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A 2D model for a highly heterogeneous plate

Ahmed Boughammoura® Leila Rahmani and Ali Silit

Abstract

In this paper we investigate the 2d-model for a thin plate Q. :=
w x el of R? having two components: a circular stiff fiber F. and
its complement the soft matrix M, with E% as a ratio between their
respective elasticity coefficients. We prove that the limit model is
associated to a nonlocal system involving Kirchoff-Love displacements
in the fiber and we exhibit a corrector for the displacements in the
initial cylindrical structure of R3.

Keywords: plate, thin structure, corrector, nonlocal.
AMS Classification:: 35B25, 35B27, 35B40, 76 M50, 74K10.

1 Introduction, notations and setting of the prob-
lem

The aim of this work is the study of the asymptotic behavior of the
solutions of the linearized system of elasticity posed in a cylindrical domain
Q. := wx el of R? which is the configuration domain of a composite material.
The material is made up of two components with high contrast: the first
one F. representing the stiff part of the material has an elasticity tensor
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with coefficients of order 1. The second component M. (the soft material)
surrounds the first one and the coefficients of its elasticity tensor are of order
2.

Under an appropriate assumption on the volumes forces, we aim to ap-
proximate the behavior of the displacements and that of the associated ten-
sors as the small parameter ¢ tends to zero. Hence the present work may
be viewed as the 3d — 2d version of the study addressed in [12] where the
3d — 1d reduction of dimension problem was considered as well as the homog-
enization of a e-periodic fibered medium inducing a local 3d — 1d reduction
of dimension. It was proved in [12] that the homogenized problem in a such
setting is a copy of the one-dimensional problem obtained in the 3d — 1d
study. Although one can also consider here the e-periodic homogenization
problem of a medium containing % cells which are the translates of 2. in such
a way that the homogenization process leads to a local 3d — 2d reduction of
dimension, for the sake of brevity we restrict ourselves to the 3d — 2d reduc-
tion of dimension problem arising in the single composite structure €2.. We
consider the critical case where the ratio between the elasticity coefficients
of the two components is equal to 8% but other scalings may be considered
as pointed out in [12], see also |9, 14].

On the other hand, we deal with general elasticity tensors including
anisotropic materials, see also [3,7,11,13]. Several studies on composite ma-
terials with hight contrast between their components have been performed
during the last years, see for instance [2,4-6,9-11].

It is known that for this kind of materials, the limit problem has in gen-
eral a different structure than the starting problem. In particular, nonlocal
phenomena can appear at the limit. We show here that the limit problem
obtained after reduction of dimension 3d — 2d is indeed a nonlocal problem.
Theorem 3.2 below, which gives the limit problem, shows that the displace-
ments in the circular fiber F are essentially of Kirchov-Love type and the
associated equation may be obtained from system (29) by choosing z = 0;
but to determine the limit displacements in the structure, another equation
related to the matrix M (the outside of the fiber) is necessary. That equation
is obtained by choosing @ = v = 0 in (29). This nonlocal phenomenon is em-
phasized in Theorem 3.4 which gives the limit of the average of the displace-
ments u° in the three-dimensional structure §2.. In particular convergences
(33) and (34) show clearly that the limit displacements are determined after
solving the two equations posed in F' and in M respectively.

In terms of correctors, our result shows that the transversal displacements



u;, behave as u, + €v, + 2, while the horizontal displacements u3 behave as
us + €205 + €23.

We now make more precise the notations we will use throughout the
paper.

A vector z in R? is denoted by x = (2/, x3) where x3 denotes the vertical
coordinate. Latin indices will usually range from 1 to 3, and Greek ones
take values in {1,2}; the summation convention applies whenever indices are
repeated. We write 0; := (%_ and 0;; == #;xj. The gradient with respect to

z and 2’ are denoted by V and V’ respectively. Given any ¢ € (D'(Q2))?, we
denote the strain of ¢ by E¢ := symV¢ = % (ng + VQST). We shall also use
the following matrices notations

V(b _ aagbﬁ ‘ ad¢[3 7
Bty | Dsy
E¢ _ (E¢)o¢,8 ‘ (E¢>a3

(E¢)as ‘ (E¢)ss

Let w C R? be an open, bounded, simply connected set with Lipschitz

boundary dw. Let I := (—%,%), J = (-%5), 0 <r< %, Q= wxI,

F=wxJ M:=wx (I \j), where J denotes the closure of J. According to
Remark 1.1 below, physically we can think of €2 as the reference configuration
of a rescaled thin plate 2. reinforced by the fiber F. which is surrounded by
the matrix M. occupied by a soft material. For every ¢ > 0 we denote the
diagonal matrix whose entries are 1,1 and € by R® := diag(1,1,¢), then the
scaled gradient V¢¢ and the scaled strain E°¢ are defined respectively by

Datp | 20505
Vep = (R°) V(R = c , 1
¢ = (R°)" Vo(R) ntn | S0y (1)
and
(EQ)ap | 2(E¢)as
Ef¢ = symVe¢p = 2
A 2(E¢)as | 22(E¢)ss .




We are now in position to state the problem.
Let A € L*(Q2) be a symmetric fourth-order tensor field. We assume that
A fulfills the following assumptions:

(3)

Agjki = Ajirl = Appj, a.e.in ),
3C >0, Ajuéuij > C&ij&ij, V€ e R st £F =&

We shall assume that the plate is clamped at the lateral boundary of 2 and
subjected to body forces f € L*(Q;R?), we thus set

HI(Q):={uec H (R :u=0 ondwxI}.
Consider the displacement field u® solution of the following system:
u* € HL(Q), Yo € HL(9),

/ (xF +%xar) AE*(w).E*(¢)dz = / fodz. (4)
° Q

By virtue of the assumptions on the tensor A and the body forces F', for
every € > 0, the problem (4) admits a unique solution by the Lax-Milgram
Theorem.

Remark 1.1 As in [8], the homothety along the vertical azis defined by
ré(x) := (a',ex3) transforms Q, F and M respectively into Q. = w X ¢l
F.:=wxeland M, :=w x ¢ (I \j) Then, the problem (4) is the varia-
tional version in the fized reference configuration ) of the elasticity problem

(6) below posed in the variable thin domain Q.. Indeed, for any v : Q — R3
we define ¥ : Q. — R3 by

b(2', exg) == ((R)vo (°)7") (2, ex3) = (va(z), Lvs(x)) . (5)

In addition
Vi =Hvo (r)', Ei=Ewvo(rf) "

With these new unknowns, the problem (4) may be rewritten as

(S Hi(Qa); Vo € Hi(QE),

/ (xr. + £xar.) A°E(09)E(6)dr = /Q iz

£



where H (Q.) := {u € H'(Q;R%) : uw =0 on Jw x el}, A° := Ao
(ré)~Y,  fe = Refo (r°)~'. Thus, the components of the loads are

fo=(fao (r) efs0(r)7h). (7)

We study the behavior as e — 0 of the sequence {u*}, solution of (4), through
the forthcoming steps. That behavior will be described through Theorem 3.2
and then we will deduce the behavior of the sequence 4 solution of (6) in
Theorem 3.4.

2 A priori estimates
First, we shall recall a rescaled Korn’s inequality proved in [1]

B335y > O (00 + IVlEaqr ) » Vo € HL(F),  (8)

where
Hi(F):={u€ HY(F;R*) :u=0 on dw x J}

and 0 = (R°) 'vo (r*)~1. As a consequence, we deduce
HEE'UH%?(F) > Ce? (H(RE)AUH%?(F) + HVEUH%Q(F)> , Vv e Hi(F). (9)

On the other hand, repeating the same arguments used in [12, Lemma 4.4],
the following inequality holds true

(1950 320e) + 1012200 ) = CUVELlZaqany, Yo € HA(Q).  (10)

For v € H}(Q) we set v’ := (vy,vq), V' := (@5%)@5:12 and

Fe(v) := /(XF + X ) AEv.ESvdz. (11)
0
By using the ellipticity assumption (3) we obtain, for all v € H} ()
Fo(v) 2 C (IE0)3a(r) + 2BV ar) ) = ClIEO|Z2(ey 2> Cllollingey, (12)

where the last inequality follows from the Korn’s inequality. Furthermore,
by virtue of (9) and (10) one has

Fov) 2 C (IV¥0laqr + B0 an)) 2 CEIVo0llEqary  (13)
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From (13), one has for € small enough,

Fo(v) 2 C (S vl ary + K 100053200 ) = ClIVOsl3qar)

By means of the Poincaré’s inequality, one has
F=(v) = Cllosllip -

Likewise, it holds that

Fo0) 2 C (AU qany + 1950 20y ) = ClIO 32

From the following Poincaré’s type inequality

112y < € (I IEaey + 1050 aqan )
(16) and (12), we get the following inequality
Fe(v) = ClIV[IZ2a)-

It follows from (15) and (17) that

7o) = C (sl any + 10 iy ) -

(14)

(15)

(16)

(17)

(18)

As an immediate consequence of the previous inequalities, the following apri-

ori estimates hold true.
Theorem 2.1 Let u. be the solution of problem (4). Then

sup (||u|| ey + 1eVoul || L2epy + B0 12(r)) < C,
£

sup (Il vy + 1165 |z + €956 12an) < €.

in particular

sup (||u§HH1(Q) + |ug | 22 s mr (ryy + ”EvauaHL2(Q)) <C, a=1,2.



Proof.

Taking ¢ = u° in the problem (4), we derive
Fo(u) < fll2o 1wl 2
while from (12), (15) and (17) we find
Fo(u) 2 Ollur]| 2

Thus
sup Fe(u®) < C.

Therefore, making use of (12)-(13) and then (13)-(18) we deduce (19) and
(20) respectively.
3 Convergence results
We first define the following functional spaces:
Hyr(Q) :={ue H (Q): (Eu)is =0,i=1,2,3}

which is the space of Kirchhoff-Love displacements on €2; it can be charac-
terized also as

Hyr () ={u €H[(Q),3(ga, g3) EHy(w) x Hi (W) g = go — T30093, U3 = g3} ,

for brevity we set U := Hg (),

Y = {U € L? (w;;."—[l(J))3 vai($/,t)dt =0, ae. 2 Cw,i= 1,2,3} ,
J

Z .= {z € L2 (wHL(D) 12 =0, ae.in F, i = 1,2,3} ,

where H! (I) := {¢ e H'(I): /I@/J(t)dt - 0} .

The following lemma is concerned with some convergence results.



Lemma 3.1 There exists (u,v,z) € U x V X Z, such that, up to a subse-
quence, we have

US, — Ug + 2o 0 L (w; HY(T)), u§ — ug in H'(S),

By — (Ew)ap ‘83110[
F

XF in [/2(9)3><37
O3V ‘331)3

0 ‘ %83%(

eE U — xu in L*(9)*3.

1
533,2@ ‘ 8323

Proof.
Step 1: convergence of (u°)..

From estimate (19) which implies that g, is bounded in H'(F) and from
estimate (20) which implies that u¢, is bounded in L*(w; H'(I \ J)) for a =
1,2, we conclude that there exist u, € H'(Q) such that for a subsequence

uf, — up in HY(F), (E°u%)agxr — (Eu)apxr in L*(F). (22)
On the other hand, from (21) we get that up to a subsequence,

us, — U, in L*(w; HY(T)),

(23)
ui — ug in HY(Q).

Moreover, due to the estimate ||2d5u5|| 2oy < C' which is a consequence of
(21), we have
Osu§ — 0 in L*(Q)

in such a way that
83U3 = 0.

Thus, there exists g3 € Hi(w) such that
uz(z) = g3(a) for a.e. z € Q. (24)
Comparing the first convergences in (22) and (23), we derive the equality

Uy = Uy InF. (25)

8



On the other hand, using (19) we infer
(Eus>a3 — (E'l:l,)a;g in Lz(F)

Since
(Eu)iz — 0, in L*(F)
we are led to

(’aa,U3) € HKL(F)

By definition of the space Hyr(F'), the component ug belongs to HZ(w), so
that equality (24) implies that g5 € H3(w). Hence, there exist g, € Hj(w)
for a = 1,2, such that

U0 (7) = go(@') — 2300g3(2"),  uz(z) = g3(2’) for a. e. z € F.

For a. e. x € ), we set

Uo(z) = ga(a') — 230,93(2") € H (),
2(2) = da(z) — ua(z) € LP(w; H'(T)),

so that z, =0, a. e. in F as seen from (25) and u := (uq, u3) € U and
UE, — Ug + 24, 0 L (w; HY(I)).
Step 2: convergence of (E°uf)..

To identify the limit of the sequence (Eu®);3xr, we introduce the following
sequences :

z3
s, = / ) L0u5(a’, t)dt, (26)
2
vh, = tug + —]€ (Lu, + @3,) das,
vy = g —fa%ugdxg (27)
J
Obviously, on has
O3vs, = %(Eug)ag,,
03v§ = aig(Eua)gg.



Since 2(Euf)qa3 and % (Eu®)s3 are bounded in L*(F), due to (19), and v :=
(ve,v5) has mean-value zero with respect to z3, the sequence v° is bounded

in L2(w; H (1)), where HY (J) := {@Z} e H'(J) :]€¢(t)dt — o} .

Therefore there exists some v € L?(w; H' (J))? such that
v® — v in L*(w; HY (1))?.
In particular, one has v € V,
(E*u)asxr — $03vaxF in L*(),

and
(EEug)gng — 831}3)(}7 in L2(Q)
As a consequence, one obtains the following convergence

EE . (EU)ag ‘%832)@
U XF —

XF in LQ(Q)BXS7
%a‘sva ‘ J3v3

where (u,v) €U x V.
We now seek for the limit of the sequence eE*u®y,,. To that aim, we consider
the following sequence

25 = ul Ul — /(u‘; + ug) dxs,
I
25 = tuf— /Iéugdmg. (28)
where 4° is defined by (26). Since

832’8 = 2(Eu5)a3, (29)

«

832§ == %(Eue)gg. (30)

Due to (21), 2(Eu®)q3 and L(Euf)s3 are bounded in L*(Q) with mean-value
zero with respect to x3; hence the sequence 2¢ is bounded in L?(w; H} (T))3.
Therefore there exists some 2 € L?(w; H} (T))?, such that

2° — 2in L*(w; H} (1))?.

10



We claim that Z, = z,. Indeed,

agui — 03ua + 832a in LQ(Q)

and
(9322 — 832?04 in L2<Q)
But
0525, = Osuf, + Dot — O3uuq + D324 + ous in L*(1).
Thus

832a = 83ua -+ 832'@ + 8OCU3.

Since u € U, we have
aSUa + 604”3 = Oa

and therefore
D324 = D324 1.€. 24(7) = 24(x) + ¢(2), ae. z € Q.

In particular
Zo(x) =c(2'), ae.x € F

since
2o(x) =0, a.e. x € F.

On the other hand one has by virtue of (20),
2f — 0 in L*(F).

Hence
c(z')=0, ae.x € F

and therefore
Za(2) = 24(2), ae. z € Q.

This proves our claim.
Finally, from (29) and (30) we deduce that

e(E°u)asxar — 203zaxar, €(E°u)saxar — (E2)saxar in L*(€2),

where z3 := Z3.

11



Moreover, since uf, — 0 in L*(M) then e(E*u®),pxa — 0 in L*(2). We
conclude that

0 ‘ %0320

eE U — xar in L?(2)%3.
%33,2&‘ 832’3

This ends the proof of Lemma 3.1.
In the following theorem, we state our main result.

Theorem 3.2 There exists (u,v,z) € U x V X Z, such that the sequence of
solutionu® of the problem (4) fulfills the following strong convergences

UE, — Uq + 24 strongly in L*(w; HY(I)), u§ — usz strongly in H*(Q),

(Eu)ap ‘ %83%

1
5(93% ‘ J3v3

3x3

E°uxyp — xr strongly in L*(9)**?,

0 1052
237 3x3

eE U\ — X strongly in L*(Q)**3,

1
5832a ‘ O37z3

where the limit (u,v, z) is the unique solution of the problem

(

(u,v,z)GZ/{xVxZ V(u,0,2) eU x V x Z,

(Eu af agva (Eu)ag 183@0[
/A(:U) : ‘ 2 xrdx+
Q 83’0a 83’03 583’17a ‘ 83?73
8;:,2,1 0 ‘ %832(1 (31>
/A(a:) N - Xmdr =
Q 2832a ‘ 832:3 583,2& ‘ 3323

/ﬂ(fa (U + Za) + f3a3>d:p.

\

Proof.

We first prove the convergence of the sequence of energies to the energy
associated to the limit problem, assuming that the limit problem is the system
(31). To that aim we will use the weak convergences proved in Lemma 3.1.
We follow the argument already used in [12, Proof of Theorem 3.1].

12



Choosing (u,v,Z2) = (u,v,2) in (31) and passing to the limit thanks to
Lemma 3.1, we get

lin(l] (xF + %X ar) AE° (u).E° (u)da lir%/ fusdx
e=0 Jo =l
= /(fa (ua+za)+f3u3>dx
Q

Q

where

By 0 ‘ %837;&

(EU)alg ‘ %832]06
y EM = 1

1
583% ‘ J3v3 583204‘ O323

Using the equivalence of the norms
L*(Q) > Er— / AE.Edz, [*(Q) > E / E.Edx
Q Q
we deduce that
lim [[(x e+ exar) EX(w) | 12(0) = IXFEF + X0r B 120

Hence the strong convergence of the tensor sequences is proved. Now, by us-
ing the last strong convergence together with the following Korn’s inequality

IE* () p2(r) = B r2(m) = C 1wl p2ry »

we deduce that u° is a Cauchy sequence in H'(F).
On the other hand, using (9) and (10) one has

I w22y > €2 (IR) ey + IV 03 )

and
<||V5u5||iz(m + ||E6u6”2L2(M)) > IV Lo ary-

Hence, eVeufis also a Cauchy sequence in L?(Q). It remains to prove that u¢,
and u§ are two Cauchy sequences in L?(w; H'(I)) and H'(M) respectively.
To that aim, it suffices to use (18) to obtain

2
¢ + exan) B 22y = Felw?) > C (1 ncany + 1E By

13



then we can argue as previously to complete the proof.
We now prove that the limit problem is nothing but the system (31).
We choose a test function ¢ in (4) in the following form

¢Z = Uy + EVy + Za
{ ¢5 = U3 + €703 + €23 (32)

where (i, 2) € U x D (w; HL,(.J))* % {D (w; HY
Since, from the definition of U, one has (Fu)
elementary calculation shows that

(I))B:z:O, a.e.xEF}.
=0, for all « = 1,2,3, an

m
i3

(EE¢S)a6 = (Ea>aﬁ + E(Eﬁ)aﬁ + (Ez)a&
2(E€¢6)a3 = 8317a + 8aa173 + é@gia + aagg,
(E°¢%)33 = (ED)33 + L(EZ)33.

Using the following strong convergence

(Eﬂ)ag ‘ %83%

E5¢5XF N XF in L2<Q)3X3,

1 — —
533% ‘ 0303

0 ‘ 1057,

eET T\ — X in LQ(Q)B’X?’,

1 — —
§aBZa ‘ 0373

we can pass to the limit in (4) as € goes to zero to get (31) thanks to the den-
sity of D (w; H}n(J))3 and {z €D (w; H}n([))3 c2,=0,ae.xecl, i= 1,2,3}
in V and Z respectively.

Remark 3.3 The space U X V x Z is a Hilbert space for the following norm

3
l(u, v, 2)|* == Z H(Eu)a5||i2(g) + Z ["831}1'"%2(9) + ||a32i|’i2(sz)] :

o,8=1,2 i=1

Therefore, using the Lax-Milgram Theorem we obtain the well-posedness of
the limit problem (31) since the tensor A is coercive by virtue of (3) and

fe L2(Q;R).

We now turn back to the sequence of solutions of problem (6) to derive
the following theorem from Theorem 3.2.

14



Theorem 3.4 Let (u,v,2) € U xV X Z be the solution of the problem (31).
Let
(Et)as ‘
EF = 1
L050, |

1 1

583210[ 0 ‘ 50320[
y EM = 1

831)3 5832a ‘ 8323

Then the sequence of solutions U of the problem (6) fulfills the following
convergences

( f,Etfdrs — f,Epdxs, in L?(w; R*),

fE(I\J)E’LALé‘dxg — JCI\JEMdms in L2(W;R3X3)7

(33)
£ a5 des — Uy(2)) := §; (ua + 2o) das, in L?(w),
\ £, etgdes — us(a’) in L*(w),
Moreover, U, may be written as
Un(2') = ][uadxg +ml (") fula!, 23)drs + m(2), (34)
I 1\J
where m and m% are given by
ml(2) = / 2(2, w3)dxs, mP (') ;= / 220, w3)das,
I\J nJ
and 2°, 2% are respectively the solutions of the following problems
(20€ 1% (w,2°),2°:= {z e (H(I\J)?®:2=0on dJ}
0 |210:2° 0 |10s2,
/ A(x) ‘ 2 ‘ 27 dzrs = / Zo(x3)dxs,
J 10520 ‘ 0329 2057, ‘ 0373 nJ
vz € 2% a.e. in w,
\
(35)
Mez
0 l(932180 0 l@gia
/A(x) 1 002 00 1 | dny =
M 58320[ ‘ (9323 5832a ‘ 8323 (36)
/ (fa(x) — fa(x)dx3> Zo(z)dz,
M 1\J
Vz e Z.

\

15



Proof.

The convergences (33) follow from the corresponding convergences stated in
Theorem 3.2 by the change of variables (5).

Let us prove for instance the third convergence arising in (33) by the use of
the first convergence arising in Theorem 3.2. Setting y3 = cx3 for z3 € I and
bearing in mind that u° is defined according to (5) by uS, (2/, x3) = 4°(2/, ex3)
for (2',z3) € w x I and that the length of the interval I is equal to 1, we get
thanks to the Cauchy-Schwarz inequality (with respect to x3)

)
/| g, (@', ys)dys —][(Ua(ﬂf/; 13) + 2o (2, 23)dxs|*da’ =
w Jel

I

N\

/w | /] (v’ 23) — (e, 23) + 2ol 23) )y P’ < (37)

//|u2(x',:c3) — (ua (', 23) + 242, 23))|*dw3dz’ — 0.
\ wJI

To prove (34), we first notice that one can derive the following equation
satisfied by z, by choosing & = o = 0 in (31),

(2 e 2, vieZz,

0 ‘ %@gza 0 ‘ %agza
[ #ta) ) e -
Q 83,za ‘ 8323 5832a ‘ 8323 (38)
/faZadx.
L JQ

Taking advantage from the linearity of (38), one can check easily by a unique-
ness argument that z, may be identified as z, = z} + 22 where 2! and 22 are
solutions of (38) but with right hand sides defined respectively by

N =

fo(z)dzs and <fa(x) — . fa(x)dxg,) )

\J

By linearity and using once again a uniqueness argument, we conclude that
zr = ( (a:)da:3> 22 and 22 = 22°
I\J

16



where 2% and 2% are the solutions of (35) and (36) respectively. Hence, U,
defined in the third convergence (33) may be written as (34). This completes
the proof of Theorem 3.4.
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