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A 2D model for a highly heterogeneous plate

Ahmed Boughammoura∗, Leila Rahmani† and Ali Sili‡

Abstract

In this paper we investigate the 2d-model for a thin plate Ωε :=
ω × εI of R3 having two components: a circular stiff fiber Fε and
its complement the soft matrix Mε with 1

ε2
as a ratio between their

respective elasticity coefficients. We prove that the limit model is
associated to a nonlocal system involving Kirchoff-Love displacements
in the fiber and we exhibit a corrector for the displacements in the
initial cylindrical structure of R3.

Keywords: plate, thin structure, corrector, nonlocal.
AMS Classification:: 35B25, 35B27, 35B40, 76M50, 74K10.

1 Introduction, notations and setting of the prob-
lem

The aim of this work is the study of the asymptotic behavior of the
solutions of the linearized system of elasticity posed in a cylindrical domain
Ωε := ω×εI of R3 which is the configuration domain of a composite material.
The material is made up of two components with high contrast: the first
one Fε representing the stiff part of the material has an elasticity tensor
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with coefficients of order 1. The second component Mε (the soft material)
surrounds the first one and the coefficients of its elasticity tensor are of order
ε2.

Under an appropriate assumption on the volumes forces, we aim to ap-
proximate the behavior of the displacements and that of the associated ten-
sors as the small parameter ε tends to zero. Hence the present work may
be viewed as the 3d − 2d version of the study addressed in [12] where the
3d−1d reduction of dimension problem was considered as well as the homog-
enization of a ε-periodic fibered medium inducing a local 3d − 1d reduction
of dimension. It was proved in [12] that the homogenized problem in a such
setting is a copy of the one-dimensional problem obtained in the 3d − 1d
study. Although one can also consider here the ε-periodic homogenization
problem of a medium containing 1

ε
cells which are the translates of Ωε in such

a way that the homogenization process leads to a local 3d− 2d reduction of
dimension, for the sake of brevity we restrict ourselves to the 3d− 2d reduc-
tion of dimension problem arising in the single composite structure Ωε. We
consider the critical case where the ratio between the elasticity coefficients
of the two components is equal to 1

ε2
but other scalings may be considered

as pointed out in [12], see also [9, 14].
On the other hand, we deal with general elasticity tensors including

anisotropic materials, see also [3,7,11,13]. Several studies on composite ma-
terials with hight contrast between their components have been performed
during the last years, see for instance [2, 4–6,9–11].

It is known that for this kind of materials, the limit problem has in gen-
eral a different structure than the starting problem. In particular, nonlocal
phenomena can appear at the limit. We show here that the limit problem
obtained after reduction of dimension 3d− 2d is indeed a nonlocal problem.
Theorem 3.2 below, which gives the limit problem, shows that the displace-
ments in the circular fiber F are essentially of Kirchov-Love type and the
associated equation may be obtained from system (29) by choosing z̄ = 0;
but to determine the limit displacements in the structure, another equation
related to the matrix M (the outside of the fiber) is necessary. That equation
is obtained by choosing ū = v̄ = 0 in (29). This nonlocal phenomenon is em-
phasized in Theorem 3.4 which gives the limit of the average of the displace-
ments ûε in the three-dimensional structure Ωε. In particular convergences
(33) and (34) show clearly that the limit displacements are determined after
solving the two equations posed in F and in M respectively.

In terms of correctors, our result shows that the transversal displacements
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uεα behave as uα + εvα + zα while the horizontal displacements uε3 behave as
u3 + ε2v3 + εz3.

We now make more precise the notations we will use throughout the
paper.

A vector x in R3 is denoted by x = (x′, x3) where x3 denotes the vertical
coordinate. Latin indices will usually range from 1 to 3, and Greek ones
take values in {1, 2}; the summation convention applies whenever indices are
repeated. We write ∂i := ∂

∂xi
and ∂ij := ∂2

∂xi∂xj
. The gradient with respect to

x and x′ are denoted by ∇ and ∇′ respectively. Given any φ ∈ (D′(Ω))3, we
denote the strain of φ by Eφ := sym∇φ = 1

2

(
∇φ+∇φT

)
. We shall also use

the following matrices notations

∇φ =

 ∂αφβ ∂3φβ

∂αφ3 ∂3φ3

 ,

Eφ =

 (Eφ)αβ (Eφ)α3

(Eφ)α3 (Eφ)33

 .

Let ω ⊂ R2 be an open, bounded, simply connected set with Lipschitz
boundary ∂ω. Let I := (−1

2
, 1

2
), J := (− r

2
, r

2
), 0 < r < 1

2
, Ω := ω × I,

F := ω×J, M := ω×
(

I \ J
)
, where J denotes the closure of J. According to

Remark 1.1 below, physically we can think of Ω as the reference configuration
of a rescaled thin plate Ωε reinforced by the fiber Fε which is surrounded by
the matrix Mε occupied by a soft material. For every ε > 0 we denote the
diagonal matrix whose entries are 1, 1 and ε by Rε := diag(1, 1, ε), then the
scaled gradient ∇εφ and the scaled strain Eεφ are defined respectively by

∇εφ := (Rε)−1∇φ(Rε)−1 =

 ∂αφβ
1
ε
∂3φβ

1
ε
∂αφ3

1
ε2
∂3φ3

 , (1)

and

Eεφ := sym∇εφ =

 (Eφ)αβ
1
ε
(Eφ)α3

1
ε
(Eφ)α3

1
ε2

(Eφ)33

 . (2)
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We are now in position to state the problem.
Let A ∈ L∞(Ω) be a symmetric fourth-order tensor field. We assume that

A fulfills the following assumptions:{
Aijkl = Ajikl = Aklij, a.e. in Ω,

∃ C > 0, Aijklξklξij ≥ Cξijξij, ∀ξ ∈ R9 s.t. ξT = ξ.
(3)

We shall assume that the plate is clamped at the lateral boundary of Ω and
subjected to body forces f ∈ L2(Ω;R3), we thus set

H1
L(Ω) := {u ∈ H1(Ω;R3) : u = 0 on ∂ω × I}.

Consider the displacement field uε solution of the following system:
uε ∈ H1

L(Ω), ∀φ ∈ H1
L(Ω),∫

Ω

(
χF + ε2χM

)
AEε(uε).Eε(φ)dx =

∫
Ω

fφdx.
(4)

By virtue of the assumptions on the tensor A and the body forces F , for
every ε > 0, the problem (4) admits a unique solution by the Lax-Milgram
Theorem.

Remark 1.1 As in [8], the homothety along the vertical axis defined by
rε(x) := (x′, εx3) transforms Ω, F and M respectively into Ωε := ω × εI,
Fε := ω × εJ and Mε := ω × ε

(
I \ J

)
. Then, the problem (4) is the varia-

tional version in the fixed reference configuration Ω of the elasticity problem
(6) below posed in the variable thin domain Ωε. Indeed, for any v : Ω 7−→ R3

we define v̂ : Ωε 7−→ R3 by

v̂(x′, εx3) :=
(
(Rε)−1v ◦ (rε)−1

)
(x′, εx3) =

(
vα(x), 1

ε
v3(x)

)
. (5)

In addition
∇v̂ = Hεv ◦ (rε)−1, Ev̂ = Eεv ◦ (rε)−1.

With these new unknowns, the problem (4) may be rewritten as
ûε ∈ H1

L(Ωε), ∀φ ∈ H1
L(Ωε),∫

Ωε

(
χFε + ε2χMε

)
AεE(ûε).E(φ)dx =

∫
Ωε

f εφdx
(6)
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where H1
L(Ωε) := {u ∈ H1(Ωε;R3) : u = 0 on ∂ω × εI}, Aε := A ◦

(rε)−1, f ε = Rεf ◦ (rε)−1. Thus, the components of the loads are

f ε =
(
fα ◦ (rε)−1, εf3 ◦ (rε)−1)

)
. (7)

We study the behavior as ε→ 0 of the sequence {uε}, solution of (4), through
the forthcoming steps. That behavior will be described through Theorem 3.2
and then we will deduce the behavior of the sequence ûε solution of (6) in
Theorem 3.4.

2 A priori estimates
First, we shall recall a rescaled Korn’s inequality proved in [1]

‖Ev̂‖2
L2(Fε) ≥ Cε2

(
‖v̂‖2

L2(Fε) + ‖∇v̂‖2
L2(Fε)

)
, ∀v ∈ H1

L(F ), (8)

where
H1
L(F ) := {u ∈ H1(F ;R3) : u = 0 on ∂ω × J}

and v̂ = (Rε)−1v ◦ (rε)−1. As a consequence, we deduce

‖Eεv‖2
L2(F ) ≥ Cε2

(
‖(Rε)−1v‖2

L2(F ) + ‖∇εv‖2
L2(F )

)
, ∀v ∈ H1

L(F ). (9)

On the other hand, repeating the same arguments used in [12, Lemma 4.4],
the following inequality holds true(

‖∇εv‖2
L2(F ) + ‖Eεv‖2

L2(M)

)
≥ C‖∇εv‖2

L2(M), ∀v ∈ H1
L(Ω). (10)

For v ∈ H1
L(Ω) we set v′ := (v1, v2), ∇′v′ :=

(
∂βvα

)
α,β=1,2

and

Fε(v) :=

∫
Ω

(
χF + ε2χM

)
AEεv.Eεvdx. (11)

By using the ellipticity assumption (3) we obtain, for all v ∈ H1
L(Ω)

Fε(v) ≥ C
(
‖Eεv‖2

L2(F ) + ε2‖Eεv‖2
L2(M)

)
≥ C‖Ev‖2

L2(F ) ≥ C‖v‖2
H1(F ), (12)

where the last inequality follows from the Korn’s inequality. Furthermore,
by virtue of (9) and (10) one has

Fε(v) ≥ Cε2
(
‖∇εv‖2

L2(F ) + ‖Eεv‖2
L2(M)

)
≥ Cε2‖∇εv‖2

L2(M). (13)
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From (13), one has for ε small enough,

Fε(v) ≥ Cε2
(

1
ε2
‖∇′v3‖2

L2(M) + 1
ε4
‖∂3v3‖2

L2(M)

)
≥ C‖∇v3‖2

L2(M). (14)

By means of the Poincaré’s inequality, one has

Fε(v) ≥ C‖v3‖2
H1(M). (15)

Likewise, it holds that

Fε(v) ≥ C
(
ε2‖∇′v′‖2

L2(M) + ‖∂3v
′‖2
L2(M)

)
≥ C‖∂3v

′‖2
L2(M). (16)

From the following Poincaré’s type inequality

‖v′‖2
L2(M) ≤ C

(
‖v′‖2

L2(F ) + ‖∂3v
′‖2
L2(M)

)
,

(16) and (12), we get the following inequality

Fε(v) ≥ C‖v′‖2
L2(M). (17)

It follows from (15) and (17) that

Fε(v) ≥ C
(
‖v3‖2

H1(M) + ‖v′‖2
L2(ω;H1(I\J))

)
. (18)

As an immediate consequence of the previous inequalities, the following apri-
ori estimates hold true.

Theorem 2.1 Let uε be the solution of problem (4). Then

sup
ε

(
‖uε‖H1(F ) + ‖ε∇εuε‖L2(F ) + ‖Eεuε‖L2(F )

)
≤ C, (19)

sup
ε

(
‖uε3‖H1(M) + ‖uεα‖L2(ω;H1(I\J)) + ‖ε∇εuε‖L2(M)

)
≤ C, (20)

in particular

sup
ε

(
‖uε3‖H1(Ω) + ‖uεα‖L2(ω;H1(I)) + ‖ε∇εuε‖L2(Ω)

)
≤ C, α = 1, 2. (21)
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Proof.

Taking φ = uε in the problem (4), we derive

Fε(uε) ≤ ‖f‖L2(Ω)‖uε‖L2(Ω),

while from (12), (15) and (17) we find

Fε(uε) ≥ C‖uε‖L2(Ω).

Thus
sup
ε
Fε(uε) ≤ C.

Therefore, making use of (12)-(13) and then (13)-(18) we deduce (19) and
(20) respectively.

3 Convergence results
We first define the following functional spaces:

HKL(Ω) :=
{
u ∈ H1

L(Ω) : (Eu)i3 = 0, i = 1, 2, 3
}

which is the space of Kirchhoff-Love displacements on Ω; it can be charac-
terized also as

HKL(Ω)=
{
u ∈H1

L(Ω), ∃(gα, g3) ∈H1
0 (ω)×H2

0 (ω) : uα= gα − x3∂αg3, u3 = g3

}
,

for brevity we set U := HKL(Ω),

V :=

{
v ∈ L2

(
ω;H1(J)

)3
: −
∫

J

vi(x
′, t)dt = 0, a.e. x′ ∈ ω, i = 1, 2, 3

}
,

Z :=
{
z ∈ L2

(
ω;H1

m(I)
)3

: zi = 0, a.e. in F, i = 1, 2, 3
}
,

where H1
m(I) :=

{
ψ ∈ H1(I) :

∫
I

ψ(t)dt = 0

}
.

The following lemma is concerned with some convergence results.
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Lemma 3.1 There exists (u, v, z) ∈ U × V × Z, such that, up to a subse-
quence, we have

uεα ⇀ uα + zα in L2(ω;H1(I)), uε3 ⇀ u3 in H1(Ω),

EεuεχF ⇀

 (Eu)αβ ∂3vα

∂3vα ∂3v3

χF in L2(Ω)3×3,

εEεuεχM ⇀

 0 1
2
∂3zα

1
2
∂3zα ∂3z3

χM in L2(Ω)3×3.

Proof.

Step 1: convergence of (uε)ε.

From estimate (19) which implies that uεα is bounded in H1(F ) and from
estimate (20) which implies that uεα is bounded in L2(ω;H1(I \ J)) for α =
1, 2, we conclude that there exist uα ∈ H1(Ω) such that for a subsequence

uεα ⇀ uα in H1(F ), (Eεuε)αβχF ⇀ (Eu)αβχF in L2(F ). (22)

On the other hand, from (21) we get that up to a subsequence,
uεα ⇀ ũα in L2(ω;H1(I)),

uε3 ⇀ u3 in H1(Ω).
(23)

Moreover, due to the estimate ‖1
ε
∂3u

ε
3‖L2(Ω) ≤ C which is a consequence of

(21), we have
∂3u

ε
3 → 0 in L2(Ω)

in such a way that
∂3u3 = 0.

Thus, there exists g3 ∈ H1
0 (ω) such that

u3(x) = g3(x′) for a.e. x ∈ Ω. (24)

Comparing the first convergences in (22) and (23), we derive the equality

ũα = uα inF. (25)

8



On the other hand, using (19) we infer

(Euε)α3 ⇀ (Eũ)α3 in L2(F ).

Since
(Euε)i3 → 0, in L2(F )

we are led to
(ũα, u3) ∈ HKL(F ).

By definition of the space HKL(F ), the component u3 belongs to H2
0 (ω), so

that equality (24) implies that g3 ∈ H2
0 (ω). Hence, there exist gα ∈ H1

0 (ω)
for α = 1, 2, such that

ũα(x) = gα(x′)− x3∂αg3(x′), u3(x) = g3(x′) for a. e. x ∈ F.

For a. e. x ∈ Ω, we set

uα(x) := gα(x′)− x3∂αg3(x′) ∈ H1
L(Ω),

zα(x) := ũα(x)− uα(x) ∈ L2(ω;H1(I)),

so that zα = 0, a. e. in F as seen from (25) and u := (uα, u3) ∈ U and

uεα ⇀ uα + zα, in L2(ω;H1(I)).

Step 2: convergence of (Eεuε)ε.

To identify the limit of the sequence (Eεuε)i3χF , we introduce the following
sequences :

ûεα :=

∫ x3

−1
2

1
ε
∂αu

ε
3(x′, t)dt, (26)

vεα := 1
ε
uεα + ûεα −−

∫
J

(
1
ε
uεα + ûεα

)
dx3,

vε3 := 1
ε2
uε3 −−

∫
J

1
ε2
uε3dx3. (27)

Obviously, on has

∂3v
ε
α = 2

ε
(Euε)α3,

∂3v
ε
3 = 1

ε2
(Euε)33.
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Since 2
ε
(Euε)α3 and 1

ε2
(Euε)33 are bounded in L2(F ), due to (19), and vε :=

(vεα, v
ε
3) has mean-value zero with respect to x3, the sequence vε is bounded

in L2(ω;H1
m(J))3, where H1

m(J) :=

{
ψ ∈ H1(J) : −

∫
J

ψ(t)dt = 0

}
.

Therefore there exists some v ∈ L2(ω;H1
m(J))3 such that

vε ⇀ v in L2(ω;H1
m(J))3.

In particular, one has v ∈ V ,

(Eεuε)α3χF ⇀
1
2
∂3vαχF in L2(Ω),

and
(Eεuε)33χF ⇀ ∂3v3χF in L2(Ω).

As a consequence, one obtains the following convergence

EεuεχF ⇀

 (Eu)αβ
1
2
∂3vα

1
2
∂3vα ∂3v3

χF in L2(Ω)3×3,

where (u, v) ∈ U × V .
We now seek for the limit of the sequence εEεuεχM . To that aim, we consider
the following sequence

zεα := uεα + ûεα −
∫

I

(uεα + ûεα) dx3,

zε3 := 1
ε
uε3 −

∫
I

1
ε
uε3dx3. (28)

where ûε is defined by (26). Since

∂3z
ε
α = 2(Euε)α3, (29)

∂3z
ε
3 = 1

ε
(Euε)33. (30)

Due to (21), 2(Euε)α3 and 1
ε
(Euε)33 are bounded in L2(Ω) with mean-value

zero with respect to x3; hence the sequence zε is bounded in L2(ω;H1
m(I))3.

Therefore there exists some ẑ ∈ L2(ω;H1
m(I))3, such that

zε ⇀ ẑ in L2(ω;H1
m(I))3.
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We claim that ẑα = zα. Indeed,

∂3u
ε
α ⇀ ∂3uα + ∂3zα in L2(Ω)

and
∂3z

ε
α ⇀ ∂3ẑα in L2(Ω).

But
∂3z

ε
α = ∂3u

ε
α + ∂αu

ε
3 ⇀ ∂3uα + ∂3zα + ∂αu3 in L2(Ω).

Thus
∂3ẑα = ∂3uα + ∂3zα + ∂αu3.

Since u ∈ U , we have
∂3uα + ∂αu3 = 0,

and therefore

∂3ẑα = ∂3zα i.e. ẑα(x) = zα(x) + c(x′), a.e. x ∈ Ω.

In particular
ẑα(x) = c(x′), a.e. x ∈ F

since
zα(x) = 0, a.e. x ∈ F.

On the other hand one has by virtue of (20),

zε → 0 in L2(F ).

Hence
c(x′) = 0, a.e. x ∈ F

and therefore
ẑα(x) = zα(x), a.e. x ∈ Ω.

This proves our claim.
Finally, from (29) and (30) we deduce that

ε(Eεuε)α3χM ⇀ 1
2
∂3zαχM , ε(E

εuε)33χM ⇀ (Ez)33χM in L2(Ω),

where z3 := ẑ3.
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Moreover, since εuεα −→ 0 in L2(M) then ε(Eεuε)αβχM ⇀ 0 in L2(Ω). We
conclude that

εEεuεχM ⇀

 0 1
2
∂3zα

1
2
∂3zα ∂3z3

χM in L2(Ω)3×3.

This ends the proof of Lemma 3.1.
In the following theorem, we state our main result.

Theorem 3.2 There exists (u, v, z) ∈ U × V ×Z, such that the sequence of
solutionuε of the problem (4) fulfills the following strong convergences

uεα −→ uα + zα strongly in L2(ω;H1(I)), uε3 −→ u3 strongly in H1(Ω),

EεuεχF −→

 (Eu)αβ
1
2
∂3vα

1
2
∂3vα ∂3v3

χF strongly in L2(Ω)3×3,

εEεuεχM −→

 0 1
2
∂3zα

1
2
∂3zα ∂3z3

χM strongly in L2(Ω)3×3,

where the limit (u, v, z) is the unique solution of the problem

(u, v, z) ∈ U × V × Z, ∀(ū, v̄, z̄) ∈ U × V × Z,∫
Ω

A(x)

 (Eu)αβ
1
2
∂3vα

1
2
∂3vα ∂3v3

 .

 (Eū)αβ
1
2
∂3v̄α

1
2
∂3v̄α ∂3v̄3

χFdx+

∫
Ω

A(x)

 0 1
2
∂3zα

1
2
∂3zα ∂3z3

 .

 0 1
2
∂3z̄α

1
2
∂3z̄α ∂3z̄3

χMdx =∫
Ω

(
fα (ūα + z̄α) + f3ū3

)
dx.

(31)

Proof.

We first prove the convergence of the sequence of energies to the energy
associated to the limit problem, assuming that the limit problem is the system
(31). To that aim we will use the weak convergences proved in Lemma 3.1.
We follow the argument already used in [12, Proof of Theorem 3.1].
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Choosing (ū, v̄, z̄) = (u, v, z) in (31) and passing to the limit thanks to
Lemma 3.1, we get

lim
ε→0

∫
Ω

(
χF + ε2χM

)
AEε(uε).Eε(uε)dx = lim

ε→0

∫
Ω

fuεdx

=

∫
Ω

(
fα (uα + zα) + f3u3

)
dx

=

∫
Ω

(AEF .EFχF + AEM .EMχM) dx,

where

EF :=

 (Eu)αβ
1
2
∂3vα

1
2
∂3vα ∂3v3

 , EM :=

 0 1
2
∂3zα

1
2
∂3zα ∂3z3

 .

Using the equivalence of the norms

L2(Ω) 3 E 7−→
∫

Ω

AE.Edx, L2(Ω) 3 E 7−→
∫

Ω

E.Edx

we deduce that

lim
ε→0
‖(χF + εχM) Eε(uε)‖L2(Ω) = ‖χFEF + χMEM‖L2(Ω) .

Hence the strong convergence of the tensor sequences is proved. Now, by us-
ing the last strong convergence together with the following Korn’s inequality

‖Eε(uε)‖L2(F ) ≥ ‖E(uε)‖L2(F ) ≥ C ‖uε‖L2(F ) ,

we deduce that uε is a Cauchy sequence in H1(F ).
On the other hand, using (9) and (10) one has

‖Eεuε‖2
L2(F ) ≥ Cε2

(
‖(Rε)−1uε‖2

L2(F ) + ‖∇εuε‖2
L2(F )

)
and (

‖∇εuε‖2
L2(F ) + ‖Eεuε‖2

L2(M)

)
≥ C‖∇εuε‖2

L2(M).

Hence, ε∇εuε is also a Cauchy sequence in L2(Ω). It remains to prove that uεα
and uε3 are two Cauchy sequences in L2(ω;H1(I)) and H1(M) respectively.
To that aim, it suffices to use (18) to obtain

‖(χF + εχM) Eε(uε)‖2
L2(Ω) = Fε(uε) ≥ C

(
‖uε3‖2

H1(M) + ‖uεα‖2
L2(ω;H1(I\J))

)
13



then we can argue as previously to complete the proof.
We now prove that the limit problem is nothing but the system (31).
We choose a test function φε in (4) in the following form{

φεα = ūα + εv̄α + z̄α
φε3 = ū3 + ε2v̄3 + εz̄3

(32)

where (ū, v̄, z̄) ∈ U ×D
(
ω;H1

m(J)
)3×

{
D
(
ω;H1

m(I)
)3

: z = 0, a.e. x ∈ F
}
.

Since, from the definition of U , one has (Eū)i3 = 0, for all i = 1, 2, 3, an
elementary calculation shows that

(Eεφε)αβ = (Eū)αβ + ε(Ev̄)αβ + (Ez̄)αβ,
2(Eεφε)α3 = ∂3v̄α + ε∂αv̄3 + 1

ε
∂3z̄α + ∂αz̄3,

(Eεφε)33 = (Ev̄)33 + 1
ε
(Ez̄)33.

Using the following strong convergence

EεφεχF −→

 (Eū)αβ
1
2
∂3v̄α

1
2
∂3v̄α ∂3v̄3

χF in L2(Ω)3×3,

εEεφεχM −→

 0 1
2
∂3z̄α

1
2
∂3z̄α ∂3z̄3

χM in L2(Ω)3×3,

we can pass to the limit in (4) as ε goes to zero to get (31) thanks to the den-
sity ofD

(
ω;H1

m(J)
)3 and

{
z ∈ D

(
ω;H1

m(I)
)3

: zi = 0, a.e. x ∈ F, i = 1, 2, 3
}

in V and Z respectively.

Remark 3.3 The space U ×V ×Z is a Hilbert space for the following norm

‖(u, v, z)‖2 :=
∑

α,β=1,2

∥∥(Eu)αβ
∥∥2

L2(Ω)
+

3∑
i=1

[
‖∂3vi‖2

L2(Ω) + ‖∂3zi‖2
L2(Ω)

]
.

Therefore, using the Lax-Milgram Theorem we obtain the well-posedness of
the limit problem (31) since the tensor A is coercive by virtue of (3) and
f ∈ L2(Ω;R3).

We now turn back to the sequence of solutions of problem (6) to derive
the following theorem from Theorem 3.2.

14



Theorem 3.4 Let (u, v, z) ∈ U ×V ×Z be the solution of the problem (31).
Let

EF :=

 (Eu)αβ
1
2
∂3vα

1
2
∂3vα ∂3v3

 , EM :=

 0 1
2
∂3zα

1
2
∂3zα ∂3z3

 .

Then the sequence of solutions ûε of the problem (6) fulfills the following
convergences

−
∫
εJ
Eûεdx3 −→ −

∫
J
EFdx3, in L2(ω;R3×3),

−
∫
ε(I\J)

Eûεdx3 −→ −
∫

I\JEMdx3 in L2(ω;R3×3),

−
∫
εI
ûεαdx3 −→ Uα(x′) := −

∫
I
(uα + zα) dx3, in L2(ω),

−
∫
εI
εûε3dx3 −→ u3(x′) in L2(ω),

(33)

Moreover, Uα may be written as

Uα(x′) = −
∫

I

uαdx3 +m0
α(x′)−

∫
I\J
fα(x′, x3)dx3 +m00

α (x′), (34)

where m0
α and m00

α are given by

m0
α(x′) :=

∫
I\J
z0
α(x′, x3)dx3, m

00
α (x′) :=

∫
I\J
z00
α (x′, x3)dx3,

and z0, z00 are respectively the solutions of the following problems
z0 ∈ L∞

(
ω,Z0

)
,Z0 :=

{
z ∈ (H1(I \ J)3 : z = 0 on ∂J

}∫
I\J
A(x)

 0 1
2
∂3z

0
α

1
2
∂3z

0
α ∂3z

0
3

 0 1
2
∂3z̄α

1
2
∂3z̄α ∂3z̄3

 dx3 =

∫
I\J
z̄α(x3)dx3,

∀z̄ ∈ Z0, a.e. in ω,

(35)

z00 ∈ Z∫
M

A(x)

 0 1
2
∂3z

00
α

1
2
∂3z

00
α ∂3z

00
3

 0 1
2
∂3z̄α

1
2
∂3z̄α ∂3z̄3

 dx3 =

∫
M

(
fα(x)−−

∫
I\J
fα(x)dx3

)
z̄α(x)dx,

∀z̄ ∈ Z.

(36)

15



Proof.

The convergences (33) follow from the corresponding convergences stated in
Theorem 3.2 by the change of variables (5).

Let us prove for instance the third convergence arising in (33) by the use of
the first convergence arising in Theorem 3.2. Setting y3 = εx3 for x3 ∈ I and
bearing in mind that ûε is defined according to (5) by uεα(x′, x3) = ûε(x′, εx3)
for (x′, x3) ∈ ω× I and that the length of the interval I is equal to 1, we get
thanks to the Cauchy-Schwarz inequality (with respect to x3)

∫
ω

|−
∫
εI

ûεα(x′, y3)dy3 −−
∫
I

(uα(x′, x3) + zα(x′, x3)dx3|2dx′ =

∫
ω

|
∫
I

(
uεα(x′, x3)− (uα(x′, x3) + zα(x′, x3))

)
dx3|2dx′ ≤

∫
ω

∫
I

|uεα(x′, x3)− (uα(x′, x3) + zα(x′, x3))|2dx3dx
′ −→ 0.

(37)

To prove (34), we first notice that one can derive the following equation
satisfied by zα by choosing ū = v̄ = 0 in (31),

z ∈ Z, ∀z̄ ∈ Z,∫
Ω

A(x)

 0 1
2
∂3zα

1
2
∂3zα ∂3z3

 .

 0 1
2
∂3z̄α

1
2
∂3z̄α ∂3z̄3

χMdx =

∫
Ω

fαz̄αdx.

(38)

Taking advantage from the linearity of (38), one can check easily by a unique-
ness argument that zα may be identified as zα = z1

α + z2
α where z1

α and z2
α are

solutions of (38) but with right hand sides defined respectively by

−
∫

I\J
fα(x)dx3 and

(
fα(x)−−

∫
I\J
fα(x)dx3

)
.

By linearity and using once again a uniqueness argument, we conclude that

z1
α =

(
−
∫

I\J
fα(x)dx3

)
z0
α and z2

α = z00
α

16



where z0 and z00 are the solutions of (35) and (36) respectively. Hence, Uα
defined in the third convergence (33) may be written as (34). This completes
the proof of Theorem 3.4.
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