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Abstract 

Statistical process monitoring (SPM) literature recommends the combination of Shewhart and 

exponentially weighted moving average (EWMA) schemes to improve the ability of the standalone 

Shewhart and EWMA monitoring schemes in detecting small to large shifts. The resulting scheme is 

named combined (or composite) Shewhart-EWMA (CSEWMA) scheme. In this paper, a new single 

composite Shewhart-EWMA (denoted as SCSEWMA) scheme for monitoring the mean when the 

process parameters are known or unknown is proposed using an additive weighted model. The 

flexibility of the proposed scheme is made possible by an additional weighing parameter that regulates 

its sensitivity towards shifts of different sizes. The new scheme is compared to the existing Shewhart, 

EWMA and CSEWMA 𝑋̅ schemes and the results reveal the superiority of the proposed scheme over 

the latter schemes. Simulated and real-life data are used to demonstrate the application and 

implementation of the proposed scheme. 

 

Keywords: Additive weighted model, EWMA, estimated process parameters, Monitoring scheme, 

Overall performance, Shewhart, Composite Shewhart-EWMA. 

 
1. Introduction 

The overall concept of modern monitoring schemes was established in the 1920s by Walter A. Shewhart 

working at Bell Telephone; see for example, Shewhart1. Shewhart-type monitoring schemes are 

memoryless schemes that only use recent information to decide whether the process is in-control (IC) 

or out-of-control (OOC). This makes them faster in detecting large changes (or shifts) in the process 

parameter. However, Shewhart-type schemes are known to be relatively slow in detecting small and 

moderate shifts. To compensate the weakness of Shewhart-type schemes, Page2 and Roberts3 introduced 

the cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) monitoring 

schemes, respectively. These two monitoring schemes are memory-type schemes that use past and 

recent information to decide whether the process is IC or OOC. The CUSUM and EWMA schemes are 

considered as popular alternative of a Shewhart monitoring scheme that are utilised when small to 

moderate shifts are of interest; see Montgomery4. Their setback is that, due to their inertia, they are 

relatively slow in detecting large shifts in the process. After the introduction of the Shewhart, EWMA 

and CUSUM schemes, many authors have developed more advanced and enhanced monitoring 

schemes; see for instance, Daudin5, Mosquera and Aparisi6, Abbas et al7, Abbasi et al8, Shamma and 

Shamma9, Lucas and Saccucci10, Abujiya et al11,12, Zaman et al13, Ali and Haq14,15, Mabude et al16 and 

Huang et al17.  
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An efficient monitoring scheme is expected to detect small to large shifts as quickly as possible. One 

of the possible techniques to enhance the sensitivity of a monitoring scheme towards small to large 

shifts is the combination of memoryless and memory-type schemes such as the composite Shewhart-

EWMA and Shewhart-CUSUM monitoring schemes (see, for example, Lucas18, Klein19, Capizzi and 

Masarotto20, Shamsuzzaman et al21 and Freitas et al22, just to cite a few). Lucas18 proposed a combined 

Shewhart-CUSUM monitoring scheme for detecting small to large shifts in the process mean - see also, 

Klein19. Lucas18 showed that the control limits of the Shewhart component help to detect large shifts as 

quickly as possible and those of the CUSUM component help to detect small and moderate shifts 

quicker. Therefore, the resulting Shewhart-CUSUM scheme is efficient for monitoring small to large 

shifts in the process parameters. Abujiya et al11 proposed an enhanced Shewhart-CUSUM scheme for 

monitoring shifts in the process mean, and Capizzi and Masarotto20 developed a Shewhart-EWMA 

scheme with estimated process parameters. Shamsuzzaman et al21 proposed an algorithm to optimise 

the design of the composite Shewhart-EWMA 𝑋̅ chart for monitoring the entire range of the shifts in 

the process mean. More recently, a case study on water consumption in toilet flush devices in a public 

university building using Shewhart, EWMA and composite Shewhart-EWMA control charts was 

presented by Freitas et al22. 

The above-mentioned monitoring schemes use two separate charting statistics to decide whether the 

process is IC or OOC. This makes them more difficult to implement as operators prefer simpler models 

of just using one charting statistic. In this study, a new flexible single composite Shewhart-EWMA 

scheme for monitoring the process mean is developed using an additive weighted model (i.e. based on 

a single charting statistic instead of two separate charting statistics). The flexibility, attractiveness and 

strength of the new scheme is based on an extra weighing parameter that regulates its ability to detect 

shifts of different sizes.  

Since in real-life applications, the process parameters are usually unknown and need to be estimated, 

hence, the effect of parameter estimation is also considered in this study. That is, many authors have 

advocated that the estimation of the process parameters deteriorates significantly the performance of 

monitoring schemes (see the review papers by Jensen et al23, Psarakis et al24 and Does et al25). For 

instance, Aly et al26 analysed the performance of simple linear profile monitoring schemes when the 

process parameters are unknown and they concluded that the estimation error decreases and the IC ARL 

approaches the desired value only for large Phase I sample sizes when using sample estimates instead 

of known parameters. Therefore, the proposed monitoring scheme will be designed and evaluated under 

both the assumptions of known and unknown process parameters, and the effect of the sample sizes will 

also be investigated.  

The remainder of this paper is organised as follows: Section 2 starts with a brief introduction of the 

existing classical Shewhart, EWMA and composite Shewhart-EWMA 𝑋̅ monitoring schemes. In 

Section 3, the theoretical and mathematical backgrounds of the proposed monitoring scheme are 

provided under the assumptions of known and estimated process parameters. The IC and OOC run-
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length performances are investigated in Section 4 for both parameters known and unknown. In addition, 

the OOC performance of the new scheme is compared to some existing counterparts. Section 5 uses 

simulated and real-life data to demonstrate the implementation and application of the proposed 

monitoring scheme. Concluding remarks and future research ideas are provided in Section 6. 

 

2. Brief description of the existing monitoring schemes 

2.1 Shewhart 𝑿̅ monitoring scheme 

Assume that, when the process is IC, the quality characteristic {𝑋𝑡𝑗; 𝑡 ≥ 1; 𝑗 = 1, 2, …, 𝑛} is a sequence 

of samples of independent and identically distributed (i.i.d.) observations from a N(𝜇0, 𝜎0
2) distribution 

where 𝜇0 and 𝜎0 are the IC process mean and standard deviation parameters, respectively, which are 

assumed to be known. In case of a shift in the process, the process mean shifts from 𝜇0 to 𝜇1 (𝜇1 =

𝜇0 + 𝛿 𝜎0) where 𝛿 (𝛿 ≠ 0) represents the change in the process mean expressed in standard deviation. 

At each sampling time, the mean or charting statistic of the Shewhart 𝑋̅ scheme is given by 

𝑋̅𝑡 =
1

𝑛
∑ 𝑋𝑡𝑗

𝑛

𝑗=1

. [1] 

The upper and lower control limits (UCL and LCL) of the Shewhart 𝑋̅ scheme are mathematically 

defined by  

𝑈𝐶𝐿/𝐿𝐶𝐿 = 𝜇0 ± 𝑘
𝜎0

√𝑛
, [2] 

respectively, where 𝑘 (𝑘 > 0) is the Shewhart control limits constant which is chosen such that the IC 

average run-length (𝐴𝑅𝐿0) is equal to some large desired value such as 370.4. Thus, the Shewhart 𝑋̅ 

scheme gives a signal at time t if the charting statistic defined in Eq [1] plots beyond the control limits 

defined in Eq [2]. 

2.2 EWMA 𝑿̅ monitoring scheme 

The charting statistic of the EWMA 𝑋̅ scheme at time t, denoted as 𝑍𝑡, is given by 

𝑍𝑡 = 𝜆𝑋̅𝑡 + (1 − 𝜆)𝑍𝑡−1, [3a] 

where 𝜆 (0 < 𝜆 ≤ 1) is the EWMA smoothing parameter, the starting point 𝑍0 = 𝜇0 and 𝑋̅ is defined 

as in Eq [1], hence Eq [3a] can also be written as: 

 𝑍𝑡 = 𝜆 ∑ (1 − 𝜆)𝑗𝑋̅𝑡−𝑗 + (1 − 𝜆)𝑡𝑍0.𝑡−1
𝑗=0  [3b] 

The time-varying (or exact) control limits of the EWMA 𝑋̅ scheme at time t are defined by 

𝑈𝐶𝐿𝐸𝑡
/𝐿𝐶𝐿𝐸𝑡

= 𝜇0 ± 𝐿𝐸𝜎0√
𝜆

(2 − 𝜆)𝑛
(1 − (1 − 𝜆)2𝑡), [4] 

respectively, where 𝐿𝐸  (𝐿𝐸 > 0) is the EWMA control limit constant which is chosen such that the 

attained 𝐴𝑅𝐿0 is equal to some prespecified value such as 370. The EWMA 𝑋̅ scheme gives a signal if 

𝑍𝑡 plots beyond the control limits defined in Eq [4], i.e. 𝑍𝑡 ≥ 𝑈𝐶𝐿𝐸𝑡
 or 𝑍𝑡 ≤ 𝐿𝐶𝐿𝐸𝑡

. 
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Note that when the process has been running for a long time (i.e. 𝑡 → ∞), the expression 

(1 − (1 − 𝜆)2𝑡) from Eq [4] converges to 1; therefore, the asymptotic control limits are simply defined 

by 

𝑈𝐶𝐿𝐴/𝐿𝐶𝐿𝐴 = 𝜇0 ± 𝐿𝐸𝜎0√
𝜆

(2 − 𝜆)𝑛
, [5] 

respectively. To conserve space, in this paper, we will only focus on the time-varying case. 

2.3 Composite Shewhart-EWMA 𝑿̅ monitoring scheme 

The composite Shewhart-EWMA (denoted as CSEWMA) 𝑋̅ scheme is the combination of the 

standalone Shewhart and EWMA 𝑋̅ schemes discussed in subsections 2.1 and 2.2, respectively. The 

CSEWMA 𝑋̅ scheme signals an OOC situation at time 𝑡 if one of the following conditions is satisfied. 

(i) 𝑋̅𝑡 ≥ 𝑈𝐶𝐿 or 𝑋̅𝑡 ≤ 𝐿𝐶𝐿, or 

(ii) 𝑍𝑡 ≥ 𝑈𝐶𝐿𝐸𝑡
 or 𝑍𝑡 ≤ 𝐿𝐶𝐿𝐸𝑡

. 

Thus, the parameters 𝜆, 𝑘 and 𝐿𝐸 must be chosen such that the attained 𝐴𝑅𝐿0 is equal to the prespecified 

𝐴𝑅𝐿0 value. 

3. The proposed single composite Shewhart-EWMA 𝑿̅ monitoring scheme 

In the previous section, it is shown that the existing CSEWMA 𝑋̅ scheme uses two charting statistics to 

decide whether the process is IC or not. In this section, we develop a new CSEWMA scheme based on 

a single charting statistic when the process parameters are assumed known (i.e. Case K) and unknown 

(i.e. Case U), and we investigate its IC and OOC performances. To make the new scheme more flexible, 

an extra weighing parameter denoted by 𝜔 (0 ≤ 𝜔 ≤ 1) is also introduced.  

3.1 Design of the proposed scheme  

The charting statistic of the proposed single CSEWMA 𝑋̅ scheme (henceforth denoted by SCSEWMA) 

is developed using an additive weighted model which is mathematically defined by  

𝑊𝑡 = (1 − 𝜔)𝑋̅𝑡 + 𝜔𝑍𝑡 , 𝑡 = 1,2,3, …, [6] 

where 𝑋̅𝑡 and 𝑍𝑡 are defined in Eqs [1] and [3a], respectively.  

Note that when 𝜔 = 0 in Eq [6], then the proposed SCSEWMA 𝑋̅ scheme reduces to the classical 

Shewhart 𝑋̅ scheme; however, when 𝜔 = 1, it reduces to the classical EWMA 𝑋̅ scheme. Thus, the 

proposed scheme borrows the strengths of the standalone Shewhart and EWMA 𝑋̅ control charts 

separately and it is flexible through the weighing parameter 𝜔. 

The expected value and variance of the SCSEWMA 𝑋̅ statistic 𝑊𝑡 in Eq [6] for Case K are given by 

𝐸(𝑊𝑡) = 𝜇0 [7a] 

and  

𝑉𝑎𝑟(𝑊𝑡) = ((1 − 𝜔)(1 − 𝜔 + 2𝜆𝜔) +
𝜆𝜔2

2 − 𝜆
(1 − (1 − 𝜆)2𝑡))

𝜎0
2

𝑛
, [7b] 
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respectively. The derivations of the mean and variance (i.e. Eqs [7a] and [7b]) of the SCSEWMA 𝑋̅ 

charting statistic are provided in Appendix A.  

Therefore, the time-varying control limits are given by 

𝑈𝐶𝐿𝑊𝑡
/𝐿𝐶𝐿𝑊𝑡

= 𝜇0 ± 𝐿𝑊√𝑉𝑎𝑟(𝑊𝑡), [8] 

where 𝐿𝑊(𝐿𝑊 > 0) is the SCSEWMA control limit constant which is chosen such that the attained 

𝐴𝑅𝐿0 is equal to some prespecified 𝐴𝑅𝐿0. The SCSEWMA 𝑋̅ scheme gives a signal when 𝑊𝑡 plots 

beyond the control limits defined in Eq [8]. Otherwise, the process is said to be IC.    

Note that when the process has been running for a very long time, i.e. 𝑡 → ∞, the term (1 − (1 − 𝜆)2𝑡) 

converges towards one so that the asymptotic variance of 𝑊𝑡 is reduced to: 

𝑉𝑎𝑟(𝑊𝑡) = ((1 − 𝜔)(1 − 𝜔 + 2𝜆𝜔) +
𝜆𝜔2

2 − 𝜆
)

𝜎0
2

𝑛
. [9] 

Next, for Case U, the proposed SCSEWMA 𝑋̅ scheme is implemented in two regimes known as Phase 

I and Phase II. The process parameters 𝜇0 and 𝜎0 are estimated in Phase I, and these parameters are 

used to calculated the control limits of the SCSEWMA 𝑋̅ scheme. Thereafter, in Phase II, the control 

limits found in Phase I are used to continuously monitor the process. That is, In Case U, the IC process 

parameters 𝜇0 and 𝜎0 are estimated in Phase I using 𝑚 reference samples each of size 𝑛 when the 

process is deemed to be IC. The unbiased estimators for 𝜇0 and 𝜎0 are defined by  

𝜇̂0 =
∑ ∑ 𝑋𝑗𝑖

𝑛
𝑖=1

𝑚
𝑗=1

𝑚𝑛
 [10a] 

and  

𝜎̂0 =

√
∑ ∑ (𝑋𝑗𝑖 − 𝑋̅𝑗)2𝑛

𝑖=1
𝑚
𝑗=1

𝑚(𝑛 − 1)

𝑐4,𝑚
, 

[10b] 

respectively; where {𝑋𝑗𝑖: 𝑗=1,…,𝑚 and 𝑖=1,…,𝑛} is a sequence of IC Phase I observations which follow 

a 𝑁(𝜇0, 𝜎0
2) distribution, with 𝑋̅𝑗  = ∑ 𝑋𝑗𝑖 𝑛⁄𝑛

𝑖=1  and the un-biasing constant is given by 𝑐4,𝑚 =

√2 Γ(
𝑚(𝑛−1)+1

2
)

√𝑚(𝑛−1) Γ(
𝑚(𝑛−1)

2
)
; see for example Abbas27. Thus, in Case U, the mean and variance of the SCSEWMA 

𝑋̅ charting statistic are given by 

𝐸(𝑊𝑡) = 𝜇̂0 [11a] 

and  

𝑉𝑎𝑟(𝑊𝑡) = ((1 − 𝜔)(1 − 𝜔 + 2𝜆𝜔) +
𝜆𝜔2

2 − 𝜆
(1 − (1 − 𝜆)2𝑡))

𝜎̂0
2

𝑛
, [11b] 

where 𝜇̂0 and 𝜎̂0 are defined in Eqs [10a] and [10b], respectively. Consequently, the control limits of 

the SCSEWMA 𝑋̅ scheme, 𝐿𝐶𝐿̂𝑡 and 𝑈𝐶𝐿̂𝑡, are computed by substituting Eqs [11a] and [11b] in Eq 

[8]. 
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3.2 Run-length performance metrics 

To evaluate the performance or sensitivity of a monitoring scheme, the SPM literature widely 

recommends the use of the characteristics based on the run-length such as the average run-length (ARL), 

the standard deviation of the run-length (SDRL) as well as the percentiles of the run-length (PRL) where 

the 50th PRL represents the median run-length (MRL). The run-length variable represents the number of 

rational samples plotted on the scheme before it gives an OOC signal for the first time. Table 1 shows 

how to compute the Cases K and U characteristics of the run-length of the proposed monitoring scheme 

using Monte Carlo simulations. 

Note that the run-length distribution can be computed using two different approaches generally known 

as the zero-state and steady-state modes. In zero-state, it is assumed that a significant change in the 

process occurs when the process starts. In other words, the process starts in an OOC state. However, in 

steady-state, the process starts IC and a significant change occurs at a random time after it has been 

running for a while. The zero-state and steady-state modes are used to characterise the short-term and 

long-term run-length properties of a monitoring scheme. In this paper, the main focus is on the zero-

state properties of the proposed scheme. Nevertheless, in Section 4.3.2, the steady-state performance of 

the proposed scheme is compared to the zero-state one. 
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Table 1. Computation of the Cases K and U run-length characteristics of the proposed SCSEWMA 𝑋̅ monitoring scheme 

Case K Case U 
Steps Search of the optimal 𝑳𝑾 values and computation of the attained 𝑨𝑹𝑳𝟎 value for some 

prespecified 𝑨𝑹𝑳𝟎 value 

Steps Estimation of the process parameters, search for 𝑳𝑾 and the attained 𝑨𝑹𝑳𝟎 value for some 

prespecified 𝑨𝑹𝑳𝟎 value 

1 Specify the process parameters 𝜇0 and 𝜎0 (say, 𝜇0 = 0 and 𝜎0 = 1), the sample size (𝑛), the 

smoothing parameter 𝜆, the weighing parameter (𝜔), the number of simulation (𝑟) and the 

nominal (i.e. prespecified) 𝐴𝑅𝐿0 value. 

1 Specify the Phase I sample size (𝑚), the Phase II sample size (𝑛), the smoothing parameter 𝜆, 

the weighing parameter (𝜔), the number of simulation (𝑟) and the nominal (i.e. prespecified) 

𝐴𝑅𝐿0 value.  

2 Set 𝐿𝑊 to some value and calculate the control limits, LCL and UCL, using Eq [8]. 2 Generate m Phase I samples from a 𝑁(𝜇0,𝜎0) distribution, each of size 𝑛, say from 𝑁(0,1).  

3 At the 𝑡𝑡ℎ sampling time, generate a 𝑁(𝜇0 + 𝛿𝜎0,𝜎0) distribution of size 𝑛 where 𝛿 = 0, say 

from 𝑁(0,1) distribution.   

3 Determine 𝑐4𝑚 and afterwards, estimate the process parameters 𝜇0 and 𝜎0 denoted as 𝜇̂0 and 

𝜎̂0 using Eqs [10a] and [10b]. 

4 Calculate the charting statistic 𝑊𝑡 using Eq [6]. 4 At the 𝑡𝑡ℎ sampling time, generate a Phase II sample from 𝑁(𝜇0 + 𝛿𝜎0,𝜎0) distribution of size 

𝑛 where 𝛿 = 0, say from 𝑁(0,1). 

5 Compare the charting statistic found in Step 4 to the control limits computed in Step 2. If 𝑊𝑡 ∈ 
(𝐿𝐶𝐿𝑡, 𝑈𝐶𝐿𝑡) then return to Step 3. Otherwise, the scheme gives a signal. Record the number 

of samples needed to get an OOC signal. This is one value of the run-length vector. 

5 Set 𝐿𝑊 to some value and calculate the control limits, 𝐿𝐶𝐿𝑡 and 𝑈𝐶𝐿𝑡, by substituting 𝜇̂0 and 

𝜎̂0 found in Step 3 in Eq [8]. 

6 Repeat Steps 3 to 5 𝑟 times (say, 50000 times). 6 Calculate the charting statistic 𝑊𝑡 using Eq [6]. 

7 Once the run-length vector, 𝑅𝐿(𝑟𝑥1), is obtained, calculate the 𝐴𝑅𝐿0 as 𝐴𝑅𝐿0 =
1

𝑟
∑ 𝑅𝐿𝑖

𝑟
𝑖=1 . 

This value represents the attained 𝐴𝑅𝐿0. PROC UNIVARIATE can be used in SAS to find 

other characteristics of the run-length vector (or distribution). 

7 Compare the charting statistic found in Step 6 to the control limits computed in Step 5. If 𝑊𝑡 ∈ 

(𝐿𝐶𝐿̂𝑡, 𝑈𝐶𝐿̂𝑡) then return to Step 4. Otherwise, the scheme gives a signal. Record the number 

of samples needed to get an OOC signal. This is one value of the run-length vector. 

8 If the attained 𝐴𝑅𝐿0 value is much closer or equal to the nominal 𝐴𝑅𝐿0 value, records the 𝐿𝑊 

value. Otherwise return to Step 2; then increase the value of 𝐿𝑊 if the attained 𝐴𝑅𝐿0 is smaller 

than the nominal 𝐴𝑅𝐿0 or decrease the value of 𝐿𝑊 if the attained 𝐴𝑅𝐿0 is larger than the 

nominal 𝐴𝑅𝐿0. 

8 Repeat Steps 2 to 7 𝑟 times (say, 50000 times). 

Computation of the OOC 𝑨𝑹𝑳 value 

9 Specify the shift 𝛿 (say, 𝛿 ∈ {0.1, 0.2, 0.3, …, 2}). 9 Once the run-length vector, 𝑅𝐿(𝑟𝑥1), is obtained, calculate the 𝐴𝑅𝐿0 as 𝐴𝑅𝐿0 =
1

𝑟
∑ 𝑅𝐿𝑖

𝑟
𝑖=1 . 

This value represents the attained 𝐴𝑅𝐿0. PROC UNIVARIATE can be used in SAS to find 

other characteristics of the run-length vector (or distribution). 

10 Use Steps 3 to 7 using the 𝐿𝑊 found in Step 8 using 𝛿 ≠ 0. 10 If the attained 𝐴𝑅𝐿0 value is much closer or equal to the nominal 𝐴𝑅𝐿0 value, records the 𝐿𝑊 

value. Otherwise return to Step 2; then increase the value of 𝐿𝑊 if the attained 𝐴𝑅𝐿0 is smaller 

than the nominal 𝐴𝑅𝐿0 or decrease the value of 𝐿𝑊 if the attained 𝐴𝑅𝐿0 is larger than the 

nominal 𝐴𝑅𝐿0. 

  Computation of the OOC 𝑨𝑹𝑳 value 

  11 Specify the shift 𝛿 (say, 𝛿 ∈ {0.1, 0.2, 0.3, …, 2}). 

  12 Use Steps 4 to 9 using the 𝐿𝑊 found in Step 10 using 𝛿 ≠ 0. 
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Note though that the aforementioned metrics evaluate the performance of a scheme for a specific shift 

and not for a range of shift values or overall performance. To overcome this shortcoming, many 

researchers have recommended the use of the expected values of the previous characteristics such as 

the expected ARL (EARL), the expected SDRL (ESDRL) and the expected median run-length (EMRL). 

Mathematically, the EARL, ESDRL and EMRL are defined by 

𝐸𝐴𝑅𝐿 =
1

∆
∑ 𝐴𝑅𝐿(𝛿)𝛿max

𝛿=𝛿min
, 𝐸𝑆𝐷𝑅𝐿 =

1

∆
∑ 𝑆𝐷𝑅𝐿(𝛿)𝛿max

𝛿=𝛿min
  

and  

 𝐸𝑀𝑅𝐿 =
1

∆
∑ 𝑀𝑅𝐿(𝛿)𝛿max

𝛿=𝛿min
, 

[12] 

respectively, where the 𝛿 ∈ [𝛿min, 𝛿max], ∆ is the number of increments from 𝛿min to 𝛿max of the 

Riemann sum,  𝐴𝑅𝐿(𝛿), 𝑆𝐷𝑅𝐿(𝛿) and 𝑀𝑅𝐿(𝛿) are the ARL, SDRL and MRL for a specific shift 𝛿 in 

the process parameter. In this paper, we use increments of 0.1 in the summations in Eq [12], with 𝛿min= 

0.1 and 𝛿max= 2. Based on the latter, it follows that ∆=20. Note that control chart constants are 

determined such that the attained 𝐴𝑅𝐿0 is equal or almost equal to the prespecified value of 370.4. 

 

4. Performance analysis of the SCSEWMA 𝑿̅ scheme  

In this section, the robustness of the proposed SCSEWMA 𝑋̅ scheme is investigated under Cases K and 

U. In addition, the Case K (i.e. when 𝑚 = ∞) and Case U (i.e. when 𝑚 ≠ ∞) OOC performances of the 

SCSEWMA 𝑋̅ scheme are also investigated.  

4.1 IC robustness of the SCSEWMA 𝑿̅ scheme  

The IC robustness is very important in the design and implementation of a monitoring scheme in order 

to be certain of its shift detection capability in different situations such as the departures from the ideal 

(e.g. departure from the normal assumption). Balakrishnan et al28 (see p.7299) defined the robustness 

as “a procedure that performs well not only under ideal conditions under which it is designed but also 

under the departure from the ideal”. Thus, to investigate the IC robustness of the SCSEWMA 𝑋̅ scheme, 

we used five different distributions, the standard normal distribution (denoted as N(0,1)), the Student’s 

t distribution with degrees of freedom 5 and 25 (denoted as t(5) and t(25), respectively), and the gamma 

distribution with shape parameters 𝛼 = 3 and 20 and scale parameter 𝛽 =1 (denoted as G(3,1) and 

G(20,1), respectively). The IC robustness is investigated when 𝜔 ∈{0.0,0.1,0.2, …,0.9,1.0} and 

𝜆 ∈{0.1,0.5,0.9}, 𝑛 = 5, 𝑚 = ∞ (i.e. Case K) and 𝑚 = 10 and 100 (in Case U) for a prespecified 𝐴𝑅𝐿0 

of 370.4. From Table 2, it can be seen that overall, the SCSEWMA 𝑋̅ scheme is not IC robust since the 

𝐴𝑅𝐿0 profile is not the same across all continuous distributions. However, under the t distribution, as 

the degrees of freedom increases, the SCSEWMA 𝑋̅ scheme becomes robust. Under the gamma 

distribution, as the shape parameter increases, the SCSEWMA 𝑋̅ scheme also gets more robust. In 

addition, for both Cases K and U, the SCSEWMA 𝑋̅ scheme is more robust for large values of 𝜔. For 

other Phase I sample sizes, the findings remain the same except for very small Phase I sample sizes 
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(see, for example, Table 2 when m = 10) where the results fluctuate significantly because of the large 

variability in the run-length distribution. Note though, both the EWMA and Shewhart 𝑋̅ schemes are 

not IC robust. It is worth mentioning that the EWMA 𝑋̅ scheme (i.e. 𝜔=1) tend towards robustness 

faster than the Shewhart 𝑋̅ scheme (i.e. 𝜔=0) under the above-mentioned situations.  
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Table 2. 𝐴𝑅𝐿0 profile of the SCSEWMA 𝑋̅ scheme along with the corresponding control limits constants when n = 5, 𝜆 ∈{0.1,0.5,0.9}, 𝑚 ∈{10,100} (i.e. 

Case U) and 𝑚 = ∞ (i.e. Case K) for different 𝜔 values under different distributions with a prespecified 𝐴𝑅𝐿0 value of 370.4 

  𝝀 = 0.1 𝝀 = 0.5 𝝀 = 0.9 

m 𝝎 𝑳𝑾 N(0,1) t(5) t(25) G(3,1) G(20,1) 𝑳𝑾 N(0,1) t(5) t(25) G(3,1) G(20,1) 𝑳𝑾 N(0,1) t(5) t(25) G(3,1) G(20,1) 

10 

0.0 3.047 371.4 118.6 324.7 292.4 399.5 3.046 370.9 112.6 321.6 292.9 363.9 3.046 369.8 114.6 314.6 300.5 375.7 

0.1 3.061 371.2 116.4 322.9 328.0 362.2 3.057 369.4 113.6 316.5 303.7 382.2 3.046 370.6 114.8 309.4 280.1 381.7 

0.2 3.065 370.7 113.3 316.4 337.8 390.5 3.056 371.2 116.3 309.8 336.5 368.1 3.047 370.8 116.1 316.8 320.3 384.0 

0.3 3.086 370.9 111.6 317.3 393.1 367.1 3.061 371.6 115.5 329.9 337.0 359.1 3.049 371.3 114.4 304.7 303.3 377.0 

0.4 3.100 371.4 114.9 305.8 423.5 372.7 3.067 371.0 114.2 320.5 347.2 379.4 3.052 369.8 116.2 314.5 317.0 368.9 

0.5 3.123 370.0 114.4 305.3 420.6 414.3 3.077 370.7 119.3 316.7 355.6 364.9 3.056 371.4 116.4 306.0 342.4 392.6 

0.6 3.152 370.0 116.0 296.2 446.8 370.7 3.082 371.2 122.9 319.9 367.5 381.4 3.055 369.4 116.5 326.9 320.5 392.3 

0.7 3.173 371.2 117.8 305.3 381.2 363.8 3.093 370.5 125.5 316.6 395.0 389.1 3.059 370.9 118.1 321.0 320.5 385.1 

0.8 3.201 369.2 132.0 337.7 334.4 348.7 3.099 371.9 128.2 328.4 411.2 366.1 3.059 371.7 115.7 324.7 321.3 386.0 

0.9 3.188 371.1 180.5 325.1 311.3 368.3 3.100 369.9 135.8 311.5 388.7 365.9 3.061 369.9 118.8 310.0 325.9 399.2 

1.0 3.108 370.1 280.8 359.9 315.7 353.7 3.098 371.4 142.4 335.4 386.7 339.8 3.060 372.2 114.4 313.5 316.2 392.9 

100 

0.0 3.183 369.7 138.8 321.6 176.7 318.5 3.182 370.5 136.7 316.1 1774.0 316.4 3.183 370.3 137.5 317.8 174.7 319.5 

0.1 3.186 370.9 136.1 322.8 178.2 327.2 3.181 370.9 137.2 317.6 177.6 321.3 3.182 370.8 136.5 322.6 174.7 318.0 

0.2 3.189 369.9 136.1 316.0 181.4 322.2 3.187 369.9 136.7 315.1 178.5 322.2 3.183 370.7 133.6 318.0 177.5 318.5 

0.3 3.193 370.3 137.4 320.6 187.0 325.7 3.185 369.9 137.0 318.0 182.5 321.3 3.184 369.9 134.6 323.4 178.9 320.9 

0.4 3.195 371.9 139.1 322.5 196.3 332.2 3.186 368.9 141.5 324.5 186.0 324.1 3.182 369.8 136.0 321.6 176.2 321.7 

0.5 3.203 370.8 140.6 321.6 204.5 335.2 3.190 370.5 140.9 323.7 190.4 327.3 3.184 370.2 137.0 322.7 176.4 318.8 

0.6 3.209 371.4 145.8 327.0 221.3 336.5 3.188 370.1 144.2 324.0 196.5 328.1 3.184 369.6 136.4 316.1 177.8 317.9 

0.7 3.214 370.1 156.0 329.9 245.6 349.2 3.190 368.9 146.9 323.5 206.1 331.8 3.186 369.3 137.7 318.5 176.4 320.1 

0.8 3.203 371.9 177.6 335.6 274.2 353.9 3.189 369.7 155.4 324.5 214.7 335.6 3.184 371.1 138.2 317.3 177.5 322.2 

0.9 3.157 369.5 218.4 346.5 305.1 360.5 3.188 370.4 162.2 335.0 228.8 345.3 3.185 370.8 139.0 317.4 181.9 322.0 

1.0 3.003 369.7 290.8 361.1 334.5 361.2 3.186 370.2 175.3 337.0 240.9 345.9 3.187 371.3 140.1 318.5 181.8 323.5 

∞ 

0.0 3.000 370.3 153.0 324.1 178.1 313.8 3.000 370.4 153.0 324.1 178.1 313.8 3.000 370.4 153.0 324.1 178.1 313.8 

0.1 2.999 370.3 151.7 326.7 177.9 313.0 3.001 370.4 153.1 326.2 180.2 315.2 3.000 370.8 153.0 322.6 179.8 313.5 

0.2 2.999 370.1 152.5 325.0 180.9 315.1 3.001 370.9 154.3 317.6 182.0 325.8 2.999 371.4 153.3 324.9 178.6 314.0 

0.3 2.998 370.2 152.3 322.0 183.8 315.5 2.998 371.2 154.6 324.2 183.2 313.6 2.999 370.7 152.1 324.9 179.3 314.1 

0.4 2.998 370.5 155.6 327.5 187.7 315.1 2.999 369.6 156.7 328.3 186.3 316.1 3.000 369.7 151.7 328.7 180.0 314.8 

0.5 2.998 370.8 157.2 328.9 193.9 321.7 2.998 370.6 158.7 330.6 190.9 320.2 2.998 371.4 151.9 322.0 179.1 312.4 

0.6 2.995 369.9 164.3 334.6 201.5 324.5 2.998 370.6 161.4 329.1 192.6 319.5 2.999 371.9 153.2 323.3 180.5 316.0 

0.7 2.985 370.7 173.1 337.0 219.0 330.6 2.996 369.9 168.5 339.6 202.8 328.5 2.998 369.4 153.4 323.1 180.6 313.0 

0.8 2.961 369.5 197.4 344.1 252.1 343.1 2.994 371.2 175.8 337.5 211.6 329.5 2.998 370.0 152.0 322.8 180.9 314.0 

0.9 2.885 369.5 247.9 354.1 303.3 357.6 2.986 370.3 182.4 338.9 220.7 333.1 2.997 370.9 152.9 322.1 179.5 315.6 

1.0 2.715 370.5 337.3 370.3 361.0 370.9 2.980 371.1 196.4 349.3 236.9 339.1 2.998 369.8 153.0 325.2 182.0 316.8 
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4.2 Case K performance analysis 

4.2.1 Case K IC and OOC performances of the proposed scheme 

In this section, specific and overall performances of the proposed SCEWMA 𝑋̅ scheme are investigated 

in terms of the metrics introduced in Section 3.2. Tables 3 to 5 present the IC and OOC performances 

of the proposed SCSEWMA 𝑋̅ scheme in terms of the ARL, SDRL and MRL when 0 ≤ 𝜔 ≤ 1, 𝜆 = 0.1, 

𝑛 = 5 and 𝛿 = 0 (0.1) 2, respectively. The triplet (𝜔, 𝜆, 𝐿) are selected for a prespecified 𝐴𝑅𝐿0 = 370.4. 

The last row of these tables gives the overall performance values as described in Eq [12]. Thus, the 

results in Tables 3 to 5 can be summarised as follows: 

• The width of the proposed scheme is between the widths of the EWMA and Shewhart 𝑋̅ 

schemes, i.e. 𝐿𝐸 ≤ 𝐿𝑊 ≤ 𝑘.  

• For small and moderate shifts in the process mean, in terms of the OOC ARL, SDRL and MRL 

profiles, the proposed SCSEWMA 𝑋̅ scheme performs better for large values of 𝜔, i.e. higher 

weight. For instance, if 𝛿 = 0.1, as the weighing parameter increases (i.e. when 𝜔 = 0, 0.5 and 

1), we have 𝐴𝑅𝐿 = 296, 210 and 101, respectively (see Table 3). These findings also hold in 

terms of the overall performance. For instance, when 𝜔 = 0, 0.5 and 1, the SCSEWMA 𝑋̅ 

scheme yields EARL = 36.7, 20.7 and 9.6, respectively (see Table 3), which shows a significant 

increase in the overall sensitivity of the proposed scheme as 𝜔 increases. A similar pattern is 

observed in terms of the SDRL and ESDRL values (see Table 4). 

• For large shifts, there is 50% chance that the proposed scheme gives a signal between the first 

and the second subgroups; that is, the MRL values for large shifts varies between 1 and 2 (see 

Table 5). 

• The higher the shift in the process parameter, the more sensitive the SCSEWMA 𝑋̅ scheme 

becomes. 

• The patterns in the sensitivity of the proposed scheme in terms of the ARL, SDRL and MRL 

profile is similar. This conclusion also holds in terms of the overall performance profiles. 
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Table 3. Case K ARL and EARL profiles of the SCSEWMA scheme along with their corresponding 

𝐿𝑊 values when 𝜔 =0 (0.1) 1, 𝜆 = 0.1 and n=5 for a nominal 𝐴𝑅𝐿0 value of 370.4 
𝝎 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

𝑳𝑾 → 3.000 2.999 2.999 2.998 2.998 2.998 2.995 2.985 2.961 2.885 2.715 

Shift↓ ARL profile ↓                            
0.0 370.3 370.3 370.1 370.2 370.5 370.8 369.9 370.7 369.5 369.5 370.4 
0.1 295.9 284.3 272.5 253.9 232.6 209.9 182.5 157.2 130.0 109.6 101.3 
0.2 177.7 161.1 143.8 122.0 102.4 83.6 66.6 52.7 41.4 33.6 31.5 
0.3 99.5 85.7 72.7 60.8 48.7 39.5 31.1 24.8 19.6 15.9 15.2 
0.4 56.6 48.1 40.1 33.0 27.1 21.9 17.8 14.6 11.7 9.3 9.2 
0.5 33.1 28.3 23.8 20.0 16.6 14.0 11.8 9.7 7.9 6.3 6.3 
0.6 20.5 17.6 15.1 13.0 11.3 9.6 8.3 7.1 5.8 4.6 4.7 
0.7 13.2 11.6 10.3 9.0 8.0 7.1 6.2 5.4 4.4 3.5 3.7 
0.8 8.8 8.0 7.3 6.5 5.9 5.3 4.8 4.2 3.5 2.8 3.0 
0.9 6.2 5.7 5.3 4.9 4.6 4.2 3.8 3.4 2.9 2.3 2.5 
1.0 4.5 4.2 4.0 3.8 3.6 3.3 3.1 2.8 2.4 2.0 2.1 
1.1 3.4 3.3 3.2 3.0 2.9 2.7 2.6 2.4 2.1 1.7 1.9 
1.2 2.7 2.6 2.5 2.4 2.4 2.3 2.2 2.0 1.8 1.5 1.7 
1.3 2.2 2.1 2.1 2.1 2.0 2.0 1.9 1.8 1.6 1.4 1.5 
1.4 1.8 1.8 1.8 1.7 1.7 1.7 1.6 1.6 1.4 1.3 1.4 
1.5 1.6 1.6 1.5 1.5 1.5 1.5 1.5 1.4 1.3 1.2 1.3 
1.6 1.4 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.2 1.1 1.2 
1.7 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.2 
1.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1 
1.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.1 
2.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 

EARL profile → 36.7 33.6 30.6 27.2 23.9 20.7 17.6 14.8 12.2 10.1 9.6 
Note: The control limits constants were rounded off at 3 decimal places to conserve space 

 

Table 4. Case K SDRL and ESDRL profiles of the SCSEWMA scheme along with their corresponding 

𝐿𝑊 values when 𝜔 =0 (0.1) 1, 𝜆 = 0.1 and n=5 for a nominal 𝐴𝑅𝐿0 value of 370.4 
𝝎 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

𝑳𝑾 → 3.000 2.999 2.999 2.998 2.998 2.998 2.995 2.985 2.961 2.885 2.715 

Shift↓ SDRL profile ↓                            
0.0 369.4 368.8 369.7 368.9 370.2 372.6 369.4 368.1 374.8 384.9 377.5 
0.1 296.5 281.9 272.5 250.8 231.1 206.1 178.7 152.3 128.5 108.2 97.3 
0.2 177.5 157.7 140.4 119.2 98.0 78.5 60.5 46.3 36.0 29.6 26.2 
0.3 99.0 84.0 69.6 56.7 43.3 33.7 24.7 19.1 14.9 12.5 11.1 
0.4 55.9 46.9 37.2 29.3 22.4 16.9 12.8 10.1 8.1 6.9 6.1 
0.5 32.8 26.6 21.1 16.6 12.8 10.1 8.0 6.2 5.2 4.5 3.9 
0.6 20.0 16.1 12.9 10.3 8.3 6.6 5.4 4.4 3.6 3.1 2.8 
0.7 12.6 10.4 8.5 6.9 5.7 4.8 3.9 3.3 2.7 2.3 2.1 
0.8 8.3 7.0 5.9 5.0 4.2 3.6 3.0 2.5 2.1 1.8 1.6 
0.9 5.6 4.9 4.2 3.7 3.2 2.8 2.4 2.0 1.7 1.4 1.3 
1.0 3.9 3.5 3.1 2.8 2.5 2.2 1.9 1.6 1.4 1.1 1.1 
1.1 2.9 2.6 2.4 2.2 1.9 1.7 1.6 1.4 1.1 0.9 0.9 
1.2 2.1 2.0 1.8 1.7 1.6 1.4 1.3 1.1 1.0 0.8 0.8 
1.3 1.6 1.5 1.4 1.3 1.2 1.2 1.1 1.0 0.8 0.6 0.7 
1.4 1.2 1.1 1.1 1.1 1.0 0.9 0.9 0.8 0.7 0.5 0.6 
1.5 1.0 0.9 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.4 0.5 
1.6 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.5 0.4 0.4 
1.7 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.3 0.4 
1.8 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.2 0.3 
1.9 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.2 
2.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.2 

ESDRL profile → 36.2 32.5 29.3 25.5 22.0 18.7 15.5 12.7 10.5 8.8 7.9 
Note: The control limits constants were rounded off at 3 decimal places to conserve space 
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Table 5. Case K MRL and EMRL profiles of the SCSEWMA scheme along with their corresponding 

𝐿𝑊 values when 𝜔 =0 (0.1) 1, 𝜆 = 0.1 and n=5 for a nominal 𝐴𝑅𝐿0 value of 370.4 
𝝎 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

𝑳𝑾 → 3.000 2.999 2.999 2.998 2.998 2.998 2.995 2.985 2.961 2.885 2.715 

Shift↓ MRL profile ↓                            
0.0 257.0 260.0 254.0 256.0 258.0 256.0 253.0 259.0 254.0 251.0 252.0 
0.1 202.0 198.0 186.0 178.0 161.0 146.0 129.0 111.0 92.0 77.0 71.0 
0.2 122.0 112.0 99.0 85.0 73.0 60.0 49.0 39.0 31.0 26.0 25.0 
0.3 70.0 61.0 52.0 44.0 36.0 30.0 25.0 20.0 16.0 13.0 13.0 
0.4 39.0 34.0 30.0 25.0 21.0 18.0 15.0 12.0 10.0 8.0 8.0 
0.5 23.0 20.0 18.0 16.0 14.0 12.0 10.0 9.0 7.0 5.0 6.0 
0.6 14.0 13.0 12.0 11.0 9.0 8.0 7.0 6.0 5.0 4.0 4.0 
0.7 9.0 9.0 8.0 7.0 7.0 6.0 5.0 5.0 4.0 3.0 3.0 
0.8 6.0 6.0 6.0 5.0 5.0 5.0 4.0 4.0 3.0 2.0 3.0 
0.9 4.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 
1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 
1.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 2.0 
1.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 2.0 
1.3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 
1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

EMRL profile → 25.3 23.7 21.6 19.6 17.3 15.3 13.2 11.2 9.3 7.6 7.5 
Note: The control limits constants were rounded off at 3 decimal places to conserve space 

 

Figures 1 and 2 investigate the performance of the proposed scheme in terms of the OOC ARL and 

overall performance profiles, respectively, for different values of 𝜔 and 𝜆. The following is observed: 

(i) In terms of the OOC ARL profile (see Figure 1), 

• For small values of 𝜔, there is a slight difference in the performance of the proposed scheme 

for different values of 𝜆 regardless of the size of the shift in the process mean. As 𝜔 increases, 

the difference becomes noticeable for small and moderate shifts. 

• Under small and moderate shifts, for moderate and large values of 𝜔, the smaller the value of 

𝜆, the more sensitive the proposed scheme is. In other words, the proposed scheme performs 

better for small values of 𝜆. 

• For large shifts, regardless of the values of 𝜆 and 𝜔, the performance of the proposed scheme 

is almost similar. 

(ii) In terms of the EARL, ESDRL and EMRL values (see Figure 2), 

• The proposed scheme performs better for small values of 𝜆 for all values of 𝜔 except when 

𝜔 = 0, which is equivalent to the Shewhart 𝑋̅ scheme, where the overall performance of the 

proposed scheme is the same regardless of the value of 𝜆. 

• For a fixed value of 𝜆, the overall performance of the proposed scheme increases as 𝜔 increases. 
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(c) 𝜔 = 0.9 

Figure 1. Sensitivity of the proposed SCSEWMA 𝑋̅ scheme in terms of the ARL profile for different 

values of 𝜔 and 𝜆 for a prespecified 𝐴𝑅𝐿0 value of 370.4 
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(b) ESDRL profile 

 
(c) EMRL profile 

Figure 2. Overall performance of the proposed SCSEWMA 𝑋̅ scheme when 𝛿𝑚𝑖𝑛 = 0.1, 𝛿𝑚𝑎𝑥 = 2, n 

= 5 for prespecified 𝐴𝑅𝐿0 value of 370.4 

 

 

4.2.2 Case K performance comparison of the SCSEWMA 𝑿̅ scheme with the existing CSEWMA and 

CSCUSUM 𝑿̅ schemes 

In this section, the proposed scheme is compared to the existing CSEWMA and CSCUSUM 𝑋̅ schemes. 

The design of the CSCUSUM 𝑋̅ scheme entails three design parameters 𝑘, 𝑘𝐶 and ℎ𝐶 as well as the 

control limit 𝐻𝐶 = ℎ𝐶𝜎𝑋̅. These parameters are chosen such that the attained 𝐴𝑅𝐿0 value is equal to the 

prespecified value of 370.4 when 𝑛 = 5. In this comparison, we used 𝑘𝐶 = 0.225, 0.5 and 0.75. The 

CSEWMA 𝑋̅ scheme entails two parameters as defined in Section 2.3. The CSEWMA and SCSEWMA 

𝑋̅ schemes are investigated for 𝜆 = 0.1, 0.2 and 0.3 when 𝑛 = 5 for a prespecified 𝐴𝑅𝐿0 value of 370.4. 
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Tables 6 and 7 display the performance evaluation of the competing schemes in terms of the ARL and 

MRL profiles as well as the EARL and EMRL profiles. 

From Tables 6 and 7, it can be seen that in terms of the ARL and MRL profiles, the proposed scheme 

with 𝜔 = 0.9 is superior to the existing CSEWMA and CSCUSUM 𝑋̅ schemes under small and 

moderate shifts. However, for large shifts in the process mean, the competing schemes perform almost 

similarly. It can also be observed that the superiority of the proposed scheme is evident in terms of the 

overall performance. This is also explained by small EARL and EMRL values yielded by the proposed 

SCSEWMA 𝑋̅ scheme especially under small values of 𝜆 (see Tables 6 and 7). 

 

Table 6. Case K ARL and EARL comparisons of the SCSEWMA 𝑋̅ scheme versus the CSCUSUM 

and CSEWMA 𝑋̅ schemes when n = 5 for prespecified 𝐴𝑅𝐿0 value of 370.4 

 CSEWMA scheme CSCUSUM scheme SCSEWMA scheme (𝜔=0.9) 

Shift 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.3 ℎ𝐶=12.964 ℎ𝐶=9.913 ℎ𝐶=9.909 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.3 

0.1 165.1 202.1 225.9 140.7 276.4 294.2 109.6 148.1 178.5 

0.2 49.9 69.1 88.5 47.2 106.6 174.4 33.6 47.4 62.0 

0.3 21.6 28.1 36.7 26.5 39.3 81.8 15.9 20.6 26.6 

0.4 12.6 14.8 18.2 17.9 21.2 35.5 9.3 11.3 13.8 

0.5 8.3 9.2 10.8 13.1 14.1 19.5 6.3 7.3 8.6 

0.6 6.1 6.4 7.2 10.1 10.2 12.8 4.6 5.1 5.8 

0.7 4.7 4.9 5.2 8.0 7.8 9.1 3.5 3.9 4.4 

0.8 3.8 3.8 4.0 6.3 6.0 6.7 2.8 3.1 3.4 

0.9 3.1 3.2 3.3 5.1 4.8 5.2 2.3 2.5 2.7 

1.0 2.6 2.7 2.7 4.1 3.9 4.0 2.0 2.1 2.3 

1.1 2.3 2.3 2.3 3.3 3.1 3.2 1.7 1.8 2.0 

1.2 2.0 2.0 2.0 2.6 2.5 2.6 1.5 1.6 1.7 

1.3 1.8 1.8 1.8 2.2 2.1 2.1 1.4 1.4 1.5 

1.4 1.6 1.6 1.6 1.8 1.8 1.8 1.3 1.3 1.4 

1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.2 1.2 1.3 

1.6 1.3 1.4 1.4 1.4 1.4 1.4 1.1 1.2 1.2 

1.7 1.2 1.3 1.3 1.3 1.3 1.3 1.1 1.1 1.1 

1.8 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1 

1.9 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.1 

2.0 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 

EARL  14.6 18.0 20.9 14.8 25.4 33.0 10.1 13.2 16.1 

Control  

schemes 
constants 

𝑘 = 3.068;  

𝐿𝐸=3.203 

𝑘 = 3.086;              

𝐿𝐸= 3.239 

𝑘 = 3.088;               

𝐿𝐸 = 3.249 

𝑘 =3.034;  

𝑘𝐶=0.225;                     

𝑘 =3.001;  

𝑘𝐶=0.5;                      

𝑘 =2.999;  

𝑘𝐶=0.75                   
𝐿𝑊=2.885 𝐿𝑊=2.934 𝐿𝑊=2.959 

Note: The control limit constants were round off at 3 decimal places to conserve space 
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Table 7. Case K MRL and EMRL comparisons of the SCSEWMA 𝑋̅ scheme versus the CSCUSUM 

and CSEWMA 𝑋̅ schemes when n = 5 for prespecified 𝐴𝑅𝐿0 value of 370.4 

 CSEWMA scheme CSCUSUM scheme SCSEWMA scheme (𝜔=0.9) 

Shift 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.3 ℎ𝐶=12.964 ℎ𝐶=9.913 ℎ𝐶=9.909 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.3 

0.1 117.0 141.0 156.0 106.0 193.0 204.0 77.0 102.0 123.0 

0.2 38.0 49.0 63.0 42.0 79.0 121.0 26.0 34.0 44.0 

0.3 18.0 21.0 26.0 25.0 34.0 59.0 13.0 16.0 20.0 

0.4 11.0 12.0 14.0 18.0 20.0 29.0 8.0 9.0 11.0 

0.5 7.0 8.0 9.0 13.0 14.0 18.0 5.0 6.0 7.0 

0.6 5.0 6.0 6.0 11.0 10.0 12.0 4.0 4.0 5.0 

0.7 4.0 4.0 5.0 9.0 8.0 9.0 3.0 3.0 4.0 

0.8 3.0 3.0 4.0 7.0 6.0 6.0 2.0 3.0 3.0 

0.9 3.0 3.0 3.0 5.0 4.0 4.0 2.0 2.0 2.0 

1.0 2.0 2.0 3.0 3.0 3.0 3.0 2.0 2.0 2.0 

1.1 2.0 2.0 2.0 3.0 3.0 3.0 1.0 2.0 2.0 

1.2 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 2.0 

1.3 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 

1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

EMRL  11.1 13.1 15.1 12.7 19.3 24.0 7.6 9.6 11.7 

Control  

schemes 

constants 

𝑘 = 3.068;  

𝐿𝐸=3.203 

𝑘 = 3.086;              

𝐿𝐸= 3.239 

𝑘 = 3.088;               

𝐿𝐸 = 3.249 

𝑘 =3.034;  

𝑘𝐶=0.225;                     

𝑘 =3.001;  

𝑘𝐶=0.5;                      

𝑘 =2.999;  

𝑘𝐶=0.75                   
𝐿𝑊=2.885 𝐿𝑊=2.934 𝐿𝑊=2.959 

Note: The control limit constants were round off at 3 decimal places to conserve space 

 

4.3 Case U performance analysis 

4.3.1 Case U IC and OOC performances of the proposed scheme 

In this section, the performance of the proposed SCSEWMA 𝑋̅ scheme is investigated when 

𝑛 ∈{1,5,10}, 𝑚 ∈{10, 50,100}, 𝜔 ∈{0.1,0.5,0.9} and 𝜆 ∈{0.1,0.5,0.9} for a prespecified 𝐴𝑅𝐿0 = 370.4 

as reported in Tables 8 to 10.  

The pattern of the Cases K and U ARL profiles is the same; that is, as 𝜔 increases, the performance of 

the SCSEWMA 𝑋̅ scheme increases as well. The performance of the SCSEWMA 𝑋̅ scheme in terms 

of the ARL, SDRL, MRL, EARL, ESDRL and EMRL profiles, deteriorates when the process parameters 

are estimated; see Tables 8 to 10. For instance, if (𝜔, 𝜆) = (0.1,0.1), n = 5 and 𝛿 = 0.1, for m = ∞ (i.e. 

Case K) and m = 100 (i.e. Case U), the SCSEWMA 𝑋̅ scheme gives a signal on the 284th and 299th 

samples, respectively (see Tables 3 and 8, respectively). In Case U, the proposed SCSEWMA 𝑋̅ scheme 

is more sensitive for small values of 𝜆 and large values of 𝜔. 
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Table 8. Case U ARL and EARL profiles of the SCSEWMA 𝑋̅ scheme along with their corresponding 

𝐿𝑊 values when 𝜔 ∈{0.1,0.5,0.9}, 𝜆 ∈{0.1,0.5,0.9}, m = 100 and n=5 for a prespecified 𝐴𝑅𝐿0 value 

of 370.4 

 𝜔 = 0.1 𝜔 = 0.5 𝜔 = 0.9 

Shift 𝜆 = 0.1 𝜆 = 0.5 𝜆 = 0.9 𝜆 = 0.1 𝜆 = 0.5 𝜆 = 0.9 𝜆 = 0.1 𝜆 = 0.5 𝜆 = 0.9 

0.0 370.9 370.9 369.8 369.4 276.1 371.1 370.8 371.4 370.8 

0.1 298.7 298.2 308.5 238.6 143.5 298.8 167.8 254.2 297.8 

0.2 174.8 181.6 185.4 100.3 69.5 180.1 45.5 109.6 174.6 

0.3 93.6 98.7 103.9 44.8 35.1 98.6 19.9 47.8 92.4 

0.4 52.0 54.7 58.6 24.2 19.9 54.8 11.5 23.6 51.0 

0.5 29.5 31.5 34.4 15.0 12.1 31.4 7.8 13.2 29.0 

0.6 18.3 19.3 21.3 10.1 8.0 19.0 5.8 8.3 17.4 

0.7 12.1 12.4 13.5 7.4 5.6 12.3 4.5 5.8 11.1 

0.8 8.3 8.2 8.8 5.6 4.2 8.2 3.6 4.3 7.6 

0.9 5.9 5.8 6.2 4.4 3.3 5.7 3.0 3.3 5.4 

1.0 4.4 4.3 4.5 3.5 2.7 4.3 2.6 2.8 3.9 

1.1 3.3 3.3 3.4 2.8 2.2 3.2 2.2 2.3 3.0 

1.2 2.6 2.6 2.7 2.3 1.9 2.5 2.0 2.0 2.5 

1.3 2.2 2.1 2.2 2.0 1.7 2.1 1.8 1.8 2.0 

1.4 1.8 1.8 1.8 1.7 1.5 1.8 1.6 1.6 1.7 

1.5 1.6 1.6 1.6 1.5 1.4 1.6 1.5 1.4 1.5 

1.6 1.4 1.4 1.4 1.4 1.2 1.4 1.3 1.3 1.4 

1.7 1.3 1.3 1.3 1.3 1.2 1.3 1.3 1.2 1.3 

1.8 1.2 1.2 1.2 1.2 1.1 1.2 1.2 1.2 1.2 

1.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 

2.0 1.1 1.1 1.1 1.1 2.0 1.1 1.1 1.1 1.1 

EARL  35.8 36.6 38.1 23.5 16.0 36.5 14.4 24.4 35.3 

𝐿𝑊 3.186 3.184 3.183 3.203 3.190 3.184 3.155 3.188 3.185 

 

Table 9. Case U SDRL and ESDRL profiles of the SCSEWMA 𝑋̅ scheme along with their 

corresponding 𝐿𝑊 values when 𝜔 ∈{0.1,0.5,0.9}, 𝜆 ∈{0.1,0.5,0.9}, m = 100 and n=5 for a 

prespecified 𝐴𝑅𝐿0 value of 370.4 

 𝜔 = 0.1 𝜔 = 0.5 𝜔 = 0.9 

Shift 𝜆 = 0.1 𝜆 = 0.5 𝜆 = 0.9 𝜆 = 0.1 𝜆 = 0.5 𝜆 = 0.9 𝜆 = 0.1 𝜆 = 0.5 𝜆 = 0.9 

0.0 420.7 418.0 420.7 432.2 419.7 426.4 442.8 422.5 413.7 

0.1 340.6 342.6 355.2 284.9 320.6 342.9 241.8 301.0 347.5 

0.2 204.2 211.3 214.9 120.8 173.1 215.5 54.4 134.0 206.4 

0.3 106.7 114.8 121.5 47.4 83.1 114.5 17.8 55.2 106.5 

0.4 58.4 62.0 67.4 22.0 38.7 61.6 8.6 24.9 57.6 

0.5 31.0 34.4 38.1 12.0 20.6 34.5 5.2 12.6 32.0 

0.6 18.6 20.4 22.6 7.5 11.8 20.0 3.7 7.3 18.4 

0.7 11.8 12.8 14.2 5.3 7.1 12.8 2.7 4.5 11.1 

0.8 7.8 8.0 8.9 3.9 4.7 8.1 2.1 3.1 7.3 

0.9 5.4 5.4 6.0 3.0 3.3 5.3 1.7 2.2 4.9 

1.0 3.8 3.7 4.1 2.4 2.4 3.8 1.4 1.7 3.4 

1.1 2.8 2.7 3.0 1.9 1.8 2.6 1.2 1.3 2.4 

1.2 2.1 2.0 2.2 1.5 1.4 2.0 1.0 1.1 1.8 

1.3 1.6 1.5 1.6 1.3 1.1 1.5 0.9 0.9 1.4 

1.4 1.2 1.2 1.2 1.0 0.9 1.1 0.8 0.7 1.1 

1.5 1.0 0.9 0.9 0.8 0.7 0.9 0.7 0.6 0.9 

1.6 0.8 0.7 0.8 0.7 0.6 0.7 0.6 0.5 0.7 

1.7 0.6 0.6 0.6 0.6 0.5 0.6 0.5 0.5 0.5 

1.8 0.5 0.5 0.5 0.5 0.4 0.5 0.4 0.4 0.4 

1.9 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.3 0.4 

2.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

ESDRL  40.0 41.3 43.2 25.9 33.7 41.5 17.3 27.7 3.2 

𝐿𝑊 3.186 3.184 3.183 3.203 3.190 3.184 3.155 3.188 3.185 
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Table 10. Case U MRL and EMRL profiles of the SCSEWMA 𝑋̅ scheme along with their 

corresponding 𝐿𝑊 values when 𝜔 ∈{0.1,0.5,0.9}, 𝜆 ∈{0.1,0.5,0.9}, m = 100 and n=5 for a 

prespecified 𝐴𝑅𝐿0 value of 370.4 

 𝜔 = 0.1 𝜔 = 0.5 𝜔 = 0.9 

Shift 𝜆 = 0.1 𝜆 = 0.5 𝜆 = 0.9 𝜆 = 0.1 𝜆 = 0.5 𝜆 = 0.9 𝜆 = 0.1 𝜆 = 0.5 𝜆 = 0.9 

0.0 236.0 235.0 235.0 237.0 236.0 235.0 226.0 239.0 238.0 

0.1 189.0 187.0 193.0 144.0 172.0 187.0 87.0 154.0 188.0 

0.2 109.0 114.0 115.0 63.0 88.0 110.0 29.0 66.0 108.0 

0.3 59.0 62.0 65.0 31.0 43.0 62.0 15.0 30.0 58.0 

0.4 34.0 35.0 37.0 18.0 23.0 35.0 10.0 15.0 32.0 

0.5 20.0 20.0 22.0 12.0 13.0 20.0 7.0 9.0 19.0 

0.6 13.0 13.0 14.0 9.0 8.0 13.0 5.0 6.0 12.0 

0.7 9.0 8.0 9.0 6.0 6.0 8.0 4.0 4.0 8.0 

0.8 6.0 6.0 6.0 5.0 4.0 6.0 3.0 3.0 5.0 

0.9 4.0 4.0 4.0 4.0 3.0 4.0 3.0 3.0 4.0 

1.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 2.0 3.0 

1.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

1.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

1.3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

EMRL  23.0 23.3 24.1 15.4 18.8 23.1 8.9 15.3 22.5 

𝐿𝑊 3.186 3.184 3.183 3.203 3.190 3.184 3.155 3.188 3.185 

 

 

Figure 3 investigates the effect of the Phase I sample size on the Phase II performance of the proposed 

SCSEWMA 𝑋̅ scheme when 𝛿 ∈ {0.1, 0.2, …, 1.0}, n = 5, 𝑚 ∈{10,50,100} for various (𝜔,𝜆). From 

Figure 3, it can be observed that regardless of the values of 𝜔 and 𝜆, the SCSEWMA 𝑋̅ scheme performs 

better for large Phase I sample sizes.  
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(b) (𝜔,𝜆)=(0.1,0.9) 

 
(c) (𝜔,𝜆)=(0.9,0.1) 
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Figure 3. Effect of the Phase I sample size on the performance of the proposed SCSEWMA 𝑋̅ scheme 

when 𝛿 ∈{0.1, 0.2, …, 1.0}, n = 5, 𝑚 ∈{10,50,100}, (𝜔,𝜆) ∈{(0.1,0.1), (0.1,0.9), (0.9,0.1), (0.9,0.9)} 

for a prespecified 𝐴𝑅𝐿0 value of 370.4 
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(c) (𝜔,𝜆)=(0.9,0.1) 

 
(d) (𝜔,𝜆)=(0.9,0.9) 

Figure 4. Effect of the Phase II sample size on the performance of the proposed SCSEWMA 

𝑋̅ scheme when 𝛿 ∈{0.1, 0.2, …, 1.0}, m = 100, 𝑛 ∈{2,5,10}, (𝜔,𝜆) ∈{(0.1,0.1), (0.1,0.9), 

(0.9,0.1), (0.9,0.9)} for a prespecified 𝐴𝑅𝐿0 value of 370.4 
 

Figure 4 investigates the effect of the Phase II sample size on the performance of the proposed 
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the overall performance, Figure 5 shows that the larger the Phase I or Phase II sample, the more sensitive 

the proposed scheme becomes. The smaller the value of 𝜆, the better the performance of the proposed 

scheme. The larger the value of 𝜔, the more sensitive the SCSEWMA 𝑋̅ scheme (see Figure 5). 
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(a) m = 100 

 
(b) n = 5 

Figure 5. Effect of the Phases I and II on the overall performance of the SCSEWMA 𝑋̅ scheme when 

𝜔 ∈{0.1,0.5,0.9}and 𝜆 ∈{0.1,0.5,0.9} for a prespecified 𝐴𝑅𝐿0 of 370.4 
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(a) n = 5 when (𝜔,𝜆) = (0.1,0.1) 

 
(b) m = 100 when (𝜔,𝜆)=(0.1,0.1) 

Figure 6. Effects of the Phases I and II sample sizes on the SDRL profile of the proposed SCSEWMA 

𝑋̅ scheme when (𝜔,𝜆)=(0.1,0.1) for a prespecified 𝐴𝑅𝐿0 value of 370.4 
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scheme are almost equal except for small Phase I sample size with small shift values (i.e. 𝛿 < 1); see 

Figures 7 (a)-(c).  

Figure 8 presents the steady-state overall performances of the proposed SCSEWMA scheme in terms 

of the EARL profile when (𝜔, 𝜆) = (0.1, 0.1), (0.5,0.5) and (0.9,0.9), and (𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥) = (0.1, 2) for a 

nominal 𝐴𝑅𝐿0 = 370. From this figure, it can be seen that the proposed scheme is more sensitive in 

Case K compared to Case U. In Case U, the larger the Phase I sample size, the more sensitive the 

proposed scheme is. 
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(a) Case U when 𝑚 = 10 (b) Case U when 𝑚 = 100 (c) Case K (i.e. 𝑚 = ∞ ) 

Figure 7. Zero-state and steady state performances of the proposed CSEWMA scheme in terms of the ARL profile when (𝜔, 𝜆) = (0.1, 0.1), 𝑚 = 10, 100 and 

∞ for a nominal 𝐴𝑅𝐿0 = 370
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Figure 8. Steady-state overall performances of the proposed CSEWMA scheme in terms of the EARL profile when (𝜔, 𝜆) = (0.1, 0.1), (0.5,0.5) and (0.9,0.9), 

and (𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥) = (0.1, 2) for a nominal 𝐴𝑅𝐿0 = 370 
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4.3.3 Case U performance comparison of the SCSEWMA 𝑿̅ scheme with the existing CSEWMA and 

CSCUSUM 𝑿̅ schemes  

In Table 11, the Case U performance of the proposed SCSEWMA  𝑋̅ scheme with 𝜔 = 0.9 and 1 is 

compared to the ones of the existing CSEWMA and CSCUSUM 𝑋̅ schemes when m = 100, n = 5 and 

𝜆 ∈ {0.1, 0.5, 0.9}. From Table 11, it can be seen that for small to moderate shifts, in terms of the ARL 

profile, the proposed SCSEWMA 𝑋̅ scheme with 𝜔 = 1 performs better followed by the CSEWMA 𝑋̅ 

scheme for small values of 𝜆. However, for large shifts, the competing schemes considered in this paper 

perform almost the same. In terms of the overall performance (i.e. EARL values), the proposed 

SCSEWMA 𝑋̅ scheme with 𝜔 = 0.1 outperforms the competing schemes. The performance of the 

competing schemes in terms of the SDRL and MRL profiles as well as the ESDRL and EMRL profiles 

yield similar findings (this is not shown here to conserve space). 
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Table 11. Case U ARL and EARL comparisons of the SCSEWMA 𝑋̅ scheme versus the CSCUSUM and CSEWMA 𝑋̅ schemes when m =100 and n = 5 for 

prespecified 𝐴𝑅𝐿0 value of 370.4 

 CSEWMA scheme CSCUSUM scheme SCSEWMA scheme (𝝎=0.9) SCSEWMA scheme (𝝎=1) 

Shift 𝝀 = 0.1 𝝀 = 0.5 𝝀 = 0.9 𝒉𝑪=9.762 𝒉𝑪=8.973 𝒉𝑪=9.164 𝝀 = 0.1 𝝀 = 0.5 𝝀 = 0.9 𝝀 = 0.1 𝝀 = 0.5 𝝀 = 0.9 

0.1 177.9 253.7 297.5 153.69 273.4 302.6 167.8 254.2 297.8 157.6 246.3 291.6 

0.2 48.0 105.8 169.3 43.9 109.0 181.5 45.5 109.6 174.6 40.3 102.2 169.9 

0.3 20.0 45.5 91.2 22.73 39.6 83.3 19.9 47.8 92.4 17.6 43.3 91.1 

0.4 11.5 22.2 48.5 15.33 20.5 35.8 11.5 23.6 51.0 10.2 21.5 49.1 

0.5 7.6 12.4 28.4 11.5 13.3 19.2 7.8 13.2 29.0 6.9 12.1 28.3 

0.6 5.5 7.9 16.8 9.16 9.7 12.3 5.8 8.3 17.4 5.0 7.7 17.1 

0.7 4.3 5.5 10.8 7.59 7.3 8.7 4.5 5.8 11.1 4.0 5.4 10.9 

0.8 3.4 4.1 7.3 6.42 5.8 6.6 3.6 4.3 7.6 3.2 4.1 7.2 

0.9 2.8 3.3 5.2 5.45 4.6 5.1 3.0 3.3 5.4 2.7 3.2 5.1 

1.0 2.4 2.7 3.8 4.68 3.8 3.9 2.6 2.8 3.9 2.3 2.6 3.8 

1.1 2.1 2.3 3.0 4.01 3.1 3.2 2.2 2.3 3.0 2.0 2.3 3.0 

1.2 1.9 2.0 2.4 3.42 2.5 2.6 2.0 2.0 2.5 1.8 2.0 2.4 

1.3 1.7 1.7 2.0 2.93 2.1 2.1 1.8 1.8 2.0 1.7 1.7 2.0 

1.4 1.5 1.6 1.7 2.51 1.8 1.8 1.6 1.6 1.7 1.5 1.6 1.7 

1.5 1.4 1.4 1.5 2.16 1.6 1.6 1.5 1.4 1.5 1.4 1.4 1.5 

1.6 1.3 1.3 1.4 1.86 1.4 1.4 1.3 1.3 1.4 1.3 1.3 1.4 

1.7 1.2 1.2 1.3 1.64 1.3 1.3 1.3 1.2 1.3 1.3 1.2 1.3 

1.8 1.2 1.2 1.2 1.45 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

1.9 1.1 1.1 1.1 1.32 1.1 1.1 1.1 1.1 1.1 1.2 1.1 1.1 

2.0 1.1 1.1 1.1 1.22 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 

EMRL  14.9 23.9 34.8 15.2 25.2 33.8 14.4 24.4 35.3 13.2 23.2 34.5 

Control  

schemes 

constants 

𝑘 = 3.467;  

𝐿𝐸=3.194 

𝑘 = 3.707;              

𝐿𝐸= 3.204 

𝑘 = 3.184;               

𝐿𝐸 = 3.624 

𝑘 =3.769;  

𝑘𝐶=0.225;                     

𝑘 =3.197;  

𝑘𝐶=0.5;                      

𝑘 =3.181;  

𝑘𝐶=0.75                   
𝐿𝑊=3.155 𝐿𝑊=3.188 𝐿𝑊=3.185 𝐿𝑊=3.004 𝐿𝑊=3.177 𝐿𝑊=3.182 

Note: The control limit constants were rounded off at 3 decimal places to conserve space    

 



Single CSEWMA monitoring scheme 

32 

 

5. Illustrative examples with known and unknown process parameters 

In this section, we use simulated and real-life data to demonstrate the application and implementation 

of the proposed SCSEWMA 𝑋̅ scheme along with the associated Shewhart and EWMA 𝑋̅ schemes for 

both Cases K and U. 

5.1 Case K example: Simulated data  

In this example, we assume that the observations are from the standard normal distribution. However, 

for monitoring purpose, eighty samples of size 5 are simulated from a normal distribution with a shift 

in the process mean of 0.25 standard deviation corresponding to a small shift; that is, 𝑋𝑡𝑗~𝑁(0.25,1). 

The Shewhart, EWMA and SCSEWMA 𝑋̅ schemes are designed for a prespecified 𝐴𝑅𝐿0 = 370.4. The 

control limit constants are listed in Table 2 (keep in mind that the Shewhart and EWMA 𝑋̅ schemes are 

equivalent to the SCSEWMA 𝑋̅ scheme with 𝜔 = 0 and 1, respectively). Therefore, for 𝜔 = 0, 0.9 and 

1, with 𝜆 = 0.1, it is found that 𝑘 = 3, 𝐿𝑊 = 2.885 and 𝐿𝐸 = 2.715 which are the control limit constants 

for the Shewhart, SCSEWMA (with 𝜔 = 0.9) and EWMA 𝑋̅ schemes, respectively. The plots of the 

charting statistics of the Shewhart, EWMA and SCSEWMA 𝑋̅ schemes are shown in Figure 9. From 

Figures 9 (a)-(c), it can be seen that the Shewhart 𝑋̅ scheme does not give a signal. However, both the 

EWMA and SCSEWMA  𝑋̅ schemes give a signal on the 35th sample. This shows that the proposed 

SCSEWMA 𝑋̅ scheme borrows the strengths from both the Shewhart and EWMA 𝑋̅ schemes. In this 

particular case, the EWMA and SCSEWMA 𝑋̅ schemes outperform the Shewhart 𝑋̅ schemes in 

monitoring small shifts in the process mean. 

 
(a) Shewhart scheme does not signal 

Sample number / Time

C
h

a
rt

in
g

 s
ta

ti
s
ti

c

807672686460565248444036322824201612841

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

Variable

UCL

Xbar

LCL



Single CSEWMA monitoring scheme 

33 

 

 
(b) EWMA scheme signals on the 35th sample 

 
(c) SCSEWMA scheme signals on the 35th sample 

Figure 9. Monitoring scheme of simulated data when 𝛿 = 0.25, 𝑛 = 5 and 𝜆 = 0.1 for a prespecified 

𝐴𝑅𝐿0 of 370.4 

 

5.2 Case K example: Monitoring the level of silica concentrate in iron ore  

In this example, real-life data are used to demonstrate the application and implementation of the 

proposed scheme. Froth flotation approach is used to enhance the iron concentration of low-grade iron 

ores. Low-grade iron ores contain high concentration of impurities, such as silicon dioxide or in short, 

silica (these are quartz or sand), phosphorus and alumina containing minerals – which are undesired. 

Froth flotation process is an effective approach to remove impurities. Mukherjee et al29 showed that the 

quality characteristic of interest in these data is the percentage of silica concentrate that remains as an 

impurity at the end of the froth flotation process. A high level of silica concentrate in the iron ore is 
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undesirable as it is not suitable to be further processed into steel. It is therefore imperative to monitor 

the percentage of silica that is present on each iron ore sample at the end of the flotation process. 

In this example, it is assumed that the IC process mean and variance are known and equal to 2 and 1, 

respectively, with no loss of generality and the goodness of fit test for normality was not rejected at 5% 

level of significance. The data provide a set of 39 samples each of size 10 to be monitored. The 

Shewhart, EWMA and SCSEWMA 𝑋̅ schemes are implemented for a prespecified 𝐴𝑅𝐿0 of 370.4 when 

n = 10 for which 𝑘 = 3, 𝐿𝐸 = 2.715 and 𝐿𝑊 = 2.885, respectively. The plots of the Shewhart, EWMA 

and SCSEWMA 𝑋̅ schemes are shown in Figure 10. It can be seen that each of the three monitoring 

schemes gives a signal on the fourth subgroup. 

 

 
(a) Shewhart 𝑋̅ scheme (or SCSEWMA 𝑋̅ scheme with 𝜔 = 0) 

 
(b) EWMA 𝑋̅ scheme (or SCSEWMA 𝑋̅ scheme with 𝜔 = 1) 
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(c) SCSEWMA 𝑋̅ scheme with 𝜔 = 0.9 

Figure 10. Case U CSEWMA 𝑋̅ monitoring scheme of the silica data when 𝑛 = 10 and 𝜆 = 0.1 for a 

specified 𝐴𝑅𝐿0 value of 370.4 

 

 

5.3 Case U real-life example: Real-time online purchasing intention 

In this section, the dataset from Sakar et al30 is used to demonstrate the application and implementation 

of the proposed SCSEWMA scheme with estimated process parameters. The data contain information 

about real-time online shoppers purchasing intention. The dataset consists of several features (or 

categories); namely, administrative, administrative duration, informational, informational duration, 

product related and product-related duration representing the number of different pages visited by the 

user in a session and time spent in each of these page categories. The other variables like exit rates, 

bounce rates and page value are metrics measured by Google Analytics for each page in the e-commerce 

site are also provided. In this example, we only focus on the exit rates, which represent the metric 

measured when the user leaves the page. The dataset contained 12330 sessions; however, through 

filtering the data, we were left with 530 data points. The schemes under consideration are implemented 

in two phases. In Phase I, 60 samples of size 5 are selected when the process is considered to be IC; the 

mean and standard deviation are estimated to be equal to 0.08668 and 0.6932, respectively, and 𝑐4𝑚 = 

0.998959. In Phase II, 25 subgroups each of size 5 are monitored. The plotting statistics of the schemes 

under consideration, based on exit rates data, are shown in Figure 11. It can be observed that the 

Shewhart scheme which corresponds with the SCSEWMA scheme with 𝜔 = 0, does not signal in the 

prospective phase. However, when 𝜔 = 0.9 the proposed scheme gives a signal on the 16th sample in 

the prospective phase and the EWMA scheme which corresponds with the CSEWMA scheme with 𝜔 = 

1, gives a signal on the 15th sample. These results reveal the flexibility of the proposed scheme and its 

superiority for large values of 𝜔. 
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(a) Shewhart 𝑋̅ scheme (or SCSEWMA 𝑋̅ scheme with 𝜔 = 0) 

 
(b) EWMA 𝑋̅ scheme (or SCSEWMA 𝑋̅ scheme with 𝜔 = 1)  
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(c) SCSEWMA 𝑋̅ scheme with 𝜔 = 0.9 

Figure 11. Case U CSEWMA 𝑋̅ monitoring scheme of the exit data when 𝑛 = 5, 𝑚 = 60 and 𝜆 = 0.1 

for a specified 𝐴𝑅𝐿0 value of 370.4 

 

6. Concluding remarks 

This paper proposes a new CSEWMA 𝑋̅ scheme using a single plotting (or charting) statistic with 

known or unknown process parameters for monitoring the process mean. It is denoted as the 

SCSEWMA 𝑋̅ scheme. As for other parametric schemes, it was observed that the SCSEWMA 𝑋̅ scheme 

is not IC robust and its performance deteriorates when the process parameters are estimated. However, 

the larger the Phase I or Phase II sample, the more efficient the proposed scheme is. Compared to the 

existing Shewhart, EWMA and CSEWMA 𝑋̅ schemes, the new scheme is more flexible through an 

extra weighing design parameter. Moreover, the Shewhart and EWMA schemes are particular cases of 

the proposed SCSEWMA scheme when the weighing parameter is equal to 0 and 1, respectively. A 

comparative study of the SCSEWMA 𝑋̅ scheme and the existing CSCUSUM and CSEWMA 𝑋̅ schemes 

shows that the proposed SCSEWMA 𝑋̅ scheme is superior in monitoring small to moderate shifts and 

equivalent to the existing CSCUSUM and CSEWMA 𝑋̅ schemes in monitoring large shifts in the 

process mean. Operators in industrial and non-industrial organizations are advised to use the newly 

proposed SCSEWMA 𝑋̅ scheme instead of the existing CSEWMA 𝑋̅ scheme. 

Researchers who are interested in developing similar schemes can also look at the design of the 

SCSEWMA scheme using other statistics such as the variance, coefficient of variation, etc., under 

symmetric and non-symmetric distributions. Researchers can also look at the design of the composite 

Shewhart double or triple EWMA scheme using a single charting statistic.  
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Appendix A 

In this appendix, we show how the properties of the SCSEWMA scheme are derived. 

A.1 The mean of the SCSEWMA statistic 

𝑊𝑡 = (1 − 𝜔)𝑋̅𝑡 + 𝜔𝑍𝑡 , 𝑡 = 1,2,3, …, 

[A.1] 

where 

𝑋̅𝑡 =
1

𝑛
∑ 𝑋𝑡𝑗

𝑛

𝑗=1

 

and 

𝑍𝑡 = 𝜆𝑋̅𝑡 + (1 − 𝜆)𝑍𝑡−1. 

Then, 

𝑊𝑡 = (1 − 𝜔)𝑋̅𝑡 + 𝜔[𝜆𝑋̅𝑡 + (1 − 𝜆)𝑍𝑡−1] 

                                                     = (1 − 𝜔)𝑋̅𝑡 + 𝜔𝜆𝑋̅𝑡 + 𝜔(1 − 𝜆)𝑍𝑡−1 

                                                     = (1 − 𝜔 + 𝜔𝜆)𝑋̅𝑡 + 𝜔(1 − 𝜆)𝑍𝑡−1. 

Since, the EWMA 𝑋̅ statistic is defined as  

𝑍𝑡 = 𝜆 ∑(1 − 𝜆)𝑗𝑋̅𝑡−𝑗 + (1 − 𝜆)𝑡𝑍0,

𝑡−1

𝑗=0

 [A.2] 

𝑊𝑡 can then be written as 

𝑊𝑡 = (1 − 𝜔 + 𝜆𝜔)𝑋̅𝑡 + 𝜆𝜔(1 − 𝜆) ∑(1 − 𝜆)𝑗𝑋̅𝑡−𝑗−1 + 𝜔(1 − 𝜆)(1 − 𝜆)𝑡−1𝑍0,

𝑡−2

𝑗=0

 [A.3] 

𝐸(𝑊𝑡) = [1 − 𝜔 + 𝜆𝜔 + 𝜆𝜔(1 − 𝜆)
1 − (1 − 𝜆)𝑡−1

1 − (1 − 𝜆)
+ 𝜔(1 − 𝜆)(1 − 𝜆)𝑡−1] 𝜇0 

                           = [1 − 𝜔 + 𝜆𝜔 + 𝜔(1 − 𝜆)(1 − (1 − 𝜆)𝑡−1) + 𝜔(1 − 𝜆)(1 − 𝜆)𝑡−1]𝜇0 

                           = [1 − 𝜔 + 𝜆𝜔 + 𝜔(1 − 𝜆) − 𝜔(1 − 𝜆)(1 − 𝜆)𝑡−1 + 𝜔(1 − 𝜆)(1 − 𝜆)𝑡−1]𝜇0 

                           = [1 − 𝜔 + 𝜆𝜔 + 𝜔(1 − 𝜆)]𝜇0  

                           = 𝜇0.  

Therefore, 

𝐸(𝑊𝑡) = 𝜇0. [A.4] 

 

A.2 The variance of the SCSEWMA statistic 

From Eq [A.3], the variance of the SCSEWMA statistic is derived as follows:  

𝑉𝑎𝑟(𝑊𝑡) = 𝑉𝑎𝑟 [(1 − 𝜔 + 𝜆𝜔)𝑋̅𝑡 + 𝜆𝜔(1 − 𝜆) ∑(1 − 𝜆)𝑗𝑋̅𝑡−𝑗−1 + 𝜔(1 − 𝜆)(1 − 𝜆)𝑡−1𝑍0

𝑡−2

𝑗=0

]. 

We know that the 𝐶𝑜𝑣(𝑋𝑗 , 𝑋𝑖) = 0 ∀𝑗 ≠ 𝑖 since the observations are i.i.d. and that  

𝑉𝑎𝑟(𝑍0) = 𝑉𝑎𝑟(𝜇0) = 0. 

Thus, 
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𝑉𝑎𝑟(𝑊𝑡) = [(1 − 𝜔 + 𝜆𝜔)2 + 𝜆2𝜔2(1 − 𝜆)2 [
1 − (1 − 𝜆)2(𝑡−1)

1 − (1 − 𝜆)2
]]

𝜎0
2

𝑛
 

= [(1 − 𝜔 + 𝜆𝜔)2 +
𝜆

2 − 𝜆
𝜔2(1 − 𝜆)2(1 − (1 − 𝜆)2𝑡−2)]

𝜎0
2

𝑛
. 

Therefore, 

𝑉𝑎𝑟(𝑊𝑡) = [(1 − 𝜔 + 𝜆𝜔)2 +
𝜆

2 − 𝜆
𝜔2(1 − 𝜆)2(1 − (1 − 𝜆)2𝑡−2)]

𝜎0
2

𝑛
. [A.5] 

Note that Eq [A.5] can also be written as: 

𝑉𝑎𝑟(𝑊𝑡) = [(1 − 𝜔 + 𝜆𝜔)2 − 𝜆𝜔2 (𝜆 −
(1 − (1 − 𝜆)2𝑡)

2 − 𝜆
)]

𝜎0
2

𝑛
. [A.6] 

Thus, from Eq [A.5], when  

(i) If 𝜔 = 0,  

𝑉𝑎𝑟(𝑊𝑡) =
𝜎0

2

𝑛
. 

(ii) If 𝜔 = 1, 

 

𝑉𝑎𝑟(𝑊𝑡) = [𝜆2 − 𝜆 (𝜆 −
(1 − (1 − 𝜆)2𝑡)

2 − 𝜆
)]

𝜎0
2

𝑛
 

= [𝜆
(1 − (1 − 𝜆)2𝑡)

2 − 𝜆
]

𝜎0
2

𝑛
. 

Therefore, 

𝑉𝑎𝑟(𝑊𝑡) =
𝜆𝜎0

2

(2−𝜆)𝑛
(1 − (1 − 𝜆)2𝑡). 

Note that Eqs [A.5] and [A.6] can also be simplified to: 

𝑉𝑎𝑟(𝑊𝑡) = [(1 − 𝜔)(1 − 𝜔 + 2𝜆𝜔) +
𝜆𝜔2

2 − 𝜆
(1 − (1 − 𝜆)2𝑡)]

𝜎0
2

𝑛
. [A.7] 

Note that in Case U, the IC process mean (𝜇0) and variance (𝜎0
2) are substituted with their unbiased 

estimators i.e. 𝜇̂0 and 𝜎̂0
2. 


