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Glass formation is encountered in diverse materials. Experiments have revealed that dynamic
relaxation spectra of supercooled liquids generically become asymmetric near the glass transition
temperature, Tg, where an extended power law emerges at high frequencies. The microscopic origin
of this “wing” remains unknown, and was so far inaccessible to simulations. Here, we develop a
novel computational approach and study the equilibrium dynamics of model supercooled liquids
near Tg. We demonstrate the emergence of a power law wing in numerical spectra, which originates
from relaxation at rare, localised regions over broadly-distributed timescales. We rationalise the
asymmetric shape of relaxation spectra by constructing an empirical model associating heteroge-
neous activated dynamics with dynamic facilitation, which are the two minimal physical ingredients
revealed by our simulations. Our work offers a glimpse of the molecular motion responsible for glass
formation at relevant experimental conditions.

The formation of amorphous solids results from the
rapid growth of the structural relaxation time τα of the
supercooled liquid [1]. Molecular motion occurs on a
timescale of about 10−10 s at the onset temperature
of glassy behaviour but takes about 100 s at the ex-
perimental glass transition temperature Tg [2]. Over
the last decades, dielectric, mechanical and light scat-
tering experiments kept developing to probe molecular
motion over a broader frequency range with increased
accuracy [3–8]. This progress reveals that the temper-
ature evolution of τα is just the tip of the iceberg, as
relaxation spectra χ′′(ω) measured near Tg exhibit re-
laxation processes taking place over an extremely large
frequency window [9–12]. The overall shift of relaxation
spectra is accompanied by an equivalent broadening of
about 12 decades, which is the other side of the same
coin. A microscopic explanation of these slow dynamics
is at the heart of glass transition research [1].

High-temperature spectra reflect near exponential re-
laxation in the picosecond range, but low-T spectra
broaden into a two-step process with a stretched ex-
ponential relaxation at low frequency ω ≈ 1/τα and a
microscopic peak remaining at the picosecond timescale.
In 1990, Nagel and coworkers [11–14] showed that for
a number of molecular liquids the structural relaxation
peak extends much further at high frequencies ωτα � 1
and transforms into a power law, χ′′(ω) ∼ ω−σ, with
a small exponent σ(T ) ∈ [0.2, 0.4] decreasing with tem-
perature [14]. Using logarithmic scales, this resembles a
“wing” in “excess” of the α-peak. At Tg, the wing ex-
tends over the mHz-MHz range with an amplitude about

*Equal contributions.

100 times smaller than the α-peak. A universal scaling
comprising the excess wing was proposed [14], which can
be altered by additional microscopic processes [15, 16].
While this universality is debated [9, 10], the presence of
an excess contribution often taking the form of a wing is
not [6, 17].

Elucidating the nature of molecular motions respon-
sible for the small signal in these excess wings appears
daunting. Yet, experiments managed to characterise its
heterogeneous nature [18, 19] and aging properties [20].
So far, computer simulations were unable to access the re-
quired range of equilibration temperatures and timescales
to even address the question. Physical interpretations
and empirical models have been proposed to explain the
shape of relaxation spectra. Some of them couple slow
translational motion to an “additional” degree of freedom
(e.g., rotational) [21, 22]. Others invoke spatially hetero-
geneous dynamics to construct a broad distribution of
timescales of static [23–27] or kinetic [28] origin. The
winged asymmetric shape then requires specific physics,
such as geometric frustration [25], lengthscale-dependent
dynamics [26], or dynamic facilitation [28]. With spe-
cific choices, these approaches yield relaxation spectra
comprising excess wings, but direct microscopic investi-
gations testing the underlying hypotheses are still lack-
ing.

Here, we show that computer simulations can now di-
rectly observe excess wings and assess their microscopic
origin. We take advantage of the recent swap Monte
Carlo algorithm [29] to efficiently produce equilibrated
configurations of a supercooled liquid with τα ≈ 100 s.
We observe their physical relaxation dynamics over ten
decades in time, up to 20 ms. We are thus able to probe
for the first time the temperature and time regimes where
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excess wings are observed in experiments. We report the
emergence of a power law (a wing) in numerical spec-
tra with the same characteristics as in experiments. We
demonstrate that it is caused by a sparse population of
localised regions, whose relaxation times are power law
distributed. These relaxed regions then coarsen by dy-
namic facilitation. We construct an empirical model to
illustrate how heterogeneous dynamics and dynamic fa-
cilitation generically lead to asymmetric, winged relax-
ation spectra.

We study size-polydisperse mixtures of N soft repul-
sive spheres in two and three dimensions, as described
in the Methods section. These models are representative
computational glass-formers [30, 31]. We use the swap
Monte Carlo algorithm designed in Ref. [32] to generate
ns ∈ [200, 450] independent equilibrium configurations
at temperatures T down to the extrapolated experimen-
tal glass transition temperature Tg. Each equilibrium
configuration is then taken as the initial condition of a
multi-CPU molecular dynamics (MD) simulation (with-
out swap). The ns independent simulations run for up
to a simulation time tmax = 1.5× 107 in 3d (one week on
2 CPUs for N = 1200). We push a few 2d simulations
to unprecedentedly long times, up to tmax,2d = 6 × 108,
representing a computational time of several months. By
using the relaxation time at the onset of glassy dynam-
ics to relate numerical and experimental timescales, our
longest simulations translate into a physical time of about
20 ms for systems having an equilibrium relaxation time
τα ≈ 102 s. This strategy is key to observe excess wings,
which would otherwise be buried underneath the struc-
tural relaxation in conventional approaches [33]. The 2d
and 3d models behave similarly, so we present quantita-
tive results for the 3d model (N = 1200) in Figs. 1, 3
and illustrate the relaxation process in Fig. 2 with 2d
snapshots (N = 10000), which are easier to visualize.
Quantitative results for the 2d model are provided in the
Supplementary Information (SI).

We investigate the spatio-temporal evolution of the re-
laxation dynamics using averaged and particle-resolved
dynamic observables. In 3d, we measure the self-
intermediate scattering function Fs(t), averaged over the
ns independent runs. We define the relaxation time τα
by Fs(τα) = e−1. In 2d, collective long-ranged fluc-
tuations affect the measurement of Fs(t). We instead
focus on observables which are blind to these fluctua-
tions [34] and define τα via the bond-orientational corre-
lation function [35]. In both two and three dimensions,
we investigate the relaxation process at the particle scale
via the bond-breaking correlation CiB(t) which quantifies
the fraction of nearest neighbours lost by particle i after
time t. Starting from CiB(t = 0) = 1, it decreases as rear-
rangements take place close to particle i, and reaches zero
when its local environment is completely renewed. Pre-
cise definitions of the correlation functions are provided
in the Methods section.

FIG. 1. Emergence of excess wings in a three-
dimensional glass-former near the glass transition
temperature. (a) Self-intermediate scattering function
Fs(t) at various temperatures. (b) Relaxation time τα
rescaled by its value τo at the onset temperature. Sym-
bols are directly measured data (squares), or obtained us-
ing time temperature superposition (TTS, circles). A con-
servative Arrhenius extrapolation locates Tg = 0.056, where
τα(Tg)/τo = 1012 (dashed line). (c) Relaxation spectra for
the same temperatures as in panel (a). The dashed lines rep-
resent the estimated α-peaks. Close to Tg, the spectra lie
above the α−peak and display a power law signal with an
exponent σ ≈ 0.38 (full line), in quantitative agreement with
excess wings observed experimentally.

To connect with experimental results obtained in
the frequency domain, we compute a dynamic suscep-
tibility χ′′(ω) from a distribution of relaxation times
G(log τ) [17, 28]

χ′′(ω) =

ˆ ∞

−∞
G(log τ)

ωτ

1 + (ωτ)2
d log τ , (1)

where the distribution G is related to the derivative of a
time correlation function, G(log t) ≈ −dFs(t)/d log t in
3d. We use the bond-breaking correlation function in-
stead of Fs in 2d. We discuss the numerical evaluation
of χ′′ in the Methods section, whereas the discussion on
the statistical noise and the comparison to direct Fourier
transforms are in the Supplementary Information, Sec-
tion I and Figure 2.

We start by presenting equilibrium measurements of
Fs(t) in 3d in Fig. 1(a), concentrating on the unex-
plored low-T regime below the mode-coupling crossover
Tmct ≈ 0.095. The latter is determined by a power law
fit of τα(T ) in the range τα/τo < 103, where τo ≈ 3 is the
value of τα at the onset temperature To ≈ 0.20 [29]. At all
temperatures, the correlations display a fast initial decay
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near t ≈ τo, due to fast dynamical processes. At larger
times, we observe a much slower decay to zero. As T
decreases, the relaxation time grows and eventually exits
the numerically accessible time window. At the lowest in-
vestigated temperatures near Tg, correlations appear al-
most constant over more than 7 decades in time, suggest-
ing near-complete dynamic arrest. We recall that thanks
to the swap algorithm, all measurements reflect genuine
equilibrium dynamics, even when τα is larger than the
simulated time by many orders of magnitude.

Our strategy allows us to directly observe the α-
relaxation when τα < tmax, equivalently τα/τo . 5× 106

down to T = 0.0755, see Figs. 1(a,b). In this regime, the
relaxation is well-described by a stretched exponential

F0e
−(t/τα)β with an almost constant stretching exponent

β ≈ 0.56, the amplitude F0 modestly changing with tem-
perature. We use this time temperature superposition
(TTS) property to estimate τα for 0.07 ≤ T ≤ 0.0755,
where the decorrelation of Fs(t) is sufficient [36], and ob-
tain τα over roughly 2 additional decades, see Fig. 1(b).
We finally use an Arrhenius law to extrapolate τα over
4 more decades to get a safe lower bound for the ex-
perimental glass temperature Tg ≈ 0.056, defined by
τα(Tg)/τo = 1012 [29], see the Methods section for de-
tails.

The corresponding relaxation spectra are shown in
Fig. 1(c) for the 3d model. They all display a peak at
high frequency ω ≈ 1/τo, corresponding to the short-time
decay of Fs(t). A low-frequency peak near ω ≈ 1/τα is
also visible. As T decreases, this α-peak shifts to lower
frequencies and eventually exits the accessible frequency
window. When the α-peak is not directly measured, we
extrapolate its shape by inserting the above stretched ex-
ponential form for Fs(t) into Eq. (1). We use β = 0.56,
τα given by the Arrhenius extrapolation, and a constant
F0. The tiny temperature dependence of F0 is immate-
rial on the logarithmic scale of Fig. 1(c). The resulting
α-peaks are shown in Fig. 1(c) with dashed lines that
smoothly merge into the measured data at the highest
temperatures, validating our procedure.

As T decreases, the measured susceptibility and the
α-peak deviate increasingly from one another, the data
being systematically in excess of the α-peak. Since the
Arrhenius extrapolation underestimates τα, this excess
is (at worst) slightly underestimated and cannot be ac-
counted by a vertical shift which would require unphys-
ical values of F0 and β. At the lowest T , where the
α-peak no longer interferes with the measurements, the
spectra are well described by a power law χ′′(ω) ∼ ω−σ

at low frequencies, with an exponent σ ≈ 0.38 slightly
decreasing with T , and an amplitude about 100 times
smaller than the α-peak. The relaxation spectra of the
2d model in Supplementary Figure 3 exhibit similar fea-
tures with an exponent σ2d ≈ 0.45, which is quite close
to the one found in 3d. In our simulations, the measured
spectra do not exhibit a secondary peak separated from

FIG. 2. Visualisation of spatially heterogeneous and
facilitated dynamics. Relaxation in the 2d system at T2d =
0.09 with τα/τo = 108. Frames are logarithmically spaced
between t = 2 × 10−3τα (top left) and t = 0.6τα (bottom
right) from left to right and top to bottom. Particles are
coloured according to CiB(t) from blue [immobile, CiB(t) = 1]
to red [relaxed, CiB(t) = 0]. The linear size of the simulation
box is 100.

the α-relaxation, and cannot be interpreted using an ad-
ditive β-process [33]. Therefore, close to Tg, the numer-
ical spectra follow a power law over a similar frequency
range, with a similar exponent and a similar amplitude
as the excess wings obtained experimentally, suggesting
that simulated glass-formers display excess wings resem-
bling observations in molecular liquids.

We take advantage of the atomistic resolution offered
by simulations to explore the microscopic origin of excess
wings and provide a physical interpretation of the spec-
tral shapes.We illustrate the relaxation dynamics with 2d
snapshots, which are easier to render and interpret. We
confirm that the same mechanisms are observed in 3d. In
Fig. 2 we show 2d snapshots illustrating how structural
relaxation proceeds at a temperature T2d = 0.09 (we esti-
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mate Tg,2d ≈ 0.07) for which τα/τo ≈ 108, corresponding
to around 10 ms in physical time. This temperature is
the lowest for which the α-relaxation can be observed
in the numerical window, and is considerably lower than
the mode-coupling crossover near Tmct,2d ≈ 0.12. Im-
ages are shown at logarithmically-spaced times t in the
range t/τα ∈

[
10−3, 1

]
. Particles are coloured according

to CiB(t): red particles have relaxed, blue ones have not.
We present in Fig. S3 the relaxation spectrum measured
at this temperature.

For t� τα, relaxation starts at a sparse population of
localised regions which emerge independently throughout
the sample over broadly distributed times. This conclu-
sion holds over a large range of temperatures down to Tg
in both d = 2, 3. As time increases, newly relaxed regions
continue to appear, but a second mechanism becomes
apparent in Fig. 2 as regions that have relaxed in one
frame typically appear larger in the next. This growth of
relaxed regions in Fig. 2 is the signature of dynamic fa-
cilitation [37]. More precisely, we observe that from one
frame to the next, relaxation events keep accumulating
at similar locations, which results in mobile particles un-
dergoing multiple relaxations and mobility propagating
to nearby particles. Also, the slowest regions are typi-
cally “invaded” at t � τα from their faster boundaries.
Dynamic facilitation has been identified before at high
temperatures above the mode-coupling crossover [37–39].
Our investigations show that it becomes a central physi-
cal mechanism for structural relaxation near Tg.

We concentrate on the early times where power law
spectra are observed. Visualisation suggests that clus-
ters of relaxed particles appear at sparse locations. We
now establish that these early relaxation events are re-
sponsible for the excess wing. To this end, we define
mobile (CiB < 0.55) and immobile (CiB ≥ 0.55) particles;
the threshold value near 0.5 is determined requiring self-
consistency with alternative mobility definitions based
on displacements. We identify connected clusters of mo-
bile particles by performing a nearest neighbour analysis
(details in the Methods section), and investigate the sta-
tistical properties of relaxed clusters. In particular, we
find that the excess wing regime at t/τα � 1 is dom-
inated by the appearance of new clusters, whereas the
growth of existing clusters dominates at later times. We
report in Fig. 3 the distribution Π(τ) of waiting times τ
for the appearance of new clusters in 3d. For T ≤ 0.07,
we cannot measure the entire distribution, which is thus
determined up to an uninteresting prefactor. The corre-
sponding 2d results are shown in Supplementary Figure
4.

At the highest investigated temperature, near Tmct, the
distribution Π(log10 τ) in Fig. 3 is already very broad,
with clusters appearing as early as 10−4τα. The dis-
tribution peaks near 0.1τα, when dynamic facilitation
starts to dominate, and has a cutoff around 10τα. As
T decreases below the mode-coupling crossover, a power

FIG. 3. Microscopic origin of excess wings. Waiting-
time distribution of newly relaxing clusters in 3d from Tmct

(right) to Tg (left), with the same color code as Fig. 1(a).
Approaching Tg, the distributions develop a power law tail at
τ � τα, with an exponent 0.38 that directly accounts for the
excess wings in the spectra of Fig. 1(c).

law tail emerges at τ � τα. For T ≤ 0.07, the power
law extends over at least 6 decades, with a nearly con-
stant exponent Π(log10 τ) ∼ τ0.38 for the 3d model.
The relaxation of localised clusters at early times is ex-
tremely broadly distributed, presumably stemming from
an equally broad distribution of activation energies.

Remarkably, if we plug the measured distribution of
waiting times in Eq. (1), a power law Π(log10 τ) ∼ τ0.38

directly translates into a power law χ′′(ω) ∼ ω−0.38 in
the spectra, which is thus valid for ωτα � 1. The agree-
ment with the data in Fig. 1(c) is therefore quantitative.
A similar agreement is found in 2d with the exponent
σ2d = 0.45, see Supplementary Figure 4. This analysis
demonstrates that the high-frequency power law in χ′′(ω)
stems from the relaxation of a sparse population of clus-
ters characterised by a broad distribution of relaxation
times.

This microscopic view of the power law wing alone
does not explain why it appears in excess of the α-peak
observed at larger times when dynamic facilitation sets
in. To explain this point, we construct an empirical
model based on our numerical observations. We first
imagine that the liquid can be decomposed into indepen-
dent domains characterised by a local relaxation time,
see Fig. 4(a). This heterogeneous viewpoint is mathe-
matically captured by trap models [40, 41]. To intro-
duce dynamic facilitation as the second key ingredient,
we construct a facilitated trap model, assuming that a
given local relaxation event may now affect the state of
the other traps, see Fig. 4(b). To provide a qualitative,
generic description of relaxation spectra, we analyse the
simplest version of such a model and assume, in a mean-
field spirit, that dynamic facilitation equally affects all
traps. A more local version was designed in Refs. [42, 43]
for different purposes.

We consider N traps with energy levels E > 0 drawn
from a distribution ρ(E), and assume activated dynam-
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FIG. 4. Facilitated trap model generically predicts
asymmetric winged relaxation spectra. (a) The liquid is
modeled as a collection of traps with energies E, distributed
according to ρ(E). (b) Relaxation is thermally activated and
affects the energy of the other traps by a random amount,
proportional to ∆. (c) Relaxation spectra χ′′(ω) in the ab-
sence (∆ = 0) and presence (∆ = 0.05) of dynamic facilitation
at α = 1.1 and T = 0.629. Dynamic facilitation compresses
(arrow) the low-frequency part of the underlying spectrum,
giving rise to a sharper α-peak well-fitted by the spectrum
of a stretched exponential (dashed). The high-frequency part
of the underlying spectrum, unaffected by facilitation, is well
described by a power law ω−0.2 (line). The excess wing thus
corresponds to the beginning of the relaxation process.

ics. The energy E of a trap is renewed after a Poisson-
distributed timescale of mean 〈τ(E)〉 = eE/T . Since deep
traps take much longer to relax than shallow ones, the
system is dynamically heterogeneous. Following Ref. [44],
we use ρ(E) ∝ e−E

α

, with α ∈ [1, 2] to smoothly in-
terpolate between the much-studied Gaussian [40, 42]
and exponential [41] distributions. Dynamics at tem-
perature T leads to the equilibrium energy distribution
Peq(T,E) ∝ ρ(E)eE/T . Whenever a trap relaxes, the
energy of all other traps is shifted by a random amount

uniformly distributed in the interval
[
− ∆√

N
, ∆√

N

]
, using

a Metropolis filter to leave the equilibrium distribution
Peq unchanged. This coupling between traps mimics dy-
namic facilitation [42]. The relaxation spectra χ′′(ω) is
computed either analytically (∆ = 0), or by simulating
the facilitated model (∆ > 0).

The model is specified by two parameters (α,∆), for
which equilibrium dynamics can be studied at any tem-
perature T . We have systematically investigated this pa-
rameter space, and find spectra with quantitative differ-
ences but generic features [45]. In Fig. 4(c), we select
(α = 1.1,∆ = 0.05) at T = 0.629 for aesthetic reasons,
as this produces a spectrum qualitatively resembling ex-

perimental and numerical ones close to Tg. Fitting the α-
peak to the frequency representation of a stretched expo-
nential reveals an excess wing at high frequencies. How-
ever, in the absence of dynamic facilitation (∆ = 0) one
obtains the blue spectrum, with the same high-frequency
behaviour, but which extends much further at low fre-
quencies. Indeed, without facilitation each trap relaxes
independently, and the equilibrium distribution Peq de-
termines the dynamic spectrum, which is broad and rel-
atively symmetric. In the presence of facilitation, ∆ > 0,
shallow traps still relax independently and are essentially
unaffected. Crucially, deep traps now receive small kicks
whenever a shallow trap relaxes, and their energies slowly
diffuse towards the most probable value. This acceler-
ates their relaxation, which eventually affects the tail of
the relaxation time distribution. As a result, dynamic
facilitation “compresses” the low-frequency part of the
underlying spectrum (blue), as hinted in Ref. [46], and
highlighted by the arrow in Fig. 4(c). We thus interpret
the winged, asymmetric spectrum as a broad underly-
ing distribution of relaxation timescales (well described
by a power law at early times) compressed by dynamic
facilitation at long times. Ironically, in our picture, the
α-peak itself is in “excess” of a much broader underlying
time distribution with a high-frequency power law shape.
In this view, the excess wing forms an integral part of the
structural relaxation.

Our study frontally attacks a central question regard-
ing the relaxation dynamics of supercooled liquids near
the experimental glass transition and paves the way for
many more studies of a totally unexplored territory now
made accessible to modern computer studies. Enlarging
further the family of available computer glass-formers
would also help filling the gap with the more complex
molecular systems studied experimentally.
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METHODS

Glass-forming computer models

We study a non-additive, continuously polydisperse
mixture of spherical particles of equal mass m in two
and three dimensions (d = 2, 3) [29]. Two particles i
and j, at a distance rij from one another interact via the
repulsive potential

v(rij) = ε

(
σij
rij

)12

+ c0 + c2

(
rij
σij

)2

+ c4

(
rij
σij

)4

, (2)

if rij/σij < xc = 1.25. The constants c0 =
−28ε/x12

c , c2 = 48ε/x14
c , c4 = −21ε/x16

c ensure continu-
ity of the potential and its first two derivatives at the
cutoff xc. The particles’ diameters σi are distributed
from P(σ) = A/σ3 with A a normalisation constant,
σmax/σmin = 2.219. We use the average diameter σ as
unit length, ε as unit energy (the Boltzmann constant is

set to unity) and
√
mσ2/ε as unit time. In these units,

σmin = 0.73 and σmax = 1.62. We employ a non-additive
cross-diameter rule σij = 0.5(σi + σj)(1 − 0.2|σi − σj |)
to avoid fractionation and crystallization at low temper-
ature [29]. We simulate the glass-forming model at num-
ber density of particles ρ = N/Ld = 1 in a cubic/square
box of linear size L using periodic boundary conditions.
We consider various system sizes: N = 1200, 10000 in 3d
and N = 2000, 10000 in 2d.

Preparation of equilibrated configurations

The model glass-forming liquid is efficiently simulated
at equilibrium with the swap Monte Carlo algorithm.
We employ the hybrid swap Monte Carlo/Molecular Dy-
namics algorithm implemented in the LAMMPS package
(2d/3d) or homemade code (3d), with optimal parame-
ters, as described in Ref. [32]. We prepare ns ∈ [200, 450]
independent equilibrated configurations at temperatures
down to the experimental glass transition temperature.

Molecular dynamics simulations

The equilibrium configurations generated by the swap
algorithm are used as initial conditions for standard
molecular dynamics (MD) simulations with integration
time step equal to 0.01. In 3d, we run conventional MD
(NVE) simulations and NVT simulations in 2d using a
Nosé-Hoover thermostat. The simulations are either run
using a homemade MD code or with the LAMMPS pack-
age, which allows us to run multi-CPU simulations and
perform extremely long runs for relatively large systems
(e.g., two months on 24 CPUs for Fig. 2).

Relating experimental and numerical timescales

We measure the relaxation time at the onset of glassy
dynamics as reference time, and use this value to trans-
late numerical timescales into experimental ones. In ex-
periments, many supercooled liquids have τo ≈ 10−10 s.
We measure τo ≈ 3 in 2d and 3d simulations. In 3d, the
longest simulation time is tmax = 1.5 × 107 = 5× 106τo.
We therefore simulate the equilibrium relaxation at Tg
over 0.5 ms. In 2d, we ran monthslong simulations to
reach t2dmax = 6 × 108 = 2 × 108τo. Our numerical ap-
proach therefore allows us to observe the equilibrium dy-
namics over 20 ms at Tg, which is a giant leap forward
in equilibrium simulations of supercooled liquids.

Average dynamic observables

In 3d, we monitor the relaxation dynamics via the self-
intermediate scattering function

Fs(t) =

〈
1

N

N∑

i=1

cos [q · δri(t)]
〉

q,ns

, (3)

where δri(t) is the displacement of particle i over time
t. The brackets indicate the ensemble average over ns
independent runs along with an angular average over
wavevectors with |q| = 6.9 (first peak in the total struc-
ture factor).

In 2d, collective long-ranged fluctuations give rise to
a spurious contribution to the displacements of parti-
cles [34] which affects the measurement of Fs(t) and
makes it ill-suited to capture the glassy slowdown. We
instead study the dynamics through the evolution of
the local environment of particles, instead of their dis-
placements. We define a bond-orientational correlation
function CΨ(t) [35]. We introduce the six-fold bond-
orientational order parameter of particle i

Ψi(t) =
1

ni

ni∑

j=1

ei6θij(t), (4)

where ni is the number of neighbours of i at time t.
Neighbours are particles j with rij < 1.45 (first min-
imum in the radial distribution function). Alternative
definitions of neighbours, e.g., via Voronoi tessellation or
solid-angle based method [47], lead to the same quanti-
tative results. Here θij(t) is the angle between the x-axis
and the axis connecting i and j at time t, without loss
of generality thanks to rotational invariance. The bond-
orientational correlation function is defined as

CΨ(t) =

〈∑
i Ψi(t) [Ψi(0)]

∗
∑
i |Ψi(0)|2

〉

ns

, (5)

where the brackets denote the ensemble average over ns
independent runs, and the star is the conjugate complex.
In 2d, we define the relaxation time via CΨ(τα) = e−1.
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Mobility at the single-particle level

When analysing the mobility at the single-particle
level, we first need a criterion to distinguish between
mobile and immobile particles. In 3d, we have consid-
ered several mobility definitions which all give quanti-
tatively similar results. The first mobility definition is
based on displacements. To remove fast dynamical pro-
cesses, we use the conjugate-gradient method and find
the inherent structure (IS) of a configuration at time
t, {rISi (t)}. Particle i is defined as mobile at time t if
|rISi (t) − rISi (0)| > 0.8 [48]. This cutoff is between the
first minimum and the second maximum of the self part
of the van Hove function Gs(r, t) = 〈δ(r − |rISi (t)|)〉i,ns
in the time regime where Fs(t) is almost constant. This
first mobility definition is however not convenient in 2d
because of the collective long-ranged fluctuations which
affect the translational dynamics.

A second mobility definition is based on changes in
the particle’s local environment. At time t = 0, we find
the number ni, and identity of particle i’s neighbours,
defined as particles j with rij/σij < 1.485 in 3d (1.3 in
2d), corresponding to the first minimum in the rescaled
pair correlation function g(rij/σij). We define the bond-
breaking correlation as the fraction of remaining neigh-
bours at time t

CiB(t) =
ni(t|0)

ni
, (6)

where ni(t|0) is the number of particles neighbour of
i at t = 0 and still neighbour at t. To avoid short
time oscillations in CiB caused by particles frequently
exiting/entering the shell defining neighbours, we use
a slightly larger cutoff to define neighbours at t > 0,
namely rij/σij < 1.7 (in d = 2, 3). We compute the
bond-breaking correlation function

CB(t) =

〈
1

N

N∑

i=1

CiB(t)

〉

ns

, (7)

averaged over ns independent runs.
A particle is defined as mobile at t if CiB(t) < 0.55,

i.e., if it has lost half of its initial neighbours. The cutoff
value ensures that the set of particles identified as mobile
in this way significantly overlap with that identified via
the displacement criterion. We then introduce clusters of
mobile particles. Two particles i and j mobile at time t
belong to the same cluster if rij < 1.5 in 3d and 1.4 in
2d, close to the first minimum of g(r).

Relevant temperature scales

We determine three temperature scales relevant to
the glassy slowdown: the onset temperature of glassy

dynamics To, the mode-coupling crossover temperature
Tmct below which conventional MD simulations cannot
reach equilibrium, and the extrapolated experimental
glass transition temperature Tg. In 3d, To = 0.2, Tmct =
0.095, Tg = 0.056. In 2d, To,2d = 0.2, Tmct,2d =
0.12, Tg,2d = 0.07. We fit the high-temperature τα data
to an Arrhenius law, and identify the onset To as the
temperature below which τα is super-Arrhenius. We note
τo = τα(To). The mode-coupling crossover temperature
Tmct is obtained by fitting the data with a power law
τα(T ) ∝ (T − Tmct)

−γ in the regime 0 ≤ log10(τα/τo) ≤
3 [49], with γ = 2.7 and 2.5 in d = 2, 3 respectively.
Given that log10(τα/τo) ≈ 4 at Tmct, this temperature
delimits the regime T > Tmct where MD alone can reach
equilibrium, from the regime T < Tmct where the swap
algorithm is needed to perform equilibrium simulations.
The experimental glass transition temperature Tg is de-
fined by log10(τα(Tg)/τo) = 12. In 3d, the longest sim-
ulation time is tmax = 1.5 × 107 = 5 × 106τo, so we
can directly access log10(τα/τo) . 7. We thus need
to extrapolate our data over 5 decades to locate Tg.
We increase the accuracy of the extrapolation by us-
ing time-temperature superposition (TTS), which is well-
obeyed in our model [36]. In the temperature regime
where correlation functions reach e−1, the second step
of the relaxation is well-fitted by a stretched exponen-

tial F0e
−(t/τα)β . The stretching exponent β ' 0.56 in 3d

(in 2d, β ' 0.6 for CΨ and β ' 0.67 for CB) is almost
temperature-independent, and the amplitude F0 slightly
increases with decreasing temperature. Fixing β, we esti-
mate τα at temperatures where decorrelation is sufficient
to perform accurate TTS, extending our measurements
over ∼ 2 decades. We extrapolate τα over the 4 remain-
ing decades using an Arrhenius fit τα(T ) ∝ eEA/T with
EA = 2.67 in 3d (2.97 in 2d), and locate Tg. Importantly,
the Arrhenius extrapolation is a safe choice as it at worst
underestimates relaxation times.

Computation of relaxation spectra

The computation of relaxation spectra χ′′(ω) first re-
quires to differentiate the correlation function with re-
spect to the logarithm of time. We use a first-order fi-
nite difference approximation. Namely, if configurations
are stored at logarithmically-spaced times {tk}k=1...n, we
have for k > 1

dFs(tk)

d log t
=

Fs(tk)− Fs(tk−1)

log(tk)− log(tk−1)
. (8)

The integral in Eq. (1) is then evaluated by

χ′′(ω) = −
n∑

k=2

dFs(tk)

d log t

ωtk
1 + (ωtk)2

log

(
tk
tk−1

)
. (9)

We use the bond-breaking correlation function CB in-
stead of Fs in 2d. In the Supplementary Information, we
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discuss errors which arise from computing the spectrum
when Fs does not decay to zero. We also discuss issues
related to statistical noise and the comparison to direct
Fourier transforms.

Trap model

We consider traps with energy levels E > 0 drawn from
the exponential power distribution

ρ(E) =
α

E0Γ(1/α)
e−(E/E0)α , (10)

and take E0 = 1 in the following. We assume that dy-
namics at temperature T is thermally activated. The
energy E of a trap is renewed after a Poisson-distributed
timescale of mean 〈τ(E)〉 = eE/T . The equilibrium en-
ergy distribution at temperature T is

Peq(T,E) =
ρ(E)eE/T

Z(T )
where Z(T ) =

ˆ ∞

0

dEρ(E)eE/T .

(11)
We monitor relaxation dynamics by computing the av-

erage persistence function p(t). In the absence of dy-
namic facilitation, the persistence can be directly com-
puted

p(t) =

ˆ ∞

0

dEPeq(T,E)e−t/〈τ(E)〉. (12)

In the absence of dynamic facilitation, the average
persistence is evaluated using Mathematica (NIntegrate,
working precision 30). We then calculate the relaxation
spectrum χ′′(ω) by following the procedure described
previously, replacing Fs(t) with the persistence p(t). We
compute the persistence p(t) over a time interval large
enough to observe full decorrelation, [10−10, 1070] for
α = 1.1, T = 0.629, and minimise errors in the relax-
ation spectrum.

Simulations of the facilitated trap model

We consider a system composed of N traps. We ini-
tialise the simulation with an equilibrium condition by
sampling the traps’ energies directly from the equilib-
rium distribution Peq(T,E). Since the cumulative prob-
ability distribution of energies Ceq cannot be computed
explicitly, we use Mathematica to evaluate it, and to nu-
merically construct the reciprocal function E = Ceq

−1.
For each of the N traps, we generate X uniformly dis-
tributed in [0, 1], and assign it an energy E = E(X). This
procedure generates an initial condition in equilibrium.
Each trap is assigned a renewal time exponentially dis-
tributed, with mean eE/T . We initialise the persistence
pi(t = 0) of all traps to one.

The dynamics proceeds as follows. First, we identify
the trap io with the smallest renewal time τmin, which
will relax first. We update all other traps by subtracting
τmin to their renewal time τi. When the trap io relaxes,
its persistence is set to zero, pio = 0 and we give it a
new energy value sampled from ρ(E), and a new renewal
time, as described above.

This relaxation event then affects all other traps. We
attempt to displace their energy by a random amount
δE (different for each trap) uniformly distributed in[
− ∆√

N
, ∆√

N

]
: E → E′ = E + δE. The scaling with

N ensures that the resulting dynamics is independent
on N . We then accept or reject this attempt in order
to leave the equilibrium probability distribution Peq un-
changed. To this end, we introduce an effective poten-
tial V = −T logPeq, and compute the change in effec-
tive potential δV = T (E′α − Eα) − δE. We then use
the Metropolis filter: if δV < 0, the change in energy
is accepted, otherwise, it is accepted with probability
exp(−δV/T ). When accepted, we pick a new renewal
time exponentially distributed with average eE

′/T . When
the move is completed, we again determine which of the
traps is the next one to relax, and proceed as before.

We measure the average persistence p(t) =
〈∑i pi(t)/N〉, where the brackets indicate average
over independent runs, and where the sum runs over all
traps. We simulate the dynamics of the model until the
total persistence is equal to zero.
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E. Rössler, Physical Review E 86, 041507 (2012).

[3] P. Lunkenheimer, U. Schneider, R. Brand, and A. Loid,
Contemporary Physics 41, 15 (2000).
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The Journal of Chemical Physics 139, 084504 (2013).

[6] C. Gainaru, R. Kahlau, E. A. Rössler, and R. Böhmer,
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I. COMPUTATION OF RELAXATION SPECTRA

1. Cutoff errors

An accurate computation of χ′′(ω) using Eq. (9) of the Methods requires that dC/d log t vanishes at the boundaries
t1 and tn, set by the timestep dt and maximum simulation time tmax, respectively. Our short timestep and fine
time spacing ensure this condition at short times. However, at low temperature, C has not fully decorrelated after
tmax. There is thus an error associated with cutting the computation of χ′′ via the time integral at tmax, where
C is still decreasing and dC/d log t 6= 0. In order to minimise the cutoff errors, we compute χ′′ only in the range
ω ∈ [2π/tmax, 2π/dt], at discrete angular frequencies ωk = 2π/tk for k = 1 . . . n. Given that the computation of χ′′(ω)
is dominated by times tk ∼ 1/ω [see Eq. (9)], the error on the spectrum is negligible over most of the frequency range
ω � ωmin = 2π/tmax. Only when ω < 10 ωmin (found empirically) do cutoff errors become noticeable, as evidenced by
the slight bending downwards observed in Fig. 1(c) of the main text and Fig. S3. Indeed, the absent contribution of
dC/d log t < 0 at later times, combined with the negative sign in Eq. (9) imply that the spectrum is underestimated
close to the cutoff. This effect is visible, but only weakly affects the final few points at low frequencies in the spectra.
This can be tested by using toy functions. Importantly, the cutoff errors underestimate the excess wing, so this effect
does not alter our conclusions.

2. Extrapolated α-relaxation peaks

The extrapolated α-relaxation peaks, i.e., the dashed lines in Fig. 1(c) of the main text, are also computed via
Eq. (9). We take the correlation function C(t) to be the stretched exponential fit of Fs(t) [or CB(t) in 2d]. To avoid
cutoff errors in χ′′, we first evaluate C(t) analytically on a very large time interval [10−40, 1040].

3. Smoothing of correlation functions at low temperature

At the lowest temperatures, the correlation function C decorrelates only very little over the course of the simulation,
and appears almost constant [see Fig. 1(a) in the main text]. Despite our substantial computational effort to generate
clean data (450 independent simulations at T = 0.059), there is still some statistical noise. The almost-plateau
behaviour of C, combined with unavoidable noise in C affect the evaluation of Eq. (9), and give rise to spurious
oscillations in the resulting spectra. We report the spectra computed on the raw Fs for the 3d system in Fig. S1.
We determined the typical error bar on the raw Fs data in the time domain using the jackknife method over the
independent initial samples. We then generated a Gaussian random time signal of zero mean and standard deviation
given by this error bar, and computed the corresponding spectrum. The resulting spectrum was a randomly oscillating
signal and we set the standard deviation of the latter as the typical error bar on our spectra, which turned out to
be of order 4 × 10−4 [log10(4 × 10−4) ≈ −3.4] and thus of similar amplitude as the one of the relative oscillations
with respect to the underlying power law behaviour for the two lowest temperatures. Having demonstrated that
the oscillations come from noise and bear no physical information, we decided to smooth the data to highlight the
physically relevant features of the spectrum: the excess wing. For the three lowest temperatures in Fig. 1(c) in the
main text, we applied a natural smoothing spline [S1] to C after the ballistic regime in the time domain, from which
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FIG. S1. Raw relaxation spectra for the three-dimensional system. In Fig. 1(c) of the main text, for the three lowest
temperatures, we first applied a natural spline smoothing to Fs in the time domain before computing χ′′. The “bumps” at low
temperature/amplitude in this plot which disappear after the spline smoothing are due to statistical noise (despite extensive
averaging), and have no physical origin.

we computed χ′′ in the Fourier domain. The resulting figure allows us to distinguish the physically relevant processes
without being distracted by the oscillations stemming from the statistical noise. Indeed, different realisations of noise
which is then added to the time correlation function do produce spectra with different oscillations but with similar
features. In turn, the frequency at which the oscillations emerge is random and bear no physical origin.

4. Alternative definition: direct Fourier transform

We justify here our choice of procedure by comparing our results with that of a seemingly more natural (in the
mathematical sense) choice: a direct Fourier transform

χ′′(ω) = −
∫ +∞

0

dC(t)

dt
sin(ωt)dt. (S1)

To compute the above estimate of the spectrum for the 3d system, we first performed a cubic spline interpolation of our
logarithmically-spaced data points for the self-intermediate scattering function Fs. We tested another interpolation
scheme, the spline under tension, which yields similar results. We then evaluated the interpolated Fs on a linear
grid to compute the direct Fourier transform via Eq. (S1). This is necessary, as a direct Fourier transform of our
logarithmically-spaced data yields extremely noisy spectra. The resulting spectra are presented in Fig. S2. As in
Fig. 1(c) of the main text, the spectra at low temperature: i) are in excess of the α-peak; ii) have an amplitude
around 1% of the α-peak; iii) are well-fitted by a power law ω−0.38. Our main result thus does not depend on the
specific procedure employed to compute χ′′(ω). However, the direct Fourier transform is much costlier (several hours
versus seconds of computation) and yields much noisier spectra compared to our procedure. The former is due to
the large data sets (containing redundant information) involved to compute accurately the integral which contains a
sine function. This comparative study demonstrates that the method that we employ efficiently yields quantitatively
correct and smooth spectra, justifying our choice.

II. MORE RESULTS FOR THE TWO-DIMENSIONAL SYSTEM

We present in this section the results obtained for the two-dimensional model. We show in Fig. S3 the relaxation
spectra and in Fig. S4 the waiting-time distribution measured in the 2d model. They parallel the Fig. 1(c) and Fig. 3
presented in the main text for the 3d model.

We computed the relaxation spectra χ′′ from the bond-breaking correlation function CB defined in the Methods
section of the main text. We measured the relaxation spectra using samples of N = 2000 particles, averaged over
ns = 300 independent runs, for most temperatures. At the lowest temperature T2d = 0.07 ' Tg,2d, we needed
very large statistics, ns = 40 simulations with N = 64000 particles. The resulting spectra are shown in Fig. S3 from
T2d = 0.15, above the mode-coupling crossover temperature (Tmct,2d = 0.12), down to the extrapolated glass transition
temperature Tg,2d = 0.07. For some temperatures, we indicate with dashed lines the extrapolated α-relaxation peak,
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FIG. S2. Spectra of the three-dimensional system computed via the direct sine transform. These curves are
computed from Eq. (S1). The color code is similar to Fig. 1(c) of the main text. The black line represents a power law
χ′′(ω) ∼ ω−0.38.

following the same procedure as for the 3dmodel. Here, the stretching exponent is β2d = 0.67. We find that the α-peak
coincides with the measured data at high temperature, but starts to deviate from T2d = 0.0775. At low temperature,
the signal lies above the extrapolated α-peak, and is well-fitted by a power law ω−σ2d , with σ2d = 0.45. While
some details of the spectra are different from the 3d model, an excess wing is also clearly observed in 2d simulations.
A notable difference with 3d is the absence of a systematic high-frequency microscopic peak as the bond-breaking
correlation does not display a plateau at intermediate timescales at large temperatures. However, this does not affect
the excess wing.

The figure presents in particular the spectrum at T2d = 0.09, corresponding to the snapshots of Fig. 2 of the main
text. At the top of Fig. S3 we indicate with blue crosses the inverse time of the snapshots. While the time/frequency
correspondence has its caveats, this shows to which stage of relaxation corresponds a given snapshot. Since producing
the snapshots required monthslong simulations, we performed only one run and could not compute the spectrum
accurately on a similarly broad frequency range, which explains why the symbols are located at lower frequencies
than the spectrum. At this temperature T2d = 0.09, the α-peak still interferes with the measured data, and an excess
wing is not clearly observed. While little relaxation has taken place at the first snapshot of Fig. 2 of the main text, the
corresponding signal is comparatively quite high in the spectrum. This demonstrates that the excess wing, observed
at lower temperature, corresponds to the very beginning of the relaxation process.

We also measured the waiting time distribution for the appearance of new relaxed clusters in 2d, and present the
results in Fig. S4. We show the data from temperatures close to the mode-coupling crossover temperature, down
to the glass transition temperature. The temperature evolution of the distribution closely follows that of the 3d
model. Below T2d = 0.095 we cannot measure the entire distribution, which is thus determined up to an uninteresting

FIG. S3. Relaxation spectra for the two-dimensional system. Close to Tg,2d = 0.07, the spectra lie above the extrap-
olated α-peak (dashed), and display a power law behaviour χ′′ ∼ ω−σ2d with an exponent σ2d ≈ 0.45 (blue full line). The
similarity between these 2d spectra and those shown for d = 3 in Fig. 1(c) of the main text is clear. The crosses on the top
axis indicate 1/tsnap for the snapshot times of Fig. 2 in the main text.
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FIG. S4. Waiting-time distribution of newly relaxing clusters in the two-dimensional system. The color code is
the same as in Fig. S3 and the legend indicates the temperature T2d. Approaching Tg,2d, the distribution develops a power
law behaviour at τ � τα, with an exponent 0.45 matching that of the excess wing in the spectra in Fig. S3. Here again, one
recognizes the same behaviour as the three-dimensional results presented in Fig. 3 of the main text.

prefactor. Close to Tmct,2d = 0.12, the distribution is already broad, extending down to 10−4τα, and peaks around
one decade before the α-relaxation time. As the temperature decreases, the distribution broadens towards shorter
and shorter times compared to the α-relaxation time, indicating that relaxation starts much before the bulk. For
temperatures T2d < 0.0853, the distribution exhibits a clear power law behaviour over more than four decades in time
at τ � τα. The distribution is well-fitted by a power law Π(log10 τ) ∼ τ0.45, which is the same exponent observed for
the excess wing in the relaxation spectra. The matching of both exponents indicates that the excess wing observed in
the spectra originates from very early relaxation events which take place over power law distributed timescales. Our
main conclusions drawn in the main text for the 3d results therefore hold also for the d = 2 model. This suggests
a universal explanation of excess wings in terms of very early relaxation events occurring over broadly distributed
timescales.
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