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ABSTRACT: The core property of generator and the trace-preserving prop-
erty of a minimal dynamical semigroup constructed by regularisation a la Kato
are scrutinised for a simple boson model in the framework of the Gorini—
Kossakowski—Lindblad—Davies approach to the open systems.

KEY WORDS: Dynamical semigroup, perturbation, Kato regularisation, posi-
tivity preserving.

B namem wa Hopdaw Bpanxoe — npusmen, xoseza, Csa8MOp

1 INTRODUCTION

Construction of stochastic semigroup for a time homogeneous Markov chain with an
infinite matrix of transition probabilities goes back to T. Kato [1]. To this aim he pro-
posed a convergent one-parameter regularisation family of approximants, which later
was extended by E.B. Davies [2] for construction of quantum dynamical semigroups.

In the recent paper [4] a new step to generalisation of the one-parameter Kato—
Davies regularisation was suggested by introducing a functional version of regulari-
sation family for bounded approximants. Given that, the boson multi-mode particle-
number cut-off regularisation family is a net. Using the functional regularisation
it was proved in [4] that (similar to [1] and [2]) the semigroup constructed within
this general setting has the property to be minimal. This property is related to the
core condition for the generator of the minimal semigroup, which implies that it is
Markovian. Note that applying Kato’s one-parametric regularisation, this result was
established in [2] for a special set of quantum dynamical semigroups with generators
that have a canonical Gorini—-Kossakowski—Lindblad—Davies (GKLD) form.

We recall that for the minimal quantum GKLD semigroups the conditions for-
mulated in [2] are sufficient and necessary to promise the Markov property of this
semigroup. For review and discussion see [5].
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The aim of the present paper is an inspection of a dynamical semigroup Markov
property within the GKLD ansatz. We explore it, including a critical regime for pa-
rameters of the semigroup generator. To this end we consider in Section 2 a generator
of dynamical semigroup for the open quantum model of bosons, which is motivated
by [6]. For this system the functional regularisation reduces to the one-mode particle-
number cut-off in the boson Fock space. In the framework of the GKLD ansatz we
consider the core and the Markov properties of the GKLD semigroup in Sections 2
and 3. Taking into account that the GKLD evolution of our system is quasi-free and
Gaussian, we scrutinise dynamics of this system for different sets of initial conditions
and regimes in Section 4.

2 OPEN BOSON MODEL
2.1 THE GKLD APPROACH TO OPEN SYSTEMS

We consider a simple example of a general functional regularisation a la Kato, pro-
posed in [4], which in our case is a particle-number cut-off in a boson Fock space .7 .
In this way one can construct on the space of the trace-class operators (including
quantum statistical density matrices) an evolution owing to dynamical semigroup,
which is minimal, positivity-preserving and Markovian (trace-preserving). As a ba-
sic model we scrutinise the one-mode quantum resonator (cf. boson models studied
in [6] and [7]) within the Gorini—-Kossakowski-Lindblad—Davies (GKLD) approach
to open systems by means of dissipative extension of autonomous dynamics. For an
exhaustive review see, e.g., [8].

Let b and b* be boson annihilation and creation operators defined in the Fock space
# generated by a cyclic vector (2. That is, .# is a Hilbert space with orthonormal
basis {ep, fnen, With eg = Q. The Bose operators b, b* are defined by

bey, = \/ﬁenfl and b"e, = \/menJrl )

foralln € INg, with domain dom(b) = dom(b*) = {tp € F : Y 2%\ n|(¥, €,) 7> <
oo}, here we set e_; = 0. The Bose operators satisfy the Canonical Commutation
Relation (CCR): (bb* — b*b)1p = ¢y and (bb — bb)yp = (b* b* — b* b*)yp = 0 for all
€ dom(b* b).
As an isolated system we consider the one-mode quantum resonator with equidis-
tant discrete spectrum with spacing £ > 0 defined by self-adjoint Hamiltonian

2.1) h:=Eb*D,

on domain dom(h) = {1 € .F : > o0 1 n?|(¥, en) #|* < 0o}. The boson-number
operator 1 := b*b on dom(n) = dom(h) C .#, counts the number of bosons



(R1),1)# in a quantum vector-state of resonator ¢» € %, for normalised vector
[¥]l.7 = 1.

Let ¢ := €;(F) be a complex Banach space of trace-class operators on %
with trace-norm ||¢||1 = Tr (v/¢*¢), ¢ € €1(F). Recall that its dual space €}(.F)
is isometrically isomorphic to the Banach space of bounded operators £(.%). The
corresponding dual pair is determined by the bilinear trace functional.:

(2.2) (| Aey(zyxez) =Tr(9A), dc&(F), AcL(F).
The quantum-mechanical Hamiltonian evolution of isolated system (2.1):
(2.3) Op = —i [h’v p] )

for density matrix: p € €] := {p € €(F) : p > 0} and ||p||¢, = 1, is determined
by the unitary group {U, (t)}ser, where Uy, (t) = e~ € £(.#) and t € R. For all
t € [0, 00) we define the mapping W;: €5* — €52, by

(2.4) Wip = Uin(t) pUin(t)*, pe€f.

Then {W; }4>0 (2.4) is a strongly continuous (Cy-) on the Banach space € (.%) con-
traction semigroup, which is positivity preserving and trace preserving, that is:

Wi : ¢ — ¢ and Tr (Wip) = Tr (p) .

Definition 2.1. A positivity-preserving contraction Cp-semigroup on the Banach
space €1 (%) is called a dynamical semigroup, cf. [2], §7. If this semigroup is also
trace-preserving, then it is called a Markov dynamical semigroup (see Ch. 2.4 in [3]).

As a consequence, the positivity-preserving contraction strongly continuous on
¢ (:#) and trace-preserving semigroup { W, };>¢ (2.4) is the Markov dynamical semi-
group for evolution of the isolated system (2.1). Let L be the generator of semi-
group {W; = e tL};50 and the mapping ¥: €5 — €52, be defined by ¥(p) =
(L+7n)"tp(1+n)"L. Then ¥(€5*) C dom(L) and

(25)  L¥(po) =ih(1+n) " po(L+n) "t —i(L+n)tpy(L+n)th,

for all pg € €5*. We recall that if I'(L) and I'(¢ [h, -]) are the graphs of operators L
and i [h, -], then (2.5) implies I'(L) D I'(i [h, -]). Following [9], Ch.VIIL.1, we denote
this inclusion as

Lp>ilh,pl, pe ().

To introduce the open system corresponding to resonator (2.1), we consider a
model when this system is in contact with an external reservoir (environment) of



bosons b, b* via pumping and leaking. Then to describe evolution of this open sys-
tem we follow the GKLD approach to a dissipative extension of the Hamiltonian
positivity-preserving evolution (2.4) up to the non-Hamiltonian positivity-preserving
evolution.

Fix the pumping in and leaking out parameters: o,,0_ € [0,00). Define the
operator Q,: dom(Q,) — €5* with domain dom(Q,) = ¥(€5*) by

*

(2.6) Qpp =0 (b(1+n)"") po (b(1+7)"")
o (5 (L)) po (1))

where py € €5 is such that p = ¥U(pp). Note that according the graph inclusion one
gets

(2.7) Qep D o_bpb* + o, b pb,

and that the mapping: py — Q. U(pg), is trace-norm continuous from €3 into €52,
Since operator 7 > 0 is densely defined, we obtain that ¥(€5*) N €] = W(e]).
Hence Q,, is a positivity-preserving operator, that is, 9, : \II(CT) — Qﬁf.

Using the bilinear trace functional (2.2), one gets that dual operator Q:; acts in
L(.Z). It is defined by relation: (Q, p | A>€1(§)X£(§) = (p | Q;(A»Cl(y)xﬁ(f)
As a consequence, if Ag € L(F)and A = (1 + 7)1 Ag(L +n)~L, then A €
dom(Q*) and

Q5 (A) Do_b* Ab+ o bAb*.

Note that if for pumping in and leaking our parameters one has oy + o_ > 0, then
clearly 1 ¢ dom(Q}).

Formally, the non-Hamiltonian evolution equation for the open resonator is de-
fined in the framework of the GKLD approach as

. 1 A~k Ak A
(2.8) Op = —ilh,pl = 5(Qe(1)p+p Qe(1)) + Qop.
Here (again formally) we define operator @j‘,( 1) = 0_b*b+ o4 bb*. Therefore, a
formal GKLD generator L, of the evolution semigroup for the open system (2.8) has
the form

. 1 -
2.9) Lop:=ilh,p] + 5((0, b b+ on bb*)p+ plo- b*b+0+bb*)> — O,p.

A mathematical sense of the operator (2.9) and definition of the corresponding semi-
group are elucidated in the next subsection.



2.2 THE GKLD GENERATOR AND CUT-OFF REGULARISATION

To proceed we consider the operator h,: dom(n) — %, defined by
(2.10) he =ih+%(c_b"b+oybb").

Then h, is an m-accretive operator. Define Uy, (t) = e~ t"e ¢ L(F) forall t €
[0,00). Then similarly to (2.4) the contraction Cy-semigroup {U},_ (¢)}+>0 induces
on the Banach space €5* a positivity-preserving contraction Cp-semigroup {S7 }+>0
given by

(2.11) S¢p=Un,(t) pUn, (t)"

Let H,, be the generator of the semigroup {S¢ = e~ ¢H},5(. Then dom(H,) D
U(€3?). If p € U(€5?), then (2.10) and (2.11) yield

1
2.12)  Hyp>ilhpl + 5((a_ b b+ oy b0 )p+plo_ b b+oy bb*)) :

where H, is the unperturbed part of the formal GKLD generator L, =H, — Qs
(2.9). Moreover, the map p — H,V(p) is trace-norm continuous from €3* into €5*.
Also, if p € ¥(€]), then Tr H,p > 0. Since SY commutes with the operator ¥, one
deduces that
SYw(ET) C w(er).

On that account, by the Nelson theorem (see, e.g., [10], Theorem 6.1.18) ¥(€5?) is
a core for operator H,, that is, the closure of restriction: H, [ ¥(€5*) = H,. We
denote this as W(€5*) = core(H,).

Note that whenever o_ +o > 0, the semigroup {57 };>0 is not trace-preserving.
Indeed, if p € € is given by p(¢) = (¢, e1) 7 e1, then Hyp = (0 + 20 )p. Hence
S7p = e (@=F200)t p and Tr (S7 p) = e~ (7-+20+)t for all t > 0.

Remark 2.2. We also note that operator H, is not positivity-preserving, even al-

though the semigroup {57 }+>0 is positivity-preserving. For a proof let for simplicity

assume that £/ = 1. Then using the commutation relation (bb* — b* b)Y = ¢ for all
€ dom(b* b), one deduces that

o . 1 . .
Hop 2 i(ivp — pit) + 5 (0 + 04 )(p + pit) + 04p

forall p € U(€3?). Let k € INand A > 0. Choose ¢ := e; + i Aey and define
p € W(C)" by pp = (p, )7 ¢. Then



(HU )(P = 7’((907 ¢>7ﬁ¢ - (ﬁ(p, ¢)¥¢)
+ (U— + G+) ((SO> ¢)¢’ﬁ¢ + (ﬁ‘()@a ¢)?¢) + G—&-(SO’ W?Tﬂ

for all ¢ € dom(n). So

(Hop)p, p)z = —21m ((¢, ) 7 (1), ) 7)
+ (0— 4+ 01)Re((p,9) 2 (Ah, ©) 7) + 04| (0, 0) 2|

Now choose ¢ = e; + e, /v/k. Then

(0, 0) 7 (R, 0) 7 = (1= iANVE) (1 +iVEX) =1+ X +i(k— 1) A/VE.
As a consequence,

(Hop)p, )z = =2(k = D)A/VE+ (0- +00)(1+A) + 0y (1+ X /k).

Then ((Hyp)p,¢)z < 0, for any fixed A\ > 0 and o+ € R, if k£ € N is sufficiently
large. Therefore, the operator H,p is not positive and thus the operator H, is not
positivity-preserving.

It is for that reason, the perturbation (—@U) in representation EU = H, — @U
(2.9) serves to restore the trace-preserving property of the evolution semigroup with a
well-defined generator L,, keeping at the same time for this semigroup the positivity-
preserving property. The next assertion is the first key step towards the proof of these
properties.

Proposition 2.3. The operator éa (2.6) has a unique extension in dom(H,) to con-
tinuous operator Q,: dom(H,) — €5*, where dom(H,) is provided with the graph
norm. Moreover, operator Q is positivity-preserving and such that

(2.13) Tr(Hep — Qsp) =0,
and || Qoplle, < |[Hoplle, forall p € dom(Hy).

For the proof we refer to [4], Lemma 3.2.

For regularisation we use a general approach developed in [4], Section 2. To this
aim we consider a regularisation generated by the family of projections (Pn)nNeN,.
where for all N € INj the projection Py : .% — .% is given by

N
Py = z:(@l)7 €n)F En.

n=0



Note that the number of bosons in the subspace Py.# is bounded because the boson
number operator satisfies 2(Py1p) < N [|¢||% forall ¢ € .Z.

Obviously limy 0o Pyt = forall ¢ € .%. Forall N € INg define the particle
number cut-off regularisation Q, y € L(€5?) of the operator Q, by

(2.14) QQN p=0_ (b* PN)* p (b* PN) + o4 (b PN)* P (b PN).

Note that Q. p = Py (Qgp) Py forall p € ¥(€5*) by (2.6). Therefore || Qo plle,
|Qsplle, for all p € W(€5*) and then by density || Qo n plle, < [|Qoplle, for all
p € dom(H,).

We next verify that (Q, n)nen, is a functional regularisation of Q,. Clearly
Q. N is positivity-preserving for all N € INg. The definition of Q, n implies the
estimate

Q0N plley < (0-(N+1) + 04 N) |plles,

for all p € €3?. Since o+ > 0, the regularisation (2.14) is monotone increasing as
a sequence of positivity-preserving maps in €§*, and bounded by Q,. Finally we

show, [4], that imy_,o0 ((Qo.n )V, ¢) 7 = ((Qop)t, 1) for all p € dom(H,)
andy € Z. Let¢p € #. Let p € ¥(€5*). Then

215) ((Qop)th,¥)5 = lim (Quv p)¥)5 = lim ((Qop) Prip, Pri)

for all p € ¥(€5*). Since ¥(€5?*) is dense in dom(H,,) and || Qs N plle, < [|Qoplle,
for all p € dom(H,) and N € INg, one deduces that limyn_,oo ((Qon p)V, )7 =
((Qop), )z forall p € dom(H,) and ¢ € 7.

Consequently, the family { Q. v} ne, is a functional regularisation of the oper-
ator Q,,. For all N € N define the operator L, n by

LU,N = HO' - QO’,N

with domain dom(Ly,n) = dom(H,). Let {T/y }i>0 be the semigroup generated
by —Ly n. Then it follows from Theorem 2.1, [4], that {Tt(,TN}tZO’ each N > 1, 1is
a positivity-preserving contraction Cy-semigroup on €4, so it is a dynamical semi-
group. Moreover, for all ¢ > 0 and p € ¢3* the limit

(2.16) TPp= lim Ty p,
N—oo 7

exists on €; and {7} }+>¢ is a positivity-preserving contraction Cp-semigroup on €5*.
Let L, be the generator of semigroup {7} }+>0 (2.16). Then by Theorem 2.1(7),
[4], L, is a closed extension of the operator H, — Q,, thatis, L, := (Hy — Qv ) et -

IA



Remark 2.4. By Theorem 2.2, [4], the semigroup {7} }+>o constructed by the cut-
off regularisation (2.16) is minimal in the following sense:

If (ﬁg)tzo is a positivity-preserving Cp-semigroup with generator Eo, which is an
extension of operator (H, — Q,), that is, EU .= (Hy, — Q,) ", then ft" > T7 for all
t > 0.

2.3  CORE PROPERTY AND TRACE-PRESERVING

A priori, it is unclear whether the constructed by means of the cut-off regularisation
(minimal) dynamical semigroup {7} };+>¢ (2.16) is trace-preserving and hence is the
Markov dynamical semigroup. On the other hand, due to [2], Theorem 3.2, and [4],
Theorems 1.1 and 2.3, one has the following general result.

Proposition 2.5. Let H be the generator of a positivity-preserving contraction Cy-
semigroup on €. Let K: dom(H) — €5* be a positivity-preserving operator
such that for all w € dom(H)" one has Tr (Ku) < Tr (Hu). Here dom(H)" =
dom(H) N e

Let (Ky)acy be a functional regularisation of K. Set L, = H — K, for all
a € J. Then the following holds:
(a) For all o € J the operator L, is the generator of a positivity-preserving contrac-
tion Cy-semigroup {T* }+>0 on €52,
(b) If t > 0, then lim,, T u exists in €5 for all u € €52,
For allt > 0 define Ty : €3 — &3 by Tyu = lim,, T u.
(c) The family {T}}+>0 is a positivity-preserving minimal contraction Cy-semigroup
on €3 for which the generator L is an extension of the operator (H — K), that is
L=(H—-K)eu-

If in addition we suppose that for all u € dom(H) holds

(2.17) Tr (Hu— Ku) =0,

and that dom(H ) is a core for generator L, then:
(d) The constructed in (a)-(c) minimal dynamical semigroup {T}}+>0 is trace-preser-
ving, that is, Markovian.

Proof. For the proof of assertions (a)-(c) we refer to [4], Theorem 2.1 and Theorem
2.2.

Proof of (d). Thanks to definition of operators K and L condition (2.17) provides
that Tr Lu = 0 for all u € dom(H). Because dom(H) = core(L), one deduces
that Tr Lu = 0 for all w € dom(L). Let u € dom(L). Seeing that the semigroup
{T}}+>0 maps dom(L) into dom(L), one also gets Tr L Tyu = 0 for all ¢ > 0. Then
differentiability of the function ¢ — Tyu from (0, 00) into &; yields 9; Tr Tyu =



—Tr LTyu = 0 for all ¢ > 0. Hence Tr Tyu = Tru for all ¢ > 0. Since dom(L) is
dense in €%, the latter also holds for all u € €3, O

Owing to definition of operators H, (2.12) and Q, (2.13) we obtain by Propo-
sition 2.3 that Tr (Hyp — Qyp) = 0 for all p € dom(H,). As a consequence, if
dom(H,) = core(L, ), then we can use Proposition 2.5(d), to conclude that dynami-
cal semigroup {7 }+>0 (2.16) is trace-preserving. One can show that this is the case
ifor <o_.

Proposition 2.6. ( [4], Theorem 3.1.)
If o < o_, then the domain dom(H,,) is a core for L.

Corollary 2.7. If o4 < o_, then dynamical semigroup {T( }+>0 (2.16) is trace-
preserving.

Proof. This follows from Proposition 2.3, Proposition 2.5 and Proposition 2.6. [
Corollary 2.8. If o < o_, then the set V(€5*) is a core for the operator L.

Proof. The set ¥(€3?) is dense in dom(H,, ). Moreover, dom(H,,) is dense in dom(L,)
by Proposition 2.6. For that reason ¥(5?) is dense in dom(L,), and as a conse-
quence: U(€5*) = core(L,). O

Remark 2.9. The proof of Proposition 2.6 is considerably based on the strict inequal-
ity o4 < o_ for non-negative contact parameters. In the next Section 3 we study the
critical regime: o_ = oy > 0, as well as: o4 > o_. It turns out that to answer
to this particular questions one needs a more general setting that allows also to elu-
cidate the statement, which in the framework of the GKLD approach is converse to
Proposition 2.5(d). This more general GKLD setting is based on the concept of the
GKLD ansatz for evolution of open systems which is formulated in subsection 3.3.

3 DuALITY, GKLD ANSATZ AND MARKOV PROPERTY
3.1 DUAL SEMIGROUP

We recall that by duality relation (2.2) one can define for strongly continuous (on
Banach space € (.%)) semigroup {77 };>0 (2.16) a family of operators {7} *};>( on
the dual space €7 (.%) such that:

(3.1 (TYulA) = (u|T7™(A)) .

Here u € €;(.%) and A € €j(F) ~ L(F) (that is, €](.F) is isometrically iso-
morphic to the space of bounded operators £(.%)), and we use for short (- | -) :=



(- | ey (#)xes (7). Owing to (3.1), the family {7} * };>0 is a semigroup of operators
on the Banach space L(.7).

In general the dual semigroup {7} * }+>¢ is not strongly continuous on £(.%), but
it is always weak*-continuous (that is, continuous in the Banach topology o (€7 (.%),
¢1(.Z)) on L(.F)) since

32 —lHm(TY *(A) — A) :=1i T7*(A) — A) =lim(T7u—u| A) =0

(3.2) w—lm(T7*(A) = A) == lim(u | T77(A) = A) = lm(Tu —u [ 4) =0,
forany A € L(%) and all u € €;(.F). Here limyo ||T7uw — ull1 = 0 by Cp-
continuity of semigroup {7y }+>0. Then following the standard scheme one defines
the weak*-generator LS. of {17 *};>0 by

oy .__ a\ . * : 1 o *
dom(Ly) :={A € L(F): Fw _ltlﬁ)l ;(A —T7*(A)},

o I : 1 o *
Lo(A) :=w —ltlﬁ)l E(A —T7*(A)).

By duality relations (2.2), (3.1) one gets that the mapping: A > 0 — T7 *(A) >
0, on the Banach space £(.% ) of bounded operators, is positivity-preserving. We note
that a positivity-preserving weak*-continuous on £(.%)) dual semigroup {77 *}+>0
is called a (quantum) dynamical semigroup, see, e.g., review articles in [8]. More-
over, for a trace-preserving dynamical semigroup {7} }+>0 relations (2.2), (3.1) yield
identity

Tr(u) =Tr(T7ul) =Tr (v Ty (1)) VYue&i(F).

That is, 77 *(1) = 1 and therefore semigroup {77 * };>0 is unity-preserving. Then it
is called a quantum Markov semigroup, see [5, 8].

Recall that if L, is a densely defined generator of dynamical semigroup {77 };+>0
on €;(.%#), then the adjoint operator — L, in the Banach space €} (.#) ~ L(.F) is
defined as follows. First let the set

dom(L}) :={A € L(F) : u+ (Lou | A) is continuous for u € dom(L,)} .

Since for every A € dom(L}), the mapping Fs : u — (L,u | A) is continuous
on the dense domain dom(L,), one can extend F4 to a unique continuous linear
functional F4 on €;(.%). Hence, F'4 € €}(.%) and one denotes it by L} (A). This
construction decodes the relation

(3.3) (Low | A) = (u] Ly (A)) ,

for all w € dom(L,) and A € dom(L?). There is a relation between generator L¢,
and operator, L} [11], Ch.IIL, Sec.2.5, which is expressed by the following statement.



Proposition 3.1. Let {1} }+>0 be a strongly continuous semigroup on a Banach space
B with generator L. Then the weak*-generator L° with dom(L°) of the dual semi-
group {I} }+>0 on the dual space B* coincides with operator L* with domain
dom(L*) C B*.

Corollary 3.2. For dual semigroup {T7 *}i>0 the generator LS coincides with op-
erator LY. From definition of L, (2.9) and extension of this operator to L, (Section
2.2) one gets by duality relation (3.3) that for any A € D(L})

(3.4) L:(A) D Ahy + BEA — (FfAF, + FAFy) = i[A, B

+ - [A(0_b"b+ o4.bb") + (0_b"b+ 01 bb*)A] — (0_b"Ab+ 0 DAD"),

N =

where hy = i h + %(O'_ b*b + o bb*) and Fy := 01_/2 b, Iy = 01/2 b*, ie.,
{1y> = e_tL:’}tzo-

On account of (2.8), (3.1) and by virtue of (3.4) the evolution on the dual space
L(.7) is determined for generator L}, by equation

(35)  IVT(A) = — L3 (I7*(A) = —I7 " (L5(A)), A€ D(L]).

To elucidate (3.5) it is sufficient to consider semigroup {77 *}+>( on some appropri-
ate subset 20 C L(.%), see comments below and in subsection 3.2.

Note that by duality relation (2.2) the Banach space of bounded operators £(.%)
admits the predial Banach space L, (%) ~ €;(.%). Let the Banach space of bounded
operators £(.% ) be endowed with the weak*-topology o (L(.F), L(.%)). Let (Gt }+>0
be a weak*-continuous semigroup on £(.#). Then by duality relation each of the
maps Sy admit a predual map S, on £,(.%). The maps (G;«}+>0 inherit the prop-
erty to be a semigroup. Moreover, the relation

(3.6) (u]Gi(A)) = (Grwul A)

forany A € L£(.%) and all u € L,(.%), implies that semigroup (G }¢>0 is con-
tinuous in the weak Banach space topology topology o (L.(.% ), L(:F)) on L.(F).
Since weakly continuous in a Banach space semigroups are also strongly continuous
in this space, the semigroup (G . }+>0 is strongly continuous on the Banach space
L (F) = & (F).

Remark 3.3. The weak*-continuity of semigroup (G;}+>0 on L£(.#) implies the
strong continuity of predual semigroup (G« }¢>0 on €1 (%). Identifying the semi-
group (Gt >0 with {77 * };>0 we conclude that predual semigroup ({77 *).}i>0 =
{T7 }1>0 on €1 (F) asitisin (3.1).



Our aim is to study the action of the weak*-continuous (quantum) dynamical
semigroup {77 *}+>0 on the space of bounded operators £(.#) endowed with the
weak*-topology o (L(F), L.(%)) and to profit the fact that £(.F) is the von Neu-
mann algebra. We note that in fact it is sufficient to consider {7 * };>( on an appro-
priate subset 2 C L(.%). We choose this subset in such a way that:

Note (a). The subset 2 is a unital x-subalgebra of L(.#), thatis, 1 € 2.

Note (b). The action of the semigroup {77 *}:>0 on 2l is (in a certain sense)
easy to analyse. The sense of the easy depends on the choice of 2l and on details of
dynamics generated by (3.4). We shall discuss them below.

Remark 3.4. What concerning the Note (a), we recall that if 2( is a unital x-subalgebra
of L(.%), then by the von Neumann density theorem it is weakly (strongly) dense in
its double commutant 2”. In particular, it is also true in the weak*-topology on
L(F), which is stronger than the weak operator topology. Therefore, 21" coincides
with the closure of 2 in all these topologies. Then by the von Neumann bicommutant
theorem one gets that A” C L£(.%) is a von Neumann subalgebra in £(.%), which
coincides with the closure 2. If in addition the set 2 is irreducible, that is, its com-
mutant ' is trivial, namely, 2" := {A € L(F#) : AB = BA, VB € A} = C1, then
this evidently yields that 21" = L(.%). See, e.g., [12], Secs.3-5, or [13], Ch.2.4, for
details

3.2 EVOLUTION ON THE WEYL ALGEBRA

Comments to Note (a): Following Section 2.1 we define in the Fock space .% sym-
metric operator

a7 B(Q) 1= = (Cb+CV) C O, CeC
on the dense domain dom(®(¢)) = dom(b) = dom(b*). Hence ®(() is closable.

Recall that the set of finite-particle vectors F C F is defined as the algebraic direct
sum 7 = \/n5o PN, N € Ny, that is, the linear hull (envelope) of N-particle
subspaces Fy = {¢ € Z,||Y||lz =1: (n,¢)z < N}

—

Proposition 3.5. (1) Operators {®({)}ccc are essentially self-adjoint on domain F .
(2) If limg s 00 Ck = C, then limy_, o0 || P(Ck ) — ()| = 0 forall ¢ € F.

Proof. (1) Recall that by the Nelson analytic vector theorem [14],Thm.X.39, if there
isa D C dom(®(¢)), which is invariant under ®(¢) and which, in turn, contains
a dense in .# subset D, C D of analytic vectors for ®((), then operator ®(() is
essentially self-adjoint on D. First we note that Z C dom(®(()) is evidently dense

—

in . and that .% is invariant under the action of any ®(() : Z7 - 7.



Because of decomposition .F = @, .,Z ™, where linear span .F (™ :=
span{(b*)"Q} is the space of vectors 1)(™) from the n-particle sector, the Fock space
is in turn the linear span of vectors v, := (0,...,0,(,0,...) with only one non-
trivial component (v,,) j=n = w("). Since any vector from § belongs to some %y,
it has all, but finitely many components, equal to zero. Hence, this vector is a finite
sum of the one-component vectors v,,. Then to check the analyticity of ¢y € D, C .%
it is enough to show only that vectors 1, are analytic for operators {®({)}¢ec.

Since for all m > 0 the vector ¢, € dom(®(¢)™), the straightforward estimates
yield:

12(C)™nll < V2V +m [¢] ()™ "¢bn| and
D)™ Ynll < 22/ (n+ m)! [C™ [[¢nl-

Therefore, the series
z™m m
S 1) bl
m>0
converges for any z € C. Hence, by definition of analytic vector one gets that ¢,, is
analytic for any of operators {®(({)}¢cc, that proves the assertion (1).
(2) Let ¢ € .%. Then we get the estimate

12(C)e—2(O)wll < —=(1(G—¢) bLlI+I(Gr—C) b™9ll) < V2[G—¢ VA + 19|,

1
7
which yields for limy_, o, (x = ( the limit in (2). ]

Below we denote by ®(() the self-adjoint closure of operator (3.7). Then for each
¢ € C it generates on the Fock space .% a strongly continuous one-parameter group
of unitary operators: ¢t — exp(it®(()), t € R, (the Stone theorem). These unitary
operators define the family of the Weyl operators:

(3.8) W (C) = {W(g) = e@(O} .
cec

The linear span{# (C)} of (3.8) generates a unital *-subalgebra of the von Neumann

algebra of bounded operators £(.%). The operator-norm closure of span{# (C)}

generates on .% the C*-algebra of the Weyl canonical commutation relations, which

we denote below by CCR(.%).

Proposition 3.6. (1) If limy_, o (i = ¢, then limg_, o [|[W (Ck )0 — W ()| = 0 for
any ¢ € Z, i.e. the sequence {W ((i)}r>1 converges on .F in the strong operator
sense.

(2) The span{# (C)} C L(.Z) acts irreducibly on .F.



Proof. (1) By Proposition 3.5 one has ®((x)1 — ®(¢)v for all ¢ € 7, which is a
joint core for all the operators {®((x)}r>1 and ®(¢). This implies that ®(() —
®(() converges in the strong resolvent sense. Consequently, the unitary groups
{e?®()}, 51 converge to ' ®(C) on £(.F) in the strong operator sense for all ¢ € R.
This proves the assertion (1).

(2) Recall that the family of operators span{# (C)} acts irreducibly on .# if the
only closed subspaces of .%, which are invariant under the action of span{# (C)}
are the trivial subspaces: {0} or .%. This property is equivalent to claim that family
of the Weyl operators (3.8) is irreducible, which means that the commutant % (C)’
is trivial in the sense: #(C) = C1. Now, suppose that there exists a nontrivial
B € L(.7), which commutes with all Weyl operators W (¢) € #/(C). Then for any

€ dom(®(()) it follows that

e A i C
i o w—tgg ™ = B®(()y, (€ C.

This yields: By € dom(®(¢)) and ®({)B ¢ = BP(¢) . So, B : dom(®(¢)) —
dom(®(()). By definition of ®(() this also means that B commutes with operators
b and b*. Then by definition of the cyclic vector {2 we get: b B = Bb) = 0 and
so B = A for some A € C. To prove that in fact Bt = (1)1 for any ¢ € %,
note that since

B )"Q=0B")"BQ=A(b")"Q,
one proves the assertion by cyclicity of (2. O

Corollary 3.7. Identifying span{# (C)} with the unital x-subalgebra 2, in the com-
ment Note (a), we conclude that span{# (C)} is dense in Ay = # (C)" in the
weak *-topology, that is, the Weyl-von Neumann algebra Ay coincides with the clo-
sure of span{# (C)} in this topology. Moreover, since the Weyl family # (C) is
irreducible, one gets Ayy = L(F). So, the closure of span{# (C)} in the weak*-
topology coincides with L(.F).

Comments to Note (b): Our choice of a unital x-subalgebra 2l (see Note (a)) is the
linear span of the Weyl family (3.8). Besides the density of the span{# (C)} in
L(F) (Corollary 3.7) the advantage of this choice is that the action of the semigroup
{T?*}+>0 on #/(C) is known explicitly, see [15], (A.32), (A.33). It follows from
definition (3.4) and evolution equation (3.5) for bounded operator A = W (().

(i) Let0 < oy < o_. Then

(3.9) T7*(W(C) = e O W(G(1),



where

2
(3.10) QZ(t) := KFo-+oy {1 _ e—(a-—o+>t} L C() = C i oo )t2,

4 o_—oy4
Let for k — oo a sequence {o* };>1 converges to o_. If we define Ttg(k)>k =
T7* |o—o,  where Q7 (1) := Q2(#) |,__,x and (o () = Co(t) |,__n . then
Proposition 3.6(1) and (3.9), (3.10) yield the strong operator limit
(3.11) s— lim 7B (W (¢)) =TT (W (0)),

on the Fock space .% for any W (¢) € #(C).

Remark 3.8. Since for ¢ # 0 the operator norm ||[W(¢) — 1|| = 2, the evolution
(3.10) is not continuous in the C*-algebra topology, but it does in the weak*-topology
on the von Neumann algebra Ay,. Hence, the pair (Ay, 77 *) is, in fact, a W*-
dynamical system, [12, 13].

To proceed further with the point (i) we recall assertion about the operator product
continuity in the trace-norm topology, see, for example, [16], Proposition 2.69, or
[17], Proposition 2.78.

Proposition 3.9. Let { X} }i>1 C L(F) and s—limy_,oo X = X. Let {Yi}i>1 C
C1(.F) be convergent sequence of trace-class operators: || - ||1 —limg_00 Y = Y.
Then XY € €1(.%) and

k—o0

Therefore, duality relations (2.2), (3.1), together with (3.11) and Proposition 3.9
yield

(3.12) Jim (170w | W(0)) = lim (u] 77 (W(0)))

= (u|T7"(W(Q))) = (TYu| W(C)) ,
for any W(¢) € #(C) and all u € €;(.%). By linearity one can extend the con-
vergence in (3.12) to the span{# (C)}. Then by irreducibility and weak *-density

in L(.#) of the span{# (C)} (Corollary 3.7), we extend (3.12) to any operator
Ae L(F)~C{(F)):

(3.13) lim (77 W | A) = (TPu| A) .

k—o0



On Dynamics of an Open Boson System Corollary 3.10. By virtue

of (3.13) the sequence of operators {Ta(k) }k>1 converges
on the space €1(F) to Tf in the weak Banach topology 0(61( 7), ’{(ﬁ)) Note
that for A = 1 and for any rank-one projection operator u = Py, € €1(F) defined
by

(314) PgO’l[) :¢'_> (¢ ?ﬁ)@@ for ¢a¢,90€j

one gets (TT M P, | 1) = T (T PP, ) = (T7W o, ) 5. Then, the limit (3.13)
yields

lim (T7 W, ) 7 = (17 W, ) 5

k—o00

Therefore, {Tto(k)}kzl converges to T on the space . in the weak operator topol-
0g)y.

() Let 0 < 04 < ok and limg_, o oF = o+. Note that the strong limit (3.11)
for any Weyl operator W (() € # (C) exists

(3.15) s— lim 7707 (W(0)) = 7 (W(0)) .

for operator T+ * (W (¢)) with the evident limit values in (3.10):

2
|<2|O-+t ) <U+(t) :CeiEt :

Then by the same line of reasoning as in (i) and in Corollary 3.10 we obtain the
existence of the weak operator limit on .%#:

(3.16) a7t (1) =

(3.17) —lim 7% =17+ |
k—o00
for limy,_so0 0% = 0.
Note, that for the singular case: 0 < o4 = o_ the explicit solution of equations
in [15], see (3.23), gives the same result as (3.16), that is:

(3.18) Ty (W) =T (W(Q) loy=o»  W(C) € span{#/(C)}.
Therefore, (3.17) and (3.18) give for the weak operator limit

(3.19) - lim " =17 |,

=04 -

(iii) Let 0 < o_ < o4. Then explicit formulae (3.9), (3.10) yield the same
properties of semigroups {7} *}+>0 and {7} }+>0 as those established in (i), (ii). The
only difference is that, in contrast to (i), in the case (ii), (iii), these semigroups have
no infinite-time limit (¢ — o0o), for o = o4 > 0, respectively in the strong-operator
and in the weak Banach topologies.



Corollary 3.11. By virtue of (3.9),(3.10) and of (3.16), (3.18) one gets that for any
0 < o4 and0 < o_ the semigroup {T7 *}+>¢ is unity-preserving (Markov) on L(.F)
since

(3.20) TP*(W(C=0)=T7*(1)=1.

Consequently, by duality (3.1) the semigroup {T{ }+>0 is trace-preserving (Markov)
on & (F) for all values of parameters o > 0, including the critical cases 0 <
oy =o0_andoy > o_.

We remark that the positivity-preserving C-semigroup {77 };>0 (2.16) on €; (%)
constructed in Section 2.2 by the particle-number cut-off regularisation is minimal,
see Proposition 2.5(c). If (Tf}tzo is a positivity-preserving Cp-semigroup with gen-
erator EU, which is another extension of (H, — Q,), then 77 < ft" forall t > 0.
This means that for any p € ¥(¢]") and all positive operators A € £ (.F) one gets
forallt >0

(3.21) (p| TZ*(A)) < (p| TP *(A)) .

As a result this implies the minimality of the positivity-preserving dual semigroup:
TP *(A) < T7*(A) for A € LT(F).

3.3 FRrROM GKLD ANSATZ TO MARKOV PROPERTY

Here we return to the core problem formulated in the beginning of Section 2.3 in the
framework of the general regularisation Proposition 2.5. Analysis of the open boson
model in Section 2 and the proof of the Markov property of evolution in subsection
2.3 motivate the following abstract GKLD setting.

GKLD ansatz: (cf. [5], Chapter 3.5, Hypothesis AA)

(i) Operator G is the generator of contraction Cy-semigroup {U (t) = e_tG}tZO on a
Hilbert space H.

(ii) Linear operators { F}, } ;>1 in H are such that domains: dom(F}) D dom(G), for
all k > 1.

(iii) For any couple of vectors =,y € dom(G) one has

(3.22) (G, y)u + (2, Gy — > (Fiw, Fry)p =0 .
E>1

Then the mappings S;>o : p — U(t) pU(t)*, define on the Banach space €, (#) >
p the corresponding to the GKLD ansatz unperturbed dynamical semigroup {S; =
e~t1},5 with the densely defined in €; () generator

(3.23) (Hp) 2 (Gp+pG*), pedom(H).



The corresponding to the GKLD ansatz perturbation K (cf. (2.17), (3.22)) is the
positivity-preserving operator defined on dom(H ) by

(3.24) K:p— Y FupFy, p€dom(H).
k>1

Let Paom(a) = {Pey(*) : 7,y € dom(G)} C & (H) be set of rank-one linear
operators Py ,¢ := (¢,y)y «, for ¢ € H. Then P, , € dom(H) and we can rewrite
(3.22) as follows: Tr ((H — K)P,,) = 0. Since the linear span

(3.25) P := span{Paom(c)} C €1(H)

is dense in dom(H ) in the trace-norm topology || - ||1, the condition (iii) is equivalent
to

(3.26) Tr((H-K)p) =0, pedom(H),

which coincides with condition (2.17) in the general setting of Proposition 2.5. Note
that the span 8 (3.25) is also || - ||;-dense in the whole Banach space €; (), and
hence, in ¥ (&1 (H)).

Lemma 3.12. The span ‘[ is a core for generator H.

Proof. Note that for rank-one operators one gets: S;Pyy = Pyyzu(t)y € €1(H).
Since U(t) : dom(G) — dom(G), the couple of vectors U(t)x,U(t)y € dom(G)
if z,y € dom(G), and hence S¢ Py € Pyom()- Consequently, the span (3.25) is
invariant under the semigroup {S; }+>0, and so B is a core for generator H. O

For simplicity we consider below the GKLD ansatz for the case of finite sums
2@1 Fy.pFy in (3.22). Extension to the infinite sum is straightforward under suit-
able conditions for its convergence.

Theorem 3.13. Let for finite sum in (3.22) the operators G, F}, assure the GKLD
ansatz. Then there exists a functional regularisation (Ky)acg of K such that:

(a) For all o € J the operator L, = (H — K,,) is the generator of a positivity-
preserving contraction Cy-semigroup {T}* }1>0 on €32

(b) For t > 0, limits: lim, T*p = Tip, exist in € for all p € €3 and define
T;: €3 — €5

(c) The family {T;, = e~*},>¢ is the minimal positivity-preserving contraction Cy-
semigroup on 3 for which the generator L := (H — K )4 is an extension of the
operator (H — K).



Proof. The points (a) and (b) are corollary of regularisation Proposition 2.5. The
assertion (c) that constructed in this way dynamical semigroup {7} }+>0 has generator
L := (H — K) 4t and that the semigroup is minimal follows from Proposition 2.5(c).

O

Remark 3.14. To construct for the perturbation /K an example of regularisation fam-
ily { K4 }acs one can follow a scheme of the particle-number cut-off regularisation
in Section 2.2. For one-mode case this family reduces to the sequence (K n)nen,
(2.14) corresponding to increasing sequence of projections (Py)nen,. In the rwo-
mode case the particle-number cut-off regularisation corresponds to projections
Py,N, = PN, ® PNyt F @ F — F ® F, N2 € Nyg. As a consequence,
the regularisation family (K n, n,) N, ,eNN, is not a sequence, but a net.

We notify that similar to the general setting (Proposition 2.5(a)-(c)) the GKLD
ansatz itself is not sufficient for the minimal dynamical semigroup {77 }+>o be trace-
preserving, see Theorem 3.13. However, in contrast to the general setting, in the
framework of the GKLD ansatz the converse to the Proposition 2.5(d), is also true.
For the proof we have to introduce a definition.

Definition 3.15. For each v € £(#) we define in H x H the sesquilinear form

k>1

with domain dom(G) x dom(G). Note that
L)z, y] =Tr (Ppy(H — K)*u) =Tr (H — K)Pyyu).

On account of (3.23) and by definition of operators K (3.24) and L (Theorem 3.13
(¢)), one checks by inspection that on the set Pqop, () of rank-one linear operators

(3.28) LPyy = Paoy+ Prcy — Z Pra.Fy
k>1

for any (x,y) € dom(G) x dom(G). Therefore, the linear span 8 C dom(L) and
L : B — ‘B. This reveals that the span  C dom(H), (3.25), may be a core for
generator L.

To bolster this conjecture we need the following proposition identifying a core of
operator [10], Chapter 8.1.

Proposition 3.16. Let X be a closed operator in a Banach space B and let A be in
the resolvent set of X. Then D C dom(X) is a core of operator X if and only if the
image of the map: D — (A1 + X)) D, is dense in B.



Theorem 3.17. Let operators G, F verify the GKLD ansatz. Then the following
statements are equivalent:

(a) The minimal dynamical semigroup {T}}+>0 constructed in Theorem 3.13 is trace-
preserving.

(b) Domain dom(H) is a core for the generator L := (H — K )¢yt.

(c) For any \ > 0 the characteristic equation £(u) := (£(u) + Au) = 0 (in the
sesquilinear form sense), has for w € L(H) only trivial solution u = 0.

Proof. The fact that (b) implies (a) is the statement of Proposition 2.5(d). The con-
dition (2.17) in the general setting of Proposition 2.5, coincides with condition (iii)
of the GKLD ansatz. Note that (b) = (a) does not need any details concerning the
structure of operators H and K.

Now, let (b) be true. Then by Lemma 3.12 and by Proposition 3.16 for any A > 0,
the set (A1 4+ L) is dense in the Banach space € (#). Next we use (i), (i) of the
GKLD ansatz to note that by (3.27), or by (3.28), for any P, ,, € B and u € L(H)
one gets

(3.29) Sr(w)[z,y] = (M1 + LY uz,y)y =Tr (A 1L+ L)Pyyu) .
Therefore, if £)(u)[x,y] = 0 for any P, , € B, then by (3.29)

(3.30) sup |Tr((AL+ L)P,yu)| =0,
Py yeP

which by density of (A1 + L) P8 yields ||u|| = 0. So, solution of equation £ (u) = 0
for any A > 0 is trivial, that is, (b) = (¢).

Conversely, if (c) is true, then by (3.29) it is equivalent to the statement: Tr ((A1+
L)P,,u) = 0forall P, , € B, = u = 0. Note, that if (A\1+L) P is dense in Banach
space €1 (#), then this statement is consistent with (3.30). But if (A1 + L) ‘B is not
dense in & (H), i.e., (b) is not true, then Tr (A1 + L) P, u) = 0 for some bounded
operator u # 0 and any P, , € ‘B. Consequently, by (3.29) one gets for this element
£,(uw) = 0, that contradicts to (c). Hence, (c) = (b). As a result, (b) and (c) are
equivalent.

Now, let (a) be true and let us prove that (a) = (c). If one supposes that (c)
does not hold, then for some A > 0 there is a nontrivial solution uy € L(#) of
characteristic equation in (c), or in (3.29). This means that L*u)y = —Au}, and thus
for dual semigroup one gets T;uy = e'*u,. To continue we note that

(3.31) —QHU)\H 1< (U)\ + u}‘\) < 2||u>\H 1,
(3.32) =2lur|| 1 <i(uy—uy) <2||uy]l.



Since by condition (a) the dual semigroup {7} }+> is unity- and positivity-preserving,
its application to (3.31) yields for all £ > 0:

—2[lur]| 1 < (un +u}) e < 2fuy]| 1,

which implies that uy + u} = 0. By the similar argument applied to (3.32) one
concludes that also u) — u} = 0. For that reason, the solution u, for any A > 0 must
be trivial, that is, (a) = (¢). ]

The line of reasoning in this proof is motivated by a detailed discussion presented
by E.Fagnola in [5], Chapter 3.5.

Corollary 3.18. Let unbounded operators H and K verify conditions of the GKLD
ansatz. Then the converse to Proposition 2.5(d), is true, that is, the following state-
ments are equivalent:

(a) The minimal dynamical semigroup {T}}+>0 constructed in Proposition 2.5(a)-(c),
is trace-preserving.

(b) dom(H) is a core for the generator L := (H — K )¢yt.

Corollary 3.19. On account of Corollary 3.11 and Corollary 3.18 we infer (cf. [2],
Theorem 3.2, and [5], Chapter 3.5) the following statement:

In the framework of the GKLD ansatz the necessary and sufficient condition for the
minimal dynamical semigroup with generator L, constructed in Theorem 3.13 by
regularisation a la Kato, be trace-preserving (Markov) is that domain dom(H) of
the unperturbed semigroup must be a core of operator L.

As a consequence, Corollary 3.11 and Corollaries 3.18, 3.19 claim that a nec-
essary and sufficient condition insuring that the minimal dynamical semigroup with
generator L, constructed in Proposition 2.5(a)-(c) by regularisation a la Kato and con-
dition (2.17), is Markovian (trace-preserving) is that domain dom(H ) of unperturbed
semigroup is a core of operator L.

Corollary 3.20. The open boson model in Section 2 satisfies the GKLD ansatz if op-
erator G coincides with h, (2.10) and operator K (3.24) corresponds to Q, (2.7), cf.
also (3.4). Seeing that by Corollary 3.11 the semigroup {1 }+>0 is trace-preserving
for all values of parameters o+ > 0, one concludes that dom(H ) = core(L) for all
oy > 0, including the critical regime: o1 = o_ > 0. This means that the problem
Sformulated in Remark 2.9 has a complete affirmative solution in the framework of the
GKLD ansatz.

In the next section we present more details about the GKLD-evolution of the open
resonator model (2.8).



4 GAUSSIAN QUASI-FREE EVOLUTION
4.1 GKLD EVOLUTION OF QUASI-FREE STATES

Although dynamical semigroup {7} };>¢ rests Markovian for any o1 > 0 (Corollary
3.11 and Corollary 3.20), the critical case o = o > (0 is in a certain sense singular.
To scrutinise the nature of this critical regime we study both finite- and infinite-time
evolutions corresponding to the mapping o — 7Y o, on the set of density matrices
My = {p € €(F) : |Ip|p = 1} in the limit o_ | o4 > 0. For making our
analysis explicit we need more details about the the GKLD evolution of the open
resonator (2.1), (2.8), as well as, about appropriate set of initial conditions selected
from M, or, in general, from the set of states {w : Ay — C} on the CCR(%)-
algebra Ay .

(a) To this aim we start by observation that semigroup {7} };+>¢ on Ay (cf. Corollary
3.11) is a unity-preserving quasi-free dynamical semigroup since it has the canonical
form (see [18, 19]):

(4.1) Ty (W(Q)) = e (Q) W(T:(¢), ¢ € C,

where ¥;—o(¢) = 1, I't—p = 1 and ¥;(¢ = 0) = 1, I';,(¢ = 0) = 0. Indeed, on
account of (3.9) and (3.10) one has:

TPH(W(C)) = Wy(C) W(TH(Q)), Wi(C) i=e KW Ty(C) == ¢ (1),
4.2) C]? o- + oy

g > =7 77 _ o (o——0o4)t — tBt—(oc_—o4)t/2
0zt == U__U+{1 e b =ce .

Remark 4.1. Let a normal state w, : Ay — C, be defined by density matrix ¢ €
Mi: w,(W(Q)) = (e|W(C)) for W(¢) € Aw. Suppose that this state is regular,
that is, for any ¢ € C the function: R 3 X — w,(W (A ()) is continuous. Then owing
to (4.2) for o_ > o4 > 0 we obtain

WS (W(Q) += lim wy(T7*(W(Q))) = lim e “@ wy(W(G(8))

lo_+oy

=exp{—-
p{ 4o0_—o04

4.3)
} ) W(C) € AW )

since limy_ o0 wo(W (¢, (t)) = wy(1l). Note that stationary state weo(-) does not
depend on the initial regular normal state w,. By duality (2.2)

(44) WL (W(Q)) = lim (T70[W(Q)) = wee (W(C)).



Hence, the stationary state wZ_(+) is normal with density matrix
4.5) 0% =w— lim TYp, Vo€ M; C € (F),
t—o0

which is the weak Banach limit on €; (.%).

Remark 4.2. In fact, the arguments in (4.3) show that the quasi-free GKLD evolution
of the open resonator (2.1), (2.8) transforms (in the limit £ — o0) any initial regular
(and not necessarily normal) state w into the limit state wg_, which, as we shall see, is
a quasi-free state (4.19), but also a normal Gibbs state (4.20) with temperature defined
by the environmental reservoir with parameters o4. This motivates our study of the
case when the quasi-free states are selected as initial states. Then one can follow the
quasi-free GKLD evolution of the open resonator in details at any instant.

(b) We recall that the state w;. 5(-) on the CCR(.%)-algebra Ay over Hilbert space $
is called quasi-free, if its characteristic function (see, e.g., [12], p.146 and p.214) has
the form:

6 wra(W(F)) = explir(f) = 3 s(£. 1)}, f €9,

Here r(-) is a linear functional on $), whereas s(-,-) is a non-negative (closable)
sesquilinear form on $) X £, that verifies condition

LIn(f ) < s/, f)s(a.0). Fo€®,

to ensure the positivity of the quasi-free state: w, s(((f)+i®(g))*(2(f)+i®(g))) >
0.

By the Araki-Segal theorem ( [12], p.146) the states defined by (4.6) are regular
(and analytic), verifying for ®(f) := (b(f) + b*(f))/v/2 equations:

4.7) r(f) = wrs(®(f)) and s(f, f) = WT,S((I)(]C)Q) - WT’,S(CI)(JC))Q .

We also remember that any normal state w on Ay is defined by a density matrix
0 € M and duality (2.2):

(4.8) we(-) == (o] -), on Aw.

If the state (4.6) is gauge-invariant: wy, s(W (f)) = wys(W(e'¥ f)) for p € R, then
r(-) = 0. We denote these states by ws(-) := wr—0,s(-) and similar to subsection 3.1
consider the one-dimensional Hilbert space $) = C.



Note that by definitions (4.1) and (4.6) the quasi-free semigroup maps the quasi-
free state w;. 4(-) into the states:

4.9) wrs(T;(W(S))) = Ce(fwrs(W(TH(S))) = Ce(fwr, s, (W), >0,

where 7;(f) := r(T+(f)) and s¢(f, f) := s(I'e(f), [e(f)) for r(f) := ri=o(f) and
s(f, f) := st=0(f, f). In general, the states {w, s(T}())}+>0 defined by the quasi-
free evolution (4.9) are not quasi-free because of the factor W;(f).

(c) A sufficient condition on the evolution, which provides the invariance of quasi-
free states under mapping (4.9) is a restriction to the Gaussian quasi-free evolution,
[15,20], A.5. It is defined by conditions:

(1) Semigroup {I't };>+ has a particular form

Dof =eplith—2 (S-S}, fe8,

where h = h* is a self-adjoint operator and Y.+ are bounded positive operators in §)
suchthat¥_ > 3>, > 0.
(2) Derivative 0,V is defined by a sesquilinear form:

Jim 00 (f) =~ { (RS s, fe9.

which is determined by a positive bounded operator & > >_.
It turns out that the GKLD open resonator evolution, (2.1), (2.8), satisfies these
restrictions on $) = C (cf. (4.2)) since: h = E, ¥4 = 05, R = (0_ 4+ 04 ) and

(4.10) Ty(¢) :=(o(t) = e Btlo——ot2¢ 4 >0, ¢eC, o_>0.>0.
Then on account of (4.2), (4.6) and (4.9),(4.10) the gauge-invariant states
4.11) wsz, (1) = ws(T7(4), t>0,

on Ay are quasi-free for the time-dependent sesquilinear form
4.12)

51(6, Q) == (G (), Go (1)) + !C

‘2 % (1—e == o >0 .
— 0y

As a consequence, (4.12) yields that the states (4.11) rest quasi-free:

WI(W(Q)) = Jim ws, (W(Q))) = exp{—+ =T}

t—o0 40'_—0'+

including the infinite-time limit, cf. (4.3).



4.2 GKLD EVOLUTION OF THE GIBBS STATES

After these preliminaries we first study the GKLD evolution of open resonator (2.1),
(2.8) when at ¢ = 0 the initial state wg is a gauge-invariant normal quasi-free Gibbs
state for temperature 5~ !. Then it is defined by (4.8) and density matrix

(4.13) 05 = (1—e PE) e PEVD - s e My C C(F).

Owing to (4.7) and (4.8), we can calculate the characteristic function (4.6) of the
normal state corresponding to (4.13). This yields that the state wg is gauge-invariant:
r3(¢) = 0, and quasi-free with sesquilinear form

e —|— 1

—
On account of (4.12) and (4.14), as initial form at £ = 0, we obtain the time-dependent
sesquilinear form for the GKLD evolution of the open resonator

(4.14) s5(¢,¢) = |<|2

2 0— +O-+ (1 _ef(offour)t)

(4.15) gt(@ C) = Sﬁ(CO‘(t)7CO'(t)) |C| , t>0,

for initial thermal density matrix (4.13). Consequently, the corresponding to (4.15)
quasi-free states of the open resonator are at any moment ¢ > 0 gauge-invariant
normal Gibbs states for the temperature 3(¢) !, which is given by equation 5;(, ) =
s (t)(C ,¢). On account of this equation and (4.14), (4.15), we obtain an explicit
formula for time dependence of the inverse temperature:

1. [F@)+1
= — PR — >
(4.16) B(t) =+ In [F(t)_l] . 1>0,
where
PP 41 o_+o
— - T (o——oq)t e o 1 — —(o——oy)t
4.17) F(t)= g ¢ To o, LT ).

For the regular case: 0 < 0 < o_ , by virtue of (4.11)—~(4.17) and duality (3.1),
or (4.8), we infer that :

() For ws = ws, equation wz, (W(()) = (T 0 | W(()), (4.11), implies for ¢ = 0
that dynamical semigroup {77 };>0, which preserves quasi-free state along the orbit
t € [0,00), is also trace-preserving, i.e., Markovian.

(b) Moreover, {Iy }:>0 also preserves the Gibbs property of the initial quasi-free
state with s;—(((, ¢) (4.15) since sesquilinear form for the characteristic function sat-
isfies equation: 5;(¢, ¢) = sg()(¢, ¢), where 3(t) " is a time-dependent temperature
defined by (4.16).



(c) By (4.11), for ws = ws,, and by (3.9) we obtain

(4.18) ws, (W(Q)) = (0 | TT*(W(Q))) = (op e~ D W (L (1)),

where continuous functions: ¢ — Q7(t) and t +— (,(t) are defined for ¢t > 0 by
(3.10). Note that by Proposition 3.6 the function

(W) =0, (e, W(C) e Aw,

is continuous in the strong operator topology on £(.% ). Then given that pg € & (%)
and hence, pg T7*(W(()) € €1(#), we obtain thanks to (4.18) and Proposition 3.9
the limit:

@19 WL (V(Q)) = ws (W(O) = lim (o5 TP (W(O))
_ ¢[? o + o
I R ol

for any W(¢) € Aw and ¢ € C.

(d) The unique limiting state (4.19) is the stationary (steady) state for the quasi-free
GKLD evolution of the open resonator, (2.1), (2.8). Because of explicit formulae
(4.19) and (4.6), (4.13), (4.14) we deduce that this state is gauge-invariant, quasi-
free and normal for the Gibbs density matrix

" S 1 -
(420)  0p(c) 1= (1= ¢ POIE) BBV € @(F) | B(oo) = — In =,

FE O+

on the Fock space .% . Equation (4.16) implies that the limit 8(0c0) = lim;_,~, 5(t) is
entirely determined by the pumping in and leaking out parameters of the resonator-
environment contact.

(e) For that reason, if the pumping in parameter o = 0, then

421 “Liep 428
(4.21) Sﬁaf(t)(CC)—§|C| togm |
where the value of inverse temperature

1
4.22) fo_(t) = 7 In [1 +eto- (PP 1)} .

Then in the limit £ — oo we obtain a stationary state, which for any W (¢) € Aw
has characteristic function:



@23 wpeW(Q) = Jim w, ((W(Q)) = expl—5|cP}

t—o00

= (e0,W({)eo)z, (€C,

and corresponds to the ground state of resonator (cyclic vector) eg € %, cf. subsec-
tion 2.1. As aresult the stationary limiting Gibbs state (4.23) of the resonator has zero
temperature: 3, _(00) = limy_,o By_(t) = 00, cf. (4.22). This has an evident in-
terpretation. Because of the dominating leaking, the initial state wg relaxes along the
Gibbs states Markovian orbit for sg, () (cf. (a),(b)) to the zero-temperature ground
state.

(f) Besides the temperature we use for characterisation of the state the mean value of
bosons w(n) in the open resonator, where 1 = b*b, cf.(2.1). By reason of evolution
equation (3.5) one formally obtains

4.24) 0,17 (n) = —-T7*(Ly(n)) = —(o——op) T (R)+oy, T75(N) |i=0= n.

Note that expression (4.24) is formal because operator 1 ¢ dom(L?). If we denote
n(t) := T7 *(n), the solution of (4.24) for o_ # o is

(425 ()= e Tty T fy ol
O_ — 04
Let initial state w be regular. Then by Remark 4.2 the infinite-time limit stationary
state wZ, for the case: 0 < o4 < o_ , is quasi-free (4.19) and normal Gibbs state
(4.20) for temperature defined by parameters o4. If in addition the initial state is such
that w(n) < oo, then application of this assertion to (4.25) yields a finite stationary
mean value of bosons in the open resonator:

o/ . . 1 1 o_

We remind that in general the initial regular state w is neither normal, nor Gibbs.

4.3 EVOLUTION IN A CRITICAL REGIME

A regime complementing to the regular case (o > o4 > 0) corresponds to condi-
tions: o_ = o4 > 0. We define it as the limit o_ | o4 and we call it the critical
regime.

(a) Following the arguments in subsection 3.2, Comments to Note (b)(ii), we infer
that for any Weyl operator W (({) € # (C) there exits the strong operator limit in .7



(cf. (3.15)):

TEH(W(CQ) = s— lim TO*(W(Q) = e % D W(¢,, (1),

o_log

4.27) 1
QZ+(t) ::§|<|2O_+tv <O'+(t) = 6iEtCa CGC

The operator family {7} * *};>¢ is a semigroup because
T (17 (W) = T (W), W(C) € Aw.

Since by (4.27) it is unity-preserving: T, " (W (())|¢c=o0 = 1, by duality the dynam-
ical semigroup {7, " };>0 is trace-preserving.

(b) On account of (4.27), semigroup {7} *};>0 has canonical form (4.1). Conse-
quently, it is a quasi-free semigroup. Owing to (4.10) we infer that (4.27) is clearly
a Gaussian quasi-free semigroup, that is, it preserves quasi-free states, cf. subsec-
tion 4.1(c). As a consequence, by (4.12) and (4.27) we obtain for the corresponding
sesquilinear form

(4.28) (G0 =5(C )+ [CPost, CeC.

(c) Following the arguments in subsection 4.2 one infers mutatis mutandis that the
Markov dynamical semigroup {7} " };>¢ preserves also the Gibbs property of the
initial Gibbs quasi-free state (4.13). As a consequence, the sesquilinear form (4.28):
577(¢,¢) =s Bo (1) (¢, €), is again entirely defined by a time-dependent inverse tem-

perature 3, (), see (4.16) for F'(t) = F, (t), where
BE
e’ 41
(429) FU"'(t):eﬂEi_l + 20’+t.

(d) On account of (4.16) for (4.29), in the critical regime o = o4 > 0, the tem-
perature ([, (t)) ™! of the state wg,, (1) corresponding to the form SBGJr(t)(C, ), is
monotonously increasing over time and it gets infinite value in the infinite-time limit.
State Wh,, (t=o) is called the “chaotic Gibbs state” [21], Section 5.3.1. It is char-
acterised by sesquilinear form s5, (t=o0) (€, €) with an infinite jump at ¢ = 0. This
means that the state is not regular, that is, function: A = wg,  (1=c0) (W(A()), is not
continuous for all { € C, cf. Remark 4.1. In a round-about way this singularity can
be expressed via infinite-time limits of characteristic function:
() = Jim w(e P2 (W) =0, (#0,

lim w( ;
—00

(4.30) 70 .
lim (77" (W(¢=0))) =1,

t—o00

)



cf. (4.27), for any regular state w.

(e) By virtue of (4.24) and (4.25) we obtain in the critical regime: o_ | o4 > 0, a
(formal) equation for time evolution of the number operator for bosons in the open
resonator:

(4.31) At) =T T (R) == lim T7*(A)=n+o4t.

o_ —04

Following the same line of reasoning as in subsection 4.3(f) one gets

(432)  ws, (o) = Jim w(i(t)) = Iim ((7) + 04 1) = 00,
for any initial regular state such that w(n) < oco. The infinite number of bosons in
(4.32) corresponds to the established in (d) infinite temperature of the open resonator

(f) Because of formulae (4.2) the case: 01 > o_ > 0 (a ’supercritical” regime),
corresponds to the exponentially fast growing of temperature (3(t))~! over time, see
subsection 4.2, (4.16). The same rate one also gets for increasing of the number of
bosons in the open resonator, see (4.25). The rest of this supercritical” regime can
be treated for any finite time mutatis mutandis the regular case from subsections 4.1
and 4.2.

Indeed, by virtue of (3.9) and (3.10) we obtain:

TP (W(Q) = W) W(THQ),  We(¢) = e KD Ty(¢) = ¢ (1),

(433) |<’|2 o_+o .
o - + (o4—0_)t i Bt+(oqy—o_)t/2
Qc(t)— 1 {e —1}, (G (t)=Ce .

Then similarly to (4.30) the singularity makes an appearence in the limit ¢ — oco:

lim w (T (W())) = lim w(e™ %D W (¢, (8)) =0, ¢#0,

(434) t—00 . t—00
Jim w(T7 " (W(C = 0))) =1

for any initial regular state w.
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