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Abstract
Meta-atoms interact with light in interesting ways and offer a large range of exciting properties.
They exhibit optical properties inaccessible by natural atoms but their fabrication is notoriously
difficult because of the precision required. In this perspective, we present the current research
landscape inmakingmeta-atoms, with a focus on themost promising self-assembly approaches and
main challenges to overcome, for the development ofmaterials with novel properties at optical
frequencies.

Introduction

Meta-atoms are structured artificial composite nanostructures designed to absorb and scatter light in ways
not accessible by natural atoms ormolecules. These properties result not only from thematerials that
compose the structure but also from the geometry and positioning of the components of themeta-atom.
They are usually optically resonant structures at visible and infra-red frequencies. Similarly, ametamaterial
is a structured artificial material composed of large amounts ofmeta-atoms arranged into two- or three-
dimensional structures to provide optical responses that do not naturally occur. They inherit their optical
properties from themeta-atoms as well as from their spatial arrangements. The field ofmetamaterials is now
a little over twenty years old and its community has producedmany devices and applications, inmost cases
by top-down fabrication. These top-down approaches usually consist of devicesmanufactured using
lithography, as well other techniques such as electrodeposition into track-etchedmembranes [1–3] or
electrochemical anodization [4]. Lithographic approaches offer precisemorphological control, but suffer
limited throughput and are not well suited to themanufacture of 3Dmaterials. Some of its most prominent
examples include cloaking, hyper-lensing, negative refraction, flat optical devices, and optical magnetism
[5–11].

More recently, a complementary bottom-up fabrication approach has emerged (figure 1). Typically,
researchers use softmatter techniques, such as colloidal nanochemistry, to synthesize nanoresonators, and then
assemble them intometamaterials. These techniques can producemuch larger quantities ofmeta-atoms per
synthesis than top-down approaches, and in sufficient volume to fabricatemetasurfaces (∼108meta-atoms
mm−2) and bulkmetamaterials (∼1012meta-atomsmm−3). Bottom-upmethods offer a high control over
morphology and unrivalled scalability. They allow the synthesis of optical resonators with high precision and
can achieve smaller gaps between resonant nanostructures than top-downmethods, such as lithography. The
meta-atoms can be dispersed in aqueous or organic solvents to produce inks that can coat surfaces or assemble
into a 3Dmaterial with varying degrees of order and disorder. This ability to separate the design of themeta-
atom from that of themetamaterial holds a lot of promise for the development of novel applications.
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Tailored optical properties

Amajor focus of this bottom-up approach has been the generation of artificial opticalmagnetism [12, 13].
Gomez-Graña et al produced a bulk self-assembled three-dimensional isotropicmaterial that exhibited a
magnetic response at visible frequencies [14]. They realized thismetamaterial by carefully engineeringmeta-
atoms to exhibit strongmagnetic dipolar resonances. The ability to designmeta-atomswith specific electric and
magnetic dipoles—and evenmultipoles—has enabled tailoring the scattering direction of individual nano-
objects [15, 16]. In principle, by achieving an adequate distribution of radiatingmultipoles, it is possible to
produce any angular radiation pattern. Thismeans thatmetasurfaces, or 2Dmetamaterials, can be designed to
totally absorb, reflect or transmit light. To achieve this, Huygens’meta-atoms (dually resonant systemswith
equal odd and evenmultipoles) should be precisely designed and positioned so as to create a phase-shift thatmay
be as large as 2πwith respect to the incident wave. The resulting interference is what produces the overall
response of themetasurface [17–21].More generally, spatial control of the phase ofmeta-atoms deposited into
an ordered two-dimensional array can be achieved either by varying the geometric parameters of themeta-atom
or the separation of neighboringmeta-atoms. The excellent geometric control offered by lithography hasmade
it popular as ameans to produce such devices. It remains a challenge for bottom-up approaches to surpass
lithographic techniques. Arrangingmeta-atoms into arrays with sub-wavelength periods and sorting them
according to the phase-shift they impart is far from trivial on large surfaces. However, achieving this would
enable the production of bottom-up flat optical devices that shape optical wave fronts such asflat lenses, prisms,
phase plates, or even vortex-beam generators.

Disorder and inaccuracy are inherent to bottom-upmethods and are often viewed as a fundamental
limitation of these approaches. However, recent trends in the literature have seen the inclusion of a controlled
degree of disorder into such systems as potentially advantageous [22–24]. For instance, disordered surfaces can
achieve perfect absorption, an applicationwhere 100%of the impinging light is resonantly absorbed [21].
Furthermore, the sharp 2π phase-shift across the resonance imparted byHuygens’meta-atoms implies a rapid
spectral variation of the phase over the resonance bandwidth. Practically, thismeans that a disordered surface
composed of such structures would potentially exhibit strong group velocity dispersion, a property that is
commonly used to chirp or compress ultra-short optical pulses [18].Without being fully disordered, 2Dmeta-
atom assemblies with correlated disorder,may producemetasurfaces with similar efficiency to ordered lattices
[25, 26]. For instance, Akselrod et al have demonstrated near-perfect absorbance frommetasurfaces of partially
disordered self-assembledAg nanocubes [27]. Further investigations of bottom-up approaches should explore
these regimes to see if elegant optical properties are possible, notably because self-assembly often leads to
correlated systems.

Asmeta-atoms are generally optically resonant structures, clusters of plasmonic particles are particularly
promising candidates. Therefore, the development of newdesigns andmathematicalmodels to explore the full
potential of the radiation capabilities offered by individual or assembled compositemetal/dielectricmeta-atoms
is required. This includes, for instance, finding homogenized versions of dense plasmonic clusters composed of
many nanoparticles, because simulating assemblies of such clusters has a giant computational load.

Figure 1.A few examples of themain chemical routes to synthesizemeta-atoms and strategies for the development of new
metamaterials by self-assembly approaches.
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Synthesis ofmeta-atoms

The current approaches to the bottom-up synthesis of plasmonic clusters can be grouped into fourmain
strategies: controlled aggregation, emulsion, templated self-assembly, andmulti-step colloidal chemistry
(figure 1 and table 1) [28]. Thefirst two of these are directmethods to produce batches of clusters via either rapid
aggregation or emulsification. These techniques produce broad distributions of cluster valencies, and are
controlled using stoichiometry and by stopping the aggregation/emulsification processes at precise times.
Templates-assembly approaches andmulti-step colloidal syntheses aremore complex and selectively target the
synthesis of clusters of a single valency.

Templated-assembly exploits the high uniformity of certain biologicalmolecules such as viral capsids or
DNAorigami to template the self-assembly of nanoparticles. On the other hand,multi-step colloidal syntheses
usesfine control over polymerization of latex emulsions onto SiO2 nanospheres to generate symmetric
templates used to direct nanoparticle growth [60, 67, 68]. For example, this was employed to produce precise
icosahedral arrangements of twelve Au or Ag nanospheres around a SiO2 core [16, 69].

In general, the optical properties ofmeta-atoms becomemore complicated as the number of constituent
resonant nanostructures increases; with higher order resonancemodes becoming apparent and lower order
resonances becoming redshifted and broader. Thefield enhancement of such clusters typically scales with the
square of the cluster valency [70]. These optical properties are highly sensitive to disorder in the structure of the
clusters, such as polydispersity or positional disorder, which induce large shifts in resonances and enhanced
electric quadrupolar andmagnetic dipolar contributions, resulting in a very broad optical response when
measured in bulk [71, 72]. Therefore, bottom-up approaches typically target the production ofmeta-atomswith
a high homogeneity in their size, structure, and valency. In that regard, templated self-assembly andmulti-step
colloidal chemistry represent themost promising approaches. For example, the optical properties of
dodecahedral plasmonic clustersmade bymultistep colloidal chemistry have been explored in-depth and show
already potential for use asHuygens’ sources formetasurfaces [16, 69]. However, challenges remain to optimize
these protocols for the production of even higher yields and further expand the range of achievable cluster
morphologies. Findingmetrics to quantitatively compare these approaches is difficult as information onmeta-
atomyield or their optical properties are oftenmissing from the literature. Reliable protocols capable of
producing clusters of single valencies above twelve are currently non-existent. The range ofmaterials used in
plasmonic clusters remains relativelymodest. Clusters of Si orGe have been theoretically predicted to behave as
Huygens’ sources [20, 21], and could be prepared in the near future, as synthetic protocols already exist for Si
andGe nanoparticles [73–75].

Self-assembledmetamaterials

A range ofmethods exist for the self-assembly ofmeta-atoms intometasurfaces andmetamaterials. To prepare
monolayers and thin films from colloidalmaterials, several techniques can be used, such as convective assembly
(dip- or doctor-blade coating), interfacial transfer (Langmuir-Blodgett troughs) or spin-coating [61, 76–78].
They offer reliable protocols to produce both disordered sub-monolayers and highly ordered close-packed
monolayers (ormultilayers) on surfaces.More control of nanoparticle positioning can be achieved by
combining convective assembly techniques on patterned substrates produced via top-down approaches [79, 80].
Typically, these substrates feature arrays of indentations capable of simultaneously trappingmultiple particles
forming clusters. Particles are directed over the substrate in high concentration by techniques such as dip-
coating. The particles then become trapped by capillary forces when they come into close proximity of an
indentation. The size and shape of the traps can be used to control themorphology of the clusters, and the traps
distribution can be varied to position and orient the clusters for study, examples of which are discussed in the
final row of table 1 [81]. The high degree of spatial control overmeta-atompositioning allows regulation of the
phase shift across themetasurface and thus control of its optical properties. However, the number of clusters
produced by suchmethods is tiny in comparison to the bulk liquid-phase synthesesmentioned previously. They
are realistically only suitable for the on-substrate self-assembly of plasmonic particles intometa-atomswith
predetermined spatial configurations relative to one another.

Bulkmetamaterials can be assembled through techniques, such as sequential coatingwith thinfilms ofmeta-
atoms, or by direct assembly of large numbers of particles into colloidal crystals or disordered solids through
microfluidic evaporation [82]. The fabrication of 3Dmetamaterials by self-assembly of plasmonicmeta-atoms
has already been successfully demonstrated, opening the expansion on these studies to other candidatemeta-
atoms [74, 82, 83]. However, there remains considerable scope for further improvement of bottom-up self-
assembly techniques. Finer control overmeta-atompositioning and orientationwill allow for the realization of a
greater range ofmetamaterials. Ifmeta-atoms could be precisely positioned into patterns of different sizes or
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Table 1. Summary of themain bottom-up approaches developed to synthesizemeta-atoms.

Method Pros Cons

Control of AggregationKinetics

Controlled aggregation ofNP suspensions through changes in solvent stability [29–31] or salinity [32, 33], ormixing binary populations of NPs

functionalized with complementaryDNA strands. [34–38]
Facile. Polydisperse cluster valencies.

Emulsion–BasedAssembly

Surfactant stabilized droplets of colloidal suspensions evaporated in situ to produce clusters. [28, 39–42] Facile. Polydisperse cluster valencies. Requires chemical

modification for long-term stability and assembly

(surfactant stabilized).
Templated Self-Assembly

(1) DNAorigami - specific binding sites onDNAorigamis produce clusters of controlled geometry. [43–49] Control of cluster valency

and shape.

Requires further chemicalmodification for long-

term stability and assembly.

Many possible cluster

geometries.

(2) Molecular Printing - Surface of NPs patterned usingDNAorigami as amask withmolecular ‘inks’which bind secondaryNPs at specific sites on the

NP surface. [50–52]
High control of valency. Requires further chemicalmodification for long-

term stability and assembly.

ReusableDNAmask.

Many possible cluster

geometries.

(3) Viral Assembly -Use of symmetric virusesmodified to present cysteines at specific locations to bind nanoparticles to the surface in a symmetric

manner. [53–56]
Uniform cluster sizes Limited range of cluster geometries (icosahedra/

helical filament)
Bare particles after synthesis, somemodification

needed.

Multi–StepColloidal Chemistry

Formation of a core particle with a known number of PS satellites at controlled positions which can then be replaced with noblemetals through a

multi-step synthesis. [12, 24–27, 57–59]
Moderate control of

valency

Long synthesis (many steps)

Many possible cluster

shapes

Difficult polymerization of styrene onto SiO2

core.

Substrate–DirectedAssembly

Use of a substratemodifiedwith physical traps into which particles can be directed via convective self-assembly. [60, 61, 62–66] High control of cluster

valency, shape, and

positioning.

Lowfinal concentration. Substrates require top-

downmethods.
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type, optical wave frontmanipulationwith suchmetasurfaces will become a realistic prospect. A potential route
to thesemaybe substrates patternedwithmultiple DNA sequences complementary to differentmeta-atoms
allowing any arbitrary configuration to be achieved.

Overall, early reports of self-assembledmetamaterials have demonstrated the viability and huge potential of
this approach. The possibility of buildingmeta-atoms independently of themetamaterial, and in large scale,
offers important advantages compared to top-down lithography. Improvements to the fabrication of bothmeta-
atoms and the self-assembledmetamaterials will pave theway. For example, plasmonic bottom-upmeta-atoms
typically possess strong localfields or hot spots, which can be exploited for nonlinearmetamaterials. Nonlinear
polarization scales as a power expansion of themicroscopic electricfield, which can be several orders of
magnitude larger than the exciting field [84]. Therefore, we should pursue the design of nanoscalematerials
which produce large nonlinear responses. This would considerably reduce the command power (proportional
to themagnitude square of the incident light) required to activate a given nonlinearity in comparison to the bulk
material. These considerations are of prime importance in reducing the energy footprint of nonlinear optical
systems and theirminiaturization. Nonlinearmetamaterials already have application in lasers, signal processing
and telecommunications.

Conclusion andperspectives

In this article, we have summarized the various chemical routes developed to synthesize highly symmetricmeta-
atoms and their assembly into ordered nanoarrays. Early applications revolved around the exploitation of the
extraordinary optical properties of plasmonic clusters with precisely designedmorphologies. The second and
current generation ofmeta-atomswill explore building unitsmade ofmaterials with higher refractive index and
low losses, such as Si orGe, as well as hybrid systems such as Au or Ag/Si. The synthesis of Si orGe nanoparticles
below 100 nm remains challenging, as well as their assembly into precise configurations.Meta-atoms containing
thesematerials would further tailor and optimize performance ofmyriad applications in the visible and infrared
(negative refraction, zero reflection, zero index of refraction, super-lenses). Particle shapes can drastically effect
phase behavior and optical properties. For example, clusters with negativemagnetic permeabilitiesmay be
reached by using plasmonic or dielectric triangular structures assembled onto a spherical core [85].
Furthermore, syntheticmethods for clusters comprisingmore than twelve precisely arranged building units,
such as chiral ones, are currently unreported in the literature. Yet, they offer potential to explore various optical
applications such as broadband circular polarizers,manipulation of chiral optical forces, chirality switching
devices, chiralmirrors,Ketc.

The next generation of functional applications will see clusters immobilized into two- or three-dimensional
architectures with highly configurable spacings to create amultitude of superlattices or irregular three-
dimensional configurations. Looking even further forward, fabrication of assemblies with controlled disorder
are opening novel opportunities to explore unharnessed properties of light/matter interactions. 2Dmeta-atom
assemblies featuring correlated disordermay lead to newoptical functionalities that will find use inmany
applications including optics (for instance, for chirping or compressing ultra-short optical pulses), holography,
light emitting devices, optical non linearities. In bulk three-dimensionalmaterials with correlated disorder, the
modified light scattering translates into spectral variations of the reflectance and transmittancewhichmay yield
structural colors, and also generate wave interference phenomena. These effects are of high interest to the
physics community. However, to control experimentally the disorder of self-assembledmeta-atoms in 2Dor 3D
remains particularly challenging.We foresee exciting and ground-breaking opportunities ahead.
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