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Abstract

In this paper, we study the impact of air pollution on child growth in India.
We rely on wind direction to capture quasi-random variation in three main crite-
ria air pollutants. We show that an increase in the average concentration of fine
particulate matter by one standard deviation is accountable for almost 5 and 2.4
percentage points of stunting and severe stunting rates rates, respectively. We also
find that ozone and carbon monoxide impact weight-related outcomes. Stunting
has critical long-term health and economic consequences; through its impact on
stunting, pollution exacerbates the height premium in earnings, with girls being
more adversely affected than boys in India.

Keywords: Ambient air pollution; child health; anthropometry; wind direction;
height premium.

JEL Classification Codes: C31, C36, I15, I32, Q53.

Introduction

pollution is a global health threat with 7 million deaths attributable to the joi
ects of household and ambient air pollution in 2016 (WHO, 2016; Cohen et al., 201
out 94% of these deaths occur in low- and middle-income countries. In additio
pollution causes acute respiratory infections, blindness, heart diseases, low bir
ight and stillbirth (Branca and Ferrari, 2002; Dewey and Begum, 2011; Hoddino
l., 2013; Feng et al., 2019).

economics, a large body of literature attempts to document the causal impacts
llution on different health outcomes (Chay and Greenstone, 2003; Currie and Ne
ll, 2005; Currie et al., 2009; Jayachandran, 2009; Currie and Walker, 2011; More

Neidell, 2011; Arceo et al., 2016; Knittel et al., 2016; Schlenker and Walker, 201
ryugina et al., 2019). An overwhelming share of these studies focuses on the d
oped world, exploring the link between pollution and mortality or respiratory an
rt-related hospitalizations.
1
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ing data from India, this paper studies the impact of air pollution on child grow
icators, such as stunting and wasting. Children are stunted for their age and ge

r when their height is more than two standard deviations below the World Heal
ganization (WHO) Child Growth Standards median. Stunting is of high relevan
public health and economic policies, being associated with critical short- and lon

m physical and socio-economic disadvantages (for a review, see Currie and Vog
3). In the short term, stunting is linked to (i) weakened immune systems and high

k of infection (Rodrı́guez et al., 2011; Schlaudecker et al., 2011); (ii) lower cogniti
velopment (Pollitt et al., 1995; Brown and Pollitt, 1996; Case and Paxson, 2008a); (i
verse educational achievements (Maluccio et al., 2009; Hoddinott et al., 2013); an
) higher mortality rates (Caulfield et al., 2004; Olofin et al., 2013). Evidence on t
ative long-term consequences of stunting is growing, with stunted children bein
re likely to experience (i) short stature in adulthood (Tanner et al., 1956; Sachd
al., 2005; Gigante et al., 2009); (ii) reduced cognitive skills (Glewwe and Migu
7; Guven and Lee, 2015), (iii) functional limitations, such as reduced work capa
(Spurr, 1988); (iv) higher risks of obesity and chronic diseases (Gluckman et a
7); (v) lower income and wealth (Hoddinott et al., 2008; Case and Paxson, 2008
ond and Currie, 2010), (v) poorer marriage outcomes (Hoddinott et al., 2013); an

) worse reproductive outcomes, such as lower birthweight of offsprings (Victo
al., 2008), having firstborns at younger ages, and more pregnancies and childr
oddinott et al., 2013).

pollution is expected to affect child growth and development through its impact o
piratory diseases and the loss of nutrients when fighting infectious agents (Schlaud
l., 2011). The existing literature has so far focused on estimating the correlation b

een child stunting and air pollution, in particular household air pollution. Wh
essing the link between air pollution and health outcomes, OLS estimates are like
sed due to measurement errors and omitted variables (Duflo et al., 2008b; Gree
ne and Jack, 2015; Deryugina et al., 2019). Households are usually not random
osed to different levels of air pollution, in particular indoor pollution, and their e

sure correlates with a multitude of factors that are also likely to impact child healt
r example, the use of specific fuel types for cooking, which directly impacts air poll
n levels, correlates highly with household wealth and education. Poorer househol
y be more likely to have both stunted children and choose free or cheap fuel sourc
e dung or wood gathered from nearby fields or forests) (Duflo et al., 2008a).
2
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is study focuses on India as a case-in-point for a developing economy with pe
tently high levels of stunting and increasing air pollution (Greenstone and Hann
4; Banerjee and Dwivedi, 2020). We combine anthropometric and socio-econom

ta from the Indian National Family Health Survey 2015/2016 (hereafter NFHS-
th granular information on air pollutant concentrations, wind direction, wind spee

weather variables from the second Modern-Era Retrospective analysis for R
rch and Applications (MERRA-2) from NASA’s atmospheric reanalysis of satelli

ta. This unique dataset allows us to estimate the causal impact of air pollution o
ld growth by exploiting the quasi-random variation in pollution attributable to t
nsportation of pollutants by wind. We focus on three criteria pollutants, viz. fi
rticulate matter (PM2.5), carbon monoxide (CO), and ozone (O3), and show the
parate impacts on height- and weight-related child growth outcomes.

sed on a long time-series of hourly data, we build aggregate measures of frequen
wind direction and pollution concentrations that reflect the personal exposure
h child in our sample from the gestational period till the time of the intervie
ploying an instrumental variable (IV) approach, we use the exogenous variation

nd direction to instrument for local pollution concentrations and estimate the impa
pollution on anthropometric measurements for children.

th our methodology, we join the recent literature that explores changes in win
ection as an exogenous source of variation in air pollution for assessing health im
cts. Deryugina et al. (2019) use changes in daily average wind direction as an instr
nt for variation in daily average fine particulate matter concentrations to identi
effect on mortality and health care use in the US. Anderson (2020) investigates t
pact of air pollution on adult mortality by using variation in wind orientation wi
pect to highways in the Los Angeles area. Sheldon and Sankaran (2017) use win
ection and the occurrence of Indonesian fires to instrument air pollution in Sing
re and study the impact of pollution on respiratory diseases. Similar identificatio
ategies have also been used when researching the impact of wildfires on differe
lth outcomes (Jayachandran, 2009; Pullabhotla, 2018; Rangel and Vogl, 2019).

r analysis shows that an increase by one standard deviation in average annual ou
or PM2.5 concentrations increases the frequency of stunting and severe stunting b
nd 2.4 percentage points, respectively. We also find that ozone and carbon mono
impact weight-related outcomes. Back-of-the-envelope estimates suggest that,
rage pollution levels in India were brought down to WHO recommended sta
3
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rds, i.e., an eightfold reduction from current levels, the shares of stunted and seve
nted children would decrease by 10.4 and 5.17 percentage points, respectively, c
is paribus. This would correspond to approximately 14.3 million less stunted ch
n in India.

perform a series of heterogeneity analyses by age, gender, birth order, and place
idence and show how impacts can vary across these dimensions, pointing, amon
ers, to important cultural practices that shape the effects of pollution on child grow
reover, we rely on an aggregated air quality index to estimate the joint impact
different criteria pollutants on the child growth indicators. A series of tests demo

ates the robustness of our results. The findings are stable to changing the aggreg
n level of the data and accounting for spatial correlation in the error terms. Mor
er, the results are consistent when employing an alternative IV approach, where w
trict the sample to include only children living close to the coastline and use t
re of time wind is blowing from the sea as an instrument for air pollution.

e consequences of air pollution exposure, similarly to other health shocks durin
ldhood, are expected to be long-lasting. Based on estimates from the literatur
compute the additional contribution of air pollution exposure to the well-know

ght premium in earnings and find that an increase in PM2.5 by one standard devi
n during childhood translates into lost yearly earnings in adulthood in the range
– 1.8% for men and 1.6 – 2% for women, pointing to a potential new dimension
gender gap in India.

r paper contributes to the existing literature by being, to the best of our knowledg
e of the first papers to perform a causal estimation of the impacts of air pollutio
child growth outcomes. Moreover, it focuses on India, one of the largest emergin
nomies in the world and currently among the most polluted places. So far, on
andful of economic papers have focused on identifying the causal impact of a

llution on health outcomes in a developing country context (Jayachandran, 200
en et al., 2013; Arceo et al., 2016; Deschenes et al., 2020). Existing evidence com
m Indonesia, Mexico, and China with a focus on infant and elderly mortality. If t
llution - health relation is convex or the costs of avoidance behavior are different
veloping countries (Arceo et al., 2016), it is important to understand what are t
pacts at high levels of pollution. Our paper is somewhat close to Deschenes et
20), who use thermal inversions to instrument for the impact of PM2.5 on adu
ight and obesity in China. In contrast to their findings, we find no evidence th
4
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2.5 significantly affects the weight-for-age and weight-related growth outcomes
ldren in India; however, we do find that these outcomes are negatively impacted b
ne and carbon monoxide, two other important criteria pollutants not considere

their analysis. Our paper is also one of the first to study the joint impact of t
ee main criteria pollutants on child health, decreasing the risk of overestimatin
impact of one particular pollutant when included separately, as in most previo

dies.

r results indicate that the negative impacts of pollution on child development a
stantial, underlying once again the urgency to reduce air pollution in India.

ht of recent evidence that the willingness to pay for clean air is extremely low
ia (Greenstone et al., 2021), it seems that change will not be led by, at least in t
rt term, citizen-led initiatives, but needs to be mediated by policy makers.

e remainder of the paper is organized as follows. Section 2 describes the conceptu
mework of the article. Section 3 describes the data. Section 4 introduces the pr
sed identification strategy to tackle endogeneity issues. Sections 5 and 6 present t
in results, the heterogeneity analysis, and the robustness checks. Section 7 estimat
additional impacts of pollution on the height premium in earnings, while Section
cludes.

Conceptual Framework

is section describes the selected outcome variables that capture growth and deve
mental impairments in children. In particular, we explain the mechanisms evoke
the medical literature linking air pollution and reduced child growth.

Measuring Physical Growth Deficiencies in Children

a well-nourished and healthy population, there is a statistically predictable dist
tion of height and weight for children of a given age. The standard index used f
ysical growth — height-for-age — reflects the long-term effects of genetic and e
onmental conditions and gene-environment interactions on skeletal growth. T
ght-for-age (HAZ) measure is expressed in standard deviation units (z-score)
difference between the current height and the median of the reference popul
5
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n:

HAZi =
Heighti −Median(reference population of same age and gender)

Standard Deviation(reference population of same age and gender)
, (

ere HAZi is the height-for-age indicator of child i, whose height is given by Heigh
e WHO classifies children with a HAZ score below −2 as being stunted and belo
as severely stunted.1 Another standard measure of growth relates weight and ag

e weight-for-age (WAZ) index is expressed in standard deviation units from t
dian of a reference population and is computed similarly to the HAZ. A WAZ sco
ow −2 indicates being wasted and below −3 being severely wasted.

hough HAZ and WAZ are both measures of restricted growth, they tend to indica
ferent stages of the condition. While wasting is linked to very low muscle tiss

fat mass for a certain age, stunting reveals a significantly slowed skeletal deve
ment (Ricci and Becker, 1996). Impacts on body mass can be transitory, caused b
ent diseases and limited dietary intake. In contrast, stunting reflects skeletal grow
pairments that tend to be the result of repeated acute illnesses and nutritional de
ncy, capturing long-term irreversible growth impairments (Ricci and Becker, 199
bramanyam et al., 2010). In this study, we show results for both height- and weigh
ated growth indicators.

Air Pollution and Growth Deficiencies

ng-term exposure to air pollution, in particular fine particular matter, is detrime
to human health, including cardio-respiratory health endpoints, such as chron

structive pulmonary disease, ischemic heart disease, stroke, lung cancer, and chi
te lower respiratory infections (Burnett et al., 2018; Upadhyay et al., 2015, amon
ny others). Sinharoy et al. (2020) offer a recent summary of the medical liter
e dedicated to explaining the physiological channels linking air pollution and chi
lth.

spiratory infections lead to the activation of the immune system to fight off diseas

1We rely on the most recent international reference population, which was released by the WHO
uary 2018. The standard for the reference population is based on children of non-smoking mo
around the world (Brazil, Ghana, India, Norway, Oman, and the USA), who are raised in healt
ironments and are fed with recommended feeding practices (exclusive breastfeeding for the firs
nths and appropriate complementary feeding from 6 to 24 months). The z-score of the referen
ulation is normally distributed; then, a child in the reference population will have a chance of le

n 2.3% to be stunted (Imai et al., 2014).
6
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sing agents, which requires a broad range of nutrients to defend against pathoge
ewey and Mayers, 2011). For children, the problem is reinforced by the fact th
ir immune system is still developing and weaker when fighting infectious agen
drı́guez et al., 2011). The necessary metabolic energy consumed to fight the disea
iverted away from growth (Schlaudecker et al., 2011).

peated and lasting exposure to air pollution also leads to sub-clinical biological r
nses similar to mechanisms resulting from poor sanitation and lack of hygiene an
ter purity, in which gut barrier function is reduced by pathogens, and which i
ces chronic immune activation, increased inflammation and resistance of grow
rmones (Sanitation Hygiene Infant Nutrition Efficacy (SHINE) Trial Team et a
5).

ure 1 depicts the relation between the rate of stunting and average lifetime ambie
e particulate matter (PM2.5) exposure for the Indian children 0 - 5 years old in o

ple. The basic pattern is striking: the higher the PM2.5 concentrations, the high
share of stunted children, with a steeper effect in rural areas, likely due to mo

ited access to health care and other confounding factors. This paper aims to identi
relationship between pollution concentrations and child growth outcomes, net
er socio-economic and behavioral factors.
7
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ure 1: PM2.5 concentrations and shares of stunted children in urban and rural Ind

e: The figure plots stunting rates in 50 bins of PM2.5 concentrations, separately in urban and ru
as. The colored lines represent linear regression lines separately for urban (in orange) and rural
en) areas. Data source: the 2015/2016 India National Family Health Survey (NFHS-4).

Data

combine different sources of data to study the impact of air pollution on chi
wth in India. The 2015/2016 National Family Health Survey (NFHS-4) contains i
mation on the socio-economic background of children and their parents, as well
hropometric information on child development. We take advantage of the geore
nced information included in the household surveys2 and link it to satellite data o
pollution, wind direction and speed, and related weather variables. Our identific

n strategy relies on temporal and spatial variation in wind direction for which t
ilable data has a longitudinal-latitudinal resolution of 0.625◦ × 0.5◦.3 Our ma

2While there have been three previous waves of the NFHS, NFHS-4 is the first that provides ge
rdinates of the primary sampling units (PSUs) where interviewed households reside. These coor
es are geomasked for ethical reasons, using a displacement buffer of up to two kilometers for urb
s and up to five kilometers for rural ones. As our main unit of analysis is cells with longitudin

tudinal resolution of 0.625◦ × 0.5◦, such geomasking is not a big concern for our specifications.
3Given India’s latitudinal and longitudinal coordinates, cell areas vary between 3,157 and 3,798 km
olygons with edges of roughly 69× 55 km.
8
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cifications are at the individual child level to which we match the gridded enviro
ntal data.

Anthropometric and Socio-economic Data

use data from India’s NFHS-4 conducted in 2015/2016 – the most recent availab
ollected through the Demographic and Health Surveys (DHS) Program.

r each child in the NFHS-4 dataset, we match cell-level environmental variabl
t reflect personalized averages over the lifetime of the child. To account for t
ll-known impacts of pollution and climate variables also during the gestation p
d (Goyal and Canning, 2017; Sanders, 2012), we average hourly data starting ni
nths before the birth of the child4 up to the date of the interview. Our results a
ust to including only the period after the actual birth.5

r final dataset consists of 223,049 children aged 0 - 5 years old for which we ha
plete anthropometric measures and relevant socio-economic information. Table

sents key summary statistics characterizing the children in our sample. All chi
racteristics reflect averages at the child level, while household characteristics r

ct household-level statistics. Overall, stunting affects about a third of all childr
India, while severe stunting affects almost 13%. The incidence of wasting and s
e wasting is about 40% and 10%, respectively. Looking at the age distribution, t

ungest children aged 0-12 months old appear to fare best in terms of all growth ind
ors, despite coming from households with very similar profiles to those in other a
ups. This is suggestive of how stunting (and its severe form) indicates cumulati
wth deficiencies and a general worsening of health as the child ages, despite bein
osed to constant living conditions.

4We call this the date of concept, but we can only estimate the month of concept, not the precise d
analysis abstracts from accounting for early births.

5This approach assumes that a child has lived in the same cell since birth till the date of the intervie
check the strength of this assumption, we compare the age of each child with the reported numb
ears of residence in the current household. Over the entire sample, about 8.2% of children appe
ave changed residence during their lifetime and only 0.4% to have only very recently moved
ough we do not know if relocation took place within the same cell or from another cell.
9
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le 1: Summary statistics of variables in the 2015-2016 India National Family an
alth Survey IV (NFHS-4).

Age group 1 Age group 2 Age group 3 Age group 4 Age group 5 All

Child characteristics
ight-for-age score (HAZ) -0.623 -1.602 -1.281 -1.520 -1.607 -1.32

(1.594) (1.589) (1.620) (1.500) (1.390) (1.58
nted 0.175 0.409 0.313 0.371 0.374 0.32

(0.380) (0.492) (0.464) (0.483) (0.484) (0.46
verely stunted 0.0631 0.168 0.122 0.142 0.147 0.12

(0.243) (0.374) (0.327) (0.349) (0.354) (0.33
eight-for-age score (WAZ) -1.068 -1.824 -1.781 -1.745 -1.722 -1.62

(1.269) (1.171) (1.176) (1.078) (1.054) (1.18
asted 0.225 0.469 0.456 0.426 0.418 0.39

(0.418) (0.499) (0.498) (0.494) (0.493) (0.49
verely wasted 0.0536 0.135 0.131 0.102 0.0898 0.10

(0.225) (0.342) (0.337) (0.303) (0.286) (0.30
ild age (months) 6.496 18.44 30.50 42.44 53.99 30.0

(3.435) (3.421) (3.455) (3.437) (3.139) (16.9
ild is a boy 0.523 0.517 0.518 0.515 0.525 0.52

(0.499) (0.500) (0.500) (0.500) (0.499) (0.50

Household characteristics
usehold wealth index -0.133 -0.129 -0.140 -0.156 -0.169 -0.14

(0.964) (0.968) (0.964) (0.972) (0.972) (0.96
ghtlights Index 2.912 3.000 3.019 3.051 3.075 3.01

(7.453) (7.679) (7.624) (7.636) (7.697) (7.61
. of household members 6.769 6.515 6.512 6.535 6.468 6.56

(2.903) (2.883) (2.843) (2.872) (2.796) (2.86
ndu 0.733 0.722 0.723 0.726 0.729 0.72

(0.442) (0.448) (0.448) (0.446) (0.444) (0.44

. of children 44,994 44,581 45,392 47,042 41,040 223,04

Note: The table captures summary statistics of key variables of interest in the 2015-2016 India National Fam
and Health Survey IV (NFHS-4). The statistics show mean values and standard deviation (in parentheses) by a
group (1-5 years). Outcome variables and children’s characteristics have been aggregated from data at the ch
level, whereas household and maternal characteristics are from data at the household level. NFHS-4 gathe
information on a total of 265,653 children living in the households interviewed. Due to missing or fully o
of-range values for some key variables of interest, our final estimation sample includes 223,049 children, fai
well-balanced across the different age groups.

usehold and child characteristics are well-balanced across the different age group
th similar wealth, family size, and religion. The nightlights index further indicat
ilarity in average economic development and population density.
10
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Air Pollution and Weather Data

focus on the criteria pollutants such as fine particulate matter (PM2.5), groun
el ozone (O3), carbon monoxide (CO), sulphur dioxide (SO2), and nitrogen dioxid
O2). These five pollutants have a significant detrimental impact on human heal
eyh et al., 2000; Suh et al., 2000; Townsend and Maynard, 2002; Currie and Neide
5; Chen et al., 2007; Moretti and Neidell, 2011; Schlenker and Walker, 2016) an
ir values are usually daily monitored around the globe and reported to the gener
blic in the form of an air quality index (AQI) for preventive use. High concentratio
air pollution increase the risk of respiratory diseases, cardiovascular mortality, an
diopulmonary illnesses.

India, as in many emerging and developing countries, ground-level information o
pollution is sparsely collected and not representative of the national profile (Brau
l., 2019).6 To obtain a representative quantification of air pollution, we use satelli

ta from NASA’s second Modern-Era Retrospective analysis for Research and App
ions (MERRA-2) database, with a longitudinal-latitudinal resolution of 0.625◦× 0.

available at hourly frequency.7 Accounting for all cells where at least one PSU h
n surveyed by the NFHS-4, our spatial structure consists of 987 cells.8

2.5 is the standard indicator to measure the impacts of air pollution on health (WH
6) and, often, the only included measure of air pollution in empirical analyse
pending on location and emission sources, major composites of PM2.5 can includ
ndblown mineral dust (DS2.5), sea salt (SS2.5), organic carbon (OC), black carbo

), and particles derived from the oxidation of primary gases like sulfur and n
gen oxide, such as sulfate (SO4) (Perraud et al., 2012; Dominici et al., 2015). Ma
rces of PM2.5 are fossil fuels combustion, biomass burning, and biofuel consum

n, with additional biogenic sources of particulate organic matter (Koster, 2016).9

6In 2010-2016, about 200 ground monitors collected data on PM2.5 in India, a monitor density mu
er than in China and Brazil (Brauer et al., 2019).

7A few recent studies compare satellite-derived PM2.5 against surface measurements from the Ce
Pollution Control Board (CPCB) India network (Dey et al., 2020; Navinya et al., 2020) and find hi

relations for the available sites.
8Fig. A.1 in the Appendix illustrates the number of PSUs interviewed in each cell, with a median
SUs per cell.

9Black carbon is emitted as soot including soot from coal burning, internal-combustion engin
er-plant boilers, central steam-heat boilers, waste treatment by combustion, field burning, for

s, fireplaces, and furnaces among others (Omidvarborna et al., 2015). In the environment, sulfa
4) is produced from the oxidation of elemental sulfur, sulfide minerals, or organic sulfur. Indu
lly, sulfate is produced during the burning of sulfur-containing fossil fuels, household wastes (e.
11
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2.5 values are not readily available in MERRA-2, but can be estimated based on va
provided for its composites, applying a mass reconstruction method.10 We follo
vençal et al. (2017) and calculate PM2.5 as:

PM2.5 = BC + 1.8 × OC + DS2.5 + SS2.5 + 1.375 × SO4.

one and carbon monoxide mixing ratios are available from MERRA-2 with the sam
tial and temporal resolution as the PM2.5 composites. On one hand, tropospher

ound-level) ozone is a result of chemical reactions between oxides of nitrogen (NO
volatile organic compounds (VOC), emitted by cars, power plants, industrial bo

, refineries, and chemical plants (US EPA, 2021). Ozone levels usually peak in urb
as during dry hot days. On the other hand, carbon monoxide results from the i

plete oxidation of carbon in combustion. One of the main sources of CO in Ind
he burning of biomass and other solid fuels and kerosene for cooking and heatin
indoor spaces. CO levels usually peak during the cold season in rural areas.

le 2 presents summary statistics of the different air pollutants. The national year
rage PM2.5 concentrations over 2010 - 2016 are about 41 µg/m3, more than eig
es the WHO recommended level. The average SO2 concentrations across the cou
are less worrying, being below the levels recommended by the European Env
ment Agency (EEA).11 Fig. 2 indicates significant spatial variations in the PM
rage distribution, with the industrialized North facing, on average, much high

llution.12

ergents), and effluents from tanneries, steel mills, sulfate-pulp mills, and textile plants. 80% of es
ted commercial sulfur production comes from sulfuric acids (Appel et al., 2005).
0The MERRA-2 reconstructed values for PM2.5 are highly consistent with the Van Donkelaar et
16) PM2.5 measurements, another satellite-based widely used dataset available only at yearly f
ncy (Fig. A.3 in the Appendix).

1The WHO and EEA recommendations in terms of O3 and CO are based on shorter time scales
r or 24-hour), which makes comparison to the annual average level less appropriate.

2The spatial and seasonal distribution of average CO and O3 levels is captured in Fig. A.2 in t
pendix.
12
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able 2: Summary statistics of air pollution and weather variables from MERRA-2.

Mean SD Min Median Max

lutant surface mass concentration

2.5 (µg/m3) 41.146 24.835 1.331 36.450 318.97
(µg/m3) 113.389 47.620 49.025 106.129 962.63

(µg/m3) 64.647 11.415 39.036 63.359 136.21

2 (µg/m3) 5.307 5.176 0.004 3.871 67.591

ather
al precipitation from atm. model physics (g/m2s) 0.050 0.081 0.000 0.012 1.151
face air temperature (K) 297.5 7.3 252.0 298.8 311.7
face wind speed (m/s) 4.8 1.4 1.6 4.6 11.6

o. of observations 82,908
o. of obs. with mean monthly PM2.5 levels above WHO threshold of 5 µg/m3 81,967

Note: The table presents summary statistics of air pollution concentrations and weather variabl
computed from monthly averages at the cell level, using data over 2010-2016. The number of obs
vations reflects 7 years of monthly data for each of the 987 cells. All data have been aggregated fro
MERRA-2 (Surface Flux Diagnostics).

Panel A. Map of average PM2.5

70 80 90
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PM 2.5
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Panel B. Distribution of average PM2.5

0

.01

.02

.03

.04

D
en

si
ty

0 20 40 60 80
PM 2.5 (mu g/m^3)

Figure 2: India map (Panel A) and histogram (Panel B) of PM2.5 concentrations.

e: The figure uses cell-level averages over monthly observations during 2010 - 2016. Only territor
s, where at least one primary sampling unit (PSU) is represented in the NFHS-4, are included. T
tical red line in the histogram (Panel B) represents the sample mean value.
13
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ather variables

ta on precipitation, temperature, and wind speed and direction comes from t
RRA-2 Surface Flux Diagnostics datasets, also available at 0.625◦ × 0.5◦ spatial re
tion and hourly frequency. Similarly to the procedure followed in the case of a

llution variables, we match the weather outcomes with the NFHS-4, by constructin
rages representative of the lifetime horizon of each child, beginning nine mont

or to the reported birth date until the date of interview when the anthropometr
asures have been taken.

e key weather variable for our identification strategy is wind direction, and in pa
lar its temporal and spatial variation. Wind direction frequency is fairly equal

tributed on average in our sample, with only wind from the East being slight
s observed. Variation in wind direction is high, both across time (within variatio

across space (between variation). This high variability is important for our ide
cation, as children from the same cell might be exposed differently to pollutio
pending on when exactly they are conceived. Moreover, the high within-cell va
lity is also suggestive of the difficulty to predict changes in wind direction and ta

pensatory actions.13 Finally, when analysing how pollution levels vary with t
vailing winds, we find no consistent pattern.14

Identification Strategy

r aim is to estimate the impact of air pollution on child growth variables. Th
ation can be modeled using the following equation:

yicg = β1PM2.5ic + β2COic + β3O3ic + X′icγ + αg + εicg (

ere the outcome variable yicg is the growth measure of child i, residing in cell
the geographical region g. The coefficients of interest are the βs, the paramete
icating the link between the different pollutant concentrations and child’s grow
asurements.

3Table A.2 in the Appendix presents summary statistics regarding the overall, between, and with
iation in wind direction over 90-degree wind angle bins using monthly data over 2010 - 2016 for
s.
4Section A.4 in the Appendix provides details on the spatial variation in prevailing winds and

this relates to air pollution concentrations.
14
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e outcome variables are the height-for-age score, the indicator for being stunted, t
icator for being severely stunted, the weight-for-age score, the indicator for bein
sted, and the indicator for being severely wasted. These values are provided in t
HS-4 and reflect the measurements on the day the household was surveyed. Thu
y reflect a snapshot of a child’s health status, shaped by all genetic, environment

behavioral factors that have impacted the child’s development since conceptio
until the date of measurement.

e pollution concentrations are computed for each child separately and reflect ave
s of hourly measurements in the cell of residence c from child conception until t

te of the survey. In this sense, computed pollution concentrations are equal for
ldren born on the same month and year in cell c. Hence, our results quantify t
pact of pollution on the average child residing in the cell.

e granularity of our data allows us to control for a rich set of socio-economic an
ironmental factors that can impact child growth (Xic). We control for gender an
to capture remaining variation in the outcome variables across these two dime

ns.15 As the NFHS-4 collected data over two years (2015/2016), we also control f
year of interview. As a measure of a household’s financial resources, we includ
5-digit wealth index provided by the NFHS-4, which is expected to account f
household’s access and usage of various resources, including nutrition and heal

e. Similarly, to control for location-specific economic development across India, w
lude the nightlights index of the corresponding primary sampling unit (PSU). T
ex is expected to help account for employment and educational opportunities
care givers, as well as access to medical care. We further include basic househo
racteristics, such as the number of household members and the religion, as ind

ors of household-level resource scarcity and cultural practices. Children’s grow
also be impacted by environmental conditions that have shaped both the sho
the long-term setting in which the child has developed. We include averages

cipitation, temperature, and wind speed observed over the child’s life. To captu
explained spatial variation in growth outcomes and pollution, we group cells in
graphical regions (see the discussion below for details on the procedure). In t

5All outcome variables reflect deviations from age- and gender-specific averages in the way th
computed, see Section 2. However, mean values of the outcome variables can still vary by age a
der, due to potential cultural and environmental practices. To account for this variation, we inclu
der and age group fixed effects. Moreover, we control for the child’s age in months to account
ential within age group variations.
15
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chmark model, we include fixed effects for the geographical region of residen
16 In our preferred specification, we cluster standard errors at the district lev
t our results are robust to different levels of clustering, as shown in the robustne
tion.

e basic link between air pollution and child growth has been previously estimate
the literature, with the primary choice of cooking fuel in the household often use
a proxy for pollution exposure. Linear models or multinomial logistic regressio
e been commonly used to estimate the drivers of the height-for-age score and t
bability of stunting.

shra and Retherford (2007) use a multinomial logistic regression approach and fin
ignificant and positive link between solid fuel use and the predominance of an
a and stunting among Indian children aged 6–35 months, using NFHS data fro
8-1999. Relying on a similar methodological approach, Machisa et al. (2013) fin

contrast, no significant correlation between the use of solid fuels and stunting
ldren from Swaziland. Kim et al. (2017) assess the relative importance of 13 co
ates of child stunting in South Asia employing data from nationally representati
ss-sectional surveys. Using mutually adjusted logistic regression models, they fin
significant effect of indoor pollution on stunting among children under the age
months. Fenske et al. (2013) revisit the analysis of stunting drivers in India, relyin
an additive quantile regression using the 2005-2006 NFHS data. They find that ch
n from households using gas or electricity as primary source for cooking tend to
lower risk of stunting, especially in the lower 15th percentile of the height-for-a

tribution. While the previous studies focused on indoor pollution, Goyal and Ca
g (2018) find that stunting is related to ambient air pollution in Bangladesh.

S estimates of the relationship between pollution and health are prone to bias; ch
n’s exposure to pollution is not randomly assigned but reflects a complex set of cu
al and socio-economic factors that even the richest set of controls might fail to ful
ount for. In such specifications, endogeneity concerns arise due to omitted variab
s and measurement error; households are likely to make decisions that affect bo
ld health and domestic purchases (such as solid fuel types) simultaneously. In ge
l, poorer and less educated households tend to have a higher exposure to pollutio

have both lower demand for and access to defensive mechanisms, such as fa
sks and air purifiers (Greenstone et al., 2021).

6For a discussion on including cell fixed effects, see Section B.3 in the Appendix.
16
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correct for the omitted variable bias, we employ an IV approach where we rely o
nd direction to capture quasi-random variation in air pollution, similarly to Deryu
et al. (2019) and Bondy et al. (2020). With this approach, we aim to pick up the va

on in pollution induced by non-local sources and transported across space by win
uitively, due to a generally unequal spatial distribution of emitting sources, air po
ion in a particular place can be higher or lower at a point in time depending on t
nd direction at that instant and the relative position of pollution sources.

e impact of wind direction on air pollution can be different across the country. F
mple, wind blowing from the West can clear the air for some locations but brin
vy pollutants for others, depending on where the pollution source is located.
ount for this, we allow the impact of wind direction on local pollution to vary b
graphical region. Our first-stage specification is given by:17

picg =
G

∑
g

ρ
g
1ShareS

ic +
G

∑
g

ρ
g
2ShareN

ic +
G

∑
g

ρ
g
3ShareE

ic + X′icθ + αg + εicg (

ere pic represents the estimated concentrations of PM2.5, CO and O3. The exclude
truments, Shareω

ic with ω ∈ {S, N, E}, represent the respective shares of time t
nd blew from the South, North, and East in the cell where child i resides, over his

lifetime. ShareW
ic is the omitted category. This division corresponds to a classific

n of wind direction according to 90-degree wind angle bins.18

divide the Indian territory into G geographical regions using a k-means cluste
algorithm over the latitude and longitude coordinates of cell centroids, simil

Deryugina et al. (2019). Fig. 3 illustrates the resulting territorial division into
ups, the total number of geographical regions we use in our benchmark specific

ns. Section 6 shows the robustness of the results when varying the total numb
regions. Intuitively, the higher the number of total geographical regions, the be
are the instruments at predicting air pollution; in contrast, the lower the numb

regions, the more likely it is that the captured variation in pollution is driven b
n-local sources.
7All IV estimations are executed employing the reghdfe command in Stata (Correia, 2016). T
mates the first and second stages simultaneously and produces adjusted standard errors.
8Our main results remain unchanged when the shares of wind direction are constructed around eig
dinal points, i.e., using 45-degree wind angle bins instead of 90-degree; see our robustness secti
ow.
17
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e empirical specification is constructed to exploit the variation in pollution induce
wind direction in a similar manner across all cells belonging to a specific geograp
l region, i.e., the coefficients ρg are estimated based on variation in all cells fro
ion g. Restricting the impact of wind direction on pollution to be the same for
ls in a region ensures that the pollution variation captured by Eq. 4 is more like
ven by non-local pollution sources that have a similar relative position to the enti
ion. In contrast, wind direction is less likely to affect locally produced pollutio
same way for all cells in a region, due to differential positioning of sources wi

pect to the cells.

ure 4 illustrates the variation in pollution we harness to estimate the causal impa
child growth outcomes. We take the example of Region 30, located in the center
ia, and estimate the relation between annual average PM2.5 concentrations and t
ual share of wind blown from each of the four cardinal directions, with the share

nd blowing from the West as the base category. The regression controls for year an
ion dummies. Here, wind from the South significantly reduces PM2.5 on averag
pared to wind blowing from the West; wind from the North or East has the sam

rage impact as from the West. This seems intuitive, as Region 30 is to the East of t
stern Ghats mountain range, so clean air from the sea hardly reaches it. The regio
urrounded by coal power plants to the North and East; only wind from the Sou
nages to clear the air. In Appendix B, we include results from the same exercise f
30 regions, with both four and eight cardinal directions to illustrate the variatio
pollution. In all cases, the share of wind from the different directions is a stron
dictor of local PM2.5.
18
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Figure 3: Territorial division into 30 regions.
Figure 4: Impact of wind direct
on average PM2.5 in Region 30.

e: Fig. 3 illustrates the categorization of territorial cells into 30 geographical regions based on a
ans algorithm over the latitude and longitude of cell centroids. Fig. 4 shows regression estimates
ual average PM2.5 concentrations in Region 30 on the share of wind blown from different cardin
ctions, while accounting for year and region indicators. West is the base category. Standard erro
clustered at the district level (for the specification, see Eq. B.2 in Appendix B).

e illustrative case above suggests that there is no bias due to weak instrumen
e results of the first-stage estimation in our benchmark model (Eq. 4) using t
ire dataset are presented in Section B.2 in the Appendix. Furthermore, the fir
ge Anderson-Rubin and the Kleibergen-Paap F-statistics in the table of results
tion 5.1 also reinforce that there is no weak instrument bias.

Results

is section presents the main results of estimating the impact of air pollution on chi
wth indicators (Eq. 3). Besides the pollution concentration variables, all speci
ions include the following controls: the household wealth index, the nightligh
ex, the number of household members, whether or not the child lives in a Hind

usehold, child’s age in months, age group, child’s gender, the year of interview, an
ate variables (average temperature, precipitation, and wind speed over the child

time). All models include geographical zone fixed effects.19 Standard errors a
stered at the district level.

9In the benchmark models, we use a total of 100 zones for the spatial fixed effects. The robustne
tion relaxes this assumption.
19
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Air Pollution and Child Growth

le 3 reports OLS and IV estimates of the impact of air pollution on child grow
icators. As reported in Panel 1, the OLS estimates indicate a detrimental effect

llution on children’s anthropometric measurements, but the estimates are general
t statistically significant, with the exception of carbon monoxide (CO) which a
rs to reduce the weight-for-age score and increase the probability of being waste

children.

nel B reports the IV estimates of the causal impact of air pollution concentrations o
hropometric measurements. These are sizably larger than the estimates in Panel
gesting a significant downward bias in the OLS.20

2.5 impacts

e IV estimates imply a highly significant impact of PM2.5 on children’s height-fo
score, as well as on stunting and severe stunting rates. The results suggest th

h 1 µg/m3 increase in PM2.5 over the lifetime exposure of a child, reduces his/h
Z score by 0.011 and increases the probability of being stunted and severely stunte
0.29 and 0.14 percentage points, respectively. We do not find evidence that PM
centrations affect the weight-for-age score or the probability of being wasted an
erely wasted.

variations in PM2.5 concentrations both across time and space are considerab
h, we report our estimates in relation to the observed variation. Table 4 conver
significant IV coefficients into shares of standard deviation explained, in a sim
fashion to Arcand et al. (2015). An increase of one standard deviation in PM

centrations, i.e., by 17.012 µg/m3 in our sample, corresponds to a reduction in t
rage HAZ score by about 0.19 (i.e., 0.01104× 17.012). This would explain 11.8%

0The explanation beyond the downward bias in the OLS estimates can be threefold. First, our
ates of pollution concentration can suffer from measurement error, as we are using information
available MERRA-2 resolution, which can imprecisely reflect personal exposure especially for pe
spent indoors. This measurement error in pollution biases the OLS estimate of the treatment eff
ard zero. IV estimates, in contrast, should be unaffected by the measurement error and are hen
er than the OLS estimates. Second, while OLS estimates reflect the average treatment effect (AT
r the entire sample, the IV estimates can be interpreted as local average treatment effects (LATE) a
be larger than the OLS due to heterogeneity in the studied population. We explore this heterogene
ection 5.2. Third, the downward bias in the OLS can suggest the presence of omitted variables th
correlated with pollution and health. For example, pollution concentrations can be higher in mo
ustrialized areas, where access to health care is easier, offsetting thus some of the negative impa
ollution on health (Sanders, 2012).
20
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sample standard deviation of HAZ. At a one standard deviation increase in PM
centrations, stunting and severe stunting rates increase by almost 5 and 2.4 pe
tage points, respectively. This corresponds to 10.9% and 7.1% of their respecti

ndard deviations.

ble 3: OLS and IV estimates of the effect of air pollution on child growth variables

HAZ Stunted Sev. stunted WAZ Wasted Sev. waste
(1) (2) (3) (4) (5) (6)

el A: OLS estimates

.5 (µg/m3) −0.00083 0.00015 −0.00007 0.00130 −0.00027 −0.00029
(0.00161) (0.00042) (0.00034) (0.00140) (0.00047) (0.00027)

(µg/m3) −0.00008 0.00006 −0.00002 −0.00030*** 0.00011** 0.00001
(0.00017) (0.00004) (0.00005) (0.00011) (0.00004) (0.00003)

µg/m3) −0.00783 0.00239* 0.00111 −0.00370 0.00266* 0.00101
(0.00520) (0.00136) (0.00089) (0.00448) (0.00152) (0.00081)

n of outcome variable −1.323 0.328 0.128 −1.628 0.399 0.103
sted R2 0.128 0.092 0.052 0.168 0.112 0.045

el B: IV estimates

.5 (µg/m3) −0.01104*** 0.00288*** 0.00143** 0.00113 −0.00093 −0.00025
(0.00315) (0.00079) (0.00056) (0.00253) (0.00084) (0.00046)

(µg/m3) 0.00060 −0.00011 −0.00024* −0.00067* 0.00033** 0.00001
(0.00055) (0.00016) (0.00014) (0.00035) (0.00013) (0.00007)

µg/m3) 0.01689 −0.00592 −0.00228 −0.01670 0.00747** 0.00302*
(0.01374) (0.00363) (0.00218) (0.01073) (0.00352) (0.00178)

n of outcome variable −1.323 0.328 0.128 −1.628 0.399 0.103
erson-Rubin F-stat (joint sig.) 35.325 23.193 17.158 47.052 40.605 36.633
erson-Rubin F-stat p-value 0.000 0.000 0.000 0.000 0.000 0.000
bergen-Paap F-stat 16.6 16.6 16.6 16.6 16.6 16.6

ote: The table reports OLS (Panel A) and IV (Panel B) estimates of the impact of air pollution concentrations on child grow
utcomes (Eq. 3 in the main text). Each column represents the effect of pollution on a different anthropometric measure. T
ata is at the individual child level. All regressions include the following controls: the household wealth index, the nightlig

ndex, the number of household members, whether or not the child lives in a Hindu household, child’s age in months, chi
ge group, child’s gender, the year of interview, and climate variables (average temperature, precipitation, and wind sp
ver the child’s lifetime). For ease of presentation, these coefficients are not reported here; instead, full model estimations
resented in Appendix C.1. All models include geographical zone fixed effects, with cells being grouped into 100 regio

n the first-stage of the IV models, the impact of wind direction on air pollution concentrations is allowed to vary across
egions (i.e., G = 30 in Eq. 4). Standard errors, clustered by district, are reported in parentheses. Statistical significance at
%, 5%, and 10% levels is denoted by ∗∗∗, ∗∗, and ∗, respectively.
21
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le 4: Quantification of PM2.5 impacts on child growth outcomes as share of standa
viation explained.

HAZ Stunting rate Sev. stunting rat
(1) (2) (3)

2.5 11.8% 10.9% 7.1%

Note: The table converts the estimated significant PM2.5 IV coefficients from Tables 3 (Panel B) in
shares of standard deviation (sd) of the dependent variables explained. Conversions are done
cording to the following formula: share of sd = [100× β̂× sd(p)]/sd(y). The sample standard de
ations of the growth indicators, sd(y), take the following values: 1.587 for HAZ, 0.469 for the stunti
rate, and 0.334 for severe stunting. The sample standard deviation for PM2.5, sd(p), is 17.012.

xt, we report impact sizes in relation to the WHO guidelines for pollution exp
e. The target threshold for mean annual PM2.5 concentrations is 5 µg/m3, aroun
ht times lower than the observed mean national concentrations in India over 201
6 (Table 2). Back-of-the-envelope calculations suggest that, at a reduction in PM
centrations from 41.146 to 5 µg/m3, the stunting and severe stunting rates wou

crease by 10.41 and 5.17 percentage points respectively, ceteris paribus. In our samp
s would correspond to a decrease in national stunting rates from 31.1% to 20.7%,
ut 14.26 million less stunted children.21

her pollutants

hough PM2.5 is the standard air quality indicator for health risks, other pollutan
responsible for negative health impacts, most importantly carbon monoxide (CO
ozone (O3). Similarly to PM2.5, these pollutants are transported by wind acro

ritories and need to be accounted for in the empirical estimation. Simultaneous
luding all pollutants in our models reduces the risk of omitting important heal
k factors that are co-transported by wind, and of over-estimating the impact of PM
health impacts. Other two critical air pollutants that are known to have negati
lth impacts and are usually accounted for in the computation of daily air quali
ices are sulfur dioxide (SO2) and nitrogen dioxide (NO2). However, both pollutan
vert to PM2.5 within a few days. As such, our specification, which employs lon

m pollution aggregates, does not allow us to assess their independent impacts fro
se of PM2.5, similarly to Deryugina et al. (2019).

1According to the Indian Ministry of Statistics, India had a population of around 137 million childr
d 0-5 years in 2018 (http://www.mospi.gov.in).
22
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our results, both OLS and IV estimates suggest limited independent impacts of C
ozone on children’s height-related outcomes. However, in both Panels 1 and

bon monoxide appears to significantly impact weight-related measures, such
weight-for-age score and wasting rates. The IV estimates suggest that an increa

CO by 1 µg/m3 reduces WAZ on average by 0.0007 and the probability of bein
nted by 0.03 percentage points. This corresponds to 2.84% of the sample standa

viation of WAZ and 2.95% of the sample standard deviation of the wasting rate,
increase by one standard deviation in CO.

ch 1 µg/m3 increase in ozone concentrations leads to an increase by 0.75 and 0
centage points in wasting and severely wasting rates, respectively. An increa
one standard deviation in O3 explains 9.87% and 6.37% of the sample standa

viation of the wasting and severe wasting rate, respectively.

results are robust to including the pollutants individually in the models, as r
rted in Appendix C.2, suggesting that their independent impacts on health are n
sked by correlations with PM2.5 as main pollutant.

erall, we find that fine particulate matter has the strongest associated health risk o
ght-related outcomes, while ozone and CO are responsible for negative impacts o
ight-related growth measures.22 Otherwise stated, it appears that PM2.5 is respo
le for long-term growth impairments, while CO and O3 are responsible mostly f
rt-term deficiencies. This difference could be related to the different health ris
three pollutants raise and the pollutant-specific sensitive groups (see Fig. A.7
Appendix). While PM2.5 brings health risks to all children, CO is most harmf
individuals with heart disease, and ozone is especially dangerous, among othe
people with diets limited to certain nutrients. We revisit these findings in Se

n 5.3.

mparison to previous findings

r results are in line with previous studies that investigate the link between air po
ion and anthropometric measures. In India, Mishra and Retherford (2007) find th
ere stunting is more prevalent among children from households using biofuels f
king and heating. In a similar vein, Fenske et al. (2013) show that children fro

2The impact of CO is weakly statistically significant and negative on severe stunting, reflecting t
that CO is often negatively correlated with other pollutants (Deryugina et al., 2019; Currie a

idell, 2005).
23
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useholds using kerosene for cooking are more likely to be affected by severe stun
than households using other fuel types.23 The methodological differences betwe
present paper and the previous two studies are that they: (i) rely on the main fu
e reported by the household as a proxy for (indoor) air pollution, and (ii) do not a
nt for endogeneity issues linked to air pollution exposure. Using a panel structu
ambient air pollution data from satellite observations in Bangladesh, Goyal an

nning (2018) find that an increased exposure to pollution during the prenatal perio
ssociated with a higher risk of stunting during childhood. None of these studi
siders other air pollutants, such as CO and ozone, in their analysis. Our results a

ll-aligned with the previous literature in terms of direction of the general pollution
nting relation, and try to improve on the magnitude of estimated effect sizes by a
nting for endogeneity. However, due to the differences in empirical specification
irect comparison of the magnitude of estimates is difficult.

Age, gender, and birth order

e models reported in Table 3 are estimated using the full set of controls, albeit n
orted there. The full estimation results are included in Section C.1 of the Append
coefficients have the expected sign. The household wealth index is one of the va

es with highest explanatory power of child growth indicators, being highly signi
t across all models and positively related to the height- and weight-for-age z-score

negatively related to stunting and wasting rates, in both moderate and seve
ms. The nightlights index shows similar patterns, although not statistically sign
nt in HAZ and WAZ models. Children residing in households with more fami
mbers tend to have poorer growth indicators. Furthermore, children from Hind
useholds also fare worse than the rest.

child’s age in months appears to play an important role in explaining growth d
encies, even after controlling for the age group. To gain a better understanding
w the impact of pollution on health varies with age, we estimate the benchma
del with the full set of controls for five age groups separately. The coefficients ca
ing the impacts of PM2.5 on height-related growth outcomes are captured in Fig
ow. The magnitudes appear to increase monotonically with age, in line with the th
that each new year of exposure to pollution contributes to a cumulative worsenin

he health status. The estimated impacts of PM2.5 seem to gain statistical significan

3The combustion of kerosene results in high indoor CO and SO2 concentrations.
24
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m age one onward.
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ure 5: IV estimates of the impact of PM2.5 on child growth outcomes, by age grou

e: The figure presents IV estimates of the impact of PM2.5 on HAZ, stunting and severe stunting ra
. 3), separately by age group. The usual controls are included and the standard errors are cluster
district.

the pooled models across all five age groups, male children seem to fare worse acro
growth indicators (see Table C.1 in the Appendix). Gender differences in the grow
tcomes of children might be explained by both genetic and cultural factors.

e impacts of PM2.5 by gender and birth order are captured in Fig. 6, showing th
ls’ height-related growth indicators are relatively more sensitive than boys’. The
ults are unfortunately not surprising, as health discrimination against women
ia is well-documented (Vulimiri et al., 1996). Worryingly, as the Indian econom
been growing, the average height in India is on the rise, but the observed rate

rease is three times higher for Indian men than women, likely due to differentiate
ess to improvements in nutrition and health care (Deaton, 2008). We revisit th
int in Section 7.
25
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rthermore, Fig. 6 shows the differential impact of PM2.5 on firstborns and junio
ildren that have older siblings). We find stronger negative impacts on childr
her in the birth order than on firstborns, for both genders. The results are sugge
e of cultural differences in the upbringing of children with respect to the adoption
llution defensive mechanisms, with preferential treatment given to firstborn sons.
eral favoritism toward eldest sons in India has been previously documented in Ja
andran and Pande (2017). Hence, our results point to one channel through whi
growth indicators of juniors are poorer.

-.03

-.02

-.01

0

0

.005

.01

0

.002

.004

.006

   

HAZ Stunting Severe stunting

Firstborn girls Firstborn boys Junior girls Junior boys

ure 6: IV estimates of the impact of PM2.5 on child growth outcomes, by gender an
th order.

e: The figure presents IV estimates of the impact of PM2.5 on HAZ, stunting and severe stunting ra
. 3), separately by gender and birth order (firstborn versus juniors). The usual controls are includ
the standard errors are clustered by district.

Rural versus urban

e pollution effects we measure are net of any behavioral responses to health ris
are averaged across India, despite stark variation in pollutant concentrations le
26
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across the country (see Fig. A.2). While PM2.5 is the main critical pollutant with hig
centrations all over the country, ground-level ozone is typically found at high
centrations in urban areas, usually associated with vehicle emissions. Carbon mo
levels can be high in both rural and urban areas, with the burning of unclean fue
cooking and heating as main sources. Children can thus be exposed to differe

llutants, depending on their place of residence.

le 5 shows that PM2.5 has indeed comparable results on height-related growth ou
es in both rural and urban areas. However, the impacts on weight-related ou
es seem to be driven by CO in rural areas, where the burning of solid fuels indoo

till largely present, and O3 in urban areas, where ozone is produced when poll
ts emitted by cars, power plants, industrial boilers, refineries, chemical plants, an
er sources chemically react in the presence of sunlight (Lal et al., 2008; Sharma et a
6; Sujith et al., 2017).
27
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le 5: Rural versus urban areas: IV estimates of the effect of air pollution on chi
wth variables.

HAZ Stunted Sev. stunted WAZ Wasted Sev. waste
(1) (2) (3) (4) (5) (6)

el A: Rural

.5 (µg/m3) -0.00971*** 0.00276*** 0.00164** 0.00264 -0.00110 -0.00027
(0.00354) (0.00092) (0.00064) (0.00264) (0.00090) (0.00051)

(µg/m3) 0.00012 -0.00003 -0.00027* -0.00123*** 0.00046*** 0.00004
(0.00052) (0.00016) (0.00014) (0.00046) (0.00017) (0.00008)

µg/m3) 0.02357 -0.00760* -0.00438* -0.00974 0.00515 0.00181
(0.01540) (0.00420) (0.00265) (0.01161) (0.00405) (0.00204)

ervations 169,842 169,842 169,842 169,842 169,842 169,842
n of outcome variable -1.397 0.348 0.139 -1.685 0.419 0.111
erson-Rubin F-stat p-value 0.000 0.000 0.000 0.000 0.000 0.000
bergen-Paap F-stat 20.6 20.6 20.6 20.6 20.6 20.6

el B: Urban

.5 (µg/m3) -0.01251*** 0.00227** 0.00101 -0.00241 -0.00117 -0.00004
(0.00439) (0.00103) (0.00069) (0.00375) (0.00118) (0.00066)

(µg/m3) 0.00112* -0.00014 -0.00013 0.00024 0.00025 0.00008
(0.00065) (0.00017) (0.00014) (0.00056) (0.00017) (0.00008)

µg/m3) -0.00766 0.00156 0.00444 -0.03332*** 0.01326*** 0.00822**
(0.01601) (0.00428) (0.00270) (0.01255) (0.00419) (0.00239)

ervations 53,207 53,207 53,207 53,207 53,207 53,207
n of outcome variable -1.087 0.262 0.092 -1.444 0.334 0.077
erson-Rubin F-stat p-value 0.000 0.000 0.000 0.000 0.000 0.000
bergen-Paap F-stat 8.0 8.0 8.0 8.0 8.0 8.0

ote: The table reports IV estimates of the impacts of air pollutants on child growth variables (Eq. 3) in urban and rural are
eparately. Each column represents the effect of pollution on a different outcome variable. The data is at the individual ch
evel. The usual controls have been includeed. Regressions include geographic group fixed effects, with cells being group
nto 100 regions. In the first stage of the IV models, the impact of wind direction on air pollution concentrations is allow
o vary across 30 regions (i.e., G = 30 in Eq. 4). Standard errors, clustered by district, are reported in parentheses. Statist
ignificance at the 1%, 5%, and 10% levels are denoted by ∗∗∗, ∗∗, and ∗, respectively.

Robustness Tests

test the robustness of our results across several dimensions and show that o
in findings are consistent with alterations in the benchmark specification. We d
s the results here, while the supporting tables and figures are relegated to the A
dix.
28
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The air quality index

r benchmark models account for the three most important criteria pollutants th
se health risks in India. The estimations so far have included level concentratio
the pollutants and served to identify the health impacts of one additional µg/m
wever, health impacts of pollutant concentrations might not be linear, but diffe
effects could occur at different ranges of concentrations. Moreover, although

llutants included are measured in terms of µg/m3, their relative impact on heal
tcomes might not be directly comparable. We convert pollutant concentrations in
corresponding air quality index (AQI)24 and estimate the IV models with pollutan
cific and total AQI, separately. The results are presented in Section C.6 of the A
dix. The estimated coefficients are consistent in both sign and significance to o
chmark results. When comparing coefficient sizes across models using either co
trations or air quality indices, the magnitude is fairly close between PM2.5 conce

tions and AQI PM2.5, suggesting that the impact of one additional µg/m3 of PM
omparable to one unit increase in AQI PM2.5.

Using sea wind for an alternative specification

check the robustness of our results, we design an alternative identification strateg
ere we only rely on the sub-sample of children living in the vicinity of the Indi
stline. We use the share of time the wind blew from the direction of the sea as
trument for local pollution concentrations. Full details on the specification and t
ults are included in Section D of the Appendix. Despite lower statistical signi
ce, the magnitude of the effects is consistent with our benchmark findings.

Clustering of standard errors

our main specification, we cluster standard errors at the district-level, to corre
potential heteroskedasticity. Section E.2 in the Appendix demonstrates how o

ults remain unchanged when we instead cluster at the cell or geographical regio
el.

ally, we should correct the standard errors for spatial correlation as in Conley (199

4An AQI aims to offer a comprehensive measure of ground-level air pollution, taking into account t
lth risks imposed by various criteria pollutants. Appendix C.6 presents summary statistics and k
criptive figures of air pollution as measured by air quality indices. We follow the US EPA guidelin
computing the individual pollutant-level and total air quality index (US EPA, 2018).
29
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wever, the cross-sectional data structure at the individual level, with multiple ch
n located in the same place (sharing the same latitude and longitude coordinates)

t well-suited for spatial error correction models, at least not under current advanc
t we are aware of. Nevertheless, in order to draw a rough comparison betwe
dels with spatially corrected errors versus models with errors clustered at the d
t level, we modify the data structure and run the analysis in a cross-section at t
l level, where variables represent cell means constructed from individual-level o
vations. The description of the entire exercise and the results are included in Se
n E.5 of the Appendix. Overall, we find straight consistencies among the differe
or correction models, suggestive of robustness of our main specifications. How
r, this analysis needs to be interpreted with caution, as we rely on a different da

ucture when running the tests.

Pollution from non-local sources and instrument definition

order to be able to interpret IV estimates as a LATE, the monotonicity assumptio
arding the consistent impact of wind direction on air pollution needs to hold (A
st and Imbens, 1995, see also the discussion in Deryugina et al. (2019)). This mea
t an increase in the share of wind blowing from a particular direction should affe
pollution concentrations similarly for all cells in a geographic region. We inves
e the validity of this assumption by estimating alternative specifications where w
y (i) the number of cardinal points for defining wind direction, and (ii) the size
geographical regions (the number of cells in a region).

st, Table E.1 in the Appendix captures the IV estimates when wind direction is a
ed to vary across 8 cardinal points, i.e., when using 45-degree wind angle bi

tead of 90-degree as in the benchmark specification. The sign and magnitude of t
ults remain consistent, indicating robustness.

ond, we vary the size of the geographical region and thus the level of spatial aggr
ion at which the impact of the excluded instruments on air pollution is allowed
y. Fig. E.1 captures the robustness of the impact of PM2.5 on height-related outcom
iables, when dividing the Indian territory into 10, 20, 30, 40, or 50 regions, altern

ely. Beyond providing evidence that the monotonicity assumption is not violated
r analysis, this test also brings evidence that the variation in pollution we are ca
ing is more likely to come from non-local sources than local ones. In contrast,
variation in pollution we are capturing came local sources, our results would va
30
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th the number of cells in a region.

ditionally, we run tests to see whether the results remain stable when varying t
graphical region dummies. Section E.3 in the Appendix allows for different leve

aggregation when defining the regional dummies and shows that results are ve
ilar to those in our benchmark specification.

sed on these different tests, we find no evidence so far of the violation of the mon
icity assumption. Hence, we interpret this as supportive evidence that our resu
be interpreted as LATE.

Discussion: Height and labor market outcomes

ere exists evidence that the height of an individual as a child predicts not only his
height as an adult, but it is also an important predictor of health and social stat
earnings in adulthood (see, e.g., Persico et al., 2004; Case and Paxson, 2008b; Lun

rg et al., 2009). Several possible underlying mechanisms have been highlighted:
ysical capacity has a significant impact on adult health, which is corresponding

arded on the labor market (Steckel, 1995; Strauss and Thomas, 1998; Metter et a
2; Thomas et al., 2006; Lundborg et al., 2009); (ii) height is strongly predictive of co

ive capacity, where the link becomes particularly important in early childhood an
tinues throughout the adult life (Richards et al., 2002; Case and Paxson, 2008a,b

(iii) height also affects non-cognitive skills, such as confidence and self-imag
ich can impact perseverance and social skills (Persico et al., 2004; Heckman et a
6). Shorter height may increase the probability of being discriminated against, pa
larly in social dealings and negotiations (Frieze et al., 1990).

e strength of the height - earnings relation is particularly apparent at the tails of t
ome distribution (Lundborg et al., 2009) and the height premium is often higher
veloping countries (Schultz, 2002; Sohn, 2015).

compute the reduced earnings related to shorter height associated with air poll
n. Table 6 summarizes some of the main contributions in the literature to the ca
ation of the height premium in earnings, based on differences in adult height. W
hor our calculations to the estimates provided by Sohn (2015), where the height pr

um in earnings per year is estimated at 7.5% for men and 13% for women per 10 ce
eters of adult height, based on data from Indonesia. As a first step, we specify t
31
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ation between child height and adult height following Cole and Wright (2011):

Heighta = sda × HAZa + Mediana (

ere Heighta stands for adult height, Mediana and sda are the median and standa
viation in adult height of the WHO reference population, and HAZa is the heigh
-age z-score with respect to the adult WHO reference population. The link to chi
racteristics comes from expressing the adult’s height-for-age z-score (HAZa) as
ction of child’s height-for-age z-score (HAZc), with HAZa = ρ × HAZc. ρ is t
relation coefficient between child’s current height and their adult height, varyin

th age and gender (as tabled in Molinari et al. (1995), see Appendix F).25 Then, Eq
omes:

Heighta = sda × ρ × HAZc + Mediana (

measure the impact of an increase in the mass concentrations of PM2.5 on adu
ght as:

ight
′
a −Heighta = (sda × ρ × HAZ

′
c + Mediana)− (sda × ρ × HAZc + Media

= sda × ρ × β̂1 (

ere Height
′
a is the height of an adult that has been exposed to pollution in childhoo

their corresponding HAZ score in childhood is HAZ
′
c. β̂1 is the change in the HA

re of children at an increase in the mass concentration of PM2.5.

ure 7 (Panel A) plots the estimated reduction in adult height at an increase by o
ndard deviation in PM2.5, based on the relation described in Eq. 7, holding all oth
ngs equal. These estimates are based on age- and gender-varying correlations b
een height in childhood and height in adulthood (data from Molinari et al. (1995

standard deviation of height for nineteen-year-old men and women in the WH
erence population,26 and the estimated impact of one standard deviation increa
PM2.5, by gender and age group (based on Fig. C.4). Despite higher responses
men’s HAZ scores to air pollution during childhood (β̂1,women < β̂1,men), their adu
ght is relatively less affected than men’s, following from lower estimated correl
ns between childhood height and adult height in women (ρwomen < ρmen), as w

5The correlation between child height and adult height increases with child’s age Cole and Wrig
11).
6It is generally the case that individuals reach their adult height in the early twenties (Deaton, 200
32
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lower standard deviations in adult height (sda,women < sda,men).

xt, we translate the “lost” height into labor market outcomes, relying on the es
tes of Sohn (2015) for Indonesia, the most similar country to India in which t
ght premium has been estimated. Considering a 7.5% height premium for men an

for women per 10cm, the estimated missed earnings are plotted in Fig. 7 (Pan
for Indian boys and girls five-year old or younger. Results are expected to be mo
ust after age two, when the correlation coefficient between child and adult heig
omes more precise (Cole and Wright, 2011). Moreover, in our IV estimations, t

pact of PM2.5 on HAZ is not significant for boys below one year old (see Fig. C.
us, we prefer to give more weight to the estimated lost earnings for children in a
ups 2–5.

ese rough estimates point to a loss in earnings in the range of 1.4–1.8% for men an
–2% for women due to an increase in PM2.5 by one standard deviation during the
ldhood, all other things equal. Our results are thus suggestive of stronger long-ter
ative consequences of PM2.5 exposure on girls than boys, especially with respect

ssed earnings in adulthood. The size of the estimated coefficients rely on the limitin
umption that the height premium computed by Sohn (2015) using Indonesian da
lds in India as well. From the scarce existing evidence for India, the height premiu
pears to be comparable, if not higher in India, at least for labor-intensive professio
h as coal mining (Dinda et al., 2006).

reover, according to the Global Gender Gap Report 2020, India is and has be
forming more poorly than Indonesia in terms of women’s access to economic pa
pation and opportunity, educational attainment, health and survival, and politic
agement, relative to men’s (World Economic Forum, 2020). We then expect th
gender-differentiated height premium in earnings is higher in India than Indon

, suggesting that our results regarding the PM2.5 gender discrimination might
derestimating the true impacts.
33
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Table 6: Height premium in earnings in developing and developed countries.

dy Country Sample Height Premium

Developing countries
hn (2015) Indonesia Adult workers 7.5% (men) and 13% (women) per 10 cm a,c

gl (2014) Mexico Men aged 25-65 12% per 10 cm b

omas and Strauss (1997) Brazil Men aged 25-50 2.4% per 1% of height c

nda et al. (2006) India Coal miners in the east of India 9–17% above average - below average,
6–13% above average - average;
average = 155.0–164.99 cm a

Fave and Thomas (2017) Indonesia HH members aged 15 and older 2.3% per 1% increase in height c,b

Developed countries
rsico et al. (2004) US and UK Cohort data, aged 7-33/16-27 (UK/US) 2.1% (UK) and 2.6% (US) per 1 inch at age 16 b

se and Paxson (2008b) US and UK Cohort data, aged 7-33 (UK) 1.8-2.6% for men and 0.6-2.4% per 1 inch for wome

ndborg et al. (2009) Sweden Males aged 28-38 6% per 10 cm

shad (2008) US Adults aged 21-45 5.4% per 10 cm

rper (2000) UK Adult men 5.9% between 80-89th and 20-79th height percentile

ote: The table presents a list of existing studies that investigate the height premium in earnings using large-scale longitudinal data f
et of developing and developed countries. Studies include different sets of covariates in their specifications: a workplace characteris
ssociated with risk and health measures at the workplace; b childhood characteristics as covariates; c body measurements, cogni
kills, and educational attainment.
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ure 7: Sensitivity of adult height and of earnings in adulthood to exposure to PM
centrations during childhood, by age and gender.

e: The figure presents changes in adult height (Panel A) and in earnings in adulthood (Panel B) at
rease by one standard deviation of PM2.5. The impact is computed by child’s age and gender.
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Conclusions

e detrimental effects of air pollution on children’s health are becoming increasing
ient, particularly in India, where the bad air quality is a constant problem, exa
ated by the high prevalence of solid fuel combustion. We rely on a unique datas
med by merging the latest available National Family Health Survey (NFHS-4) in I
with satellite information on ambient air pollution, wind direction and speed, an

ated weather variables. We use the quasi-random variation in pollution induced b
nd direction. Correcting for endogeneity, this paper is, to the best of our knowledg

first to move away from correlation analysis and take steps toward demonstratin
causal link between air pollution and chronic restrictions in the physical develo

nt of children.

find that higher exposure to air pollution causes significant limitations to chi
wth. An increase by one standard deviation in PM2.5 induces higher rates of stun
and severe stunting by 5 and 2.4 percentage points, respectively. Ozone and C

pear to impact weight-related growth outcomes. The WHO recommends an avera
ual PM2.5 level of 5 µg/m3, which is eight times lower than the annual average
ia for the period 2010-2016. Back-of-the-envelope calculations indicate that redu
pollution levels in India to the WHO standard, assuming all other things equ
ld decrease stunting rates by about 10.4 percentage points, impacting about 14

llion children. Our estimates are consistent across a series of robustness tests.

use previous findings to compute a rough estimate of the additional impact
llution on the height premium in earnings. The results illustrate once more ho
ly-life investments in human health capital are essential for personal and pub
nomic development in the long-term.

e limitation of the current analysis is linked to the data structure used. Whereas t
HS is already in its fourth round, only the last wave offers georeferenced inform
n of primary sampling units to which we could link satellite information on poll
n, wind, and weather-related variables. Increasing the availability of geocoded su
s would not only allow to account for individual time-invariant characteristics b

o to better estimate the long-term consequences of child growth impairments.

use a gridded data structure to explore exogenous variation in ambient air po
ion. Modest estimation errors could be expected due to imprecise pollution co
tration measurements along India’s geopolitical borders. Moreover, this approa
35
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ies on ambient air pollution levels, as information on direct exposure to pollution
available. Our results might underestimate the impact of pollution on growth ou

es. Nevertheless, the current analysis is expected to be informative for designin
ulations that are guided by ambient air pollution indicators.

e results of this paper suggest several areas for further research. Important que
ns remain as to the marginal role of different pollutants on health outcomes, or t
ssible interactions between them. Moreover, the estimates of pollution impacts a

of adaptation behavior, remaining silent about how much caregivers act in t
kground to ameliorate health shocks. We find suggestive evidence that pollutio
criminates girls relatively more than boys, indicative of differentiated access to n
ion and health care. Understanding the drivers and role of compensating or rei
cing behavior by child caregivers is essential for designing appropriate supportin
grams and public policies (see Currie and Vogl (2013) for a discussion).
36
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ofAir pollution and child development in India

Anca Balietti, Souvik Datta, and Stefanija Veljanoska∗

Abstract

In this paper, we study the impact of air pollution on child growth in India.
We rely on wind direction to capture quasi-random variation in three main crite-
ria air pollutants. We show that an increase in the average concentration of fine
particulate matter by one standard deviation is accountable for almost 5 and 2.4
percentage points of stunting and severe stunting rates rates, respectively. We also
find that ozone and carbon monoxide impact weight-related outcomes. Stunting
has critical long-term health and economic consequences; through its impact on
stunting, pollution exacerbates the height premium in earnings, with girls being
more adversely affected than boys in India.
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