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Limit models for thin heterogeneous structures with high contrast

A. Gaudiello, Ali

Introduction

In this paper we investigate two linear diffusion problems, with strongly contrasting diffusivity, in a thin heterogeneous cylinder.

In what follows, x (resp. y ) denotes a generic element (x 1 , x 2 ) (resp. (y 1 , y 2 )) of R 2 , moreover (x , x 3 ) (resp. (y , x 3 ) ) denotes a generic element x = (x 1 , x 2 , x 3 ) (resp. (y 1 , y 2 , x 3 )) of R 3 .

Figure 1: Thin cylinder Mn

For every n in N we consider a thin cylinder Mn of R 3 with height l and with a small crosssection h n M . In Mn we distinguish two thin cylinders with the same height l: an inner core Ĉn with small cross-section r n C and its complementary annulus În = h n M \ r n C ×]0, l[ (see Figure 1), where M and C are two open connected sets of R 2 with Lipschitz boundaries such that 0 ∈ C ⊂⊂ M , and h n and r n are two small parameters taking values in two vanishing sequences of positive numbers such that r n << h n .

In Mn we consider the following boundary value problem:    -div (g n (y )A (x 3 ) D u n (y , x 3 )) + b (x 3 ) u n (y , x 3 ) = f n (y , x 3 ), in Mn , (g n (y )A (x 3 ) D u n (y , x 3 )) • ν = 0, on ∂ Mn , (1.1) where A is a coercive matrix with coefficients in L ∞ (]0, l[), b is a coefficient in L ∞ (]0, l[) which is bounded from below away from zero, f n is a function in L 2 ( Mn ), and ν denotes the exterior unit normal to ∂ Mn . For the sake of simplicity in this introduction we assume that the matrix A and the coefficient b depend only on the vertical variable x 3 , but in the paper we treat a more general case with A and b depending on (y , x 3 ). As far as function g n is concerned, we shall consider two cases:

I) g n = δ 2 n χ Ĉn + χ În , II) g n = χ Ĉn + δ 2 n χ În ,
where also δ n is a small parameter taking values in a vanishing sequence of positive numbers, and χ Ĉn and χ În denote the characteristic function of Ĉn and În , respectively. In the first case, Mn has a very small insulation inner cylindrical core Ĉn with low conductivity of order δ 2 n enveloped by the annulus În with conductivity of order 1. In the second case, we have the opposite situation, i.e., Mn has a very small inner cylindrical core Ĉn with conductivity of order 1 enveloped by the insulation annulus În with low conductivity of order δ 2 n . In this paper we study the asymptotic behavior of problem (1.1) as h n → 0, r n → 0, r n h n → 0, δ n → 0, and under suitable assumptions on f n . Precisely, we assume that the rescaling of f n on M ×]0, l[, i.e., f n (x , x 3 ) = f n (h n x , x 3 ), is L 2 -strongly converging to a function f (x , x 3 ). We point out that the peculiarity of this paper is the assumption r n h n → 0 (i.e., r n << h n ) combined with the lost of coercivity of the problems when h n and r n vanish, due to the vanishing coefficient δ 2 n in front of the divergence term. • In the first case (i.e., when g n = δ 2 n χ Ĉn + χ În ), using the Cauchy-Schwarz inequality, Theorem 3.2 provides that

- hnM u n (x , •)dx -→ u strongly in L 2 (]0, l[), (1.2) 
and u ∈ H 1 (]0, l[) is the unique weak solution to

           - d dx 3 a 0 du dx 3 + |M |bu = f 0 , in ]0, l[, a 0 du dx 3 (0) = 0 = a 0 du dx 3 (l),
where for a.e.

x 3 in ]0, l[ a 0 (x 3 ) = M A(x 3 ) D x z 1 D x z 1 dx , f 0 (x 3 ) = M f (x , x 3 )dx , and z(•, x 3 ) ∈ H 1 (M ) is the unique weak solution to                    M z(x , x 3 )dx = 0, div x (A (x 3 )D x z) = 0, in M , A (x 3 )D x z + A 13 (x 3 ) A 23 (x 3 ) • ν = 0, on ∂M ,
with A = (A αβ ) α,β=1,2 and ν denoting the unit exterior normal to ∂M . Note that a 0 (x 3 ) = |M |A 33 (x 3 ) if A 13 = A 23 = 0 (since in this case z = 0). In particular,

a 0 = |M | if A = I.
• In the second case (i.e., when g n = χ Ĉn + δ 2 n χ În ), the limit behavior of problem (1.1) depends on the

lim n δ n h n = µ ∈ [0, +∞].
Precisely, using the Cauchy-Schwarz inequality, Theorem 4.1 provides that -if µ ∈]0, +∞[, then

- hnM u n (x , •)dx -→ - M u(x , •)dx strongly in L 2 (]0, l[),
where, for a.e.

x 3 in ]0, l[, u(•, x 3 ) ∈ H 1 (M ) is the unique weak solution to    -µ 2 div x (A (x 3 )D x u(•, x 3 )) + b(x 3 )u(•, x 3 ) = f (•, x 3 ), in M , (A (x 3 )D x u(•, x 3 )) • ν = 0, on ∂M . (1.3) -If µ = 0 or µ = +∞, then - hnM u n (x , •)dx - 1 b - hnM fn (x , •)dx -→ 0 strongly in L 2 (]0, l[).
or equivalently,

- hnM u n (x , •)dx -→ 1 b - M f (x , •)dx strongly in L 2 (]0, l[).
More generally, in Theorem 3.2 and in Theorem 4.1 we consider the case where the matrix A and the coefficient b depend also on y and we prove L 2 -strong convergence results for u n and for its gradient. It is not difficult to extend these results to monotone operators.

As far as the first case is concerned (i.e., g n = δ 2 n χ Ĉn + χ În ), let us point out that convergence (1.2) is the same result which one obtains studying the limit behavior of the following problem (for instance, compare [START_REF] Casado-Díaz | Homogenization and correctors for monotone problems in cylinders of small diameter[END_REF] , [START_REF] Gaudiello | Asymptotic analysis for monotone quasilinear problems in thin multidomains[END_REF], [START_REF] Gaudiello | Asymptotic analysis of the eigenvalues of an elliptic problem in an anisotropic thin multidomain[END_REF], and [START_REF] Murat | Problèmes monotones dans des cylindres de faible diamètre formés de matériaux hétérogènes[END_REF])

   -div (A (x 3 ) D u n (y , x 3 )) + b (x 3 ) u n (y , x 3 ) = f n (y , x 3 ), in Mn , (A (x 3 ) D u n (y , x 3 )) • ν = 0, on ∂ Mn ,
i.e., roughly speaking, in a first approximation (in L 2 (]0, l[)-norm) of the average of the solution on the cross-section of the thin cylinder, the presence of a very small insulation cylindrical core Ĉn with a small conductivity does not give any contribution with respect to considering a conductivity of order 1 everywhere in the original problem. Moreover, in Theorem 3.2 we shall show that u n (y , x 3 ) and its gradient behave as u(x 3 ) + h n du dx 3 (x 3 ) z y hn , x 3 in I n which is a corrector result.

As far as the second case is concerned (i.e., g n = χ Ĉn + δ 2 n χ În ), h n is a critical size for δ n . Precisely, if δ n h n (i.e., µ ∈]0, +∞[), then the L 2 (]0, l[)-limit of the average of u n on the cross-section of the thin cylinder is -M u(x , •)dx , with u the solution to problem (1.3). Moreover in Theorem 4.1 we shall show that u n (y , x 3 ) and its gradient with respect to y behave as u y hn , x 3 in M n . If δ n << h n or δ n >> h n (i.e., µ = 0 or µ = +∞), the L 2 (]0, l[)-limi is given by 1 b -M f (x , •)dx (formally, this result can be obtained choosing µ = 0 or µ = +∞ in problem (1.3)). Indeed, this last result depends on the fact that in this introduction we are assuming b independent of y . In Theorem (4.1) we shall prove that, more generally (i.e., A and b depend also on y ), the case µ = 0 is different from the case µ = +∞.

For the sake of completeness and for better understand our result in the second case, we recall what happens when r n h n δ n in the case g n = χ Ĉn +δ 2 n χ În . Actually, if for instance one assumes r n = rh n , r > 0, then the limit problem is a nonlocal one in the sense that the limit diffusion is described by a nonlocal system of two equations in which a two-dimensional problem like (1.3), posed in that case on M \ rC , is associated with a one-dimensional problem involving the diffusion along the vertical axis x 3 of the core. This result was proved in [START_REF] Murat | A remark about the periodic homogenization of certain composite fibered media[END_REF] for the Laplacian equation with the homogeneous Dirichlet boundary condition on the extremities of the cylinder and the homogeneous Neumann boundary condition elsewhere (also compare [START_REF] Sili | Homogenization of a nonlinear monotone problem in an anisotropic medium[END_REF] for monotone operators), and in [START_REF] Paroni | Non-local effects by homogenization or 3D-1D dimension reduction in elastic materials reinforced by stiff fibers[END_REF] for the linearized elasticity system in a thin beam clamped at the extremities. It is easily seen that the nonlocal effect still appears when the homogeneous Neumann boundary condition is assumed everywhere (just a zero order term in the equation is needed in order to obtain a priori estimates). On the other hand, the results are similar in the opposite situation, i.e., g n = δ 2 n χ Ĉn + χ În and r n h n δ n .

Our present result states that if the radius r n of the core is negligible compared to h n and if g n = χ Ĉn + δ 2 n χ În with δ n h n , then the nonlocal effect disappears since the limit diffusion inside the core is not perceived and only the diffusion outside the core (which is described by (1.3)) gives a contribution in the limit process.

Eventually, we point that when r n h n , but δ n has a different behavior, it is an easy task to prove that the limit problem is local. We also refer to [START_REF] Briane | Homogenization of convex functionals which are weakly coercive and not equi-bounded from above[END_REF] for nonlocal limits in problems with high contrast in a thin cylinder.

In the homogenization setting, there is a vast literature on problems with highly contrasting coefficients since the founding work of T. Arbogast, J. Douglas, and U. Hornung [START_REF] Arbogast | Derivation of the double porosity model of single phase flow via homogenization theory[END_REF] (see also [START_REF] Braides | A variational approach to doubleporosity problems[END_REF] and [START_REF] Braides | Homogenization of discrete highcontrast energies[END_REF]). Here, we just recall those papers devoted to the homogenization of fibered structures with high contrast: [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects[END_REF], [START_REF] Bellieud | Homogenization of a soft elastic material reinforced by fibers[END_REF], [START_REF] Briane | Fibered microstructures for some nonlocal Dirichlet forms[END_REF], [START_REF] Caillerie | A perturbation problem with two small parameters in the framework of the heat conduction of a fiber reinforced body[END_REF], [START_REF] Cherednichenko | Non-local homogenized limits for composite media with highly anisotropic periodic fibres[END_REF], [START_REF] Gaudiello | Homogenization of highly oscillating boundaries with strongly contrasting diffusivity[END_REF], [START_REF] Kamotski | Bandgaps in two-dimensional high-contrast periodic elastic beam lattice materials[END_REF], [START_REF] Murat | A remark about the periodic homogenization of certain composite fibered media[END_REF], [START_REF] Paroni | Non-local effects by homogenization or 3D-1D dimension reduction in elastic materials reinforced by stiff fibers[END_REF], [START_REF] Sili | Homogenization of a nonlinear monotone problem in an anisotropic medium[END_REF]. Let us point out that as far as the periodic homogenization of fibered media is concerned, the homogenized problem has the same form as the limit problem obtained by the corresponding reduction of dimension occurring in the reference cell, as remarked in [START_REF] Murat | A remark about the periodic homogenization of certain composite fibered media[END_REF].

Our paper is structured as follows: in Section 2 we introduce some notations and we fix the assumptions on A and b depending on (y , x 3 ). In Section 3 we study the asymptotic behavior of the problem with a low conductivity in the core of the structure. After rescaling the solution on

M = M ×]0, l[ by u n (x) = u(h n x , x 3 ), we prove that δ n 1 hn D x u n , D x 3 u n χ Cn is bounded in L 2 (M )
and, up to a subsequence, u n converges to u weakly in L 2 (M ) and

1 hn D x u n , D x 3 u n χ In converges to ξ = (ξ , ξ 3 ) weakly in (L 2 (M ))
3 , where C n and I n denote the scaling of Ĉn and În , respectively. It should be noted that C n and I n still depend on n since Ĉn and În are dependent also on r n (and not only on h n ). It is not difficult to show that u is independent of x and ξ 3 = D x 3 u, but it is quite complicated to write ξ in terms of u. To do that we need to adapt an uniform extension operator introduced in [START_REF] Conca | Nonhomogeneous Neumann problems in domains with small holes[END_REF]. Eventually, using the convergence of the energies allows us to obtain the strong convergence in L 2 (M ) for u n and for its rescaled gradient (in particular we prove that δ n

1 hn D x u n , D x 3 u n χ Cn converges to zero strongly in L 2 (M )).
In Section 4 we study the asymptotic behavior of the problem with a low conductivity in the annulus of the structure. At first we rewrite the problem so that it can be splited in a part on M n and a part on C n . Then we introduce two different rescalings

u n (x) = u(h n x , x 3 ) in M = M ×]0, l[ and u n (x) = u n (r n x , x 3 ) in C = C ×]0, l[,
and we write the problem satisfied by the couple (u n , u n ). A priori estimates suggest us that the limit problem depends on the ratio µ = lim n δn hn and three different regimes appear according to µ = 0, 0 < µ < +∞, or µ = +∞. The limit problems are obtained passing to the limit in the equation with suitable test functions which, roughly speaking, take into account the relation between u n and u n , and using suitable density results. Eventually, thanks to the convergence of the energies we obtain the strong convergences.

Definitions and notation

Let {h n } n∈N and {r n } n∈N be two sequences in ]0, 1] such that

lim n r n = 0, lim n h n = 0, lim n r n h n = 0. (2.1) Let 0 ∈ C ⊂⊂ M ⊆ - 1 2 , 1 2 
2
be two open connected sets with Lipschitz boundaries and let l ∈]0, +∞[. For every n ∈ N set

Mn = h n M ×]0, l[, Ĉn = r n C ×]0, l[, În = h n M \ r n C ×]0, l[. Set M = M ×]0, l[, (2.2) 
and let A and b be such that

     A ∈ (L ∞ (M )) 3×3 , ∃λ ∈]0, +∞[ : A(x) ξ ξ ≥ λ |ξ| 2 , a.e. x ∈ M, ∀ ξ ∈ R 3 .
(2.3)

∃γ ∈]0, +∞[ : b ∈ L ∞ (M ), b(x) ≥ γ, a.e. x ∈ M. (2.4) Let {δ n } n∈N ⊂]0, 1] be such that lim n δ n = 0, (2.5) 
and for every n ∈ N let

f n ∈ L 2 ( Mn ). (2.6)
In what follows, α, β belong to {1, 2} and repeated indices imply the summation.

3 Problem I: a low conductivity in the core of the structure

For every n ∈ N consider the following problem

       -div δ 2 n χ Ĉn + χ În A y hn , x 3 D u n + b y hn , x 3 u n = f n , in Mn , δ 2 n χ Ĉn + χ În A y hn , x 3 D u n • ν = 0, on ∂ Mn , (3.1) 
where ν denotes the exterior unit normal to ∂ Mn .

The weak formulation of (3.1) is

                     u n ∈ H 1 Mn , δ 2 n Ĉn A y h n , x 3 D u n D ϕdy dx 3 + În A y h n , x 3 D u n D ϕdy dx 3 + Mn b y h n , x 3 u n ϕdy dx 3 = Mn f n ϕdy dx 3 , ∀ ϕ ∈ H 1 Mn . (3.2)
which admits a unique solution by virtue of the Lax-Milgram Theorem. The goal of this section is to study the asymptotic behavior of this problem, as n diverges. To this aim set

f n : (x , x 3 ) ∈ M → f n (h n x , x 3 ), (3.3) 
and assume that

f n → f strongly in L 2 (M ). (3.4) Let H 1 m (M ) = v ∈ H 1 (M ) :
M vdx = 0 . The Lax-Milgram Theorem ensures that for a.e. x 3 in ]0, l[ the following problem

                   z(•, x 3 ) ∈ H 1 m (M ), M A D x z 0 D x ψ 0 dx = - M A 0 1 D x ψ 0 dx , ∀ψ ∈ H 1 (M ), (3.5) 
admits a unique solution. Moreover, the measurability of A ensures (compare [START_REF] Gaudiello | Asymptotic analysis of the eigenvalues of an elliptic problem in an anisotropic thin multidomain[END_REF], pages 749-50) that the function

x 3 ∈]0, l[→ z(•, x 3 ) ∈ H 1 m (M ) is measurable. Furthermore, choosing ψ = z(•, x 3 ) as test function in (3.5) provides sup x 3 ∈]0,l[ D x z(•, x 3 ) (L 2 (M )) 2 < +∞, i.e. z ∈ L ∞ (0, l, H 1 m (M )). (3.6) Set a 0 : x 3 ∈]0, l[→ M A D x z 1 D x z 1 dx . (3.7) b 0 : x 3 ∈]0, l[→ M bdx , (3.8) 
and f 0 :

x 3 ∈]0, l[→ M f dx . (3.9)
Then (2.3), (2.4), (3.4), and (3.6) provide that

a 0 ∈ L ∞ (]0, l[), b 0 ∈ L ∞ (]0, l[), f 0 ∈ L 2 (]0, l[),
and

a 0 (x 3 ) ≥ λ|M |, b 0 (x 3 ) ≥ γ|M |, a.e. x 3 ∈]0, l[.
Consequently, the Lax-Milgram Theorem ensures that the following problem

       u ∈ H 1 (]0, l[), l 0 a 0 du dx 3 dv dx 3 dx 3 + l 0 b 0 uvdx 3 = l 0 f 0 vdx 3 , ∀v ∈ H 1 (]0, l[), (3.10) 
admits a unique solution which is the weak solution to the following one

           - d dx 3 a 0 du dx 3 + b 0 u = f 0 , in ]0, l[, a 0 du dx 3 (0) = 0 = a 0 du dx 3 (l).
(3.11)

Remark 3.1. If A is independent of x 3 , then also z is independent of x 3 . Consequently, a 0 is a positive constant.

If the matrix A is such that A 13 = A 23 = 0, then z = 0. Consequently, a 0 = M A 33 dx . In particular, a 0 = |M | if A = I. Theorem 3.2. Assume (2.1), (2.3), (2.4), (2.5), (2.6), (3.3), (3.4), For every n ∈ N let u n be the unique weak solution to problem (3.1). Let z ∈ L ∞ (0, l, H 1 m (M )) be the unique solution to (3.5). Let a 0 , b 0 , and f 0 be defined by (3.7), (3.8), and (3.9), respectively. Let u be the unique weak solution to (3.11). Then Proof. The proof will be divided into nine steps.

                       lim n 1 h n u n -u L 2 ( Mn) = 0, lim n 1 h n δ n D u n (L 2 ( Cn)) 3 = 0, lim n 1 h n D y u n - du dx 3 (D x z) y h n , x 3 (L 2 ( In)) 2 + D x 3 u n - du dx 3 L 2 ( In) = 0. ( 3 
Step 1. The first step is devoted to reformulating Problem (3.2). Problem (3.2) can be reformulated through the map

(x , x 3 ) ∈ M → (h n x , x 3 ) ∈ Mn .
Precisely, for every n ∈ N set

C n = r n h n C ×]0, l[, I n = M \ r n h n C ×]0, l[, and 
D hn : ϕ ∈ H 1 (M ) →      1 h n D x 1 ϕ 1 h n D x 2 ϕ D x 3 ϕ      ∈ (L 2 (M )) 3 . (3.13)
Then u n defined by

u n : (x , x 3 ) ∈ M → u n (h n x , x 3 ) (3.14)
is the unique solution to

                   u n ∈ H 1 (M ) , δ 2 n Cn AD hn u n D hn ϕdx + In AD hn u n D hn ϕdx + M bu n ϕdx = M f n ϕdx, ∀ϕ ∈ H 1 (M ) .
(3.15)

Step 2. This step is devoted to proving the existence of a subsequence of N, still denoted by

N, u ∈ L 2 (M ), and ξ = (ξ , ξ 3 ) ∈ (L 2 (M )) 2 × L 2 (M ) (which can depend on the subsequence) such that u n u weakly in L 2 (M ) (3.16) and χ In D hn u n ξ = (ξ , ξ 3 ) weakly in L 2 (M ) 3 .
(3.17)

Choosing ϕ = u n as test function in (3.15) and using (2.3), (2.4), (3.4), and the Young inequality provide the existence of a positive constant c such that

u n L 2 (M ) ≤ c, ∀n ∈ N, (3.18) 
χ Cn δ n D hn u n (L 2 (M )) 3 ≤ c, ∀n ∈ N, (3.19) 
χ In D hn u n (L 2 (M )) 3 ≤ c, ∀n ∈ N.
(3.20)

Eventually, (3.16) and (3.17)follow from (3.18) and (3.20).

Step 3. This step is devoted to proving that Step 4. This step is devoted to proving the existence of z in L 2 (0, l, H 1 m (M )) such that

ξ 3 = D x 3 u,
D x u n (L 2 (A k )) 2 ≤ D x u n (L 2 (In)) 2 ≤ ch n , for n large enough, which implies D x u (L 2 (A k )) 2 =
ξ = D x z, a.e. in M. (3.27) For every n ∈ N let Q n ∈ L H 1 h n M \ r n C , H 1 (h n M ) be such that Q n ϕ = ϕ, a.e. in h n M \ r n C , ∀ϕ ∈ H 1 h n M \ r n C , (3.28) 
and ∃c ∈]0, +∞[ :

hnM |D y (Q n ϕ)| 2 dy ≤ c hnM \rnC |D y ϕ| 2 dy , ∀ϕ ∈ H 1 h n M \ r n C , ∀n ∈ N.
(3.29)

The existence of such a family is proved in the proof of Lemma A1 in [START_REF] Conca | Nonhomogeneous Neumann problems in domains with small holes[END_REF] when

M = -1 2 , 1 2 2 . 
Now, for every n ∈ N and for a.e. x 3 in ]0, l[ set

z n (x , x 3 ) = Q n u n (•, x 3 ) | hnM \rnC (h n x ), a.e. x ∈ M , (3.30) 
where u n is the unique solution to (3.2). At first remark that 

z n ∈ L 2 (0, l, H 1 (M )), ∀n ∈ N. (3.31) Indeed, u n ∈ H 1 Mn ⊂ H 1 ( În ). Consequently u n ∈ L 2 0, l, H 1 h n M \ r n C . Then, since Q n ∈ L H 1 h n M \ r n C , H 1 (h n M ) , one deduces that (see Proposition 1.2.2 in [13]) Q n u n (•, x 3 ) | hnM \rnC ∈ L 2 (0, l, H 1 (h n M )),
M |D x z n (x , x 3 )| 2 dx = M D x Q n u n (•, x 3 ) | hnM \rnC (h n x ) 2 dx = hnM D y Q n u n (•, x 3 ) | hnM \rnC (y ) 2 dy ≤ c hnM \rnC |D y u n (y , x 3 )| 2 dy = c M \ rn hn C |D x ( u n (h n x , x 3 )) | 2 dx = c M \ rn hn C |D x (u n (x , x 3 )) | 2 dx ,
which implies, by an integration on

x 3 ∈]0, l[, that M |D x z n | 2 dx ≤ c In |D x u n | 2 dx, ∀n ∈ N, (3.33) 
where c is the positive constant independent of n ∈ N given in (3.29). Then, combining (3.33) with (3.20) provides the existence of a positive constant c such that

1 h n D x z n (L 2 (M )) 2 ≤ c, ∀n ∈ N,
which implies the existence of a subsequence of N, still denoted by n, and z in L 2 (0, l, H 1 m (M )) (which can depend on the subsequence) such that 

1 h n D x z n D x z weakly in L 2 (M ) 2 . ( 3 
]0, l[ z n (x , x 3 ) = Q n u n (•, x 3 ) | hnM \rnC (h n x ) = u n (h n x , x 3 ) = u n (x , x 3 ), a.e. x ∈ M \ rn hn C . (3.35)
Eventually, (3.27) follows from (3.17), (3.32) and from the fact that

χ In 1 h n D x z n = χ In 1 h n D x u n , a.e. in M, ∀n ∈ N,
due to (3.35).

Step 5. This step is devoted to proving that

M A   D x z du dx 3     D x w dv dx 3   dx + M buvdx = M f vdx, ∀v ∈ H 1 (]0, l[), ∀w ∈ H 1 (M ) . (3.36)
To this aim, let us rewrite the equation in (3.15) in the following way

δ 2 n Cn AD hn u n D hn ϕdx + In A αβ 1 h n D x β u n + A α3 D x 3 u n 1 h n D xα ϕ + A 3α 1 h n D xα u n + A 33 D x 3 u n D x 3 ϕ dx + M bu n ϕdx = M f n ϕdx, ∀ϕ ∈ H 1 (M ) .
(3.37) Choosing ϕ = v + h n w, with v, w ∈ H 1 (M ) and v independent of x , as test function in (3.37) gives

δ 2 n Cn AD hn u n   D x w dv dx 3 + h n D x 3 w   dx + In A αβ 1 h n D x β u n + A α3 D x 3 u n D xα w + A 3α 1 h n D xα u n + A 33 D x 3 u n dv dx 3 + h n D x 3 w dx + M bu n (v + h n w)dx = M f n (v + h n w)dx, ∀v ∈ H 1 (]0, l[), ∀w ∈ H 1 (M ) .
(3.38) Passing to the limit, as n diverges, in (3.38) and using (2.5), (3.4) 

A αβ D x β z + A α3 du dx 3 D xα w + A 3α D xα z + A 33 du dx 3 dv dx 3 dx + M buvdx = M f vdx, ∀v ∈ H 1 (]0, l[), ∀w ∈ H 1 (M ) ,
i.e. (3.36).

Step 6. This step is devoted to identifying z in terms of u, i.e. to proving that

z = du dx 3 z, in L 2 (0, l, H 1 m (M )), (3.39)
where, for a.e. x 3 in ]0, l[, z(•, x 3 ) is the unique solution to (3.5) Choosing v = 0 and w = ψφ, with ψ ∈ H 1 (M ) and φ ∈ C ∞ 0 (]0, l[), as test functions in (3.36) gives

l 0   M A   D x z du dx 3   D x ψ 0 dx   φdx 3 = 0, ∀ψ ∈ H 1 (M ), ∀φ ∈ C ∞ 0 (]0, l[).
Consequently, since H 1 (M ) is separable, for a.e. x 3 in ]0, l[ one has Step 7. This step is devoted to identifying u, i.e. to proving that u is the unique solution to (3.10).

M A D x z 0 D x ψ 0 dx = - M A   0 du dx 3   D x ψ 0 dx , ∀ψ ∈ H 1 (M ). ( 3 
Choosing w = 0 as test function in (3.36) and using (3.39) give

M A    du dx 3 D x z du dx 3      0 dv dx 3   dx + M buvdx = M f vdx, ∀v ∈ H 1 (]0, l[), i.e. l 0 M A D x z 1 0 1 dx du dx 3 dv dx 3 dx 3 + l 0 M bdx uvdx 3 = l 0 M f dx vdx 3 , ∀v ∈ H 1 (]0, l[),
which can be rewritten as

l 0 a du dx 3 dv dx 3 dx 3 + l 0 b 0 uvdx 3 = l 0 f 0 vdx 3 , ∀v ∈ H 1 (]0, l[), (3.41) 
where

a = M A D x z 1 0 1 dx , a.e. in ]0, l[, (3.42) 
and b 0 is defined in (3.8).

Remark that a = a 0 , a.e. in ]0, l[,

with a 0 defined in (3.7). Indeed

a 0 = M A D x z 1 D x z 1 dx = M A D x z 1 0 1 + D x z 0 dx = a + M A D x z 1 D x z 0 dx .
(3.44) On the other side, choosing ψ = z(•, x 3 ) as test function in (3.5) provides that the last integral in (3.44) is zero. So (3.43) holds true. Then, u is the unique solution to (3.10). Consequently, all previous convergences hold true for the whole sequence.

Step 8. This step is devoted to proving that 

lim n     Cn |δ n D hn u n | 2 dx + In D hn u n -    du dx 3 D x z du dx 3    2 dx + M |u n -u| 2 dx     = 0. ( 3 
    λ Cn |δ n D hn u n | 2 dx + λ In D hn u n -    du dx 3 D x z du dx 3    2 dx + γ M |u n -u| 2 dx     ≤ lim sup n δ 2 n Cn AD hn u n D hn u n dx + M A    χ In D hn u n -χ In    du dx 3 D x z du dx 3          χ In D hn u n -χ In    du dx 3 D x z du dx 3       dx + M b |u n -u| 2 dx = lim sup n δ 2 n Cn AD hn u n D hn u n dx + In AD hn u n D hn u n dx + M b|u n | 2 dx - M Aχ In D hn u n    du dx 3 D x z du dx 3    dx - M A    du dx 3 D x z du dx 3    χ In D hn u n dx + M χ In A    du dx 3 D x z du dx 3       du dx 3 D x z du dx 3    dx -2 M bu n udx + M b |u| 2 dx = 0,
A    du dx 3 D x z du dx 3       du dx 3 D x z du dx 3    ∈ L 1 (M ).
Step 9. Eventually, (3.12) follows from (3.45) by a changing of variable.

Remark 3.4. If assumption (3.4) is replaced with

f n f weakly in L 2 (M ).
One can prove all the previous result until the convergence of the energies (3.46) excluded.

To prove the convergence of the energies, strong convergence (3.4) is needed. Then, to obtain convergences in (3.12), assumption (3.4) is needed.

4 Problem II: a low conductivity in the annulus of the structure

For every n ∈ N consider the following problem

       -div χ Ĉn + δ 2 n χ În A y hn , x 3 D u n + b y hn , x 3 u n = f n in Mn , χ Ĉn + δ 2 n χ În A y hn , x 3 D u n • ν = 0 on ∂ Mn , (4.1) 
where Mn , Ĉn , În , δ n , A, b, f n , and ν are defined in the previous section. The weak formulation of (4.1) is 

                     u n ∈ H 1 Mn , Ĉn A y h n , x 3 D u n D ϕdy dx 3 + δ 2 n În A y h n , x 3 D u n D ϕdy dx 3 + Mn b y h n , x 3 u n ϕdy dx 3 = Mn f n ϕdy dx 3 , ∀ ϕ ∈ H 1 Mn . (4.2) then lim n 1 h n u n -M f (x , •)dx M b(x , •)dx L 2 ( Mn) = 0 = lim n 1 h n u n -hnM f n (
                     u n ∈ H 1 Mn , 1 -δ 2 n Ĉn A y h n , x 3 D u n D ϕdy dx 3 + δ 2 n Mn A y h n , x 3 D u n D ϕdy dx 3 + Mn b y h n , x 3 u n ϕdy dx 3 = Mn f n ϕdy dx 3 , ∀ ϕ ∈ H 1 Mn . (4.11)
Let M be defined in (2.2) and for every n ∈ N let D hn be defined in (3.13),

f n : (x , x 3 ) ∈ M → f n (h n x , x 3 ), (4.12) 
and u n : (x , x 3 ) ∈ M → u n (h n x , x 3 ). 

D rn : ϕ ∈ H 1 (C) →      1 r n D x 1 ϕ 1 r n D x 2 ϕ D x 3 ϕ      ∈ (L 2 (C)) 3 , and 
u n : (x , x 3 ) ∈ C → u n (r n x , x 3 ). (4.14)
Note that the pair (u n , u n ) satisfies the equality

u n (x , x 3 ) = u n (r n x , x 3 ) = u n h n r n h n x , x 3 = u n r n h n x , x 3 , so that if we set for every n ∈ N V n = (ϕ, ϕ) ∈ H 1 (M ) × H 1 (C) : ϕ(x , x 3 ) = ϕ r n h n x , x 3 , a.e. in C , (4.15) 
then (u n , u n ) is the unique solution to

                   (u n , u n ) ∈ V n , (1 -δ 2 n ) r n h n 2 C A r n h n x , x 3 D rn u n D rn ϕdx + δ 2 n M AD hn u n D hn ϕdx + M bu n ϕdx = M f n ϕdx, ∀(ϕ, ϕ) ∈ V n . (4.16) 
which can be also rewritten in the following way

                                                               (u n , u n ) ∈ V n , (1 -δ 2 n ) r n h n 2 C A αβ r n h n x , x 3 1 r n D x β u n + A α3 r n h n x , x 3 D x 3 u n 1 r n D xα ϕ + A 3α r n h n x , x 3 1 r n D xα u n + A 33 r n h n x , x 3 D x 3 u n D x 3 ϕ dx +δ 2 n M A αβ 1 h n D x β u n + A α3 D x 3 u n 1 h n D xα ϕ + A 3α 1 h n D xα u n + A 33 D x 3 u n D x 3 ϕ dx + M bu n ϕdx = M f n ϕdx, ∀(ϕ, ϕ) ∈ V n .
(4.17)

Step 2. This step is devoted to obtaining a priori estimates for problem (4.16). Choosing (ϕ, ϕ) = (u n , u n ) as test function in (4.16) and using (2.3), (2.4), (2.5), (3.4), and the Young inequality provide the existence of a positive constant c such that

u n L 2 (M ) ≤ c, ∀n ∈ N, (4.18) 1 h n D x u n (L 2 (C)) 2 ≤ c, ∀n ∈ N, (4.19) 
r n h n D x 3 u n L 2 (C) ≤ c, ∀n ∈ N, (4.20) 
δ n h n D x u n (L 2 (M )) 2 ≤ c, ∀n ∈ N, (4.21) 
δ n D x 3 u n L 2 (M ) ≤ c, ∀n ∈ N. (4.22)
Step 3. This step is devoted to choosing suitable test functions in (4.17). Let w ∈ C ∞ (M ) be such that w is constant in a neighborhood of 0 and let v ∈ C ∞ 0 (]0, l[). For every n ∈ N set 

ϕ n : (x , x 3 ) ∈ C → w r n h n x v(x 3 ). Then, (wv, ϕ n ) ∈ V n ,
) r n h n C A 3α r n h n x , x 3 1 h n D xα u n + A 33 r n h n x , x 3 r n h n D x 3 u n D x 3 v(x 3 )w r n h n x dx + M A αβ δ n h n D x β u n + δ n A α3 D x 3 u n δ n h n D xα w(x )v(x 3 ) + A 3α δ n h n D xα u n + A 33 δ n h n h n D x 3 u n δ n D x 3 v(x 3 )w(x ) dx + M bu n wvdx = M
f n wvdx, for n large enough.

(4.23) Step 4. This step is devoted to prove case i). Estimates (4.18), (4.21) and (4.22) combined with (4.5) provide that

h n D x 3 u n 0 weakly in L 2 (M ), (4.24) 
and that there exist a subsequence of N, still denoted by N, and u in L 2 (0, l, H 1 m (M )) (which can depend on the subsequence) such that u n u weakly in L 2 (0, l, H 1 (M )). Consequently, by a density argument (compare the proof of Proposition 3.1, in the case p ≤ N -1, in [START_REF] Gaudiello | Asymptotic analysis of a class of minimization problems in a thin multidomain[END_REF]) one has Eventually, (4.6) follows from (4.27) by a changing of variable.

Step 5. This step is devoted to prove case ii). Estimate (4.18) provides the existence of a subsequence of N, still denoted by n, and u in L 2 (M ) (which can depend on the subsequence) such that 

δ 2 n

 2 .45) Passing to the limit in (3.15) with ϕ = u n as test function, using (3.4) and (3.16), and choosing v = u as test function in (3.10) (which is an admissible test function thanks to (3.22)) provide the convergence of the energies lim n Cn AD hn u n D hn u n dx + In AD hn u n D hn u n dx + M b|u n | 2 dx = 2.3), (2.4) (3.16), (3.17), (3.21), (3.23), (3.25), (3.27), (3.39), (3.8), (3.7), and (3.46) provide lim sup n

  i.e. (3.45) holds true.Remark that the third last integral in the last formula tends to Lebesgue dominated convergence theorem, since (3.23) holds true and (2.3) and (3.39) ensure that

  C = C ×]0, l[, and for every n ∈ N set

2 M

 2 limit in (4.23), as n → +∞, and using (2.1), (2.3), (2.4), (2.5), (3.4), (4.5), (4.19), (4.20), (4.24), and (4.25) provide µ A αβ D x β uD xα wvdx + M buwvdx = M f wvdx, ∀w ∈ C ∞ (M ) : w is constant in a neighborhood of 0 , ∀v ∈ C ∞ 0 (]0, l[).

µ 2 M 3 D 2 MA

 232 A αβ D x β uD xα wvdx + M buwvdx = M f wvdx, ∀w ∈ H 1 (M ), ∀v ∈ C ∞ 0 (]0, l[),which implies that for a.e. x 3 in ]0, l[ u(•, x 3 ) solves (4.4), since H 1 (M ) is separable. Note that (4.25) holds true for the whole sequence since Problem (4.4) admits a unique solution. Passing to the limit in (4.16) with ϕ = (u n , u n ) as test function, using (3.4) and (4.25), and choosing w = u(•., x 3 ) as test function in (4.4) provide the convergence of the energies lim n rn u n D rn u n dx +δ 2 n M AD hn u n D hn u n dx + M b|u n | 2 dx = µ αβ D x β uD xα udx + M

3 DM b |u n -u| 2 dx 21 3 Dδ 2 nD

 32132 rn u n D rn u n dx+ M A δ n D hn u n -µ D x u 0 δ n D hn u n -µ D x u 0 dx + rn u n D rn u n dx + M AD hn u n D hn u n dx + M b|u n | 2 dx x u n , h n D x 3 u n -D x u 0 2 dx + γ M |u n -u| 2 dx = 0,(4.27)thanks to (4.5).

u n u weakly in L 2 (

 2 limit in (4.23), as n → +∞, and using (2.1), (2.3), (2.4), (2.5),(3.4), (4.7), (4.19), (4.20), (4.21), (4.22), and (4.28) provide Mbuwvdx = M f wvdx, ∀w ∈ C ∞ (M ) : w is constant in a neighborhood of 0 , ∀v ∈ C ∞ 0 (]0, l[).argument. Note that (4.29) ensures that (4.28) holds true for the whole sequence. Passing to the limit in (4.16) with ϕ = (u n , u n ) as test function, using (2.3), (2.4), (3.4),

  .12) Remark 3.3. Let us point out that the last convergence provides a corrector since it means that u n behaves as u(x 3 ) + h n

	du dx 3	z	y h n	, x 3 in I n .

  Since for a.e. x 3 in ]0, l[ this equation admits a unique solution in H 1 m (M ), one has that for a.e. x 3 in ]0, l[

	Moreover, multiplying both sides of (3.5) by	du dx 3	implies that for a.e. x 3 in ]0, l[	du dx 3	z solves
	(3.40). z =	du dx 3	z, a.e. in M ,
	i.e. (3.39).				
						.40)
	Remark that (3.6) ensures that				
	du dx 3	z ∈ L 2 (0, l, H 1 m (M )).

which admits a unique solution by virtue of the Lax-Milgram Theorem.

The goal of this section is to study the asymptotic behavior of this problem as n diverges. To this aim for a.e. x 3 in ]0, l[, consider the following problem

where A = (A αβ ) α,β=1,2 and ν denotes the unit exterior normal to ∂M . For a.e. x 3 in ]0, l[ the weak formulation to (4.3) is i) If

)

where for a.e.

(4.28), a l.s.c argument, and (4.29) provide

Consequently, thanks to (4.28) and (2.4),

which implies 

which implies that

Note that (4.33) ensures that (4.32) holds true for the whole sequence.

Passing to the limit in (4.16) with ϕ = (u n , u n ) as test function, using (2.3), (2.4), (3.4), (4.32), a l.s.c argument, and (4.33) provide

Consequently, thanks to (4.32) and (2.4), √ bu n → √ bu strongly in L 2 (M ), which implies

thanks to (4.33)and (2.4), too. On the other side, (3.4) provides