′, x3) ) denotes a generic element x = (x1, x2, x3) (resp. (y1, y2, x3))
of R3.
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Federico II, Via Cintia, Monte S. Angelo, 80126 Napoli, Italia. e-mail: gaudiell@unina.it He is also member
of the ”Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)” of
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Figure 1: Thin cylinder M̂n

For every n in N we consider a thin cylinder M̂n of R3 with height l and with a small cross-
section hnM

′. In M̂n we distinguish two thin cylinders with the same height l: an inner core
Ĉn with small cross-section rnC

′ and its complementary annulus În =
(
hnM

′ \ rnC ′
)
×]0, l[

(see Figure 1), where M ′ and C ′ are two open connected sets of R2 with Lipschitz boundaries
such that 0 ∈ C ′ ⊂⊂ M ′, and hn and rn are two small parameters taking values in two
vanishing sequences of positive numbers such that

rn << hn.

In M̂n we consider the following boundary value problem: −div (gn(y′)A (x3)Dûn(y′, x3)) + b (x3) ûn(y′, x3) = f̂n(y′, x3), in M̂n,

(gn(y′)A (x3)Dûn(y′, x3)) · ν = 0, on ∂M̂n,

(1.1)

where A is a coercive matrix with coefficients in L∞(]0, l[), b is a coefficient in L∞(]0, l[)

which is bounded from below away from zero, f̂n is a function in L2(M̂n), and ν denotes the
exterior unit normal to ∂M̂n. For the sake of simplicity in this introduction we assume that
the matrix A and the coefficient b depend only on the vertical variable x3, but in the paper
we treat a more general case with A and b depending on (y′, x3). As far as function gn is
concerned, we shall consider two cases:

I) gn = δ2nχĈn + χÎn , II) gn = χĈn + δ2nχÎn ,
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where also δn is a small parameter taking values in a vanishing sequence of positive numbers,
and χĈn and χÎn denote the characteristic function of Ĉn and În, respectively. In the first

case, M̂n has a very small insulation inner cylindrical core Ĉn with low conductivity of order
δ2n enveloped by the annulus În with conductivity of order 1. In the second case, we have
the opposite situation, i.e., M̂n has a very small inner cylindrical core Ĉn with conductivity
of order 1 enveloped by the insulation annulus În with low conductivity of order δ2n.

In this paper we study the asymptotic behavior of problem (1.1) as hn → 0, rn → 0,
rn
hn
→ 0, δn → 0, and under suitable assumptions on f̂n. Precisely, we assume that the

rescaling of f̂n on M ′×]0, l[, i.e., fn(x′, x3) = f̂n(hnx
′, x3), is L2-strongly converging to a

function f(x′, x3).

We point out that the peculiarity of this paper is the assumption
rn
hn
→ 0 (i.e., rn << hn)

combined with the lost of coercivity of the problems when hn and rn vanish, due to the
vanishing coefficient δ2n in front of the divergence term.

• In the first case (i.e., when gn = δ2nχĈn + χÎn), using the Cauchy-Schwarz inequality,
Theorem 3.2 provides that

−
∫
hnM ′

ûn(x′, ·)dx′ −→ u strongly in L2(]0, l[), (1.2)

and u ∈ H1(]0, l[) is the unique weak solution to
− d

dx3

(
a0
du

dx3

)
+ |M ′|bu = f0, in ]0, l[,

(
a0
du

dx3

)
(0) = 0 =

(
a0
du

dx3

)
(l),

where for a.e. x3 in ]0, l[

a0(x3) =

∫
M ′
A(x3)

(
Dx′ z̃

1

)(
Dx′ z̃

1

)
dx′, f0(x3) =

∫
M ′
f(x′, x3)dx

′,

and z̃(·, x3) ∈ H1(M ′) is the unique weak solution to

∫
M ′
z̃(x′, x3)dx

′ = 0,

divx′ (A′(x3)Dx′ z̃) = 0, in M ′,(
A′(x3)Dx′ z̃ +

(
A13(x3)
A23(x3)

))
· ν ′ = 0, on ∂M ′,

with A′ = (Aαβ)α,β=1,2 and ν ′ denoting the unit exterior normal to ∂M ′.
Note that a0(x3) = |M ′|A33(x3) if A13 = A23 = 0 (since in this case z̃ = 0). In particular,

a0 = |M ′| if A = I.
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• In the second case (i.e., when gn = χĈn + δ2nχÎn), the limit behavior of problem (1.1)
depends on the

lim
n

δn
hn

= µ ∈ [0,+∞].

Precisely, using the Cauchy-Schwarz inequality, Theorem 4.1 provides that
- if µ ∈]0,+∞[, then

−
∫
hnM ′

ûn(x′, ·)dx′ −→ −
∫
M ′
u(x′, ·)dx′ strongly in L2(]0, l[),

where, for a.e. x3 in ]0, l[, u(·, x3) ∈ H1(M ′) is the unique weak solution to
−µ2divx′ (A′(x3)Dx′u(·, x3)) + b(x3)u(·, x3) = f(·, x3), in M ′,

(A′(x3)Dx′u(·, x3)) · ν ′ = 0, on ∂M ′.
(1.3)

- If µ = 0 or µ = +∞, then

−
∫
hnM ′

ûn(x′, ·)dx′ − 1

b
−
∫
hnM ′

f̂n(x′, ·)dx′ −→ 0 strongly in L2(]0, l[).

or equivalently,

−
∫
hnM ′

ûn(x′, ·)dx′ −→ 1

b
−
∫
M ′
f(x′, ·)dx′ strongly in L2(]0, l[).

More generally, in Theorem 3.2 and in Theorem 4.1 we consider the case where the matrix
A and the coefficient b depend also on y′ and we prove L2-strong convergence results for ûn
and for its gradient. It is not difficult to extend these results to monotone operators.

As far as the first case is concerned (i.e., gn = δ2nχĈn + χÎn), let us point out that
convergence (1.2) is the same result which one obtains studying the limit behavior of the
following problem (for instance, compare [10] ,[15], [16], and [19]) −div (A (x3)Dûn(y′, x3)) + b (x3) ûn(y′, x3) = f̂n(y′, x3), in M̂n,

(A (x3)Dûn(y′, x3)) · ν = 0, on ∂M̂n,

i.e., roughly speaking, in a first approximation (in L2(]0, l[)-norm) of the average of the
solution on the cross-section of the thin cylinder, the presence of a very small insulation
cylindrical core Ĉn with a small conductivity does not give any contribution with respect to
considering a conductivity of order 1 everywhere in the original problem. Moreover, in The-

orem 3.2 we shall show that ûn(y′, x3) and its gradient behave as u(x3)+hn
du
dx3

(x3)z̃
(
y′

hn
, x3

)
in În which is a corrector result.

As far as the second case is concerned (i.e., gn = χĈn + δ2nχÎn), hn is a critical size for
δn. Precisely, if δn ' hn (i.e., µ ∈]0,+∞[), then the L2(]0, l[)-limit of the average of ûn
on the cross-section of the thin cylinder is −

∫
M ′ u(x′, ·)dx′, with u the solution to problem
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(1.3). Moreover in Theorem 4.1 we shall show that ûn(y′, x3) and its gradient with respect

to y′ behave as u
(
y′

hn
, x3

)
in M̂n. If δn << hn or δn >> hn (i.e., µ = 0 or µ = +∞),

the L2(]0, l[)-limi is given by 1
b
−
∫
M ′ f(x′, ·)dx′ (formally, this result can be obtained choosing

µ = 0 or µ = +∞ in problem (1.3)). Indeed, this last result depends on the fact that in this
introduction we are assuming b independent of y′. In Theorem (4.1) we shall prove that,
more generally (i.e., A and b depend also on y′), the case µ = 0 is different from the case
µ = +∞.

For the sake of completeness and for better understand our result in the second case, we
recall what happens when rn ' hn ' δn in the case gn = χĈn+δ2nχÎn . Actually, if for instance
one assumes rn = rhn, r > 0, then the limit problem is a nonlocal one in the sense that the
limit diffusion is described by a nonlocal system of two equations in which a two-dimensional
problem like (1.3), posed in that case on M ′ \ rC ′, is associated with a one-dimensional
problem involving the diffusion along the vertical axis x3 of the core. This result was proved
in [20] for the Laplacian equation with the homogeneous Dirichlet boundary condition on
the extremities of the cylinder and the homogeneous Neumann boundary condition elsewhere
(also compare [22] for monotone operators), and in [21] for the linearized elasticity system
in a thin beam clamped at the extremities. It is easily seen that the nonlocal effect still
appears when the homogeneous Neumann boundary condition is assumed everywhere (just
a zero order term in the equation is needed in order to obtain a priori estimates). On the
other hand, the results are similar in the opposite situation, i.e., gn = δ2nχĈn + χÎn and
rn ' hn ' δn.

Our present result states that if the radius rn of the core is negligible compared to hn
and if gn = χĈn + δ2nχÎn with δn ' hn, then the nonlocal effect disappears since the limit
diffusion inside the core is not perceived and only the diffusion outside the core (which is
described by (1.3)) gives a contribution in the limit process.

Eventually, we point that when rn ' hn, but δn has a different behavior, it is an easy task
to prove that the limit problem is local. We also refer to [6] for nonlocal limits in problems
with high contrast in a thin cylinder.

In the homogenization setting, there is a vast literature on problems with highly con-
trasting coefficients since the founding work of T. Arbogast, J. Douglas, and U. Hornung
[1] (see also [4] and [5]). Here, we just recall those papers devoted to the homogenization
of fibered structures with high contrast: [2], [3], [7], [9], [11], [17], [18], [20], [21], [22]. Let
us point out that as far as the periodic homogenization of fibered media is concerned, the
homogenized problem has the same form as the limit problem obtained by the corresponding
reduction of dimension occurring in the reference cell, as remarked in [20].

Our paper is structured as follows: in Section 2 we introduce some notations and we fix the
assumptions on A and b depending on (y′, x3). In Section 3 we study the asymptotic behavior
of the problem with a low conductivity in the core of the structure. After rescaling the

solution on M = M ′×]0, l[ by un(x) = û(hnx
′, x3), we prove that δn

(
1
hn
Dx′un, Dx3un

)
χCn

is bounded in L2(M) and, up to a subsequence, un converges to u weakly in L2(M) and(
1
hn
Dx′un, Dx3un

)
χIn converges to ξ = (ξ′, ξ3) weakly in (L2(M))

3
, where Cn and In denote

the scaling of Ĉn and În, respectively. It should be noted that Cn and In still depend on n
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since Ĉn and În are dependent also on rn (and not only on hn). It is not difficult to show that
u is independent of x′ and ξ3 = Dx3u, but it is quite complicated to write ξ′ in terms of u. To
do that we need to adapt an uniform extension operator introduced in [12]. Eventually, using
the convergence of the energies allows us to obtain the strong convergence in L2(M) for un

and for its rescaled gradient (in particular we prove that δn

(
1
hn
Dx′un, Dx3un

)
χCn converges

to zero strongly in L2(M)). In Section 4 we study the asymptotic behavior of the problem
with a low conductivity in the annulus of the structure. At first we rewrite the problem so
that it can be splited in a part on M̂n and a part on Ĉn. Then we introduce two different
rescalings un(x) = û(hnx

′, x3) in M = M ′×]0, l[ and un(x) = ûn(rnx
′, x3) in C = C ′×]0, l[,

and we write the problem satisfied by the couple (un, un). A priori estimates suggest us
that the limit problem depends on the ratio µ = limn

δn
hn

and three different regimes appear
according to µ = 0, 0 < µ < +∞, or µ = +∞. The limit problems are obtained passing
to the limit in the equation with suitable test functions which, roughly speaking, take into
account the relation between un and un, and using suitable density results. Eventually,
thanks to the convergence of the energies we obtain the strong convergences.

2 Definitions and notation

Let {hn}n∈N and {rn}n∈N be two sequences in ]0, 1] such that

lim
n
rn = 0, lim

n
hn = 0, lim

n

rn
hn

= 0. (2.1)

Let

0 ∈ C ′ ⊂⊂M ′ ⊆
]
−1

2
,
1

2

[2
be two open connected sets with Lipschitz boundaries and let l ∈]0,+∞[.

For every n ∈ N set

M̂n = hnM
′×]0, l[, Ĉn = rnC

′×]0, l[, În =
(
hnM

′ \ rnC ′
)
×]0, l[.

Set
M = M ′×]0, l[, (2.2)

and let A and b be such that
A ∈ (L∞(M))3×3,

∃λ ∈]0,+∞[ : A(x) ξ ξ ≥ λ |ξ|2, a.e. x ∈M, ∀ ξ ∈ R3.

(2.3)

∃γ ∈]0,+∞[ : b ∈ L∞(M), b(x) ≥ γ, a.e. x ∈M. (2.4)

Let {δn}n∈N ⊂]0, 1] be such that
lim
n
δn = 0, (2.5)

and for every n ∈ N let
f̂n ∈ L2(M̂n). (2.6)

In what follows, α, β belong to {1, 2} and repeated indices imply the summation.
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3 Problem I: a low conductivity in the core of the

structure

For every n ∈ N consider the following problem
−div

((
δ2nχĈn + χÎn

)
A
(
y′

hn
, x3

)
Dûn

)
+ b
(
y′

hn
, x3

)
ûn = f̂n, in M̂n,

(
δ2nχĈn + χÎn

) (
A
(
y′

hn
, x3

)
Dûn

)
· ν = 0, on ∂M̂n,

(3.1)

where ν denotes the exterior unit normal to ∂M̂n.
The weak formulation of (3.1) is

ûn ∈ H1
(
M̂n

)
,

δ2n

∫
Ĉn

A

(
y′

hn
, x3

)
DûnDϕ̂dy

′dx3 +

∫
În

A

(
y′

hn
, x3

)
DûnDϕ̂dy

′dx3

+

∫
M̂n

b

(
y′

hn
, x3

)
ûnϕ̂dy

′dx3 =

∫
M̂n

f̂nϕ̂dy
′dx3, ∀ϕ̂ ∈ H1

(
M̂n

)
.

(3.2)

which admits a unique solution by virtue of the Lax-Milgram Theorem.
The goal of this section is to study the asymptotic behavior of this problem, as n diverges.

To this aim set
fn : (x′, x3) ∈M → f̂n(hnx

′, x3), (3.3)

and assume that
fn → f strongly in L2(M). (3.4)

Let H1
m(M ′) =

{
v ∈ H1(M ′) :

∫
M ′
vdx′ = 0

}
. The Lax-Milgram Theorem ensures that

for a.e. x3 in ]0, l[ the following problem

z̃(·, x3) ∈ H1
m(M ′),∫

M ′
A

(
Dx′ z̃

0

)(
Dx′ψ

0

)
dx′ =

−
∫
M ′
A

(
0′

1

)(
Dx′ψ

0

)
dx′, ∀ψ ∈ H1(M ′),

(3.5)

admits a unique solution. Moreover, the measurability of A ensures (compare [16], pages
749-50) that the function

x3 ∈]0, l[→ z̃(·, x3) ∈ H1
m(M ′)

is measurable. Furthermore, choosing ψ = z̃(·, x3) as test function in (3.5) provides

sup
x3∈]0,l[

‖Dx′ z̃(·, x3)‖(L2(M ′))2 < +∞,
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i.e.
z̃ ∈ L∞(0, l, H1

m(M ′)). (3.6)

Set

a0 : x3 ∈]0, l[→
∫
M ′
A

(
Dx′ z̃

1

)(
Dx′ z̃

1

)
dx′. (3.7)

b0 : x3 ∈]0, l[→
∫
M ′
bdx′, (3.8)

and

f0 : x3 ∈]0, l[→
∫
M ′
fdx′. (3.9)

Then (2.3), (2.4), (3.4), and (3.6) provide that

a0 ∈ L∞(]0, l[), b0 ∈ L∞(]0, l[), f0 ∈ L2(]0, l[),

and
a0(x3) ≥ λ|M ′|, b0(x3) ≥ γ|M ′|, a.e. x3 ∈]0, l[.

Consequently, the Lax-Milgram Theorem ensures that the following problem
u ∈ H1(]0, l[),∫ l

0

a0
du

dx3

dv

dx3
dx3 +

∫ l

0

b0uvdx3 =

∫ l

0

f0vdx3, ∀v ∈ H1(]0, l[),

(3.10)

admits a unique solution which is the weak solution to the following one
− d

dx3

(
a0
du

dx3

)
+ b0u = f0, in ]0, l[,

(
a0
du

dx3

)
(0) = 0 =

(
a0
du

dx3

)
(l).

(3.11)

Remark 3.1. If A is independent of x3, then also z̃ is independent of x3. Consequently, a0
is a positive constant.

If the matrix A is such that A13 = A23 = 0, then z̃ = 0. Consequently, a0 =
∫
M ′ A33dx

′.
In particular, a0 = |M ′| if A = I.

Theorem 3.2. Assume (2.1), (2.3), (2.4), (2.5), (2.6), (3.3), (3.4), For every n ∈ N let
ûn be the unique weak solution to problem (3.1). Let z̃ ∈ L∞(0, l, H1

m(M ′)) be the unique
solution to (3.5). Let a0, b0, and f0 be defined by (3.7), (3.8), and (3.9), respectively. Let u
be the unique weak solution to (3.11). Then

lim
n

1

hn
‖ûn − u‖L2(M̂n)

= 0,

lim
n

1

hn
‖δnDûn‖(L2(Ĉn))

3 = 0,

lim
n

1

hn

(∥∥∥∥Dy′ûn −
du

dx3
(Dx′ z̃)

(
y′

hn
, x3

)∥∥∥∥
(L2(În))

2
+

∥∥∥∥Dx3ûn −
du

dx3

∥∥∥∥
L2(În)

)
= 0.

(3.12)
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Remark 3.3. Let us point out that the last convergence provides a corrector since it means

that ûn behaves as u(x3) + hn
du

dx3
z̃

(
y′

hn
, x3

)
in În.

Proof. The proof will be divided into nine steps.

Step 1. The first step is devoted to reformulating Problem (3.2).
Problem (3.2) can be reformulated through the map

(x′, x3) ∈M → (hnx
′, x3) ∈ M̂n.

Precisely, for every n ∈ N set

Cn =
rn
hn
C ′×]0, l[, In =

(
M ′ \ rn

hn
C ′
)
×]0, l[,

and

Dhn : ϕ ∈ H1 (M)→


1

hn
Dx1ϕ

1

hn
Dx2ϕ

Dx3ϕ

 ∈ (L2(M))3. (3.13)

Then un defined by
un : (x′, x3) ∈M → ûn(hnx

′, x3) (3.14)

is the unique solution to

un ∈ H1 (M) ,

δ2n

∫
Cn

ADhnunDhnϕdx+

∫
In

ADhnunDhnϕdx+

∫
M

bunϕdx

=

∫
M

fnϕdx, ∀ϕ ∈ H1 (M) .

(3.15)

Step 2. This step is devoted to proving the existence of a subsequence of N, still denoted by

N, u ∈ L2(M), and ξ = (ξ′, ξ3) ∈ (L2(M))
2×L2(M) (which can depend on the subsequence)

such that
un ⇀ u weakly in L2(M) (3.16)

and
χInDhnun ⇀ ξ = (ξ′, ξ3) weakly in

(
L2(M)

)3
. (3.17)

Choosing ϕ = un as test function in (3.15) and using (2.3), (2.4), (3.4), and the Young
inequality provide the existence of a positive constant c such that

‖un‖L2(M) ≤ c, ∀n ∈ N, (3.18)

‖χCnδnDhnun‖(L2(M))3 ≤ c, ∀n ∈ N, (3.19)
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‖χInDhnun‖(L2(M))3 ≤ c, ∀n ∈ N. (3.20)

Eventually, (3.16) and (3.17)follow from (3.18) and (3.20).

Step 3. This step is devoted to proving that

ξ3 = Dx3u, a.e. in M. (3.21)

and
u ∈ H1(]0, l[). (3.22)

Combining (3.16) with the fact that (thanks to the last limit in (2.1))

χIn → 1 a.e. in M (3.23)

gives
χInun ⇀ u weakly in L2(M). (3.24)

Then, (3.21) follows from (3.17), (3.24), and from the fact that χIn is independent of x3.

Now, let us prove that

u is independent of x′ a.e. in M. (3.25)

To this aim, let us prove that

u is independent of x′ a.e. in Ak =

{
x = (x′, x3) ∈M : |x′| > 1

k

}
, ∀k ∈ N, (3.26)

which implies(3.25) since {Ak}k∈N is an increasing sequence of open sets such that
⋃
k∈NAk =

M.
Let us fix k ∈ N. Since for n large enough Ak is included in In, (3.20) provides that

‖Dx′un‖(L2(Ak))
2 ≤ ‖Dx′un‖(L2(In))

2 ≤ chn, for n large enough,

which implies
‖Dx′u‖(L2(Ak))

2 = 0,

thanks to (3.16).
Eventually, (3.22) follows from (3.16), (3.17), (3.21), and (3.25).

Step 4. This step is devoted to proving the existence of z in L2(0, l, H1
m(M ′)) such that

ξ′ = Dx′z, a.e. in M. (3.27)

For every n ∈ N let Qn ∈ L
(
H1
(
hnM

′ \ rnC ′
)
, H1(hnM

′)
)

be such that

Qnϕ = ϕ, a.e. in hnM
′ \ rnC ′, ∀ϕ ∈ H1

(
hnM

′ \ rnC ′
)
, (3.28)
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and

∃c ∈]0,+∞[ :

∫
hnM ′

|Dy′(Qnϕ)|2dy′

≤ c

∫
hnM ′\rnC′

|Dy′ϕ|2dy′, ∀ϕ ∈ H1
(
hnM

′ \ rnC ′
)
, ∀n ∈ N.

(3.29)

The existence of such a family is proved in the proof of Lemma A1 in [12] when M ′ =]
−1

2
, 1
2

[2
.

Now, for every n ∈ N and for a.e. x3 in ]0, l[ set

zn(x′, x3) =
(
Qn

(
ûn(·, x3)|

hnM′\rnC′

))
(hnx

′), a.e. x′ ∈M ′, (3.30)

where ûn is the unique solution to (3.2).
At first remark that

zn ∈ L2(0, l, H1(M ′)), ∀n ∈ N. (3.31)

Indeed, ûn ∈ H1
(
M̂n

)
⊂ H1(În). Consequently ûn ∈ L2

(
0, l, H1

(
hnM

′ \ rnC ′
))

. Then,

since Qn ∈ L
(
H1
(
hnM

′ \ rnC ′
)
, H1(hnM

′)
)
, one deduces that (see Proposition 1.2.2 in

[13]) Qn

(
ûn(·, x3)|

hnM′\rnC′

)
∈ L2(0, l, H1(hnM

′)), which implies (3.31).

Now, let us prove that there exist a subsequence of N, still denoted by n, and z in
L2(0, l, H1

m(M ′)) (which can depend on the subsequence) such that

χIn
1

hn
Dx′zn ⇀ Dx′z weakly in

(
L2(M)

)2
. (3.32)

Combining (3.30) with (3.29) and (3.14) provides that for every n ∈ N and for a.e. x3 in
]0, l[ ∫

M ′
|Dx′zn(x′, x3)|2dx′ =

∫
M ′

∣∣∣Dx′

((
Qn

(
ûn(·, x3)|

hnM′\rnC′

))
(hnx

′)
)∣∣∣2 dx′

=

∫
hnM ′

∣∣∣Dy′

(
Qn

(
ûn(·, x3)|

hnM′\rnC′

))
(y′)
∣∣∣2 dy′

≤ c

∫
hnM ′\rnC′

|Dy′ûn(y′, x3)|2dy′ = c

∫
M ′\ rn

hn
C′
|Dx′ (ûn(hnx

′, x3)) |2dx′

= c

∫
M ′\ rn

hn
C′
|Dx′ (un(x′, x3)) |2dx′,

which implies, by an integration on x3 ∈]0, l[, that∫
M

|Dx′zn|2dx ≤ c

∫
In

|Dx′un|2dx, ∀n ∈ N, (3.33)
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where c is the positive constant independent of n ∈ N given in (3.29). Then, combining
(3.33) with (3.20) provides the existence of a positive constant c such that∥∥∥∥ 1

hn
Dx′zn

∥∥∥∥
(L2(M))2

≤ c, ∀n ∈ N,

which implies the existence of a subsequence of N, still denoted by n, and z in L2(0, l, H1
m(M ′))

(which can depend on the subsequence) such that

1

hn
Dx′zn ⇀ Dx′z weakly in

(
L2(M)

)2
. (3.34)

Limit (3.32) follows from (3.23) and (3.34).
Now, remark that (3.30), (3.28), and (3.14) provide that for every n ∈ N and for a.e. x3

in ]0, l[

zn(x′, x3) =
(
Qn

(
ûn(·, x3)|

hnM′\rnC′

))
(hnx

′)

= ûn(hnx
′, x3) = un(x′, x3), a.e. x′ ∈M ′ \ rn

hn
C ′.

(3.35)

Eventually, (3.27) follows from (3.17), (3.32) and from the fact that

χIn
1

hn
Dx′zn = χIn

1

hn
Dx′un, a.e. in M, ∀n ∈ N,

due to (3.35).

Step 5. This step is devoted to proving that

∫
M

A

 Dx′z
du

dx3

 Dx′w
dv

dx3

 dx+

∫
M

buvdx =

∫
M

fvdx,

∀v ∈ H1(]0, l[), ∀w ∈ H1 (M) .

(3.36)

To this aim, let us rewrite the equation in (3.15) in the following way

δ2n

∫
Cn

ADhnunDhnϕdx+

∫
In

[(
Aαβ

1

hn
Dxβun + Aα3Dx3un

)
1

hn
Dxαϕ

+

(
A3α

1

hn
Dxαun + A33Dx3un

)
Dx3ϕ

]
dx+

∫
M

bunϕdx =

∫
M

fnϕdx, ∀ϕ ∈ H1 (M) .

(3.37)
Choosing ϕ = v + hnw, with v, w ∈ H1(M) and v independent of x′, as test function in
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(3.37) gives

δ2n

∫
Cn

ADhnun

 Dx′w
dv

dx3
+ hnDx3w

 dx+

∫
In

[(
Aαβ

1

hn
Dxβun + Aα3Dx3un

)
Dxαw

+

(
A3α

1

hn
Dxαun + A33Dx3un

)(
dv

dx3
+ hnDx3w

)]
dx+

∫
M

bun(v + hnw)dx

=

∫
M

fn(v + hnw)dx, ∀v ∈ H1(]0, l[), ∀w ∈ H1 (M) .

(3.38)
Passing to the limit, as n diverges, in (3.38) and using (2.5), (3.4), (3.19), (3.16), (3.17),
(3.21), and (3.27) provide∫

M

[(
AαβDxβz + Aα3

du

dx3

)
Dxαw +

(
A3αDxαz + A33

du

dx3

)
dv

dx3

]
dx+

∫
M

buvdx

=

∫
M

fvdx, ∀v ∈ H1(]0, l[), ∀w ∈ H1 (M) ,

i.e. (3.36).

Step 6. This step is devoted to identifying z in terms of u, i.e. to proving that

z =
du

dx3
z̃, in L2(0, l, H1

m(M ′)), (3.39)

where, for a.e. x3 in ]0, l[, z̃(·, x3) is the unique solution to (3.5)
Choosing v = 0 and w = ψφ, with ψ ∈ H1(M ′) and φ ∈ C∞0 (]0, l[), as test functions in

(3.36) gives

∫ l

0

∫
M ′
A

 Dx′z
du

dx3

( Dx′ψ
0

)
dx′

φdx3 = 0, ∀ψ ∈ H1(M ′), ∀φ ∈ C∞0 (]0, l[).

Consequently, since H1(M ′) is separable, for a.e. x3 in ]0, l[ one has

∫
M ′
A

(
Dx′z

0

)(
Dx′ψ

0

)
dx′ = −

∫
M ′
A

 0′

du

dx3

( Dx′ψ
0

)
dx′, ∀ψ ∈ H1(M ′).

(3.40)
Remark that (3.6) ensures that

du

dx3
z̃ ∈ L2(0, l, H1

m(M ′)).
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Moreover, multiplying both sides of (3.5) by
du

dx3
implies that for a.e. x3 in ]0, l[

du

dx3
z̃ solves

(3.40). Since for a.e. x3 in ]0, l[ this equation admits a unique solution in H1
m(M ′), one has

that for a.e. x3 in ]0, l[

z =
du

dx3
z̃, a.e. in M ′,

i.e. (3.39).

Step 7. This step is devoted to identifying u, i.e. to proving that u is the unique solution
to (3.10).

Choosing w = 0 as test function in (3.36) and using (3.39) give

∫
M

A

 du

dx3
Dx′ z̃

du

dx3


 0′

dv

dx3

 dx+

∫
M

buvdx =

∫
M

fvdx, ∀v ∈ H1(]0, l[),

i.e. ∫ l

0

(∫
M ′
A

(
Dx′ z̃

1

)(
0′

1

)
dx′
)
du

dx3

dv

dx3
dx3 +

∫ l

0

(∫
M ′
bdx′

)
uvdx3

=

∫ l

0

(∫
M ′
fdx′

)
vdx3, ∀v ∈ H1(]0, l[),

which can be rewritten as∫ l

0

a
du

dx3

dv

dx3
dx3 +

∫ l

0

b0uvdx3 =

∫ l

0

f0vdx3, ∀v ∈ H1(]0, l[), (3.41)

where

a =

∫
M ′
A

(
Dx′ z̃

1

)(
0′

1

)
dx′, a.e. in ]0, l[, (3.42)

and b0 is defined in (3.8).
Remark that

a = a0, a.e. in ]0, l[, (3.43)

with a0 defined in (3.7). Indeed

a0 =

∫
M ′
A

(
Dx′ z̃

1

)(
Dx′ z̃

1

)
dx′ =

∫
M ′
A

(
Dx′ z̃

1

)((
0′

1

)
+

(
Dx′ z̃

0

))
dx′

= a+

∫
M ′
A

(
Dx′ z̃

1

)(
Dx′ z̃

0

)
dx′.

(3.44)
On the other side, choosing ψ = z̃(·, x3) as test function in (3.5) provides that the last
integral in (3.44) is zero. So (3.43) holds true. Then, u is the unique solution to (3.10).
Consequently, all previous convergences hold true for the whole sequence.
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Step 8. This step is devoted to proving that

lim
n

∫
Cn

|δnDhnun|
2 dx+

∫
In

∣∣∣∣∣∣∣Dhnun −

 du

dx3
Dx′ z̃

du

dx3


∣∣∣∣∣∣∣
2

dx+

∫
M

|un − u|2dx

 = 0. (3.45)

Passing to the limit in (3.15) with ϕ = un as test function, using (3.4) and (3.16), and
choosing v = u as test function in (3.10) (which is an admissible test function thanks to
(3.22)) provide the convergence of the energies

lim
n

(
δ2n

∫
Cn

ADhnunDhnundx+

∫
In

ADhnunDhnundx+

∫
M

b|un|2dx
)

=

∫ l

0

a0

∣∣∣∣ dudx3
∣∣∣∣2 dx3 +

∫ l

0

b0|u|2dx3.

(3.46)

Now, (2.3), (2.4) (3.16), (3.17), (3.21), (3.23), (3.25), (3.27), (3.39), (3.8), (3.7), and
(3.46) provide

lim sup
n

λ∫
Cn

|δnDhnun|
2 dx+ λ

∫
In

∣∣∣∣∣∣∣Dhnun −

 du

dx3
Dx′ z̃

du

dx3


∣∣∣∣∣∣∣
2

dx+ γ

∫
M

|un − u|2dx



≤ lim sup
n

[
δ2n

∫
Cn

ADhnunDhnundx

+

∫
M

A

χInDhnun − χIn

 du

dx3
Dx′ z̃

du

dx3



χInDhnun − χIn

 du

dx3
Dx′ z̃

du

dx3


 dx

+

∫
M

b |un − u|2 dx

]

= lim sup
n

[
δ2n

∫
Cn

ADhnunDhnundx+

∫
In

ADhnunDhnundx+

∫
M

b|un|2dx

−
∫
M

AχInDhnun

 du

dx3
Dx′ z̃

du

dx3

 dx−
∫
M

A

 du

dx3
Dx′ z̃

du

dx3

χInDhnundx

+

∫
M

χInA

 du

dx3
Dx′ z̃

du

dx3


 du

dx3
Dx′ z̃

du

dx3

 dx− 2

∫
M

bunudx+

∫
M

b |u|2 dx

]
= 0,
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i.e. (3.45) holds true.
Remark that the third last integral in the last formula tends to

∫
M

A

 du

dx3
Dx′ z̃

du

dx3


 du

dx3
Dx′ z̃

du

dx3

 dx

thanks to the Lebesgue dominated convergence theorem, since (3.23) holds true and (2.3)
and (3.39) ensure that

A

 du

dx3
Dx′ z̃

du

dx3


 du

dx3
Dx′ z̃

du

dx3

 ∈ L1(M).

Step 9. Eventually, (3.12) follows from (3.45) by a changing of variable.

Remark 3.4. If assumption (3.4) is replaced with

fn ⇀ f weakly in L2(M).

One can prove all the previous result until the convergence of the energies (3.46) excluded.
To prove the convergence of the energies, strong convergence (3.4) is needed. Then, to obtain
convergences in (3.12), assumption (3.4) is needed.

4 Problem II: a low conductivity in the annulus of the

structure

For every n ∈ N consider the following problem
−div

((
χĈn + δ2nχÎn

)
A
(
y′

hn
, x3

)
Dûn

)
+ b
(
y′

hn
, x3

)
ûn = f̂n in M̂n,

(
χĈn + δ2nχÎn

) (
A
(
y′

hn
, x3

)
Dûn

)
· ν = 0 on ∂M̂n,

(4.1)

where M̂n, Ĉn, În, δn, A, b, f̂n, and ν are defined in the previous section. The weak
formulation of (4.1) is

ûn ∈ H1
(
M̂n

)
,

∫
Ĉn

A

(
y′

hn
, x3

)
DûnDϕ̂dy

′dx3 + δ2n

∫
În

A

(
y′

hn
, x3

)
DûnDϕ̂dy

′dx3

+

∫
M̂n

b

(
y′

hn
, x3

)
ûnϕ̂dy

′dx3 =

∫
M̂n

f̂nϕ̂dy
′dx3, ∀ϕ̂ ∈ H1

(
M̂n

)
.

(4.2)
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which admits a unique solution by virtue of the Lax-Milgram Theorem.
The goal of this section is to study the asymptotic behavior of this problem as n diverges.

To this aim for a.e. x3 in ]0, l[, consider the following problem
−µ2divx′ (A′(·, x3)Dx′u(·, x3)) + b(·, x3)u(·, x3) = f(·, x3), in M ′,

(Aαβ(·, x3)Dx′u(·, x3)) · ν ′ = 0, on ∂M ′,
(4.3)

where A′ = (Aαβ)α,β=1,2 and ν ′ denotes the unit exterior normal to ∂M ′. For a.e. x3 in ]0, l[
the weak formulation to (4.3) is

u(·, x3) ∈ H1(M ′),

µ2

∫
M ′
Aαβ(·, x3)Dxβu(·, x3)Dxαwdx

′ +

∫
M ′
b(·, x3)u(·, x3)wdx′

=

∫
M ′
f(·, x3)wdx′, ∀w ∈ H1(M ′).

(4.4)

which admits a unique solution by virtue of the Lax-Milgram Theorem.

Theorem 4.1. Assume (2.1), (2.3), (2.4), (2.5), (2.6), (3.3), (3.4), For every n ∈ N let ûn
be the unique weak solution to problem (4.1).

i) If

lim
n

δn
hn

= µ ∈]0,+∞[, (4.5)

then 
lim
n

1

hn

∥∥∥∥ûn − u( y′hn , x3
)∥∥∥∥

L2(M̂n)

= 0,

lim
n

∥∥∥∥Dûn − (Dx′

(
u

(
y′

hn
, x3

))
, 0

)∥∥∥∥
L2(M̂n)

= 0,

(4.6)

where for a.e. x3 in ]0, l[, u(·, x3) is the unique weak solution to (4.3).

ii) If

lim
n

δn
hn

= 0, (4.7)

then

lim
n

1

hn

∥∥∥∥∥∥∥∥ûn −
f

(
y′

hn
, x3

)
b

(
y′

hn
, x3

)
∥∥∥∥∥∥∥∥
L2(M̂n)

= 0 = lim
n

1

hn

∥∥∥∥∥∥∥∥ûn −
f̂n

b

(
y′

hn
, x3

)
∥∥∥∥∥∥∥∥
L2(M̂n)

. (4.8)

iii) If

lim
n

δn
hn

= +∞, (4.9)
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then

lim
n

1

hn

∥∥∥∥ûn −
∫
M ′ f(x′, ·)dx′∫
M ′ b(x′, ·)dx′

∥∥∥∥
L2(M̂n)

= 0 = lim
n

1

hn

∥∥∥∥∥ûn −
∫
hnM ′ f̂n(y′, ·)dy′∫
hnM ′ b(

y′

hn
, ·)dy′

∥∥∥∥∥
L2(M̂n)

. (4.10)

Remark 4.2. Let us point out that (4.6) provides a corrector since it means that ûn and its

gradient with respect to y′ behave as u

(
y′

hn
, x3

)
in M̂n, when .µ ∈]0,+∞[.

Proof. Step 1. This step is devoted to reformulating Problem (4.2).
Problem (4.2) can be rewritten in the following way

ûn ∈ H1
(
M̂n

)
,

(
1− δ2n

) ∫
Ĉn

A

(
y′

hn
, x3

)
DûnDϕ̂dy

′dx3 + δ2n

∫
M̂n

A

(
y′

hn
, x3

)
DûnDϕ̂dy

′dx3

+

∫
M̂n

b

(
y′

hn
, x3

)
ûnϕ̂dy

′dx3 =

∫
M̂n

f̂nϕ̂dy
′dx3, ∀ϕ̂ ∈ H1

(
M̂n

)
.

(4.11)

Let M be defined in (2.2) and for every n ∈ N let Dhn be defined in (3.13),

fn : (x′, x3) ∈M → f̂n(hnx
′, x3), (4.12)

and
un : (x′, x3) ∈M → ûn(hnx

′, x3). (4.13)

Moreover, let
C = C ′×]0, l[,

and for every n ∈ N set

Drn : ϕ ∈ H1 (C)→


1

rn
Dx1ϕ

1

rn
Dx2ϕ

Dx3ϕ

 ∈ (L2(C))3,

and
un : (x′, x3) ∈ C → ûn(rnx

′, x3). (4.14)

Note that the pair (un, un) satisfies the equality

un(x′, x3) = ûn(rnx
′, x3) = ûn

(
hn
rn
hn
x′, x3

)
= un

(
rn
hn
x′, x3

)
,

so that if we set for every n ∈ N

Vn =

{
(ϕ, ϕ) ∈ H1(M)×H1(C) : ϕ(x′, x3) = ϕ

(
rn
hn
x′, x3

)
, a.e. in C

}
, (4.15)
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then (un, un) is the unique solution to

(un, un) ∈ Vn,

(1− δ2n)

(
rn
hn

)2 ∫
C

A

(
rn
hn
x′, x3

)
DrnunDrnϕdx+ δ2n

∫
M

ADhnunDhnϕdx

+

∫
M

bunϕdx =

∫
M

fnϕdx, ∀(ϕ, ϕ) ∈ Vn.

(4.16)

which can be also rewritten in the following way

(un, un) ∈ Vn,

(1− δ2n)

(
rn
hn

)2 ∫
C

[(
Aαβ

(
rn
hn
x′, x3

)
1

rn
Dxβun + Aα3

(
rn
hn
x′, x3

)
Dx3un

)
1

rn
Dxαϕ

+

(
A3α

(
rn
hn
x′, x3

)
1

rn
Dxαun + A33

(
rn
hn
x′, x3

)
Dx3un

)
Dx3ϕ

]
dx

+δ2n

∫
M

[(
Aαβ

1

hn
Dxβun + Aα3Dx3un

)
1

hn
Dxαϕ

+

(
A3α

1

hn
Dxαun + A33Dx3un

)
Dx3ϕ

]
dx+

∫
M

bunϕdx

=

∫
M

fnϕdx, ∀(ϕ, ϕ) ∈ Vn.

(4.17)

Step 2. This step is devoted to obtaining a priori estimates for problem (4.16).
Choosing (ϕ, ϕ) = (un, un) as test function in (4.16) and using (2.3), (2.4), (2.5), (3.4),

and the Young inequality provide the existence of a positive constant c such that

‖un‖L2(M) ≤ c, ∀n ∈ N, (4.18)∥∥∥∥ 1

hn
Dx′un

∥∥∥∥
(L2(C))2

≤ c, ∀n ∈ N, (4.19)∥∥∥∥ rnhnDx3un

∥∥∥∥
L2(C)

≤ c, ∀n ∈ N, (4.20)∥∥∥∥ δnhnDx′un

∥∥∥∥
(L2(M))2

≤ c, ∀n ∈ N, (4.21)
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‖δnDx3un‖L2(M) ≤ c, ∀n ∈ N. (4.22)

Step 3. This step is devoted to choosing suitable test functions in (4.17).

Let w ∈ C∞(M ′) be such that w is constant in a neighborhood of 0′ and let v ∈ C∞0 (]0, l[).
For every n ∈ N set

ϕn : (x′, x3) ∈ C → w

(
rn
hn
x′
)
v(x3).

Then,
(wv, ϕn) ∈ Vn, ∀n ∈ N,

and

w

(
rn
hn
x′
)

is constant a.e. in C ′, for n large enough,

thanks to (2.1). Consequently, choosing (ϕ, ϕ) = (wv, ϕn) as test function in (4.17) gives

(1− δ2n)
rn
hn

∫
C

(
A3α

(
rn
hn
x′, x3

)
1

hn
Dxαun + A33

(
rn
hn
x′, x3

)
rn
hn
Dx3un

)
Dx3v(x3)w

(
rn
hn
x′
)
dx

+

∫
M

[(
Aαβ

δn
hn
Dxβun + δnAα3Dx3un

)
δn
hn
Dxαw(x′)v(x3)

+

(
A3α

δn
hn
Dxαun + A33

δn
hn
hnDx3un

)
δnDx3v(x3)w(x′)

]
dx+

∫
M

bunwvdx

=

∫
M

fnwvdx, for n large enough.

(4.23)
Step 4. This step is devoted to prove case i).
Estimates (4.18), (4.21) and (4.22) combined with (4.5) provide that

hnDx3un ⇀ 0 weakly in L2(M), (4.24)

and that there exist a subsequence of N, still denoted by N, and u in L2(0, l, H1
m(M ′)) (which

can depend on the subsequence) such that

un ⇀ u weakly in L2(0, l, H1(M ′)). (4.25)

Passing to the limit in (4.23), as n→ +∞, and using (2.1), (2.3), (2.4), (2.5), (3.4), (4.5),
(4.19), (4.20), (4.24), and (4.25) provide

µ2

∫
M

AαβDxβuDxαwvdx+

∫
M

buwvdx =

∫
M

fwvdx,

∀w ∈ C∞(M ′) : w is constant in a neighborhood of 0′, ∀v ∈ C∞0 (]0, l[).
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Consequently, by a density argument (compare the proof of Proposition 3.1, in the case
p ≤ N − 1, in [14]) one has

µ2

∫
M

AαβDxβuDxαwvdx+

∫
M

buwvdx =

∫
M

fwvdx,

∀w ∈ H1(M ′), ∀v ∈ C∞0 (]0, l[),

which implies that for a.e. x3 in ]0, l[ u(·, x3) solves (4.4), since H1(M ′) is separable. Note
that (4.25) holds true for the whole sequence since Problem (4.4) admits a unique solution.

Passing to the limit in (4.16) with ϕ = (un, un) as test function, using (3.4) and (4.25),
and choosing w = u(·., x3) as test function in (4.4) provide the convergence of the energies

lim
n

[
(1− δ2n)

(
rn
hn

)2 ∫
C

A

(
rn
hn
x′, x3

)
DrnunDrnundx

+δ2n

∫
M

ADhnunDhnundx+

∫
M

b|un|2dx

]
= µ2

∫
M

AαβDxβuDxαudx+

∫
M

bu2dx

= µ2

∫
M

A

(
Dx′u

0

)(
Dx′u

0

)
dx+

∫
M

bu2dx.

(4.26)

Now, (2.3), (2.4), (2.5), (4.5), (4.24), (4.25), and (4.26) provide

lim sup
n

[
λ

∫
M

∣∣∣∣δnDhnun − µ
(
Dx′u

0

)∣∣∣∣2 dx+ γ

∫
M

|un − u|2dx

]

≤ lim sup
n

[
(1− δ2n)

(
rn
hn

)2 ∫
C

A

(
rn
hn
x′, x3

)
DrnunDrnundx

+

∫
M

A

(
δnDhnun − µ

(
Dx′u

0

))(
δnDhnun − µ

(
Dx′u

0

))
dx

+

∫
M

b |un − u|2 dx

]
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= lim sup
n

[
(1− δ2n)

(
rn
hn

)2 ∫
C

A

(
rn
hn
x′, x3

)
DrnunDrnundx

+

∫
M

δ2nADhnunDhnundx+

∫
M

b|un|2dx

−µδn
∫
M

ADhnun

(
Dx′u

0

)
dx− µδn

∫
M

A

(
Dx′u

0

)
Dhnundx

+µ2

∫
M

A

(
Dx′u

0

)(
Dx′u

0

)
dx− 2

∫
M

bunudx+

∫
M

b |u|2 dx

]
= 0,

which implies

lim
n

[∫
M

∣∣∣∣( Dx′un,
hnDx3un

)
−
(
Dx′u

0

)∣∣∣∣2 dx+ γ

∫
M

|un − u|2dx

]
= 0, (4.27)

thanks to (4.5).
Eventually, (4.6) follows from (4.27) by a changing of variable.

Step 5. This step is devoted to prove case ii).
Estimate (4.18) provides the existence of a subsequence of N, still denoted by n, and u

in L2(M) (which can depend on the subsequence) such that

un ⇀ u weakly in L2(M). (4.28)

Passing to the limit in (4.23), as n→ +∞, and using (2.1), (2.3), (2.4), (2.5), (3.4), (4.7),
(4.19), (4.20), (4.21), (4.22), and (4.28) provide∫

M

buwvdx =

∫
M

fwvdx,

∀w ∈ C∞(M ′) : w is constant in a neighborhood of 0′, ∀v ∈ C∞0 (]0, l[).

which implies that

u =
f

b
, a.e. in M, (4.29)

by a density argument. Note that (4.29) ensures that (4.28) holds true for the whole sequence.
Passing to the limit in (4.16) with ϕ = (un, un) as test function, using (2.3), (2.4), (3.4),
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(4.28), a l.s.c argument, and (4.29) provide∫
M

f 2

b
dx =

∫
M

b|u|2dx

≤ lim inf
n

∫
M

b|un|2dx ≤ lim
n

[
(1− δ2n)

(
rn
hn

)2 ∫
C

A

(
rn
hn
x′, x3

)
DrnunDrnundx

+δ2n

∫
M

ADhnunDhnundx+

∫
M

b|un|2dx

]
= lim

n

∫
M

fnundx

=

∫
M

fudx =

∫
M

f 2

b
dx =

∫
M

b|u|2dx,

i.e.

lim
n

∫
M

|
√
bun|2dx =

∫
M

|
√
bu|2dx.

Consequently, thanks to (4.28) and (2.4),

√
bun →

√
bu strongly in L2(M),

which implies

un → u =
f

b
strongly in L2(M), (4.30)

thanks to (4.29) and (2.4), too.
Now, combining (4.30) with (3.4) ensures that

un −
fn
b
→ 0 strongly in L2(M). (4.31)

Eventually, (4.8) follows from (4.30) and (4.31) by a changing of variable.

Step 6. This step is devoted to prove case iii).
Estimates (4.18) and (4.21) provide the existence of a subsequence of N, still denoted by

n, and u in L2(M) independent of x′ (which can depend on the subsequence) such that

un ⇀ u weakly in L2(M). (4.32)

Passing to the limit in (4.23), as n→ +∞, with w = 1 a.e. in M ′ and using (2.1), (2.3),
(2.4), (2.5), (3.4), (4.9), (4.19), (4.20), (4.21), (4.22), and (4.32) provide∫

M

buvdx =

∫
M

fvdx, ∀v ∈ C∞0 (]0, l[).

which implies that

u(x3) =

∫
M ′ f(x′, x3)dx

′∫
M ′ b(x′, x3)dx′

, for a.e. x3 ∈]0, l[. (4.33)
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Note that (4.33) ensures that (4.32) holds true for the whole sequence.
Passing to the limit in (4.16) with ϕ = (un, un) as test function, using (2.3), (2.4), (3.4),

(4.32), a l.s.c argument, and (4.33) provide

∫ l

0

∣∣∣∣∣∣
∫
M ′ fdx

′√∫
M ′ bdx′

∣∣∣∣∣∣
2

dx3 =

∫
M

b|u|2dx

≤ lim inf

∫
M

b|un|2dx ≤ lim
n

[
(1− δ2n)

(
rn
hn

)2 ∫
C

A

(
rn
hn
x′, x3

)
DrnunDrnundx

+δ2n

∫
M

ADhnunDhnundx+

∫
M

b|un|2dx

]
= lim

n

∫
M

fnundx

=

∫
M

fudx =

∫ l

0

∣∣∣∣∣∣
∫
M ′ fdx

′√∫
M ′ bdx′

∣∣∣∣∣∣
2

dx3 =

∫
M

|
√
bu|2dx,

i.e.

lim
n

∫
M

|
√
bun|2dx =

∫
M

|
√
bu|2dx.

Consequently, thanks to (4.32) and (2.4),

√
bun →

√
bu strongly in L2(M),

which implies

un → u =

∫
M ′ f(x′, ·)dx′∫
M ′ b(x′, ·)dx′

strongly in L2(M), (4.34)

thanks to (4.33)and (2.4), too.
On the other side, (3.4) provides∫

M ′
fn(x′, ·)dx′ →

∫
M ′
f(x′, ·)dx′ strongly in L2(M).

Consequently, again thanks to (2.4),∫
M ′ fn(x′, ·)dx′∫
M ′ b(x′, ·)dx′

→
∫
M ′ f(x′, ·)dx′∫
M ′ b(x′, ·)dx′

strongly in L2(M). (4.35)

Then, combining (4.34) with (4.35) gives

un −
∫
M ′ fn(x′, ·)dx′∫
M ′ b(x′, ·)dx′

→ 0 strongly in L2(M), (4.36)

Eventually, (4.10) follows from (4.34) and (4.36) by a changing of variable.
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[2] M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber re-
inforced structure. Nonlocal effects, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 3,
pp. 407-43.
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