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estimated the number of prime numbers with a proportion c > 0 of preassigned digits in base 2 (c is an absolute constant not specified). We establish a generalization of this result in any base g ≥ 2 and we provide explicit admissible values for the proportion c depending on g. Our proof, which develops and enhances Bourgain's arguments, is based on the circle method and combines techniques from harmonic analysis together with results on zeros of Dirichlet L-functions, notably a very strong zero-free region due to Iwaniec.

Introduction

Throughout this paper, g is an integer greater than or equal to 2 and the letter p denotes a prime number. Any integer k ≥ 0 can be written uniquely in base g as

k = j≥0 ε j (k)g j
where, for any j ≥ 0, ε j (k) ∈ {0, . . . , g -1} is the digit of k at the position j in base g. We denote by Λ the von Mangoldt function and by ϕ the Euler's totient function.

1.1. Pseudo-randomness of the digits of primes. The digits of integers k such that 0 ≤ k < g n can be seen as n independent random variables and thus possess properties in connection with this independence. When one restricts to primes p such that 0 ≤ p < g n , the n digits are no longer independent. The general question: "For a given property of the digits of integers, do the digits of primes still possess this property?" is therefore at the source of many challenging problems. One of them is Gelfond's conjecture about primes according to which the sum of digits of primes is well-distributed in arithmetic progressions. Fouvry-Mauduit [START_REF] Fouvry | Sommes des chiffres et nombres presque premiers[END_REF] and Dartyge-Tenenbaum [START_REF] Dartyge | Sommes des chiffres de multiples d'entiers[END_REF] obtained results in this direction for almost primes. Mauduit-Rivat [START_REF]Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF] then proved Gelfond's conjecture and Drmota-Mauduit-Rivat [START_REF] Drmota | Primes with an average sum of digits[END_REF] obtained a local limit law for the sum of digits of primes (when it is close to the average value).

1.2. Primes in sparse sets. Looking for primes in sparse sets of integers (i.e. sets with zero density) is a classical and important problem in number theory, for which there are few results. The existence of infinitely many primes of the form 2 n -1 (Mersenne primes) or of the form n 2 + 1 are still open questions which seem to be out of reach of present methods. Friedlander-Iwaniec [START_REF] Friedlander | The polynomial X 2 + Y 4 captures its primes[END_REF] established the existence of infinitely many primes of the form m 2 + n 4 and Heath-Brown [START_REF] Heath-Brown | Primes represented by x 3 + 2y 3[END_REF] for primes of the form m 3 + 2n 3 . Rivat-Sargos [START_REF] Rivat | Nombres premiers de la forme n c[END_REF] obtained an asymptotic formula for the number of primes of the form n c (Piatetski-Shapiro primes) for c in the range 1 < c < 1.16.... It is natural to look for primes in sparse sets defined by digital properties. In this direction, we can mention [START_REF] Drmota | Primes with an average sum of digits[END_REF] and Maynard [START_REF] Maynard | Primes and polynomials with restricted digits[END_REF][START_REF]Primes with restricted digits[END_REF] who proved that, in a sufficiently large base, there are infinitely many primes with one missing digit in their digital expansion (e.g. there are infinitely many primes with no digit 9 in base 10).

1.3. Primes with preassigned digits. Let n be a large integer, A ⊂ {0, . . . , n -1}, d = (d j ) j∈A ∈ {0, . . . , g -1} A and denote D(n, A, d) = {0 ≤ k < g n : ∀j ∈ A, ε j (k) = d j }.

We will focus our interest on the following problem.

Problem. Estimate the number of primes in D(n, A, d) when |A| is as large as possible with (almost) no restriction on the set A itself and on the digits d j .

Since |D(n, A, d)| = g n-|A| , the set D(n, A, d) is sparse whenever both n → ∞ and |A| → ∞. This problem is thus a way to contribute to the study of primes in sparse sets (see Section 1.2). It also allows us to explore the pseudo-randomness of the digits of primes (see Section 1.1).

In 2005, Wolke [START_REF] Wolke | Primes with preassigned digits[END_REF] established an asymptotic formula for the number of primes in D(n, A, d) when |A| ≤ 2 i.e. at most two digits are preassigned. He also proved that, under the Generalized Riemann Hypothesis, one can preassign up to (1 -ε) √ n digits. Then, in 2006, Harman [START_REF] Harman | Primes with preassigned digits[END_REF] obtained a lower bound for the number of primes with an arbitrarily large but fixed number of preassigned digits. Two years later, Harman-Kátai [START_REF] Harman | Primes with preassigned digits. II[END_REF] corrected and improved the proofs in a previous paper [START_REF] Kátai | Distribution of digits of primes in q-ary canonical form[END_REF] of Kátai who had actually already studied primes with preassigned digits in 1986. They improved all previous known results by obtaining an asymptotic formula when |A| √ n(log n) -1 . Bourgain made an important step forward in 2013 [START_REF] Bourgain | Prescribing the binary digits of primes[END_REF] by obtaining an asymptotic formula when |A| n 4/7 (log n) -4/7 in base 2 and in 2015, he made an impressive breakthrough by proving that one can preassign a positive proportion of the binary digits [START_REF]Prescribing the binary digits of primes, II[END_REF].

Theorem A (Bourgain, [START_REF]Prescribing the binary digits of primes, II[END_REF]). There exists an absolute constant c > 0 such that, for any A ⊂ {0, . . . , n -1} satisfying 0 ∈ A and |A| ≤ cn and for any (d j ) j∈A ∈ {0, 1} A such that d 0 = 1,

0≤k<2 n ∀j∈A, ε j (k)=d j Λ(k) = 2 n-|A|+1 (1 + o(1))
as n → ∞.

At the end of [START_REF]Prescribing the binary digits of primes, II[END_REF], Bourgain obtains the result above. His main result is an asymptotic formula for |{p < g n : ∀j ∈ A, ε j (k) = d j }| under the same hypotheses, but we will see in Remark 2.6 that a further hypothesis is needed.

The larger the proportion c is, the smaller the set in which we are looking for primes is. This proportion is not made explicit in [START_REF]Prescribing the binary digits of primes, II[END_REF]. There are at least two "simple" special cases for which we already have an explicit admissible value for c. If the preassigned digits are the left-most digits then we are led to count primes in a short interval. The best estimate due to Huxley (see for instance [19, p. 265]) then allows us to preassign at most (5/12 -ε)n digits. If the preassigned digits are the right-most digits then we are led to count primes in arithmetic progressions. A result of Baker and Zhao (see [1, Theorem 1]) would then allow us to preassign at most (5/12 -ε)n digits. Even under the Generalized Riemann Hypothesis, in both cases, the best proportion of digits we are able to preassign is 1/2 -ε. Without any hypothesis on the positions of the preassigned digits, it seems very difficult to reach a proportion larger than or equal to 1/2.

We will provide an asymptotic formula for the number of primes with a positive proportion of preassigned digits in a general base g. Our work mainly follows the strategy introduced by Bourgain in the case g = 2 and the one suggested by Maynard for g ≥ 3 in [START_REF]Digits of primes[END_REF] with the aim to present a detailed and rigorous proof. In particular, we will correct in [START_REF]Prescribing the binary digits of primes, II[END_REF] some inaccuracies, develop and complete some arguments and sometimes this will lead us to proceed in a different way. Moreover, we will provide explicit admissible values for c depending on g.

Statement of the results

For technical reasons, we will assume that the least significant digit is preassigned. Since there is a finite number of possible values, this will not be restrictive in applications. Moreover, if d 0 ∈ {0, . . . , g -1} is such that (d 0 , g) > 1 then there is at most one prime number whose least significant digit is d 0 . We will therefore assume that the least significant digit is coprime to the base.

We will first establish an asymptotic formula for the mean value of the von Mangoldt function along integers with preassigned digits. Theorem 2.1. Let g ≥ 2 be an integer and δ 0 ≥ 0 be a real number. There is an explicit c 0 = c 0 (g, δ 0 ) ∈ ]0, 1/2[ with the following property. For any 0 < c < c 0 , there exist n 0 = n 0 (g, δ 0 , c) ≥ 1 and δ = δ(g, δ 0 , c) > δ 0 such that for any integer n ≥ n 0 , A ⊂ {0, . . . , n -1} satisfying 0 ∈ A and |A| ≤ cn and for any (d j ) j∈A ∈ {0, . . . , g -1} A such that (d 0 , g) = 1, we have (1)

0≤k<g n ∀j∈A, ε j (k)=d j Λ(k) = g n-|A| g ϕ(g) 1 + O g,δ 0 ,c n -δ .
Remark 2.2. We will define an admissible c 0 = c 0 (g, δ 0 ) in Theorem 13.3.

Remark 2.3. We will provide explicit admissible values of c 0 in Theorem 2.7. The largest value of c 0 will be obtained for δ 0 = 0.

Remark 2.4. The parameter δ 0 permits us to control the accuracy of the estimate: by taking a larger δ 0 , we obtain a more precise estimate but a smaller c 0 .

For A ⊂ {0, . . . , n -1} and (d j ) j∈A ∈ {0, . . . , g -1} A such that 0 ∈ A and (d 0 , g) = 1, we define

E 1 = {p < g n : ε 0 (p) = d 0 } and E 2 = {0 ≤ k < g n : ∀j ∈ A \ {0}, ε j (k) = d j }.
We have |E 2 | = g n-|A|+1 and, by the prime number theorem along arithmetic progressions (see [7, p. 360]), |E 1 | ∼ g n ϕ(g) log g n as n → ∞. If k is a randomly chosen integer in [0, g n [ then we expect the events "k ∈ E 1 " and "k ∈ E 2 " to be "independent" and thus, heuristically,

|E 1 ∩ E 2 | ∼ g n 1 ϕ(g) log g n g -|A|+1 = g n-|A| log g n g ϕ(g)
as n → ∞. The following theorem establishes this in a quantitative way. Theorem 2.5. Let g ≥ 2 be an integer and δ 0 ≥ 0 be a real number. Let c 0 = c 0 (g, δ 0 ) ∈ ]0, 1/2[ be as in Theorem 2.1. For any 0 < c < c 0 , there exist n 0 = n 0 (g, δ 0 , c) ≥ 1 and δ = δ(g, δ 0 , c) > δ 0 such that for any integer n ≥ n 0 , A ⊂ {0, . . . , n -1} satisfying 0 ∈ A, n -1 ∈ A and |A| ≤ cn, for any (d j ) j∈A ∈ {0, . . . , g -1} A such that (d 0 , g) = 1 and d n-1 ≥ 1, we have [START_REF] Bombieri | Le grand crible dans la théorie analytique des nombres[END_REF] |{p < g n : ∀j ∈ A, ε j (p) = d j }| = g n-|A| log g n g ϕ(g) 1 + O g,δ 0 ,c n -min (1,δ) .

Remark 2.6. The conditions n -1 ∈ A and d n-1 ≥ 1 cannot be removed in Theorem 2.5 (they were omitted in the main theorem of [START_REF]Prescribing the binary digits of primes, II[END_REF]). Indeed, if A = {0, n -r, . . . , n -1} (with 1 ≤ r ≤ n -1), d n-r = • • • = d n-1 = 0 and d 0 is such that 0 ≤ d 0 ≤ g -1 and (d 0 , g) = 1 then, by the prime number theorem along arithmetic progressions, we obtain

p<g n ∀j∈A, ε j (p)=d j 1 = p<g n-r p≡d 0 mod g 1 ∼ g n-r log g n-r 1 ϕ(g) = g n-|A| 1 -r n log g n g ϕ(g)
as n -r → ∞, which differs from (2) when r = o(n).

The following theorem provides explicit admissible values of c 0 (see Section 15 for explicit admissible values of c 0 under GRH).

Theorem 2.7. Theorem 2.1 holds with c 0 = c 0 (g, δ 0 ) given in Table 1 Remark 2.8. For general g ≥ 2 and δ 0 ≥ 0, Theorem 2.1 holds with c 0 = c 0 (g, δ 0 ) which is defined in Theorem 13.3 with the help of Lemmas 13.1 and 13.2 as the minimum between two solutions of some equations. We will establish in Section 13 the following properties of c 0 (g, δ 0 ). 1. For any given g ≥ 2, the largest value of c 0 (g, δ 0 ) is obtained for δ 0 = 0. 2. If S = {p ν : p is prime and ν ≥ 1} then, for any δ 0 ≥ 0, the function (g ∈ S) → c 0 (g, δ 0 ) is increasing and in the special case where δ 0 = 0, lim g→+∞ g∈S c 0 (g, δ 0 ) = 0.00927....

3.

If a ≥ 2 is an integer then, for any δ 0 ≥ 0, the function m → c 0 (a m , δ 0 ) is increasing. 4. For any δ 0 ≥ 0, we have c 0 (g, δ 0 ) < log p γ 1 1

8 log g where g = t i=1 p γ i i with p γ 1 1 = min 1≤i≤t p γ i i . This last property explains why the values in the column corresponding to g = 2 • 3 100 in Table 1 are small.

Notations

For any integer n ≥ 0, A ⊂ Z and d = (d j ) j∈A ∈ {0, . . . , g -1} A , we denote by D(n, A, d) the set of integers 0 ≤ k < g n such that, for any j ∈ A ∩ {0, . . . , n -1}, the digit of k at the position j is d j : 

D(n, A, d) = {0 ≤ k < g n : ∀j ∈ A ∩ {0, . . . , n -1}, ε j (k) = d j } (this
f n,A,d (k) = 1 if 0 ≤ k < g n and for any j ∈ A ∩ {0, . . . , n -1}, ε j (k) = d j , 0 otherwise.
We will use the following standard notations:

A -m = {j -m : j ∈ A}, e(x) = exp(2iπx), θ = min m∈Z |θ -m|, σ 0 (q) = d | q 1, ψ(x) = k≤x Λ(k) and ψ(x, χ) = k≤x χ(k)Λ(k). The symbol *
χ mod q will denote a summation over all primitive characters χ mod q. Given a Dirichlet character χ mod q and an integer k, we define the classical Gauss sums τ (k, χ) and τ (χ) to be

τ (k, χ) = q a=1 χ(a) e ak q and τ (χ) = τ (1, χ) = q a=1 χ(a) e a q .
4. Structure of the proof of Theorem 2.1

Let g ≥ 2 be a fixed integer. Let n ≥ 100 be an integer, A ⊂ {0, . . . , n -1} and d = (d j ) j∈A ∈ {0, . . . , g -1} A such that 0 ∈ A and (d 0 , g) = 1. We denote N = g n .

By using the circle method, we write

(3) 1≤k≤N Λ(k)f n,A,d (k) = 1 0 S(α)R(α)dα where S(α) = 1≤k≤N Λ(k) e(kα) and R(α) = 1≤k≤N f n,A,d (k) e(kα).
The sum R(α) depends on digital conditions and |S(α)| can be large only when α is close to a rational with small denominator i.e. α is in a major arc. In order to define the major and minor arcs, we introduce two real parameters B 1 and B such that

(4) g ≤ B 1 ≤ B < N and 4BB 1 < N
(B 1 and B will be chosen appropriately in Section 13.3 and will be small powers of N such that B 1 = o(B)). For 1 ≤ q ≤ B 1 and 1 ≤ a ≤ q such that (a, q) = 1, we denote by M(q, a) the interval α -a q ≤ B qN modulo 1 i.e.

M(q, a) = a q - B qN , a q + B qN + Z ∩ [0, 1[
and we will say that M(q, a) is a "major arc".

Lemma 4.1. If (q, a) = (q , a ) then the major arcs M(q, a) and M(q , a ) are disjoint.

Proof. Since 0 < |a q -aq | < qq , we obtain

a q - a q ≥ 1 qq and 1 - a q - a q ≥ 1 qq . Moreover, since 2BB 1 < N , B qN + B q N = B N q + q qq ≤ 2BB 1 N qq < 1
qq and it follows from the definition of the major arcs M(q, a) and M(q , a ) that they are disjoint.

We then denote by M the union of these disjoint major arcs:

M = 1≤q≤B 1 1≤a≤q (a,q)=1 M(q, a)
and by m ("minor arcs") the complement in [0, 1[ of M.

Remark 4.2. Our definition of M differs from the one given in [START_REF]Prescribing the binary digits of primes, II[END_REF] where q runs over the larger interval 1 ≤ q < B. The interest to restrict q to run only over the interval 1 ≤ q ≤ B 1 where B 1 is an additional parameter such that B 1 = o(B) will appear in Remark 9.8.

We will bound the contribution of the minor arcs in Section 8 by using a very strong estimate for the L 1 -norm of the Fourier transform of f n,A,d . The contribution of the major arcs will be studied in Sections 9 and 11. We will switch to multiplicative characters, establish an estimate for the contribution of the principal ones (in Section 11.1) and bound the contribution of the nonprincipal ones (in Section 11.2).

For the principal characters, we will directly use a result on primes in short intervals. Compared to [START_REF]Prescribing the binary digits of primes, II[END_REF], this will allow us to avoid the use of the explicit formula for ψ, a zero-free region and a zero-density estimate for ζ. We will also need strong estimates on the Fourier transform of f n,A,d .

For the contribution of the nonprincipal characters, while retaining some ideas of [START_REF]Prescribing the binary digits of primes, II[END_REF], we proceed in a different way (indeed, in [START_REF]Prescribing the binary digits of primes, II[END_REF], the fact that (4.8) can be estimated by (4.23) is not clear), see Section 11.2. We will subdivide the primitive characters χ 1 into two classes-"good" and "bad"-depending on the zero-free region of L(s, χ 1 ).

For the "good" characters (see Section 11.2.1) for which we have a good zero-free region, we will rely on zero-density estimates for Dirichlet L-functions.

For the "bad" characters (see Section 11.2.2) which form a small set of characters, we will rely on strong estimates for the Fourier transform of f n,A,d . Nevertheless, the possible characters whose conductor q 1 would be such that any prime factor of q 1 divides g would be out of control. We will show that such characters actually do not exist by using an improved zero-free region for Dirichlet L-functions to a smooth modulus. The study of the "bad" characters is the most tricky part to generalize from base 2 to a general base g. If g has several prime factors then new difficulties occur (see Remarks 5.33 and 11.12). Sections 5, 6 and 7 are dedicated to preliminary results. All the required estimates on the Fourier transform of f n,A,d will be established in Section 5. In Section 6, we will provide a precise and "ready to use" version of the improved zero-free region for L-functions to a smooth modulus which is an essential argument in the study of the "bad" characters. Indeed, this zero-free region is of independent interest and in [START_REF]Prescribing the binary digits of primes, II[END_REF], the author refers to [START_REF] Harman | Primes with preassigned digits. II[END_REF] for this result but it does not appear explicitly in [START_REF] Harman | Primes with preassigned digits. II[END_REF].

Since we seek for an explicit value of c 0 with c 0 as large as possible, we make all involved constants explicit and we try to optimize them. In particular, we avoid as far as possible any arbitrary choices of parameters which were sufficient in [START_REF]Prescribing the binary digits of primes, II[END_REF] to establish the existence of c 0 .

Many steps in the proof force us to take a small value of c 0 . The most restrictive conditions on c 0 appear in the study of the "bad" characters (see Remarks 11.12 and 11.13).

Bounds for the Fourier transform of f n,A,d and consequences

For any integer n ≥ 0, A ⊂ Z and d = (d j ) j∈A ∈ {0, . . . , g -1} A , we denote by F n,A,d the discrete Fourier transform of f n,A,d , defined for any λ ∈ R by ( 5)

F n,A,d (λ) = g -n 0≤k<g n f n,A,d (k) e (-kλ) = g -n 0≤k<g n ε j (k)=d j ∀j∈A∩{0,...,n-1} e (-kλ) .
Note that F n,A,d is periodic with period 1 and satisfies for any λ ∈ R,

(6) |F n,A,d (λ)| ≤ g -n 0≤k<g n f n,A,d (k) = g -|A∩{0,...,n-1}| .
We then denote by

F n,A,d 1 the L 1 -norm of F n,A,d : F n,A,d 1 = 1 0 |F n,A,d (λ)| dλ.
In Section 5.1, we will establish a very strong upper bound for F n,A,d 1 (see Proposition 5.11). Then, in Section 5.2, we will provide upper bounds for |F n,A,d (a/q)| on average and individually. In Section 5.3, we will use a result of Section 5.2 to estimate the number of integers with preassigned digits in arithmetic progressions and derive other estimates. Finally, in Section 5.4, we will use a result of Section 5.2 to estimate character sums over integers with preassigned digits in arithmetic progressions.

5.1.

Upper bound for F n,A,d 1 . The purpose of this section is to establish Proposition 5.11 which will be essential in the study of the minor arcs. For any integer q ≥ 1, let Φ q be the even periodic function with period 1 defined by

(7) Φ q (t) = 0≤u<q e(ut) = |sin πqt| |sin πt| if t ∈ R \ Z, q if t ∈ Z. Lemma 5.1. If n ≥ 0, A ⊂ Z, d = (d j ) j∈A ∈ {0, . . . , g -1} A then, for any λ ∈ R, |F n,A,d (λ)| = P n,A (λ)
where

(8) P n,A (λ) = g -n 0≤j≤n-1 j / ∈A Φ g λg j = g -|A∩{0,...,n-1}| 0≤j≤n-1 j / ∈A Φ g (λg j ) g ≥ 0.
Proof. For n = 0, we trivially have |F 0,A,d (λ)| = 1 = P 0,A (λ). For n ≥ 1, we denote A = A ∩ {0, . . . , n -1}, B = {0, . . . , n -1} \ A and we write

F n,A,d (λ) = g -n 0≤k<g n ε j (k)=d j ∀j∈A∩{0,...,n-1} e (-λk) = g -n (ε j ) j∈B ∈{0,...,g-1} B e   -λ   j∈B ε j g j + j∈A d j g j     = g -n j∈A e -λd j g j (ε j ) j∈B ∈{0,...,g-1} B j∈B e -λε j g j = g -n j∈A e -λd j g j j∈B 0≤ε≤g-1 e -λεg j .

It follows that

|F n,A,d (λ)| = g -n j∈B Φ g λg j = P n,A (λ)
which completes the proof.

In order to obtain a strong upper bound for F n,A,d 1 , we will first estimate (9)

0≤h<g n F n,A,d (hg -n )
which can be seen as the "discrete L 1 -norm" of F n,A,d . By Lemma 5.1, this does not depend on d and is equal to N 1 (n, A) defined by

N 1 (n, A) = 0≤h<g n P n,A (hg -n ). Lemma 5.2. If n ≥ 1, A ⊂ Z and 0 ∈ A then N 1 (n, A) = N 1 (n -1, A -1).
Proof. By division of h by g n-1 and by [START_REF] Drmota | Primes with an average sum of digits[END_REF],

N 1 (n, A) = 0≤h<g n P n,A (hg -n ) = 0≤r<g 0≤h<g n-1 P n,A ((h + rg n-1 )g -n ) = 0≤r<g 0≤h<g n-1 g -n 0≤j≤n-1 j / ∈A Φ g hg j-n + rg j-1 .
Since 0 ∈ A, j = 0 does not contribute in the product and since Φ g has period 1, it follows that

N 1 (n, A) = g 0≤h<g n-1 g -n 1≤j≤n-1 j / ∈A Φ g hg j-n = 0≤h<g n-1 g -(n-1) 0≤j≤n-2 j / ∈A-1 Φ g hg j-(n-1) = 0≤h<g n-1 P n-1,A-1 (hg -(n-1) ) = N 1 (n -1, A -1)
which completes the proof.

To study the case where 0 / ∈ A, we will use the following lemma.

Lemma 5.3. For any integers q ≥ 1, ν ≥ 1 and any t ∈ R,

Φ q ν (t) = 0≤j≤ν-1
Φ q (q j t).

Proof. For q = 1, since Φ 1 = 1, this is trivial. For q ≥ 2, this follows immediately from ( 7) by writing u in base q.

For any integer q ≥ 1, we denote by Ψ q the periodic function with period 1/q defined for any t ∈ R by [START_REF] Friedlander | The polynomial X 2 + Y 4 captures its primes[END_REF] Ψ q (t) = 1 q 0≤r<q Φ q t + r q and we also define ( 11)

M (q) = max t∈R Ψ q (t).
Note that Ψ 1 = 1 and M (1) = 1.

Lemma 5.4. If 1 ≤ m ≤ n and if A ⊂ Z are such that 0 ≤ j ≤ m -1 ⇒ j / ∈ A then N 1 (n, A) = 0≤h<g n-m Ψ g m (hg -n )P n-m,A-m (hg -(n-m) ).
In particular,

N 1 (n, A) ≤ M (g m ) N 1 (n -m, A -m).
Proof. By division of h by g n-m and by [START_REF] Drmota | Primes with an average sum of digits[END_REF],

N 1 (n, A) = 0≤h<g n P n,A (hg -n ) = 0≤r<g m 0≤h<g n-m g -n 0≤j≤n-1 j / ∈A Φ g (h + rg n-m )g j-n .
Since 0 ≤ j ≤ m -1 ⇒ j / ∈ A and since Φ g has period 1, it follows that

N 1 (n, A) = 0≤r<g m 0≤h<g n-m g -n   0≤j≤m-1 Φ g hg j-n + rg j-m       m≤j≤n-1 j / ∈A Φ g hg j-n     .
Moreover, for any 0 ≤ h < g n-m , by [START_REF] Drmota | Primes with an average sum of digits[END_REF],

m≤j≤n-1 j / ∈A Φ g hg j-n = 0≤j≤n-m-1 j / ∈A-m Φ g hg j-(n-m) = g n-m P n-m,A-m (hg -(n-m) )
and by Lemma 5.3 and the definition of Ψ g (see [START_REF] Friedlander | The polynomial X 2 + Y 4 captures its primes[END_REF]),

0≤r<g m 0≤j≤m-1 Φ g hg j-n + rg j-m = 0≤r<g m Φ g m (hg -n + rg -m ) = g m Ψ g m (hg -n ).
This gives

N 1 (n, A) = 0≤h<g n-m Ψ g m (hg -n )P n-m,A-m (hg -(n-m) )
which completes the proof.

Lemma 5.5. If 1 ≤ m ≤ n and if A ⊂ Z are such that 0 ∈ A and 1 ≤ j ≤ m -1 ⇒ j / ∈ A then N 1 (n, A) ≤ M (g m-1 ) N 1 (n -m, A -m).
Proof. By Lemma 5.2, since 0 ∈ A,

N 1 (n, A) = N 1 (n -1, A -1).
For m = 1, since M (1) = 1, this completes the proof. For m ≥ 2, since 0 ≤ j ≤ m -2 implies j / ∈ A -1, by Lemma 5.4,

N 1 (n -1, A -1) ≤ M (g m-1 ) N 1 (n -m, A -m)
which completes the proof.

Lemma 5.6.

Let n ≥ 1, 0 ≤ r ≤ n -1 and 0 ≤ j 0 < j 1 < • • • < j r ≤ n -1. If A = {j 0 , j 1 , .
. . , j r } and j r+1 = n then

N 1 (n, A) ≤ M (g j 0 ) r s=0
M (g j s+1 -js-1 ).

Proof. For 0 ≤ s ≤ r, applying Lemma 5.5 with n = n -j s , m = j s+1 -j s and A = A -j s which satisfy 1

≤ j ≤ m -1 ⇒ j / ∈ A , we obtain N 1 (n -j s , A -j s ) ≤ M (g j s+1 -js-1 ) N 1 (n -j s+1 , A -j s+1 ).
It follows that by taking s = 0, then s = 1, ... and s = r,

N 1 (n -j 0 , A -j 0 ) ≤ M (g j 1 -j 0 -1 ) N 1 (n -j 1 , A -j 1 ) ≤ M (g j 1 -j 0 -1 )M (g j 2 -j 1 -1 ) N 1 (n -j 2 , A -j 2 ) ≤ • • • ≤ M (g j 1 -j 0 -1 )M (g j 2 -j 1 -1 ) • • • M (g j r+1 -jr-1 ) N 1 (n -j r+1 , A -j r+1 ) = M (g j 1 -j 0 -1 )M (g j 2 -j 1 -1 ) • • • M (g j r+1 -jr-1 )
since j r+1 = n and N 1 (0, A -n) = 1. When j 0 = 0, since M (g j 0 ) = 1, this proves the lemma. When j 0 ≥ 1, since 0 ≤ j ≤ j 0 -1 ⇒ j / ∈ A, by applying Lemma 5.4 with m = j 0 , we obtain

N 1 (n, A) ≤ M (g j 0 ) N 1 (n -j 0 , A -j 0 ),
which completes the proof.

Lemma 5.7.

If ν ≥ 1 then M (g ν-1 ) ≤ C 1 (g) g ν
where

(12) C 1 (g) =                g if g = 2 or g = 3, g π log   2e π/ √ 2 g π   if g = 4 or g = 5, 2g π log g if g ≥ 6.
Remark 5.8. We easily see that C 1 (g) ≥ g.

Proof. If ν = 1 then M (g ν-1 ) = 1 ≤ C 1 (g)
g , thus we can assume that ν ≥ 2. By [START_REF] Mauduit | La somme des chiffres des carrés[END_REF]Lemma 2],

M (g ν-1 ) ≤ 2 π log ξg ν-1
where ξ = 2e We are now ready to give a strong upper bound for N 1 (n, A). Lemma 5.9.

If n ≥ 1, A ⊂ {0, . . . , n -1} and 0 ∈ A then, denoting ρ = |A| n , N 1 (n, A) ≤ g -|A| g C 2 (g)ρ log C 1 (g) ρ n
where

(13) C 2 (g) = 1/ log g.
Proof. Since 0 ∈ A, there exist 0 ≤ r ≤ n -1 and 0 = j 0 < j 1 < • • • < j r ≤ n -1 such that A = {j 0 , j 1 , . . . , j r }. Since j 0 = 0, we have M (g j 0 ) = 1 and thus, by Lemma 5.6, denoting

j r+1 = n, N 1 (n, A) ≤ r s=0
M (g j s+1 -js-1 ).

Moreover, by Lemma 5.7, for any 0

≤ s ≤ r, M (g j s+1 -js-1 ) ≤ C 1 (g) g (j s+1 -j s )
and it follows that

N 1 (n, A) ≤ C 1 (g) g r+1 r s=0
(j s+1 -j s ).

By using the inequality of arithmetic and geometric means, we obtain

N 1 (n, A) ≤ C 1 (g) g r+1 1 r + 1 r s=0 (j s+1 -j s ) r+1 = g -(r+1) C 1 (g) n r + 1 r+1 = g -|A| C 1 (g) ρ ρn = g -|A| g ρn log C 1 (g) ρ 1 log g ,
which completes the proof.

In order to use Lemma 5.9 to obtain a strong upper bound for F n,A,d 1 , we will need the following lemma. Lemma 5.10. If q ≥ 2 then Φ q 1 log q.

Proof. It suffices for instance to write

Φ q 1 = 1/2 -1/2 0≤u<q e(ut) dt 1/2 0 min q, 1 t dt log q. Proposition 5.11. If n ≥ 1, A ⊂ {0, . . . , n -1}, 0 ∈ A and d = (d j ) j∈A ∈ {0, . . . , g -1} A then, denoting ρ = |A| n , F n,A,d 1 (log g n ) g -|A| g C 2 (g)ρ log C 1 (g) ρ -1 n .
Proof. For any λ ∈ R, we can write

F n,A,d (λ) = g -n 0≤k<g n f n,A,d (k) e (-λk) = g -n 0≤k 1 ,k 2 <g n f n,A,d (k 1 ) e (-λk 2 ) g -n 0≤h<g n e h(k 2 -k 1 )g -n = g -n 0≤h<g n   g -n 0≤k 1 <g n f n,A,d (k 1 ) e -hk 1 g -n     0≤k 2 <g n e (hg -n -λ)k 2   = g -n 0≤h<g n F n,A,d (hg -n ) 0≤k<g n e (hg -n -λ)k , hence |F n,A,d (λ)| ≤ g -n 0≤h<g n F n,A,d (hg -n ) Φ g n (hg -n -λ).
By integrating over [0, 1], we obtain

F n,A,d 1 ≤ g -n 0≤h<g n F n,A,d (hg -n ) Φ g n 1 .
It follows from Lemma 5.1 that

F n,A,d 1 ≤ Φ g n 1 g -n 0≤h<g n P n,A (hg -n ) = Φ g n 1 g -n N 1 (n, A).
Moreover, by Lemma 5.10, Φ g n 1 log g n and by Lemma 5.9,

N 1 (n, A) ≤ g -|A| g C 2 (g)ρ log C 1 (g) ρ n
, which completes the proof. 

I k = [km, (k + 1)m[ ∩ Z ⊂ {0, . . . , n -1}.
For any real number κ ≥ 0, we have

(14) |{0 ≤ k < n m : |I k ∩ A| > (1 + κ)ρm}| < n (1 + κ)m .
Moreover, if m ≤ κn 2(1+κ) then there exist k 1 and k 2 such that 0

≤ k 1 = k 2 < n m and for i ∈ {1, 2}, |I k i ∩ A| ≤ (1 + κ)ρm.
Remark 5.13. The parameter κ will be optimally chosen in Section 12 in terms of some other parameters. The simplest choice κ = 1 would be possible but would provide smaller values of c 0 in Theorem 2.7. In [START_REF]Prescribing the binary digits of primes, II[END_REF]Lemmas 3 and 4], the author considers intervals I such that |I ∩ A| ≤ 2ρm which corresponds to κ = 1.

Proof. Since the sets I k are pairwise disjoint, we have

(1 + κ)ρm 0≤k< n/m |I k ∩A|>(1+κ)ρm 1 < 0≤k< n/m |I k ∩A|>(1+κ)ρm |I k ∩ A| ≤ |A| = ρn
which proves [START_REF] Heath-Brown | Primes represented by x 3 + 2y 3[END_REF] when ρ > 0. If ρ = 0 then A = ∅ and the inequality ( 14) is trivial. Moreover, if m ≤ κn 2(1+κ) then it follows from ( 14) that

0≤k< n/m |I k ∩A|≤(1+κ)ρm 1 > n m - n (1 + κ)m > κn (1 + κ)m -1 ≥ 1
which completes the proof.

Lemma 5.14.

If n ≥ 1, A ⊂ Z and d ∈ {0, . . . , g -1} A then, for any real number Q ≥ 1, 1≤q≤Q 1≤a≤q (a,q)=1 F n,A,d a q 2 ≤ (g n -1 + Q 2 )g -n-|A∩{0,...,n-1}| .
Proof. Since the points a/q for 1 ≤ q ≤ Q, 1 ≤ a ≤ q, (a, q) = 1 are Q -2 -well spaced and F n,A,d is the trigonometric polynomial

F n,A,d (λ) = g -n 0≤k<g n f n,A,d (k) e (-λk) ,
it follows from the large sieve inequality (see for instance [START_REF] Montgomery | The analytic principle of the large sieve[END_REF]Theorem 3]) that

1≤q≤Q 1≤a≤q (a,q)=1 F n,A,d a q 2 ≤ (g n -1 + Q 2 ) 0≤k<g n (g -n f n,A,d (k)) 2 = (g n -1 + Q 2 )g -n-|A∩{0,...,n-1}|
which completes the proof.

Lemma 5.15. Let n ≥ 1, A ⊂ {0, . . . , n -1}, d ∈ {0, . . . , g -1} A , ρ = |A| n , κ ≥ 0 and Q ∈ R. If 1 ≤ Q ≤ g κn 4(1+κ) then 1≤q≤Q (q,g)=1 1≤a≤q (a,q)=1 g |A| F n,A,d a q ≤ (1 + g) Q 2(1+κ)ρ .
Remark 5.16. This upper bound improves the one given in Lemma 3 of [START_REF]Prescribing the binary digits of primes, II[END_REF] (for g = 2) where the power of Q on the right-hand side is Cρ log 1 ρ for some constant C. Proof. For 1 ≤ Q ≤ √ g, it follows from the trivial upper bound (6) that

1≤q≤Q (q,g)=1 1≤a≤q (a,q)=1 g |A| F n,A,d a q ≤ 1≤q≤Q (q,g)=1 1≤a≤q (a,q)=1 1 ≤ Q 2 ≤ 1 + g ≤ (1 + g) Q 2(1+κ)ρ .
For √ g < Q ≤ g κn 4(1+κ) , we consider the integer m satisfying g m ≤ Q 2 < g m+1 and thus 1 ≤ m ≤ κn 2(1+κ) ≤ n 2 . By Lemma 5.12, there exist two disjoint sets I 1 and I 2 of m consecutive integers such that, for any ∈ {1, 2}, I ⊂ {0, . . . , n -1} and |I ∩ A| ≤ (1 + κ)ρm. For ∈ {1, 2}, we denote I = {j , . . . , j + m -1}, A = A -j and let d ∈ {0, . . . , g -1} A . By applying Lemma 5.1, we obtain, for any λ ∈ R,

g |A| |F n,A,d (λ)| = 0≤j≤n-1 j / ∈A Φ g (λg j ) g ≤ 2 =1 j∈I j / ∈A Φ g (λg j ) g = 2 =1 0≤j ≤m-1 j / ∈A Φ g λg j g j g = 2 =1
g |A ∩{0,...,m-1}| F m,A ,d λg j .

Hence, by the Cauchy-Schwarz inequality,

1≤q≤Q (q,g)=1 1≤a≤q (a,q)=1 g |A| F n,A,d a q ≤ 2 =1      1≤q≤Q (q,g)=1 1≤a≤q (a,q)=1 g 2|A ∩{0,...,m-1}| F m,A ,d ag j q 2      1 2 = 2 =1      1≤q≤Q (q,g)=1 1≤a ≤q (a ,q)=1 g 2|A ∩{0,...,m-1}| F m,A ,d a q 2      1 2
.

Moreover, by Lemma 5.14, for any ∈ {1, 2},

g |A ∩{0,...,m-1}| 1≤q≤Q 1≤a ≤q (a ,q)=1 F m,A ,d a q 2 ≤ (g m -1 + Q 2 )g -m < 1 + g. Since |A ∩ {0, . . . , m -1}| = |A ∩ I | ≤ (1 + κ)ρm for any ∈ {1, 2}, we obtain 1≤q≤Q (q,g)=1 1≤a≤q (a,q)=1 g |A| F n,A,d a q <(1 + g)g 1 2 (|A 1 ∩{0,...,m-1}|+|A 2 ∩{0,...,m-1}|) ≤ (1 + g)g (1+κ)ρm ≤ (1 + g)Q 2(1+κ)ρ
which completes the proof.

5.2.2.

Individual upper bound for |F n,A,d (a/q)|. The purpose of this section is to establish Lemma 5.20 below.

Lemma 5.17. For any integer q ≥ 2 and for any t ∈ R, we have Φ q (t) q ≤ q -4 t 2 .

We note that if q is odd and t = 1/2 then both sides are equal to 1/q.

Proof. Since Φ q and • are even periodic functions with period 1, we can assume that t ∈

[0, 1/2]. Let t q = √ 6 π 1 √ q 2 -1 ≤ 1 2 . For 0 ≤ t ≤ t q , by [22, Lemma 3], Φ q (t) q ≤ e -π 2 6 (q 2 -1)t 2
and since x → x 2 -1 log x is increasing on [2, +∞[, we have q 2 -1 log q ≥ 3 log 2 ≥ 24 π 2 which gives Φ q (t) q ≤ e -(4 log q)t 2 = q -4t 2 .

For t q ≤ t ≤ 1 2 , we write Φ q (t)

q ≤ 1 q sin πt ≤ 1 2qt
and we consider the function h q defined by h q (t) = 2qt e -(4 log q)t 2 -1. Clearly, h q (1/2) = 0 and

h q (t q ) = 2 √ 6 π q √ q 2 -1 e
-24 log q π 2 (q 2 -1) -1.

For q = 2, we check that h 2 (t 2 ) ≥ 0 and for q ≥ 3, we have q 2 -1 log q ≥ 8 log 3 and thus

h q (t q ) ≥ 2 √ 6 π e -24 log q π 2 (q 2 -1) -1 ≥ 2 √ 6 π e -3 log 3 π 2 -1 ≥ 0.
Moreover, h q is increasing on [0, (8 log q) -1/2 ] and decreasing on [(8 log q) -1/2 , 1/2]. It follows that, for any t q ≤ t ≤ 1 2 , we have h q (t) ≥ 0, hence Φ q (t)

q ≤ 1 2qt ≤ e -(4 log q)t 2 = q -4t 2
which completes the proof.

Lemma 5.18. Let a ≥ 2, g ≥ 2 be integers and x ∈ R. If g -a-1 ≤ x < g -a then, for any 0 ≤ ≤ a -1, we have g -a-1+ ≤ g x < g -a+ .

Proof. We first establish that (15)

g -a-1 ≤ x < g -a ⇒ g -a ≤ gx < g -a+1 .
Since • is an even periodic function with period 1, we can assume that x ∈ [0, 1/2]. If g -a-1 ≤ x = x < g -a then, since a ≥ 2 and g ≥ 2, we obtain g -a ≤ gx < g -a+1 ≤ g -1 ≤ 1/2, hence g -a ≤ gx = gx < g -a+1 , which proves [START_REF] Huxley | Large sieves and zero-density theorems[END_REF]. The lemma follows by induction.

Lemma 5.19. If g ≥ 2, m ≥ 1 and α ∈ R are such that, for any 0 ≤ j ≤ m-1, g j α ≥ g -m-1 then, for any 1 ≤ m 1 ≤ m, we have

0 ≤ j ≤ m -1 : g j α ≥ g -m 1 -1 ≥ m 1 .
Proof. We assume by way of contradiction that there exists m 1 such that 1 ≤ m 1 ≤ m and 0 ≤ j ≤ m -1 :

g j α ≥ g -m 1 -1 ≤ m 1 -1.
Since for any 0

≤ j ≤ m -1, g j α ≥ g -m-1 , it follows that 0 ≤ j ≤ m -1 : g j α ∈ [g -m-1 , g -m 1 -1 [ ≥ m -m 1 + 1. For any 1 ≤ k ≤ m, we denote E k = g -k-1 , g -k ⊂ [g -m-1 , g -1 [. Since [g -m-1 , g -m 1 -1 [ = m k=m 1 +1 E k
which is a union of m -m 1 pairwise disjoint intervals, by the pigeonhole principle, there exists

k 0 such that m 1 + 1 ≤ k 0 ≤ m and |{0 ≤ j ≤ m -1 : g j α ∈ E k 0 }| ≥ 2. As a consequence, there exist 0 ≤ j 1 < j 2 ≤ m -1 such that g j 1 α ∈ E k 0 and g j 2 α ∈ E k 0 . Since g j 1 α ∈ E k 0 and k 0 ≥ 2, by Lemma 5.18, for any j 1 ≤ j ≤ j 1 + k 0 -1, we have g j α ∈ E k 0 -j+j 1 .
Moreover, since g j 2 α ∈ E k 0 and j 2 > j 1 , it follows that j 2 ≥ j 1 + k 0 . Therefore, for any j such that

j 1 + k 0 -m 1 ≤ j ≤ j 1 + k 0 -1, we have 0 ≤ j ≤ m -1 and g j α ∈ E k 0 -j+j 1 , hence g j α ≥ g -(k 0 -j+j 1 )-1 ≥ g -m 1 -1 . It follows that |{0 ≤ j ≤ m -1 : g j α ≥ g -m 1 -1 }| ≥ m 1
, which contradicts our assumption and completes the proof of the lemma.

Lemma 5.20. 1+κ) such that (q, g) = 1 and any 1 ≤ a ≤ q such that (a, q) = 1,

Let n ≥ 1, A ⊂ {0, . . . , n -1}, d ∈ {0, . . . , g -1} A , ρ = |A| n and κ > 0. If ρ ≤ 1 2(1+κ) then for any 2 ≤ q ≤ g κn 2(
g |A| F n,A,d a q ≤ exp -K κ (g) n (log q)q 2(1+κ)ρ
where K κ (g) = 2κ(log g) 2 (1+κ)g 4 > 0. Remark 5.21. Let κ > 0 and 0 < c ≤ 1 2(1+κ) . It follows from Lemma 5.20 that there exists n 0 = n 0 (g, κ, c) such that for any n ≥ n 0 , A ⊂ {0, . . . , n -1} satisfying |A| ≤ cn and any d ∈ {0, . . . , g -1} A , we have for any 2 ≤ q ≤ n log 3 n 1 4(1+κ)c such that (q, g) = 1 and any 1 ≤ a ≤ q such that (a, q) = 1,

g |A| F n,A,d a q ≤ g -√ n .
This upper bound was obtained in Lemma 4 of [START_REF]Prescribing the binary digits of primes, II[END_REF] (for g = 2) with the smallest range 2 ≤ q < n 1 10c (note that here κ can be arbitrarily small).

Proof of Lemma 5.20. Combining Lemmas 5.1 and 5.17, we obtain

g |A| F n,A,d a q = 0≤j≤n-1 j / ∈A Φ g ag j q g ≤ exp     -(4 log g) 0≤j≤n-1 j / ∈A ag j q 2     . ( 16 
)
For any j ≥ 0, we have q ag j hence ag j q ≥ 1 q and by observing that

n -|A| = n(1 -ρ) ≥ n 2 , we obtain g |A| F n,A,d a q ≤ exp -(2 log g) n q 2 .
Thus, for q ≤ g 2 , since q 2 log q ≤ g 4 log g 2 ,

g |A| F n,A,d a q ≤ exp - 4(log g) 2 g 4 n log q ≤ exp - 2κ(log g) 2 (1 + κ)g 4 n (log q)q 2(1+κ)ρ .
For q > g 2 , we consider the integer m such that g m < q ≤ g m+1 . Since

g 2 < q ≤ g κn 2(1+κ) , we have 2 ≤ m < κn 2(1+κ) ≤ n. By denoting, for any 0 ≤ k < n m , I k = [km, (k + 1)m[ ∩ Z ⊂ {0, . . . , n -1}, we have 0≤j≤n-1 j / ∈A ag j q 2 ≥ 0≤k< n/m |I k ∩A|≤(1+κ)ρm j∈I k j / ∈A ag j q 2 = 0≤k< n/m |I k ∩A|≤(1+κ)ρm 0≤ ≤m-1 / ∈A-km (ag km )g q 2 (17) ≥ ξ 0≤k< n/m |I k ∩A|≤(1+κ)ρm 1 where ξ = min A ⊂{0,...,m-1} |A |≤(1+κ)ρm min 1≤r≤q (r,q)=1 0≤ ≤m-1 / ∈A rg q 2 .
By Lemma 5.12, since κn

(1+κ)m ≥ 2, ( 18 
)
0≤k< n/m |I k ∩A|≤(1+κ)ρm 1 > n m - n (1 + κ)m > κn (1 + κ)m -1 ≥ κn 2(1 + κ)m .
In order to give a strong lower bound for ξ, we consider A ⊂ {0, . . . , m -1} such that |A | ≤ (1 + κ)ρm and 1 ≤ r ≤ q such that (r, q) = 1. Since for any ≥ 0, rg q ≥ 1 q ≥ g -m-1 , by applying Lemma 5.19 with

m 1 = (1 + κ)ρm + 1 ≤ m 2 + 1 ≤ m, we obtain 0 ≤ ≤ m -1 : rg q ≥ g -m 1 -1 ≥ m 1 = (1 + κ)ρm + 1. Since |A | ≤ (1 + κ)ρm , there exists 0 ≤ ≤ m -1 such that / ∈ A and rg q ≥ g -m 1 -1 and thus 0≤ ≤m-1 / ∈A rg q 2 ≥ g -2m 1 -2 ≥ g -4 g -2(1+κ)ρm . It follows that (19) ξ ≥ g -4 g -2(1+κ)ρm .
By inserting ( 18) and ( 19) into ( 17), we obtain

0≤j≤n-1 j / ∈A ag j q 2 ≥ g -4 g -2(1+κ)ρm κn 2(1 + κ)m = κ 2g 4 (1 + κ) n mg 2(1+κ)ρm . Since g m < q, this gives 0≤j≤n-1 j / ∈A ag j q 2 ≥ κ log g 2(1 + κ)g 4 n (log q)q 2(1+κ)ρ .
Therefore, by [START_REF] Ingham | A Note on Fourier Transforms[END_REF],

g |A| F n,A,d a q ≤ exp - 2κ(log g) 2 (1 + κ)g 4 n (log q)q 2(1+κ)ρ
which completes the proof. n,A,d (a/q)|. In this section, we combine Lemmas 5.15 and 5.20 to obtain estimates of |F n,A,d (a/q)| on average over a/q with weight q -1 or q

Upper bound for a weighted average of |F

-1/2 . Lemma 5.22. Let n ≥ 100, A ⊂ {0, . . . , n-1}, d ∈ {0, . . . , g -1} A , κ > 0 and 0 < c < 1 2(1+κ) . If |A| ≤ cn then 2≤q≤Q (q,g)=1 1 q 1≤a≤q (a,q)=1 g |A| F n,A,d a q g,κ,c n log 3 n 1- 1 2(1+κ)c where Q = g κn 4(1+κ) .
Proof. We fix a parameter Q 0 ∈ R which will be specified later on, such that 1 < Q 0 ≤ Q and we denote by i 0 the integer such that i 0 ≥ 0 and 1+κ) and |A| ≤ cn, it follows from Lemma 5.15 that

Q 2 -(i 0 +1) < Q 0 ≤ Q 2 -i 0 . By subdividing the sum over Q 0 < q ≤ Q into dyadic ranges, we obtain Q 0 <q≤Q (q,g)=1 1 q 1≤a≤q (a,q)=1 g |A| F n,A,d a q ≤ i 0 i=0 Q 2 -(i+1) <q≤Q 2 -i (q,g)=1 1 q 1≤a≤q (a,q)=1 g |A| F n,A,d a q ≤ i 0 i=0 2 i+1 Q 1≤q≤Q 2 -i (q,g)=1 1≤a≤q (a,q)=1 g |A| F n,A,d a q . Since Q2 -i 0 ≥ Q 0 ≥ 1, Q ≤ g κn 4(
Q 0 <q≤Q (q,g)=1 1 q 1≤a≤q (a,q)=1 g |A| F n,A,d a q ≤ i 0 i=0 2 i+1 Q (1 + g) Q 2 i 2(1+κ)c (20) 
g,κ,c

2 i 0 Q 1-2(1+κ)c ≤ Q 2(1+κ)c-1 0 .
Moreover, it follows from Lemma 5.20 that

2≤q≤Q 0 (q,g)=1 1 q 1≤a≤q (a,q)=1 g |A| F n,A,d a q ≤ 2≤q≤Q 0 (q,g)=1 ϕ(q) q exp -K κ (g) n (log q)q 2(1+κ)c (21) ≤ Q 0 exp -K κ (g) n (log Q 0 )Q 2(1+κ)c 0 . We denote Q 1 = n log 3 n 1 2(1+κ)c and we choose Q 0 = min (Q 1 , Q) which satisfies 1 < Q 0 ≤ Q (since n log 3 n > 1)
. If Q 0 = Q then the sum on the left-hand side of ( 20) is 0 and otherwise, we have Q 0 = Q 1 . Thus, by [START_REF] Karatsuba | Basic analytic number theory[END_REF],

Q 0 <q≤Q (q,g)=1 1 q 1≤a≤q (a,q)=1 g |A| F n,A,d a q g,κ,c Q 2(1+κ)c-1 1 = n log 3 n 1- 1 2(1+κ)c . Moreover, by (21), since Q 0 ≤ Q 1 , we obtain 2≤q≤Q 0 (q,g)=1 1 q 1≤a≤q (a,q)=1 g |A| F n,A,d a q ≤ Q 1 exp -K κ (g) n (log Q 1 )Q 2(1+κ)c 1 = Q 1 exp -K κ (g) log 3 n log Q 1 ≤ n 1 2(1+κ)c exp -K κ (g) 2(1 + κ)c log 2 n g,κ,c n log 3 n 1- 1 2(1+κ)c which completes the proof. Lemma 5.23. Let n ≥ 100, A ⊂ {0, . . . , n-1}, d ∈ {0, . . . , g -1} A , κ > 0 and 0 < c < 1 4(1+κ) . If |A| ≤ cn then 2≤q≤Q (q,g)=1 1 √ q 1≤a≤q (a,q)=1 g |A| F n,A,d a q g,κ,c n log 3 n 1- 1 4(1+κ)c
where Q = g κn 4(1+κ) .

Proof. It suffices to slightly adapt the proof of Lemma 5.22: by replacing 1/q by 1/ √ q, the right-hand side of (20) becomes Q

2(1+κ)c-1/2 0
and the right-hand side of ( 21) becomes

Q 3/2 0 exp -K κ (g) n (log Q 0 )Q 2(1+κ)c 0 .
The same choice of Q 0 gives the result.

Integers with preassigned digits in arithmetic progressions and consequences.

The purpose of this section is to establish Lemmas 5.26 and 5.28 which will be useful for the study of the major arcs. We first provide an estimate for the number of integers with preassigned digits in arithmetic progressions.

Lemma 5.24. Let

n ≥ 100, A ⊂ {0, . . . , n-1}, d ∈ {0, . . . , g -1} A , κ > 0 and 0 < c < 1 2(1+κ) . If |A| ≤ cn then (22) 1≤q≤Q (q,g)=1 max 0≤r<q 0≤k<g n k≡r mod q f n,A,d (k) - g n-|A| q g,κ,c g n-|A| n n log 3 n 1- 1 2(1+κ)c
where Q = g κn 4(1+κ) .

Proof. It follows from ( 5) that for any integers q ≥ 1 and 0 ≤ r < q,

0≤k<g n k≡r mod q f n,A,d (k) = g n q 1≤a≤q e -ar q F n,A,d - a q .
Since the contribution of a = q is

g n q F n,A,d (-1) = 1 q 0≤k<g n f n,A,d (k) = g n-|A| q ,
we obtain ( 23)

1≤q≤Q (q,g)=1 max 0≤r<q 0≤k<g n k≡r mod q f n,A,d (k) - g n-|A| q ≤ g n-|A| 1≤q≤Q (q,g)=1 T n,A,d (q)
where T n,A,d (q) is defined by

T n,A,d (q) = 1 q 1≤a<q g |A| F n,A,d a q .
By splitting up the a's according to the value of (a, q), we obtain

1≤q≤Q (q,g)=1 T n,A,d (q) = 1≤q≤Q (q,g)=1 1 q d | q 1≤a<q (a,q)=d g |A| F n,A,d a q = 1≤d≤Q (d,g)=1 1 d 1≤q ≤Q/d (q ,g)=1 1 q 1≤a <q (a ,q )=1 g |A| F n,A,d a q log Q 2≤q ≤Q (q ,g)=1 1 q 1≤a ≤q (a ,q )=1 g |A| F n,A,d a q .
It follows from Lemma 5.22 that

1≤q≤Q (q,g)=1 T n,A,d (q) g,κ,c (log Q) n log 3 n 1- 1 2(1+κ)c g,κ,c n n log 3 n 1- 1 2(1+κ)c
. By inserting this into [START_REF]Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF] we obtain [START_REF] Mauduit | La somme des chiffres des carrés[END_REF]. Lemma 5.24 permits us to establish the following result.

Lemma 5.25. Let n ≥ 100, A ⊂ {0, . . . , n-1}, d ∈ {0, . . . , g -1} A , κ > 0 and 0 < c < 1 2(1+κ) . If |A| ≤ cn then, for any real number 1 ≤ Q ≤ g κn 4(1+κ) , 1≤q≤Q (q,g)=1 q sf 0≤k<g n f n,A,d (k) µ((k, q)) ϕ q (k,q) = g n-|A|   1 + O g,κ,c   n 2 log n n log 3 n 1- 1 2(1+κ)c     . (24)
Proof. The main term in the asymptotic formula [START_REF] Maynard | Primes and polynomials with restricted digits[END_REF] i.e. g n-|A| will be provided by the contribution of q = 1.

By using that for any squarefree integer ≥ 1,

µ( )ϕ( ) = µ( ) d | dµ d = d | dµ(d),
we obtain, for any squarefree integer q ≥ 1,

0≤k<g n f n,A,d (k) µ((k, q)) ϕ q (k,q) = 1 ϕ(q) 0≤k<g n f n,A,d (k) d | (k,q) dµ(d) (25) = 1 ϕ(q) d | q dµ(d) 0≤k<g n d | k f n,A,d (k) = 1 ϕ(q) d | q dµ(d) g n-|A| d + ∆ n,A,d (d) = g n-|A| 1 q=1 + O   1 ϕ(q) d | q d |∆ n,A,d (d)|   where ∆ n,A,d (d) is defined by ∆ n,A,d (d) = 0≤k<g n d | k f n,A,d (k) - g n-|A| d .
Moreover,

1≤q≤Q (q,g)=1 q sf 1 ϕ(q) d | q d |∆ n,A,d (d)| = 1≤d≤Q (d,g)=1 d sf d |∆ n,A,d (d)| 1≤q ≤Q/d (q ,dg)=1 q sf 1 ϕ(dq ) = 1≤d≤Q (d,g)=1 d sf d ϕ(d) |∆ n,A,d (d)| 1≤q ≤Q/d (q ,dg)=1 q sf 1 ϕ(q ) .
By using that for any x ≥ 2, k≤x 1/ϕ(k) log x (see for instance [6, p. 163]) and for any

integer k ≥ 3, k/ϕ(k) log log k (see for instance [11, Theorem 328]), since Q ≤ g n , we obtain 1≤q≤Q (q,g)=1 q sf 1 ϕ(q) d | q d |∆ n,A,d (d)| 1≤d≤Q (d,g)=1 d sf (log log g n ) |∆ n,A,d (d)| (log g n ).
Hence, by Lemma 5.24,

1≤q≤Q (q,g)=1 q sf 1 ϕ(q) d | q d |∆ n,A,d (d)| g,κ,c g n-|A| n 2 log n n log 3 n 1- 1 2(1+κ)c . It follows from (25) that 1≤q≤Q (q,g)=1 q sf 0≤k<g n f n,A,d (k) µ((k, q)) ϕ q (k,q) = g n-|A| + O g,κ,c   g n-|A| n 2 log n n log 3 n 1- 1 2(1+κ)c  
which completes the proof.

We are now ready to estimate the left-hand side of [START_REF] Maynard | Primes and polynomials with restricted digits[END_REF] where q is no longer restricted to be coprime to g.

Lemma 5.26. Let n ≥ 100, A ⊂ {0, . . . , n -1}, d ∈ {0, . . . , g -1} A such that 0 ∈ A and (d 0 , g) = 1. Let κ > 0 and 0 < c < 1 2(1+κ) . If |A| ≤ cn then, for any real number g ≤ Q ≤ g κn 4(1+κ) , 1≤q≤Q q sf 0≤k<g n f n,A,d (k) µ((k, q)) ϕ q (k,q) = (26) g n-|A| g ϕ(g)   1 + O g,κ,c   n 2 log n n log 3 n 1- 1 2(1+κ)c     .
Proof. The main term in the asymptotic formula [START_REF]Primes with restricted digits[END_REF] i.e. g n-|A| g ϕ(g) will be provided by the contribution of the q's which are squarefree divisors of g.

By splitting up the q's according to the value of (q, g), we obtain

1≤q≤Q q sf 0≤k<g n f n,A,d (k) µ((k, q)) ϕ q (k,q) = d | g d sf 1≤q ≤Q/d (q ,g)=1 q sf 0≤k<g n f n,A,d (k) µ((k, dq )) ϕ dq (k,dq )
.

Since 0 ∈ A and (d 0 , g) = 1, we have f n,A,d (k) = 0 for any k such that (k, g) > 1. Moreover, if (k, g) = 1 and d | g then, for any q ≥ 1, we have (k, dq ) = (k, q ), hence 1+κ) , it follows from Lemma 5.25 that

1≤q≤Q q sf 0≤k<g n f n,A,d (k) µ((k, q)) ϕ q (k,q) = d | g d sf 1 ϕ(d) 1≤q ≤Q/d (q ,g)=1 q sf 0≤k<g n f n,A,d (k) µ((k, q )) ϕ q (k,q ) . ( 27 
) For 1 ≤ d ≤ g, since 1 ≤ Q d ≤ g κn 4(
1≤q ≤Q/d (q ,g)=1 q sf 0≤k<g n f n,A,d (k) µ((k, q )) ϕ q (k,q ) = g n-|A|   1 + O g,κ,c   n 2 log n n log 3 n 1- 1 2(1+κ)c     .
To complete the proof of the lemma, it suffices to insert this into [START_REF] Montgomery | The analytic principle of the large sieve[END_REF] and to observe that, by multiplicativity,

d | g d sf 1 ϕ(d) = d | g µ 2 (d) ϕ(d) = p | g 1 + 1 ϕ(p) = p | g 1 - 1 p -1 = g ϕ(g) .
In order to establish Lemma 5.28, we will need the following estimate which is a corollary of Lemma 5.24.

Lemma 5.27. Let n ≥ 100, A ⊂ {0, . . . , n-1}, d ∈ {0, . . . , g -1} A , κ > 0 and 0 < c < 1 2(1+κ) . If |A| ≤ cn then (28) 1≤q≤Q (q,g)=1 max 0≤r<q 0≤k<g n k≡r mod q f n,A,d (k) g,κ,c g n-|A| n where Q = g κn 4(1+κ) .
Proof. The left-hand side of ( 28) is

≤ 1≤q≤Q (q,g)=1 g n-|A| q + 1≤q≤Q (q,g)=1 max 0≤r<q 0≤k<g n k≡r mod q f n,A,d (k) - g n-|A| q .
For the first term, since Q ≤ g n , we have

1≤q≤Q (q,g)=1 g n-|A| q ≤ g n-|A| 1≤q≤g n 1 q g g n-|A| n.
For the second term, we apply Lemma 5.24 which gives the upper bound

g,κ,c g n-|A| n n log 3 n 1- 1 2(1+κ)c ≤ g n-|A| n.
This completes the proof.

We are now ready to establish the following result.

Lemma 5.28. Let n ≥ 100, A ⊂ {0, . . . , n -1}, d ∈ {0, . . . , g -1} A such that 0 ∈ A and (d 0 , g) = 1. Let κ > 0 and 0 < c < 1 2(1+κ) . If |A| ≤ cn then, for any real number 2 ≤ Q ≤ g κn 4(1+κ) , 1≤q≤Q q sf 0≤k<g n f n,A,d (k) ϕ q (k,q) g,κ,c g n-|A| n 2 .
Proof. By splitting up the k's according to the value of (k, q), we obtain

1≤q≤Q q sf 0≤k<g n f n,A,d (k) ϕ q (k,q) = 1≤d≤Q d sf 1≤q ≤Q/d (d,q )=1, q sf 1 ϕ(q ) 0≤k<g n (k,dq )=d f n,A,d (k) (log Q) 1≤d≤Q 0≤k<g n d | k f n,A,d (k).
Since 0 ∈ A and (d 0 , g) = 1, we have f n,A,d (k) = 0 for any k such that (k, g) > 1. Thus, if (d, g) > 1 then the contribution of d in the sum above is 0. Since Q ≤ g κn 4(1+κ) , by Lemma 5.27, the contribution of the d's such that (d, g) = 1 satisfies

1≤d≤Q (d,g)=1 0≤k<g n d | k f n,A,d (k) g,κ,c g n-|A| n.
To complete the proof, it suffices to notice that log Q g n.

5.4.

Character sums over integers with preassigned digits in arithmetic progressions. The purpose of this section is to establish Lemma 5.32 which will be used for the study of the "bad" characters (see Section 11.2.2).

Lemma 5.29. If f is a complex-valued function on a subset E ⊂ R and if χ is a primitive character mod q ≥ 1 then, for any integers k 0 and q 0 such that q 0 ≥ 1 and (q, q 0 ) = 1, we have

k∈E k≡k 0 mod q 0 χ(k)f (k) ≤ 1 q 0 √ q q 0 | q 0 qq 0 a=1 (a,qq 0 )=1 k∈E e ak qq 0 f (k) . ( 29 
)
Proof. We denote by S the sum over k on the left-hand side of [START_REF] Pintz | Some new density theorems for Dirichlet L-functions[END_REF]. Since χ is a primitive character mod q, we have for any integer k,

χ(k)τ (χ) = q a=1 χ(a) e ak q
and |τ (χ)| = √ q (see [28, Theorem 9.7 p. 287]). It follows that

|S| ≤ 1 √ q q a=1 (a,q)=1 k∈E k≡k 0 mod q 0 e ak q f (k) .
By using that 1

q 0 q 0 a 0 =1 e a 0 (k-k 0 )
q 0 is equal to 1 if k ≡ k 0 mod q 0 and 0 otherwise, we obtain

|S| ≤ 1 q 0 √ q q a=1 (a,q)=1 q 0 a 0 =1 k∈E e a q + a 0 q 0 k f (k) .
By splitting up the a 0 's according to the value of (a 0 , q 0 ), this gives

|S| ≤ 1 q 0 √ q q 0 | q 0 q a=1 (a,q)=1 q 0 a 0 =1 (a 0 ,q 0 )=1 k∈E e a q + a 0 q 0 k f (k) .
Moreover, for any divisor q 0 of q 0 , since (q, q 0 ) = 1 we have (q, q 0 ) = 1 and thus, if a runs through a complete set of residues prime to q and if a 0 runs through a complete set of residues prime to q 0 then aq 0 +a 0 q runs through a complete set of residues prime to qq 0 (see for instance [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]Theorem 61]) and the lemma follows.

The following lemma will be useful to detect the integers of D(n, A, d) for which the left-most and right-most digits are already chosen (i.e. only the middle digits vary). Lemma 5.30. Let A ⊂ Z, d = (d j ) j∈A ∈ {0, . . . , g -1} A and denote for any integer t,

τ t (d) = (d j+t ) j∈A-t ∈ {0, . . . , g -1} A-t . If 0 ≤ ν ≤ m ≤ n, 0 ≤ < g n-m
and 0 ≤ h < g ν then we have the following properties.

(i

) If h ∈ D(ν, A, d) and ∈ D(n -m, A -m, τ m (d)) then, for any 0 ≤ k < g m-ν , f n,A,d ( g m + kg ν + h) = f m-ν,A-ν,τν (d) (k). (ii) If h / ∈ D(ν, A, d) or / ∈ D(n -m, A -m, τ m (d)) then, for any 0 ≤ k < g m-ν , f n,A,d ( g m + kg ν + h) = 0. Proof. If 0 ≤ k < g m-ν then, since 0 ≤ g m + kg ν + h < g n , g m + kg ν + h ∈ D(n, A, d) ⇔ ∀j ∈ A ∩ {0, . . . , n -1}, ε j ( g m + kg ν + h) = d j ⇔      ∀j ∈ A ∩ {0, . . . , ν -1}, ε j (h) = d j ∀j ∈ A ∩ {ν, . . . , m -1}, ε j-ν (k) = d j ∀j ∈ A ∩ {m, . . . , n -1}, ε j-m ( ) = d j ⇔      ∀j ∈ A ∩ {0, . . . , ν -1}, ε j (h) = d j ∀j ∈ (A -ν) ∩ {0, . . . , m -ν -1}, ε j (k) = d j+ν ∀j ∈ (A -m) ∩ {0, . . . , n -m -1}, ε j ( ) = d j+m ⇔      h ∈ D(ν, A, d) k ∈ D(m -ν, A -ν, τ ν (d)) ∈ D(n -m, A -m, τ m (d)). It follows that if h ∈ D(ν, A, d) and ∈ D(n -m, A -m, τ m (d)) then, for any 0 ≤ k < g m-ν , f n,A,d ( g m + kg ν + h) = 1 D(n,A,d) ( g m + kg ν + h) = 1 D(m-ν,A-ν,τν (d)) (k) = f m-ν,A-ν,τν (d) (k) while if h / ∈ D(ν, A, d) or / ∈ D(n -m, A -m, τ m (d)) then, for any 0 ≤ k < g m-ν , we have f n,A,d ( g m + kg ν + h) = 0, which completes the proof. Lemma 5.31. Let n ≥ 1, A ⊂ {0, . . . , n -1} and d = (d j ) j∈A ∈ {0, . . . , g -1} A . If 0 ≤ ν ≤ m ≤ n then, for any α ∈ R, 0≤ <g n-m 0≤h<g ν g m ≤k<( +1)g m k≡h mod g ν e(αk)f n,A,d (k) = g n-|A| g |A | |F m-ν,A ,d (αg ν )| (30) where A = (A -ν) ∩ {0, . . . , m -ν -1} and d = (d j+ν ) j∈A ∈ {0, . . . , g -1} A .
Proof. For 0 ≤ < g n-m and 0 ≤ h < g ν , we define

E( , h) = {k ∈ Z : g m ≤ k < ( + 1)g m , k ≡ h mod g ν }
and we denote by S( , h) the sum over k ∈ E( , h) on the left-hand side of [START_REF] Rivat | Nombres premiers de la forme n c[END_REF]. If k runs through the set {0, . . . , g m-ν -1} then k = g m + k g ν + h runs through the set E( , h) and thus andh ∈ D(ν, A, d) then, by Lemma 5.30, for any 0 ≤ k < g m-ν , we have

|S( , h)| = 0≤k <g m-ν e (αk g ν ) f n,A,d ( g m + k g ν + h) . If ∈ D(n-m, A-m, τ m (d))
f n,A,d ( g m + k g ν + h) = f m-ν,A-ν,τν (d) (k ) = f m-ν,A ,d (k )
where A,d) then, again by Lemma 5.30, for any 0 ≤ k < g m-ν , we have

A = (A -ν) ∩ {0, . . . , m -ν -1} and d = (d j+ν ) j∈A ∈ {0, . . . , g -1} A , hence |S( , h)| = g m-ν |F m-ν,A ,d (αg ν )| . If / ∈ D(n -m, A -m, τ m (d)) or h / ∈ D(ν,
f n,A,d ( g m + k g ν + h) = 0, hence |S( , h)| = 0. It follows that 0≤ <g n-m 0≤h<g ν |S( , h)| = |D(n -m, A -m, τ m (d))| |D(ν, A, d)| g m-ν |F m-ν,A ,d (αg ν )| .

By observing that

|D(n -m, A -m, τ m (d))| |D(ν, A, d)| g m-ν = g n-m-|(A-m)∩{0,...,n-m-1}| g ν-|A∩{0,...,ν-1}| g m-ν = g n-|A| g |A∩{ν,...,m-1}| = g n-|A| g |A | ,
we obtain [START_REF] Rivat | Nombres premiers de la forme n c[END_REF].

Lemma 5.32. Let n ≥ 1, A ⊂ {0, . . . , n -1}, d ∈ {0, . .

. , g -1}

A and let χ be a primitive character mod q such that q has a prime factor which does not divide g. We write q = sq where (q , g) = 1 and any prime factor of s is a prime factor of g. Let κ > 0 and

0 < c 1 < 1 4(1+κ) . If ν ≥ 0 and m ≥ 0 are integers such that s | g ν , ν + 100 ≤ m ≤ n and |A ∩ {ν, . . . , m -1}| ≤ c 1 (m -ν) then 1≤q 0 ≤Q/q (q 0 ,qg)=1 0≤ <g n-m g m ≤k<( +1)g m q 0 | k χ(k)f n,A,d (k) (31) g,κ,c 1 g n-|A| (m -ν) m -ν log 3 (m -ν) 1- 1 4(1+κ)c 1 where Q = g κ(m-ν) 4(1+κ) .
Remark 5.33. The most difficult part to generalize from base 2 to a general base g is the study of the character sums appearing in (31). In base g = 2, the first step to handle them is to write q = 2 ν q with q odd and to split the summation over k according to the values of k mod 2 ν (indeed, Bourgain proceeds in this way in [START_REF]Prescribing the binary digits of primes, II[END_REF], see (5.9)). In a general base g, we will write instead q = sq with (q , g) = 1 and s | g ν and split the summation over k according to the values of k mod g ν . This is in accordance with Maynard's arguments [START_REF]Digits of primes[END_REF]. The possible multiple factors of g will be responsible for the fact that, for some bases g, we will obtain very small values of c 0 (see Remark 11.12).

Proof. For any q 0 ≥ 1 such that (q 0 , gq) = 1 and 0 ≤ < g n-m , we denote by S(q 0 , ) the sum over k on the left-hand side of (31). Since (s, q ) = 1, there exist unique characters χ s mod s and χ mod q such that χ = χ s χ (see for instance [28, Corollary 4.6 p. 117]). Moreover, since χ is primitive mod q, χ s and χ are also primitive (see for instance [START_REF] Montgomery | Multiplicative number theory. I. Classical theory[END_REF]Lemma 9.3 

p. 283]).

Since χ s has period s and s | g ν , we can write

S(q 0 , ) = 0≤h<g ν χ s (h) g m ≤k<( +1)g m k≡h mod g ν q 0 | k χ (k)f n,A,d (k).
Since (q 0 , q ) = 1, by applying Lemma 5.29 to the inner sum, we obtain

|S(q 0 , )| ≤ 1 q 0 √ q q 0 | q 0 q q 0 a=1 (a,q q 0 )=1 0≤h<g ν g m ≤k<( +1)g m k≡h mod g ν e ak q q 0 f n,A,d (k) .
By summing over 0 ≤ < g n-m and applying Lemma 5.31, we get A ,d a q q 0 (we used that (g, q q 0 ) = 1). By interchanging the summations over q 0 and q 0 , we obtain

0≤ <g n-m |S(q 0 , )| ≤ g n-|A| q 0 √ q q 0 | q 0 q q 0 a=1 (a,q q 0 )=1 g |A | F m-ν,A ,d ag ν q q 0 where A = (A -ν) ∩ {0, . . . , m -ν -1} and d = (d j+ν ) j∈A ∈ {0, . . . , g -1} A . It follows that, for any real number Q ≤ g m-ν , 1≤q 0 ≤Q (q 0 ,qg)=1 0≤ <g n-m |S(q 0 , )| ≤ 1≤q 0 ≤Q (q 0 ,qg)=1 g n-|A| q 0 √ q q 0 | q 0 q q 0 a =1 (a ,q q 0 )=1 g |A | F m-ν,
1≤q 0 ≤Q (q 0 ,qg)=1 0≤ <g n-m |S(q 0 , )| g n-|A| log(g m-ν ) 1≤q 0 ≤Q (q 0 ,qg)=1 1 q 0 √ q q q 0 a =1 (a ,q q 0 )=1 g |A | F m-ν,A ,d a q q 0 ≤ g n-|A| log(g m-ν ) q ≤q 1 ≤q Q (q 1 ,g)=1 1 √ q 1 q 1 a =1 (a ,q 1 )=1 g |A | F m-ν,A ,d a q 1 .
Moreover, since m -ν ≥ 100, 0 < c 1 < 1 4(1+κ) and |A | ≤ c 1 (m -ν), Lemma 5.23 asserts that

2≤q 1 ≤Q (q 1 ,g)=1 1 √ q 1 q 1 a =1 (a ,q 1 )=1 g |A | F m-ν,A ,d a q 1 g,κ,c 1 m -ν log 3 (m -ν) 1- 1 4(1+κ)c 1
where Q = g κ(m-ν) 4(1+κ) . Since q has a prime factor which does not divide g, we have q ≥ 2. Thus by taking Q = Q/q ≤ g m-ν , we obtain

1≤q 0 ≤Q/q (q 0 ,qg)=1 0≤ <g n-m |S(q 0 , )| g,κ,c 1 g n-|A| log(g m-ν ) m -ν log 3 (m -ν) 1- 1 4(1+κ)c 1
which completes the proof.

6. Improved zero-free region for L-functions to a smooth modulus We will see in this section that the following result of Iwaniec (see Lemma 6.1) provides an improved zero-free region for L(s, χ mod q) when all prime factors of q are in a given finite set of primes (see Lemma 6.4). This zero-free region will play a crucial role in the study of the contribution of the "bad" characters (see Section 11.2.2). Lemma 6.1. Let q ≥ 3 be an integer. There exists at most one nonprincipal character χ mod q such that L(s, χ) has a zero ρ = β + iγ in the region

β > 1 - 1 4 • 10 4 (log d + (L log(2L )) 3/4 )
where d = p | q p and L = log (q(|γ| + 3)). If there does exist such a character χ then χ is real and ρ is unique, real and simple.

Proof. This is [START_REF] Iwaniec | On zeros of Dirichlet's L series[END_REF]Theorem 2].

Lemma 6.2.

There is an absolute constant ξ 0 > 0 such that for any real character χ mod q ≥ 2 and any real zero β of L(s, χ), we have 2 where d = p | q p. Remark 6.3. Lemma 6.2 is a more precise version of [START_REF] Harman | Primes with preassigned digits. II[END_REF]Lemma 4].

β < 1 - ξ 0 d 1/2 (log d)
Proof. Let χ be a real character mod q ≥ 2 and β be a real zero of L(s, χ). We assume without loss of generality that β > 0. Let q 1 be the conductor of χ and let χ 1 be the primitive character mod q 1 that induces χ. If ρ is a zero of L(s, χ) and ρ is not on the imaginary axis then ρ is a zero of L(s, χ 1 ) (see for instance [28, p. 334]). It follows that β is a real zero of L(s, χ 1 ). Moreover, we have q 1 ≥ 3 for if q 1 = 1 then L(s, χ 1 ) = ζ(s) has no real zero β > 0 and there is no primitive character mod 2. Since χ is real, χ 1 is also real and thus there is an absolute constant ξ > 0 such that [6, p. 95-96]). Furthermore, since χ 1 is a real primitive character mod q 1 , there exists k ≥ 1 odd and squarefree such that q 1 = k, 4k or 8k (see [19, p. 47]). Since q 1 | q, it follows that if q is odd then q 1 = k ≤ d and if q is even then q 1 ≤ 8k ≤ 8 p | q p =2 p ≤ 4d, which completes the proof.

β < 1 - ξ q 1/2 1 (log q 1 ) 2 (see

Lemma 6.4.

There is an absolute constant ξ 1 > 0 with the following property. If P is a nonempty finite set of prime numbers and d P = p∈P p then there exists T 0 = T 0 (d P ) ≥ 3 such that for any real number T ≥ T 0 , for any character χ mod q ≥ 1 such that any prime factor of q is in P and for any zero ρ = β + iγ of L(s, χ) such that |γ| ≤ T , we have

β < 1 - ξ 1 (l log l) 3/4
where l = log(qT ). One can take for instance T 0 (d P ) = max 3, exp d Proof. Let T 0 = T 0 (d P ) ≥ 3 such that d 1/2 P (log d P ) 2 ≤ (log T 0 ) 3/4 and let T ≥ T 0 . Let q ≥ 1 such that any prime factor of q is in P, let χ be a character mod q and let ρ = β + iγ be a zero of L(s, χ) such that |γ| ≤ T . We denote l = log(qT ).

If χ is the principal character mod q then the zeros of L(s, χ) which are not on the imaginary axis are zeros of ζ and thus, by using the zero-free region for ζ due to Vinogradov and Korobov, there are absolute constants ξ 2 , ξ 2 > 0 such that

β < 1 -ξ 2 (log T ) -2/3 (log log T ) -1/3 ≤ 1 -ξ 2 (l log l) -3/4 .
We assume now that χ is nonprincipal, thus q ≥ 3 and we denote d = p | q p ≤ d P . If χ is real and ρ is real then, by Lemma 6.2, there are absolute constants ξ 0 , ξ 0 > 0 such that

β < 1 - ξ 0 d 1/2 (log d) 2 ≤ 1 - ξ 0 d 1/2 P (log d P ) 2 ≤ 1 - ξ 0 (log T ) 3/4 ≤ 1 - ξ 0 (l log l) 3/4 .
If χ is not real or ρ is not real then, by Lemma 6.1,

β ≤ 1 - 1 4 • 10 4 (log d + (L log(2L )) 3/4 )
where L = log (q(|γ| + 3)). Since L log(2L ) log(qT ) log log(qT ) = l log l and (l log l) 3/4 (log T 0 ) 3/4 log d P ≥ log d, there is an absolute constant ξ 3 > 0 such that β < 1 -ξ 3 (l log l) -3/4 , which completes the proof.

7. Other preliminaries 7.1. Smooth approximation of 1 [-1,1] with small Fourier transform. We provide in this section an example of a smooth approximation w of 1 [-1,1] which has compact support and a small Fourier transform. The fact that w has compact support will allow us in Section 9 to replace the indicator function of a major arc by an appropriate dilation of w up to an error which will be captured by the minor arcs contribution (see Lemma 9.2). The fact that w is small will be essential in the treatment of the major arcs.

Lemma 7.1.

There is an explicit function w : R → R such that Proof. By using the construction of Ingham [START_REF] Ingham | A Note on Fourier Transforms[END_REF], we can find an explicit function K : R → R such that

(i) 0 ≤ w ≤ 1, (ii) w = 1 on [-1, 1], (iii) supp w ⊂ [-2, 2], (iv) w ∈ C ∞ (R),
K ≥ 0, supp K ⊂ - 1 2 , 1 2 , K ∈ C ∞ (R), R K = 1, K(y) = O e -|y| 1/2 (∀y ∈ R)
and we define w = K * 1 [- 

w(x) = |x-t|≤3/2 K(t)dt = R K(t)dt = 1,
which proves (ii). The function w satisfies (i), (iii), (iv) and (v) by elementary properties of convolutions.

Note that Lemma 7.1 also follows from a construction of Iwaniec (see [START_REF]Lectures on the Riemann zeta function[END_REF]Corollary A.5]). 

|k|≥v/t t | w (kt)| = O v 1/2 e -v 1/2 , (c) k∈Z t w (kt) = 1.
Proof. The properties (a) and (b) follow from the fact that for any y ∈ R, w(y) = O e -|y| 1/2 and for any k 0 ≥ 1,

|k|≤k 0 te -|kt| 1/2 = t + 2 1≤k≤k 0 te -(kt) 1/2 t + k 0 0 te -(xt) 1/2 dx t + +∞ 0 e -u 1/2 du 1 and |k|≥v/t te -|kt| 1/2 = 2 k≥v/t te -(kt) 1/2 te -( v/t t) 1/2 + +∞ v/t te -(xt) 1/2 dx te -v 1/2 + +∞ v/t te -(xt) 1/2 dx = te -v 1/2 + +∞ v e -u 1/2 du v 1/2 e -v 1/2 .
Moreover, by defining w 1 t (x) = 1 t w 1 t x and by using the Poisson summation formula, we obtain

k∈Z t w (kt) = k∈Z t w 1 t (k) = k∈Z tw 1 t (k) = k∈Z w 1 t k = | k t |≤2 w 1 t k = w(0) = 1
which completes the proof.

7.2. Gauss sums.

Lemma 7.4. Let χ be a Dirichlet character mod q ≥ 1. If q 1 is the conductor of χ, if χ 1 is the primitive character mod q 1 that induces χ and if q 2 = q/q 1 then (i) τ (χ) = µ(q 2 )χ 1 (q 2 )τ (χ 1 ), (ii) if (q 1 , q 2 ) = 1 then, for any integer k,

τ (k, χ) = c q 2 (k)χ 1 (q 2 )χ 1 (k)τ (χ 1 )
where

c q 2 (k) := 1≤a≤q 2 (a,q 2 )=1 e ak q 2 = µ q 2 (q 2 ,k) ϕ q 2 (q 2 ,k) ϕ(q 2 ),
(iii) for any integer k,

1 ϕ(q) τ (χ)τ (k, χ) =      q 1 ϕ(q 1 ) χ 1 (k) µ((q 2 ,k)) ϕ q 2 (q 2 ,k) if (q 1 , q 2 ) = 1 and q 2 is squarefree, 0 otherwise.
Proof. For (i), see [28, Theorem 9.10 p. 289]. To establish (ii), we note that since (q 1 , q 2 ) = 1, if u runs through a complete set of residues prime to q 1 and if v runs through a complete set of residues prime to q 2 then vq 1 + uq 2 runs through a complete set of residues prime to q 1 q 2 = q and thus

τ (k, χ) = 1≤a≤q (a,q)=1 χ 1 (a) e ak q = 1≤u≤q 1 (u,q 1 )=1 χ 1 (uq 2 ) e uk q 1 1≤v≤q 2 (v,q 2 )=1 e vk q 2 = c q 2 (k)χ 1 (q 2 )τ (k, χ 1 ).
Moreover, since χ 1 is primitive,

τ (k, χ 1 ) = χ 1 (k)τ (χ 1 )
(see [START_REF] Montgomery | Multiplicative number theory. I. Classical theory[END_REF]Corollary 9.8 p. 288]). We refer to [28, Theorem 4.1 p. 110] for the expression of c q 2 (k) in terms of µ and ϕ. The property (iii) follows from (i) and (ii) by using that |τ (χ 1 )| 2 = q 1 (see [28, Theorem 9.7 p. 287]) and that if q 2 is squarefree then µ(q 2 )µ q 2 (q 2 ,k) = µ((q 2 , k)). 7.3. Primes in short intervals. For any real numbers a ≤ t, we define

R a (t) = ψ(t) -ψ(a) -( t -a ). Lemma 7.5. If g ∈ C 1 ([a, b]) then a<k≤b g(k)Λ(k) - a<k≤b g(k) ≤ M sup a<t≤b |R a (t)| where M = |g(b)| + b a |g (t)| dt. Proof. It suffices to write by partial summation a<k≤b g(k)Λ(k) = b + a + g(t)d (ψ(t) -ψ(a)) = b + a + g(t)d ( t -a ) + b + a + g(t)dR a (t) = a<k≤b g(k) + g(b)R a (b) - b a g (t)R a (t)dt.
Lemma 7.6. If h ≥ x 0.75 e (log x) 0.8 and x ≥ x 0 ≥ 1 then

(32) ψ(x + h) -ψ(x) = h + O he -(log x) 0.1 .
Remark 7.7. By using the arguments given by Huxley in [15, Section 28], it might be possible to obtain an asymptotic formula similar to [START_REF] Wolke | Primes with preassigned digits[END_REF] with the wider range h ≥ x 7/12+ε but Lemma 7.6 will be sufficient for our purpose. 

R a (t) = ψ(t) -ψ(a) -(t -a) + O(1) = O (t -a)e -(log a) 0.1 + O(1) = O (b -a)e -(log a) 0.1 .
Moreover, for any a ≤ t ≤ t 0 , it follows from the definition of ψ that To complete the proof, it suffices to apply Lemma 7.5. Lemma 7.9.

R a (t) = O ((log t)( t -a )) = O (
If g ∈ C 1 ([a, b]) and if χ is a character mod q ≥ 1 then a<k≤b g(k)χ(k)Λ(k) ≤ M sup a<t≤b |ψ(t, χ) -ψ(a, χ)| where M = |g(b)| + b a |g (t)| dt.
Proof. It suffices to write by partial summation

a<k≤b g(k)χ(k)Λ(k) = b + a + g(t)d (ψ(t, χ) -ψ(a, χ)) = g(b) (ψ(b, χ) -ψ(a, χ)) - b a g (t) (ψ(t, χ) -ψ(a, χ)) dt.
Lemma 7.10. If χ is a primitive character mod q ≥ 1 and if 2 ≤ T ≤ x are real numbers then

ψ(x, χ) = x1 q=1 - L(ρ,χ)=0 |Im ρ|≤T x ρ -1 ρ + O x T (log xq) 2
where the sum runs over all nontrivial zeros ρ of L(s, χ) (i.e. zeros ρ of L(s, χ) with 0 < Re ρ < 1) such that |Im ρ| ≤ T .

Proof. See for instance [START_REF] Iwaniec | Analytic number theory[END_REF]Proposition 5.25].

Corollary 7.11. If χ is a primitive character mod q ≥ 1 and if 2 ≤ T ≤ a ≤ b are real numbers then

|ψ(b, χ) -ψ(a, χ) -(b -a)1 q=1 | (b -a) L(ρ,χ)=0 |γ|≤T a β-1 + b T (log bq) 2
where the sum runs over all nontrivial zeros ρ = β + iγ of L(s, χ) such that |γ| ≤ T .

Proof. This follows from Lemma 7.10 and from the inequality

L(ρ,χ)=0 |γ|≤T b ρ -a ρ ρ = L(ρ,χ)=0 |γ|≤T b a u ρ-1 du ≤ L(ρ,χ)=0 |γ|≤T b a u β-1 du ≤ (b -a) L(ρ,χ)=0 |γ|≤T a β-1 .

7.4.

A zero-density estimate and a consequence. The purpose of this section is to establish Lemma 7.13 which will be used in the study of the "good" characters (see Section 11.2.1).

If T ≥ 0 and σ ≥ 0 are real numbers then, for any character χ, we denote by N (σ, T, χ) the number of zeros of L(s, χ) in the rectangle

{β + iγ : σ ≤ β ≤ 1, |γ| ≤ T }
and for any set C of characters, we define

N C (σ, T ) = χ∈C N (σ, T, χ).
If Q ≥ 1 is a real number and if C is the set of primitive characters with conductor q ≤ Q then we will simply write

N Q (σ, T ) = 1≤q≤Q * χ mod q N (σ, T, χ). Lemma 7.12. Let ε > 0. If T ≥ 2, Q ≥ 1 and 1/2 ≤ σ ≤ 1 then N Q (σ, T ) ε (Q 5 T 3 ) (1+ε)(1-σ) .
Proof 

≤ Q such that σ > 1 -η ⇒ N C (σ, T ) = 0 and if a ∈ R is such that (Q 5 T 3 ) 1+ε ≤ a then χ∈C L(ρ,χ)=0 |γ|≤T a β-1 ε a (Q 5 T 3 ) 1+ε -η
where the inner sum runs over all nontrivial zeros ρ = β + iγ of L(s, χ) such that |γ| ≤ T .

Proof. If χ is a primitive character then the nontrivial zeros of L(s, χ) are symmetric with respect to the line Re s = 1/2 (see for instance [28, p. 333]), hence

L(ρ,χ)=0 |γ|≤T a β-1 ≤ L(ρ,χ)=0 |γ|≤T, 1/2≤β≤1 (a β-1 + a -β ) ≤ 2 L(ρ,χ)=0 |γ|≤T, 1/2≤β≤1 a β-1 so that it suffices to establish (33) χ∈C L(ρ,χ)=0 |γ|≤T, 1/2≤β≤1 a β-1 ε a (Q 5 T 3 ) 1+ε -η
.

By partial summation, we can write

χ∈C L(ρ,χ)=0 |γ|≤T, 1/2≤β≤1 a β-1 = - 1 + 1/2 - a σ-1 d σ N C (σ, T ) = a -1/2 N C (1/2, T ) + log a 1 1/2 a σ-1 N C (σ, T )dσ. Since N C (σ, T ) = 0 for any σ > 1 -η and N C (σ, T ) ≤ N Q (σ, T ) for any 1/2 ≤ σ ≤ 1 -η, we obtain (34) χ∈C L(ρ,χ)=0 |γ|≤T, 1/2≤β≤1 a β-1 ≤ a -1/2 N Q (1/2, T ) + log a 1-η 1/2 a σ-1 N Q (σ, T )dσ.
We introduce a real parameter ε 1 such that 0 < ε 1 < ε and we denote X = a(Q 5 T 3 ) -(1+ε) and X 1 = a(Q 5 T 3 ) -(1+ε 1 ) . By applying Lemma 7.12 with ε 1 in place of ε, it follows from (34) that

(35) χ∈C L(ρ,χ)=0 |γ|≤T, 1/2≤β≤1 a β-1 ε 1 X -1 2 1 + log a 1-η 1/2 X σ-1 1 dσ.
Since 1 ≤ X < X 1 < a and η ≥ 0, the right-hand side of (35) is

X -1 2 1 + log a log X 1 (X -η 1 -X -1/2 1 ) ≤ log a log X 1 X -η 1 ≤ log a log X 1 X -η . Moreover, since (Q 5 T 3 ) 1+ε ≤ a, we have X 1 ≥ a 1-1+ε 1 1+ε , it follows that χ∈C L(ρ,χ)=0 |γ|≤T, 1/2≤β≤1 a β-1 ε 1 1 1 -1+ε 1 1+ε X -η
which gives (33) by choosing for instance ε 1 = ε/2.

A sum involving ϕ on an interval.

Lemma 7.14. If I ⊂ ]0, +∞[ is a bounded interval and if q ≥ 1 is an integer then

k∈I 1 ϕ q (k,q) ≤ |I| q + 1 σ 0 (q)
where σ 0 (q) is the number of divisors of q.

Proof. It suffices to write

k∈I 1 ϕ q (k,q) = q r=1 1 ϕ q (r,q) k∈I k≡r mod q 1 ≤ |I| q + 1 q r=1 1 ϕ q (r,q)
and to observe that

q r=1 1 ϕ q (r,q) = d | q 1 ϕ q d 1≤r≤q (r,q)=d 1 = σ 0 (q).

Minor arcs contribution

We keep the notations and all the hypotheses of Section 4. We first bound |S(α)| over the minor arcs.

Lemma 8.1. If B 1 ≤ N 2/5 then (36) sup α∈m |S(α)| N √ B 1 (log N ) 3 .
Proof. Let α ∈ m. By Dirichlet's theorem on Diophantine approximation (see for instance [11, Theorem 36]) there exists an irreducible fraction a/q such that 1 ≤ q ≤ N B and

α - a q ≤ B qN ≤ 1 q 2 .
Since α ∈ m, we have q > B 1 (otherwise, α ∈ M(q, a)). It follows from a classical estimate which is essentially due to Vaughan (see [START_REF] Iwaniec | Analytic number theory[END_REF]Theorem 13.6]) that

|S(α)| q 1/2 N 1/2 + q -1/2 N + N 4/5 (log N ) 3 N √ B + N √ B 1 + N 4/5 (log N ) 3
and since B 1 ≤ B and B 1 ≤ N 2/5 , we obtain (36).

Lemma 8.2. Let 0 < c ≤ C 1 (g)e -1 where C 1 (g) is defined by [START_REF] Harman | Primes with preassigned digits[END_REF].

If B 1 ≤ N 2/5 and |A| ≤ cn then m S(α)R(α) dα N 2 √ B 1 (log N ) 3 F n,A,d 1 N g -|A| N C 2 (g)c log C 1 (g) c √ B 1 (log N ) 4
where C 2 (g) is defined by [START_REF] Harman | Primes with preassigned digits. II[END_REF].

Remark 8.3. We will choose, in Section 13.3,

B 1 ≤ N 2/5 such that N 2C 2 (g)c log C 1 (g) c (log N ) 8 = o(B 1 )
so that the contribution of the minor arcs is admissible.

Proof. Since f n,A,d (0) = f n,A,d (N ) = 0, we have, for any α ∈ R, R(α) = 1≤k≤N f n,A,d (k) e(-kα) = N F n,A,d (α). It follows that m S(α)R(α) dα ≤ N F n,A,d 1 sup α∈m |S(α)| .
By using Lemma 8.1, we obtain the first inequality. For the second inequality, we apply Proposition 5.11:

(37)

F n,A,d 1 (log g n ) g -|A| g C 2 (g)ρ log C 1 (g) ρ -1 n = g -|A| (log N )N C 2 (g)ρ log C 1 (g) ρ -1
where ρ = |A| n . Moreover, since |A| ≤ cn, we have ρ ≤ c ≤ C 1 (g)e -1 and since the function t → t log(C 1 (g)/t) is increasing on ]0, C 1 (g)e -1 ], (37) remains true with c in place of ρ. This completes the proof.

Major arcs contribution I

The results of this section together with those of Section 11 will enable us to prove in Section 13.3 that if |A| ≤ cn with c small enough then we can choose B 1 and B so that the contribution of the major arcs is 1))

M S(α)R(α)dα = 1≤q≤B 1 1≤a≤q (a,q)=1 |α-a q |≤ B qN S(α)R(α)dα = N g -|A| g ϕ(g) (1 + o(
(actually, we will obtain a quantitative version). 9.1. Smoothing. The first step in the major arcs analysis consists in replacing the indicator function of the interval α -a q ≤ B qN by the smooth function

α → w qN B α - a q
where w is a function as in Lemma 7.1.

Remark 9.1. This step will allow us to replace the Fourier transform of the indicator function of the interval [-1, 1] by w, which decays much more quickly (see Lemma 7.1 (v)). This will be essential in the treatment of the major arcs (see Remark 9.9).

Lemma 9.2.

M

S(α)R(α)dα

- 1≤q≤B 1 1≤a≤q (a,q)=1 R w qN B α - a q S(α)R(α)dα ≤ m S(α)R(α) dα (38)
Remark 9.3. Note that the right-hand side of (38) has already been studied in Section 8 to bound the contribution of the minor arcs.

Proof. Since w = 1 on [-1, 1], M S(α)R(α)dα = 1≤q≤B 1 1≤a≤q (a,q)=1 |α-a q |≤ B qN w qN B α - a q S(α)R(α)dα.
Thus, since supp w ⊂ [-2, 2] and 0 ≤ w ≤ 1, the left-hand side of (38) is

≤ 1≤q≤B 1 1≤a≤q (a,q)=1 B qN <|α-a q |≤ 2B qN S(α)R(α) dα = 1≤q≤B 1 1≤a≤q (a,q)=1
M 2 (q,a)\M(q,a)

S(α)R(α) dα

where, for 1 ≤ q ≤ B 1 and 1 ≤ a ≤ q such that (a, q) = 1, M 2 (q, a) is the interval α -a q ≤ 2B qN modulo 1 i.e.

(39)

M 2 (q, a) = a q - 2B qN , a q + 2B qN + Z ∩ [0, 1[.
Since 4BB 1 < N , by the same argument as in the proof of Lemma 4.1, we show that if (q, a) = (q , a ) then M 2 (q, a) and M 2 (q , a ) are disjoint. It follows that, for any 1 ≤ q ≤ B 1 and 1 ≤ a ≤ q such that (a, q) = 1,

M 2 (q, a) \ M(q, a) ⊂ m.
Thus 1≤q≤B 1 1≤a≤q (a,q)=1 M 2 (q,a)\M(q,a)

S(α)R(α) dα ≤ m S(α)R(α) dα

which completes the proof. 9.2. Switching to multiplicative characters. We switch now to multiplicative characters. As we will see in Lemma 9.4, we are led to study

I = 1≤q≤B 1 χ mod q (q 1 ,q 2 )=1, q 2 sf q 1 ϕ(q 1 ) 1≤k 1 ,k 2 ≤N B qN w (k 2 -k 1 ) B qN χ(k 1 )Λ(k 1 ) (40) × f n,A,d (k 2 )χ 1 (k 2 ) µ((q 2 , k 2 )) ϕ q 2 (q 2 ,k 2 )
where, for any character χ mod q, q 1 is the conductor of χ, χ 1 is the primitive character mod q 1 that induces χ and q 2 = q/q 1 and the summation over χ mod q is restricted to (q 1 , q 2 ) = 1 and q 2 squarefree (sf).

Lemma 9.4. Proof. To begin, we focus on the integral

1≤q≤B 1 1≤a≤q (a,q)=1 R w qN B α - a q S(α)R(α)dα = I + O N (log N ) 2 F n,A,d 1 (41) Remark 9.5. The term in O(•) is N 2 √ B 1 (log N ) 3 F n,A,
(42) R w qN B α - a q S(α)R(α)dα
for fixed 1 ≤ q ≤ B 1 and 1 ≤ a ≤ q such that (a, q) = 1. For any α ∈ R, we recall that

R(α) = 1≤k≤N f n,A,d (k) e(-kα) = N F n,A,d (α)
and

S(α) = 1 ϕ(q) χ mod q τ (χ)χ(a)   1≤k≤N χ(k)Λ(k) e(kβ)   + O((log N ) 2 )
where α = a q + β (see [6, p. 147]) and τ (χ) is a Gauss sum defined in Section 7.2. By using also that supp w ⊂ [-2, 2] and 0 ≤ w ≤ 1, we obtain that the integral (42) is equal to

1 ϕ(q) χ mod q τ (χ)χ(a) R w qN B β   1≤k 1 ≤N χ(k 1 )Λ(k 1 ) e(k 1 β)   ×   1≤k 2 ≤N f n,A,d (k 2 ) e -k 2 a q e(-k 2 β)   dβ + O N (log N ) 2 |α-a q |≤ 2B qN |F n,A,d (α)| dα = 1 ϕ(q) χ mod q τ (χ)χ(a) 1≤k 1 ,k 2 ≤N χ(k 1 )Λ(k 1 )f n,A,d (k 2 ) e -k 2 a q B qN w (k 2 -k 1 ) B qN + O N (log N ) 2 M 2 (q,a) |F n,A,d (α)| dα
where M 2 (q, a) is defined by (39). Then, we sum over 1 ≤ q ≤ B 1 and 1 ≤ a ≤ q such that (a, q) = 1. For the term with the sum over χ, we use that by Lemma 7.4, for any character χ mod q and for any integer k ≥ 1,

τ (χ) ϕ(q) 1≤a≤q (a,q)=1 χ(a) e -ka q = τ (χ) ϕ(q) τ (k, χ) =      q 1 ϕ(q 1 ) χ 1 (k) µ((q 2 ,k)) ϕ q 2 (q 2 ,k) if (q 1 , q 2 ) = 1 and q 2 sf, 0 otherwise,
where q 1 is the conductor of χ, χ 1 is the primitive character mod q 1 that induces χ and q 2 = q/q 1 . For the term in O(•), we use that if (q, a) = (q , a ) then M 2 (q, a) and M 2 (q , a ) are disjoint (see the proof of Lemma 9.2). This gives (41) and completes the proof. 9.3. Localization. In I, the variables k 1 and k 2 run independently over the set {1, . . . , N }. Nevertheless, the rapid decay of w (see Lemma 7.1 (v)) and the factor w (k 2 -k 1 ) B qN suggest that the k 1 and k 2 which are "too far apart" should have a negligible contribution. We will establish this precisely in the following lemma.

We introduce a parameter v N which will be chosen later and will depend only on N such that

(43) (log N ) 2 ≤ v N ≤ (log N ) υ and 4B 1 v N ≤ B
where υ ≥ 2 is an absolute constant. We define for any integer k,

I q (k) = k - qN B v N , k + qN B v N .
We denote by I 1 the quantity I where the summation over k 1 is restricted to I q (k 2 )∩{1, . . . , N }:

I 1 = 1≤q≤B 1 χ mod q (q 1 ,q 2 )=1, q 2 sf q 1 ϕ(q 1 ) 1≤k 2 ≤N f n,A,d (k 2 )χ 1 (k 2 ) µ((q 2 , k 2 )) ϕ q 2 (q 2 ,k 2 ) × 1≤k 1 ≤N k 1 ∈Iq(k 2 ) B qN w (k 2 -k 1 ) B qN χ(k 1 )Λ(k 1 ).
Lemma 9.6.

(44)

I = I 1 + O N g -|A| (log N )v 1/2 N e -v 1/2 N B 2 1
Remark 9.7. We will choose, in Section 12, v N = (log N ) 2 so that the error term in (44

) is N g -|A| B 2 1
N (log N ) 2 and thus admissible (since we will assume that B 1 ≤ N 2/5 , see Remark 8.3). Remark 9.8. In order to obtain strong enough estimates for the contribution of the major arcs, we will need |I q (k 2 )| to be small enough compared to N so that k 1 runs only over a short interval around k

2 . Since |I q (k 2 )| = 2 qN B v N ≤ 2 B 1 N B v N ,
we will need in particular to choose the parameters B 1 and B so that B 1 = o(B). In [START_REF]Prescribing the binary digits of primes, II[END_REF], the parameter B 1 is not introduced. With our notations, this would correspond to B 1 = B which would not permit us to restrict the summation over k 1 for the largest values of q. Remark 9.9. The rapid decay of w (see Lemma 7.1 (v)) is essential. Indeed, if we had simply chosen w such that w(y) = O |y| -C (y → ∞) with C > 1 an absolute constant then we would have obtained

v 1-C N in place of v 1/2 N e -v 1/2
N in (44). In order to ensure that the error term in (44) is admissible, v N should then be at least a small power of N , which would make many arguments below fail (see for instance the proof of Lemma 11.2 where we use that v N ≤ (log N ) υ or the formula for I N P in Lemma 11. [START_REF] Huxley | Large sieves and zero-density theorems[END_REF] where we easily see that some error terms would no longer be admissible).

Proof. It follows from the definition of I and I 1 that

|I -I 1 | ≤ 1≤q≤B 1 χ mod q (q 1 ,q 2 )=1, q 2 sf q 1 ϕ(q 1 ) 1≤k 2 ≤N f n,A,d (k 2 ) 1≤k 1 ≤N k 1 / ∈Iq(k 2 ) B qN w (k 2 -k 1 ) B qN Λ(k 1 ).
Moreover, for any 1 ≤ q ≤ B 1 and 1 ≤ k 2 ≤ N , by Lemma 7.3,

k 1 / ∈Iq(k 2 ) B qN w (k 2 -k 1 ) B qN ≤ |k|≥ qN B v N B qN w k B qN v 1/2 N e -v 1/2 N and since 1≤k 2 ≤N f n,A,d (k 2 ) = N g -|A| and 1≤q≤B 1 χ mod q q 1 ϕ(q 1 ) = 1≤q≤B 1 q 1 | q q 1 ϕ(q 1 ) * χ 1 mod q 1 1 ≤ 1≤q≤B 1 q 1 | q q 1 ≤ B 2 1 ,
we obtain

|I -I 1 | N g -|A| (log N )v 1/2 N e -v 1/2 N B 2 1
which completes the proof. 9.4. Other technical preparations. For technical reasons, we replace in I 1 the factor χ(k 1 ) by χ 1 (k 1 ) and we show that this introduces a small error: denoting

I 2 = 1≤q≤B 1 χ mod q (q 1 ,q 2 )=1, q 2 sf q 1 ϕ(q 1 ) 1≤k 2 ≤N f n,A,d (k 2 )χ 1 (k 2 ) µ((q 2 , k 2 )) ϕ q 2 (q 2 ,k 2 ) (45) × 1≤k 1 ≤N k 1 ∈Iq(k 2 ) B qN w (k 2 -k 1 ) B qN χ 1 (k 1 )Λ(k 1 ),
we have the following result.

Lemma 9.10.

I 1 = I 2 + O N g -|A| BB 1 N (log N ) 2 .
Proof. For any character χ mod q induced by χ 1 mod q 1 , we have χ(k 1 ) = 0 if (k 1 , q) > 1 and

χ(k 1 ) = χ 1 (k 1 ) if (k 1 , q) = 1.
It follows that in the difference between I 2 and I 1 , the inner sum over k 1 is

1≤k 1 ≤N k 1 ∈Iq(k 2 ) (k 1 ,q)>1 B qN w (k 2 -k 1 ) B qN χ 1 (k 1 )Λ(k 1 ) = O      B qN 1≤k 1 ≤N (k 1 ,q)>1, (k 1 ,q 1 )=1 Λ(k 1 )      = O      B qN p ν ≤N p | q,p q 1 log p      = O      B qN p ν ≤N p | q 2 log p      = O      B qN p≤N p | q 2 log N      = O B log N q 1 N
(we used that w is bounded and q 2 = q/q 1 ). Moreover,

1≤q≤B 1 χ mod q 1 ϕ(q 1 ) = 1≤q≤B 1 q 1 | q 1 ϕ(q 1 ) * χ 1 mod q 1 1 ≤ 1≤q≤B 1 σ 0 (q) B 1 log B 1 ,
and thus

|I 1 -I 2 | 1≤q≤B 1 χ mod q (q 1 ,q 2 )=1, q 2 sf q 1 ϕ(q 1 ) N g -|A| B log N q 1 N N g -|A| B N (log N )B 1 log B 1
which completes the proof.

In order to estimate I 2 , we write (46) I 2 = I P + I N P where I P (resp. I N P ) is the contribution of the principal (resp. nonprincipal) characters in I 2 . If χ 0 is the principal character mod q then the conductor of χ 0 is q 1 = 1 and the primitive character mod q 1 which induces χ 0 is χ 1 = 1. It follows that the contribution of the principal characters in I 2 is

I P = 1≤q≤B 1 q sf 1≤k 2 ≤N f n,A,d (k 2 ) µ((q, k 2 )) ϕ q (q,k 2 ) 1≤k 1 ≤N k 1 ∈Iq(k 2 ) B qN w (k 2 -k 1 ) B qN Λ(k 1 ). ( 47 
)
In order to estimate I P , we will need the variable k 2 to be not "too small" and not "too large". The following lemma will allow us to reduce the study of I P to the one of I P 1 defined by

I P 1 = 1≤q≤B 1 q sf K 2 (q)≤k 2 ≤N -K 2 (q) f n,A,d (k 2 ) µ((q, k 2 )) ϕ q (q,k 2 ) 1≤k 1 ≤N k 1 ∈Iq(k 2 ) B qN w (k 2 -k 1 ) B qN Λ(k 1 ) (48) where (49) K 2 (q) = 2 qN B v N .
Lemma 9.11.

I P = I P 1 + O N B 1 B v N (log N ) 2
Remark 9.12. We will choose later B < N so that the error term above is admissible i.e.

g |A| B 1 v N (log N ) 2 = o(B).
Proof. By denoting J 1 (q) = [1, K 2 (q)[ and J 2 (q) = ]N -K 2 (q), N ], we have

|I P -I P 1 | ≤ 1≤q≤B 1 q sf k 2 ∈J 1 (q)∪J 2 (q) 1 ϕ q (q,k 2 ) 1≤k 1 ≤N k 1 ∈Iq(k 2 ) B qN w (k 2 -k 1 ) B qN Λ(k 1 ). By Lemma 7.3, the inner sum over k 1 is ≤ (log N ) k∈Z B qN w k B qN
log N . Moreover, by Lemma 7.14, for any q ≥ 1,

k 2 ∈J 1 (q)∪J 2 (q) 1 ϕ q (q,k 2 ) ≤ 2 K 2 (q) q + 1 σ 0 (q) N B v N σ 0 (q).
Since q≤B 1 σ 0 (q) B 1 log B 1 , we obtain

|I P -I P 1 | N B 1 B v N (log N ) 2
which completes the proof.

It remains to study I P 1 and I N P . We will provide estimates of I P 1 and I N P in Section 11.

Conclusion on the minor arcs and the beginning of the study of the major arcs

We summarize the results of Sections 8 and 9 in the following lemma.

Lemma 10.1. Let 0 < c ≤ C 1 (g)e -1 where C 1 (g) is defined by [START_REF] Harman | Primes with preassigned digits[END_REF].

If B 1 ≤ N 2/5 , v N = (log N ) 2 and |A| ≤ cn then 0≤k<g n Λ(k)f n,A,d (k) = I P 1 + I N P + O     N g -|A| N C 2 (g)c log C 1 (g) c √ B 1 (log N ) 4     (50) + O N g -|A| BB 1 N (log N ) 2 + O N g -|A| N c B 1 B (log N ) 4
where I P 1 is defined by (48), I N P is the contribution of the nonprincipal characters in (45) and C 2 (g) is defined by [START_REF] Harman | Primes with preassigned digits. II[END_REF].

Proof. We saw in Section 4 that

0≤k<g n Λ(k)f n,A,d (k) = 1≤k≤N Λ(k)f n,A,d (k) = M S(α)R(α)dα + m S(α)R(α)dα
where S(α), R(α), M and m are defined as in Section 4. Since 0

< c ≤ C 1 (g)e -1 , B 1 ≤ N 2/5 and |A| ≤ cn, Lemma 8.2 asserts that m S(α)R(α) dα N 2 √ B 1 (log N ) 3 F n,A,d 1 N g -|A| N C 2 (g)c log C 1 (g) c √ B 1 (log N ) 4
and by Lemmas 9.2 and 9.4,

M S(α)R(α)dα = I + O N (log N ) 2 F n,A,d 1 + O m S(α)R(α) dα
where I is defined by (40

). Since N (log N ) 2 ≤ N 2 √ B 1 (log N ) 3 , it follows that 0≤k<g n Λ(k)f n,A,d (k) = I + O     N g -|A| N C 2 (g)c log C 1 (g) c √ B 1 (log N ) 4     .
By Lemmas 9.6 and 9.10, since v N = (log N ) 2 and B 1 ≤ B, we obtain

I = I 2 + O N g -|A| BB 1 N (log N ) 2
where I 2 is defined by (45). Moreover, by (46),

I 2 = I P + I N P
and by Lemma 9.11, since g |A| ≤ N c ,

I P = I P 1 + O N B 1 B (log N ) 4 = I P 1 + O N g -|A| N c B 1 B (log N ) 4
where I P 1 is defined by (48), which completes the proof.

Major arcs contribution II

11.1. Estimate of I P 1 . We first focus on the inner sum over k 1 in I P 1 defined by (48). We recall that K 2 (q) = 2 qN B v N (see (49)). Lemma 11.1. There exists an absolute constant N 0 such that if N ≥ N 0 and B ≤ N 0.2 then for any 1 ≤ q ≤ B 1 and

K 2 (q) ≤ k 2 ≤ N -K 2 (q), 1≤k 1 ≤N k 1 ∈Iq(k 2 ) B qN w (k 2 -k 1 ) B qN Λ(k 1 ) = 1 + O v 2 N e -c 1 (log N ) 0.1
where c 1 > 0 is an absolute constant.

Proof. We denote by Σ(q, k 2 ) the sum on the left-hand side and we put a 8 , by Lemma 7.8, there exists an absolute constant a 0 ≥ e such that if a ≥ a 0 then

= k 2 -qN B v N and b = k 2 + qN B v N . Since I q (k 2 ) = ]a, b] ⊂ qN B v N , N -qN B v N ⊂ ]0, N ], Σ(q, k 2 ) = a<k 1 ≤b B qN w (k 2 -k 1 ) B qN Λ(k 1 ). Since b -a = 2 qN B v N ≥ N B ≥ N 0.8 ≥ a 0.
Σ(q, k 2 ) = a<k 1 ≤b B qN w (k 2 -k 1 ) B qN + O M (b -a)e -(log a) 0.1
where

M ≤ B qN w ∞ + b a B qN 2 w ∞ dt B qN v N . By using that a ≥ qN B v N ≥ N B ≥ N 0.8 , there exists N 0 such that if N ≥ N 0 then (51) Σ(q, k 2 ) = a<k 1 ≤b B qN w (k 2 -k 1 ) B qN + O v 2 N e -c 1 (log N ) 0.1
where c 1 > 0 is an absolute constant.

Moreover, since Z\ ]a, b] ⊂ {k 1 : |k 2 -k 1 | ≥ qN B v N }, k 1 ∈Z B qN w (k 2 -k 1 ) B qN - a<k 1 ≤b B qN w (k 2 -k 1 ) B qN ≤ |k|≥ qN B v N B qN w k B qN
and by using Lemma 7.3 and the lower bound v N ≥ (log N ) 2 , we obtain 1 -

a<k 1 ≤b B qN w (k 2 -k 1 ) B qN v 1/2 N e -v 1/2 N v 2 N e -c 1 (log N ) 0.1 .
To complete the proof, it suffices to insert this into (51).

We are now able to study I P 1 .

Lemma 11.2. Let κ > 0 and 0 < c < 1 2(1+κ) . There exists an absolute constant N 0 such that if N ≥ N 0 , B 1 ≤ N κ 4(1+κ) , B ≤ N 0.2 and |A| ≤ cn then

I P 1 = N g -|A| g ϕ(g)   1 + O g,υ,κ,c   n 2 log n n log 3 n 1- 1 2(1+κ)c     + O N B 1 B v N log N .
Proof. By Lemma 11.1, there exists an absolute constant N 0 such that if N ≥ N 0 and B ≤ N 0.2 then, for any 1 ≤ q ≤ B 1 and

K 2 (q) ≤ k 2 ≤ N -K 2 (q), 1≤k 1 ≤N k 1 ∈Iq(k 2 ) B qN w (k 2 -k 1 ) B qN Λ(k 1 ) = 1 + O v 2 N e -c 1 (log N ) 0.1 .

Thus, by denoting

Σ 1 = 1≤q≤B 1 q sf K 2 (q)≤k 2 ≤N -K 2 (q) f n,A,d (k 2 ) µ((q, k 2 )) ϕ q (q,k 2 )
and

Σ 2 = 1≤q≤B 1 q sf K 2 (q)≤k 2 ≤N -K 2 (q) f n,A,d (k 2 ) ϕ q (q,k 2 )
, and by using (48), we obtain (52)

I P 1 = Σ 1 + O v 2 N e -c 1 (log N ) 0.1 Σ 2 .
We first study Σ 1 . By denoting J 1 (q) = [1, K 2 (q)[ and J 2 (q) = ]N -K 2 (q), N ], we obtain as in the proof of Lemma 9.11,

1≤q≤B 1 q sf k 2 ∈J 1 (q)∪J 2 (q) 1 ϕ q (q,k 2 ) N B 1 B v N log N.
Moreover, by Lemma 5.26, since |A| ≤ cn and

B 1 ≤ N κ 4(1+κ) , 1≤q≤B 1 q sf 1≤k≤N f n,A,d (k) µ((q, k)) ϕ q (q,k) = N g -|A| g ϕ(g)   1 + O g,κ,c   n 2 log n n log 3 n 1- 1 2(1+κ)c     . It follows that Σ 1 = N g -|A| g ϕ(g)   1 + O g,κ,c   n 2 log n n log 3 n 1- 1 2(1+κ)c     + O N B 1 B v N log N .
It remains to bound Σ 2 . By Lemma 5.28, we obtain

Σ 2 ≤ 1≤q≤B 1 q sf 0≤k<g n f n,A,d (k) ϕ q (k,q) g,κ,c N g -|A| n 2 . Thus, since v N ≤ (log N ) υ and N = g n , v 2 N e -c 1 (log N ) 0.1 Σ 2 g,υ n 2υ e -c 2 n 0.1 Σ 2 g,κ,c N g -|A| n 2+2υ e -c 2 n 0.1 υ,κ,c N g -|A| n 2 log n n log 3 n 1- 1 2(1+κ)c
where c 2 > 0 is an absolute constant. By inserting this into (52), we obtain

I P 1 = N g -|A| g ϕ(g)   1 + O g,υ,κ,c   n 2 log n n log 3 n 1- 1 2(1+κ)c     + O N B 1 B v N log N
which completes the proof.

11.2. Upper bound for I N P . In this section, we study I N P which is the contribution of the nonprincipal characters in I 2 defined by (45). In [START_REF]Prescribing the binary digits of primes, II[END_REF], the fact that (4.8) can be estimated by (4.23) is not clear. While retaining some ideas of [START_REF]Prescribing the binary digits of primes, II[END_REF], we will thus proceed in a different way.

A character χ mod q is nonprincipal if and only if its conductor q 1 is strictly greater than 1 and thus, by splitting up the characters according to their conductor, we obtain that the contribution of the nonprincipal characters in I 2 is

I N P = 1≤q≤B 1 q 1 | q q 1 >1 (q 1 ,q/q 1 )=1, q/q 1 sf * χ 1 mod q 1 q 1 ϕ(q 1 ) 1≤k 2 ≤N f n,A,d (k 2 )χ 1 (k 2 ) µ((q/q 1 , k 2 )) ϕ q/q 1 (q/q 1 ,k 2 ) (53) 
× 1≤k 1 ≤N k 1 ∈Iq(k 2 ) B qN w (k 2 -k 1 ) B qN χ 1 (k 1 )Λ(k 1 ) = 1<q 1 ≤B 1 * χ 1 mod q 1 q 1 ϕ(q 1 ) 1≤q 2 ≤B 1 /q 1 (q 1 ,q 2 )=1, q 2 sf 1≤k 2 ≤N f n,A,d (k 2 )χ 1 (k 2 ) µ((q 2 , k 2 )) ϕ q 2 (q 2 ,k 2 ) × 1≤k 1 ≤N k 1 ∈Iq 1 q 2 (k 2 ) B q 1 q 2 N w (k 2 -k 1 ) B q 1 q 2 N χ 1 (k 1 )Λ(k 1 ).
We introduce two real parameters T ≥ 2 and 0 < η * ≤ 1/2 and we denote, for any character χ, η(χ, T ) = min

L(ρ,χ)=0 |γ|≤T (1 -β)
where the minimum is taken over all zeros ρ = β + iγ of L(s, χ) such that 0 ≤ β ≤ 1 and |γ| ≤ T . In I N P , we subdivide the primitive characters χ 1 into two classes "good" and "bad":

G(T, η * ) = {χ 1 mod q 1 primitive : 1 < q 1 ≤ B 1 and η(χ 1 , T ) ≥ η * }, B(T, η * ) = {χ 1 mod q 1 primitive : 1 < q 1 ≤ B 1 and η(χ 1 , T ) < η * }.
11.2.1. "Good" characters. In I N P , the contribution of the characters χ 1 in G(T, η * ) is

I G = χ 1 mod q 1 ∈G(T,η * ) q 1 ϕ(q 1 ) 1≤q 2 ≤B 1 /q 1 (q 1 ,q 2 )=1, q 2 sf 1≤k 2 ≤N f n,A,d (k 2 )χ 1 (k 2 ) µ((q 2 , k 2 )) ϕ q 2 (q 2 ,k 2 ) (54) 
× 1≤k 1 ≤N k 1 ∈Iq 1 q 2 (k 2 ) B q 1 q 2 N w (k 2 -k 1 ) B q 1 q 2 N χ 1 (k 1 )Λ(k 1 ).
In order to estimate I G , we will need the variable k 2 to be not "too small". The following lemma will allow us to reduce the study of I G to the one of I G 1 defined by

I G 1 = χ 1 mod q 1 ∈G(T,η * ) q 1 ϕ(q 1 ) 1≤q 2 ≤B 1 /q 1 (q 1 ,q 2 )=1, q 2 sf K 2 (q 1 q 2 )≤k 2 ≤N -K 2 (q 1 q 2 ) f n,A,d (k 2 )χ 1 (k 2 ) µ((q 2 , k 2 )) ϕ q 2 (q 2 ,k 2 ) (55) 
× 1≤k 1 ≤N k 1 ∈Iq 1 q 2 (k 2 ) B q 1 q 2 N w (k 2 -k 1 ) B q 1 q 2 N χ 1 (k 1 )Λ(k 1 )
where K 2 (q) = 2 qN B v N is as in Section 11.1. Lemma 11.3.

I G = I G 1 + O N B 3 1 B v N (log N ) 2
Remark 11.4. In Section 13.3, we will choose B < N so that the error term above is admissible i.e.

g |A| B 3 1 v N (log N ) 2 = o(B). Proof. By denoting J 1 (q) = [1, K 2 (q)[ and J 2 (q) = ]N -K 2 (q), N ], we have |I G -I G 1 | ≤ 1<q 1 ≤B 1 * χ 1 mod q 1 q 1 ϕ(q 1 ) 1≤q 2 ≤B 1 /q 1 (q 1 ,q 2 )=1, q 2 sf k 2 ∈J 1 (q 1 q 2 )∪J 2 (q 1 q 2 ) 1 ϕ q 2 (q 2 ,k 2 ) × 1≤k 1 ≤N k 1 ∈Iq 1 q 2 (k 2 ) B q 1 q 2 N w (k 2 -k 1 ) B q 1 q 2 N Λ(k 1 ). By Lemma 7.3, the inner sum over k 1 is ≤ (log N ) k∈Z B q 1 q 2 N w k B q 1 q 2 N
log N . Moreover, by Lemma 7.14, for any q 1 , q 2 ≥ 1 such that q 1 q 2 ≤ B 1 ,

k 2 ∈J 1 (q 1 q 2 )∪J 2 (q 1 q 2 ) 1 ϕ q 2 (q 2 ,k 2 ) ≤ 2 K 2 (q 1 q 2 ) q 2 + 1 σ 0 (q 2 ) q 1 N B v N σ 0 (q 2 ).
Since for any q 1 ≤ B 1 , q 2 ≤B 1 /q 1 σ 0 (q 2 )

B 1 q 1 1 + log B 1 q 1 B 1 q 1 log N , it follows that |I G -I G 1 | 1<q 1 ≤B 1 * χ 1 mod q 1 q 1 ϕ(q 1 ) q 1 N B v N B 1 q 1 (log N ) 2 ≤ N B 1 B v N (log N ) 2 1<q 1 ≤B 1 q 1 N B 3 1 B v N (log N ) 2 .
In order to give a strong upper bound for |I G 1 |, we define

U (T, η * ) = χ 1 mod q 1 ∈G(T,η * ) q 1 ϕ(q 1 ) max 1≤q 2 ≤B 1 /q 1 K 2 (q 1 q 2 )≤k 2 ≤N -K 2 (q 1 q 2 ) 1≤k 1 ≤N k 1 ∈Iq 1 q 2 (k 2 ) B q 1 q 2 N w (k 2 -k 1 ) B q 1 q 2 N χ 1 (k 1 )Λ(k 1 )
and we notice that

(56) |I G 1 | ≤     1≤q 2 ≤B 1 q 2 sf 1≤k 2 ≤N f n,A,d (k 2 ) ϕ q 2 (q 2 ,k 2 )     U (T, η * ).
Remark 11.5. Under the hypotheses of Lemma 5.28 with Q = B 1 , the double sum over q 2 and k 2 in (56

) is g,κ,c N g -|A| (log N ) 2 .
We first focus on the inner sum over k 1 in U (T, η * ).

Lemma 11.6.

If T ≤ N B v N then for any primitive character χ 1 mod q 1 such that 1 < q 1 ≤ B 1 and any 1 ≤ q 2 ≤ B 1 /q 1 , K 2 (q 1 q 2 ) ≤ k 2 ≤ N -K 2 (q 1 q 2 ), we have 1≤k 1 ≤N k 1 ∈Iq 1 q 2 (k 2 ) B q 1 q 2 N w (k 2 -k 1 ) B q 1 q 2 N χ 1 (k 1 )Λ(k 1 ) (57) v 2 N L(ρ,χ 1 )=0 |γ|≤T N B v N β-1 + B q 1 q 2 T (log N ) 2 v N
where the sum on the right-hand side runs over all nontrivial zeros ρ = β + iγ of L(s, χ 1 ) such that |γ| ≤ T .

Proof. We put q = q 1 q 2 , a = k 2 -qN B v N and b = k 2 + qN B v N and we denote by Σ(χ 1 , q 2 , k 2 ) the sum on the left-hand side of (57). Since

I q (k 2 ) = ]a, b] ⊂ qN B v N , N -qN B v N ⊂ ]0, N ], Σ(χ 1 , q 2 , k 2 ) = a<k 1 ≤b B qN w (k 2 -k 1 ) B qN χ 1 (k 1 )Λ(k 1 ).
Thus, by Lemma 7.9, (58)

|Σ(χ 1 , q 2 , k 2 )| B qN v N sup a<t≤b |ψ(t, χ 1 ) -ψ(a, χ 1 )| . Moreover, since a ≥ qN B v N ≥ T , it follows from Corollary 7.11 that sup a<t≤b |ψ(t, χ 1 ) -ψ(a, χ 1 )| (b -a) L(ρ,χ 1 )=0 |γ|≤T a β-1 + b T (log bq 1 ) 2
where the sum runs over all nontrivial zeros

ρ = β + iγ of L(s, χ 1 ) such that |γ| ≤ T . Since b -a = 2 qN B v N , a ≥ N B v N and b ≤ N , we get sup a<t≤b |ψ(t, χ 1 ) -ψ(a, χ 1 )| qN B v N L(ρ,χ 1 )=0 |γ|≤T N B v N β-1 + N T (log N ) 2 .
By inserting this into (58), we obtain (57).

We are now able to give a strong upper bound for U (T, η * ).

Lemma 11.7. Let ε > 0.

If (B 5 1 T 3 ) 1+ε ≤ N B v N then U (T, η * ) ε N v N B(B 5 1 T 3 ) 1+ε -η * v 2 N log log N + BB 1 T (log N ) 2 v N .
Proof. Since T ≤ N B v N , it follows from Lemma 11.6 that

U (T, η * ) χ 1 mod q 1 ∈G(T,η * ) q 1 ϕ(q 1 )      v 2 N L(ρ,χ 1 )=0 |γ|≤T N B v N β-1 + B q 1 T (log N ) 2 v N      .
To bound the contribution of the sum over ρ, we use that q 1 /ϕ(q 1 ) log log N (see for instance [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]Theorem 328]) and we apply Lemma 7.13 with

Q = B 1 and C = G(T, η * ) which satisfies by definition of G(T, η * ) : σ > 1 -η * ⇒ N C (σ, T ) = 0 and a = N B v N which satisfies (Q 5 T 3 ) 1+ε ≤ a. We obtain χ 1 mod q 1 ∈G(T,η * ) L(ρ,χ 1 )=0 |γ|≤T N B v N β-1 ε N v N B(B 5 1 T 3 ) 1+ε -η * .
To bound the contribution of the second term between parentheses, we simply write

χ 1 mod q 1 ∈G(T,η * ) q 1 ϕ(q 1 ) B q 1 T (log N ) 2 v N ≤ B T (log N ) 2 v N q 1 ≤B 1 1 ≤ BB 1 T (log N ) 2 v N .
This completes the proof.

11.2.2. "Bad" characters. In I N P (see (53)), the contribution of the characters χ 1 in B(T, η * ) is (59)

I B = χ 1 mod q 1 ∈B(T,η * ) q 1 ϕ(q 1 ) V (q 1 , χ 1 )
where

V (q 1 , χ 1 ) = 1≤q 2 ≤B 1 /q 1 (q 1 ,q 2 )=1, q 2 sf 1≤k 2 ≤N f n,A,d (k 2 )χ 1 (k 2 ) µ((q 2 , k 2 )) ϕ q 2 (q 2 ,k 2 ) (60) 
× 1≤k 1 ≤N k 1 ∈Iq 1 q 2 (k 2 ) B q 1 q 2 N w (k 2 -k 1 ) B q 1 q 2 N χ 1 (k 1 )Λ(k 1 ).
Since q 1 /ϕ(q 1 ) log log N for any 1 ≤ q 1 ≤ N , we obtain

(61) |I B | (log log N ) |B(T, η * )| max χ 1 mod q 1 ∈B(T,η * ) |V (q 1 , χ 1 )| .
In order to obtain a strong upper bound for |I B |, we will first bound the number of "bad" characters (see Lemma 11.8). Then we will establish an upper bound for |V (q 1 , χ 1 )| when q 1 has a prime factor which does not divide g (see Lemma 11.11). Finally, we will show that if the parameters T and η * are judiciously chosen then the conductor of a "bad" character always has a prime factor which does not divide g (see Lemma 11.14) so that the previous upper bound for |V (q 1 , χ 1 )| is valid for any (χ 1 mod q 1 ) ∈ B(T, η * ). In this last step, we will need an improved zero-free region for L-functions to modulus q where q is such that any prime factor of q divides the base g.

Lemma 11.8. Let ε > 0. We have

(62) |B(T, η * )| ε (B 5 1 T 3 ) (1+ε)η * . Proof. By definition, the elements of B(T, η * ) are the primitive characters χ 1 mod q 1 with 1 < q 1 ≤ B 1 such that L(s, χ 1 ) has a zero ρ = β + iγ with |γ| ≤ T and 1 -η * < β ≤ 1 and thus N (1 -η * , T, χ 1 ) ≥ 1. It follows that |B(T, η * )| ≤ 1<q 1 ≤B 1 * χ 1 mod q 1 N (1-η * ,T,χ 1 )≥1 1 ≤ 1≤q 1 ≤B 1 * χ 1 mod q 1 N (1 -η * , T, χ 1 ) = N B 1 (1 -η * , T ).
Moreover, by applying Lemma 7.12, we obtain

N B 1 (1 -η * , T ) ε (B 5 1 T 3 ) (1+ε)η * which completes the proof.
Remark 11.9. In Section 11.2.3, the parameter η * will become arbitrarily small as N → ∞. Therefore, we do not actually need here a zero-density estimate which is valid for 1/2 ≤ σ ≤ 1 (as in Lemma 7.12). We could use more precise zero-density estimates valid for σ close to 1 (see for instance [START_REF] Pintz | Some new density theorems for Dirichlet L-functions[END_REF]) and obtain a slightly better upper bound in (62) but this would not improve significantly the final result.

We now study max

χ 1 mod q 1 ∈B(T,η * ) |V (q 1 , χ 1 )|.
Lemma 11.10. For any integer m such that B 1 ≤ g m ≤ g n and for any character χ 1 mod q 1 with 1 ≤ q 1 ≤ B 1 , we have

|V (q 1 , χ 1 )| v 2 N (log N ) 2 (log log N ) 1≤q 0 ≤B 1 /q 1 (q 1 g,q 0 )=1, q 0 sf 0≤ <g n-m g m ≤k 2 <( +1)g m q 0 | k 2 f n,A,d (k 2 )χ 1 (k 2 ) + Bg m q 1 v N .
Proof. For any 1 ≤ k 1 ≤ N and any q ≥ 1, we define

K 2 (k 1 , q) = max 1, k 1 - qN B v N and K 2 (k 1 , q) = min N, k 1 + qN B v N so that we have 1 ≤ k 2 < N and k 1 ∈ I q (k 2 ) if and only if K 2 (k 1 , q) ≤ k 2 < K 2 (k 1 , q)
. By interchanging the summations over k 1 and k 2 in (60), we obtain

V (q 1 , χ 1 ) = 1≤q 2 ≤B 1 /q 1 (q 1 ,q 2 )=1, q 2 sf 1≤k 1 ≤N χ 1 (k 1 )Λ(k 1 )W (q 2 , k 1 , q 1 , χ 1 )
where

W (q 2 , k 1 , q 1 , χ 1 ) = K 2 (k 1 ,q 1 q 2 )≤k 2 <K 2 (k 1 ,q 1 q 2 ) B q 1 q 2 N w (k 2 -k 1 ) B q 1 q 2 N f n,A,d (k 2 )χ 1 (k 2 ) µ((q 2 , k 2 )) ϕ q 2 (q 2 ,k 2 ) (note that the contribution of k 2 = N in (60) is 0). Hence (63) |V (q 1 , χ 1 )| ≤ 1≤q 2 ≤B 1 /q 1 (q 1 ,q 2 )=1, q 2 sf 1≤k 1 ≤N Λ(k 1 ) |W (q 2 , k 1 , q 1 , χ 1 )| .
We first fix the variables q 2 and k 1 and we focus on |W (q 2 , k 1 , q 1 , χ 1 )|. By partial summation (as in the proof of Lemma 7.9) and by observing that K 2 (k 1 , q 1 q 2 ) -K 2 (k 1 , q 1 q 2 ) ≤ 2 q 1 q 2 N B v N , we obtain

|W (q 2 , k 1 , q 1 , χ 1 )| (64) B q 1 q 2 N v N sup K 2 (k 1 ,q 1 q 2 )<t≤K 2 (k 1 ,q 1 q 2 ) K 2 (k 1 ,q 1 q 2 )≤k 2 <t f n,A,d (k 2 )χ 1 (k 2 ) µ((q 2 , k 2 )) ϕ q 2 (q 2 ,k 2 )
.

We now fix t such that K 2 (k 1 , q 1 q 2 ) < t ≤ K 2 (k 1 , q 1 q 2 ) and we study the term in the supremum.

Since [K 2 (k 1 , q 1 q 2 ), t[ ⊂ [0, N [ and [0, N [ = 0≤ <g n-m
[ g m , ( + 1)g m [, we can write

[K 2 (k 1 , q 1 q 2 ), t[ = I 1 ∪      0≤ <g n-m [ g m ,( +1)g m [⊂[K 2 (k 1 ,q 1 q 2 ),t[ [ g m , ( + 1)g m [      ∪ I 2
where I 1 and I 2 are intervals such that 0 ≤ |I 1 |, |I 2 | ≤ g m and all the intervals in this decomposition are disjoint. It follows that the term in the supremum is

≤ 0≤ <g n-m [ g m ,( +1)g m [⊂[K 2 (k 1 ,q 1 q 2 ),t[ g m ≤k 2 <( +1)g m f n,A,d (k 2 )χ 1 (k 2 )
µ((q 2 , k 2 ))

ϕ q 2 (q 2 ,k 2 ) + k 2 ∈I 1 ∪I 2 1 ϕ q 2 (q 2 ,k 2 )
where, by Lemma 7.14 and the inequality

q 2 ≤ B 1 ≤ g m , k 2 ∈I 1 ∪I 2 1 ϕ q 2 (q 2 ,k 2 ) ≤ 2 g m q 2 + 1 σ 0 (q 2 ) g m σ 0 (q 2 ) q 2 .
By inserting this into (64) and by observing that t ≤ K 2 (k 1 , q 1 q 2 ), we obtain

|W (q 2 , k 1 , q 1 , χ 1 )| (65) B q 1 q 2 N v N 0≤ <g n-m [ g m ,( +1)g m [ ⊂[K 2 (k 1 ,q 1 q 2 ),K 2 (k 1 ,q 1 q 2 )[ g m ≤k 2 <( +1)g m f n,A,d (k 2 )χ 1 (k 2 ) µ((q 2 , k 2 )) ϕ q 2 (q 2 ,k 2 ) + B q 1 q 2 N v N g m σ 0 (q 2 ) q 2 .
We then multiply (65) by Λ(k 1 ) and we sum over 1 ≤ k 1 ≤ N . For the contribution of the term with σ 0 (q 2 ), we use that k 1 ≤N Λ(k 1 ) = ψ(N ) N . For the contribution of the term with the summation over , we use that Λ(k 1 ) ≤ log N , we interchange the summations over k 1 and over and we note that, given , the number of

k 1 such that [ g m , ( + 1)g m [⊂ [K 2 (k 1 , q 1 q 2 ), K 2 (k 1 , q 1 q 2 )[ is less than the number of k 1 such that g m -q 1 q 2 N B v N ≤ k 1 ≤ g m + q 1 q 2 N B v N which is q 1 q 2 N B v N . We obtain 1≤k 1 ≤N Λ(k 1 ) |W (q 2 , k 1 , q 1 , χ 1 )| (66) v 2 N (log N ) 0≤ <g n-m g m ≤k 2 <( +1)g m f n,A,d (k 2 )χ 1 (k 2 ) µ((q 2 , k 2 )) ϕ q 2 (q 2 ,k 2 ) + B q 1 q 2 v N g m σ 0 (q 2 ) q 2 .
We finally sum (66) over q 2 such that 1 ≤ q 2 ≤ B 1 /q 1 , (q 1 , q 2 ) = 1, q 2 sf. Since

k≥1 σ 0 (k) k 2 = k≥1 1 k 2 d | k 1 = d≥1 1 d 2 k ≥1 1 k 2 = ζ(2) 2 ,
the contribution of the term with σ 0 (q 2 ) is Bg m q 1 v N . By using, as in the proof of Lemma 5.25 that for any squarefree integer ≥ 1,

µ( )ϕ( ) = d | dµ(d),
we obtain that the contribution of the term with the summation over is

= v 2 N (log N ) 1≤q 2 ≤B 1 /q 1 (q 1 ,q 2 )=1, q 2 sf 1 ϕ(q 2 ) 0≤ <g n-m g m ≤k 2 <( +1)g m f n,A,d (k 2 )χ 1 (k 2 ) q 0 | (q 2 ,k 2 ) q 0 µ(q 0 ) ≤ v 2 N (log N ) 1≤q 2 ≤B 1 /q 1 (q 1 ,q 2 )=1, q 2 sf 1 ϕ(q 2 ) q 0 | q 2 q 0 0≤ <g n-m g m ≤k 2 <( +1)g m q 0 | k 2 f n,A,d (k 2 )χ 1 (k 2 ) v 2 N (log N ) 2 (log log N ) 1≤q 0 ≤B 1 /q 1 (q 1 ,q 0 )=1, q 0 sf 0≤ <g n-m g m ≤k 2 <( +1)g m q 0 | k 2 f n,A,d (k 2 )χ 1 (k 2 )
where we used for the last inequality that q 0 /ϕ(q 0 ) log log N for any 1 ≤ q 0 ≤ N and

1≤k≤B 1 1/ϕ(k) log B 1 ≤ log N . It follows that 1≤q 2 ≤B 1 /q 1 (q 1 ,q 2 )=1, q 2 sf 1≤k 1 ≤N Λ(k 1 ) |W (q 2 , k 1 , q 1 , χ 1 )| v 2 N (log N ) 2 (log log N ) 1≤q 0 ≤B 1 /q 1 (q 1 ,q 0 )=1, q 0 sf 0≤ <g n-m g m ≤k 2 <( +1)g m q 0 | k 2 f n,A,d (k 2 )χ 1 (k 2 ) + Bg m q 1 v N .
To complete the proof, it suffices to insert this into (63) and to note that only the q 0 's which are coprime to g can have a non zero contribution (since 0 ∈ A and (d 0 , g) = 1, we have f n,A,d (k) = 0 for any k such that (k, g) > 1).

Lemma 11.11. Let g = t i=1 p γ i i be the prime decomposition of g where p γ 1 1 = min 1≤i≤t p γ i i . We assume that n ≥ 200. Let χ 1 be a primitive character mod q 1 such that 1 ≤ q 1 ≤ B 1 and q 1 has a prime factor which does not divide g. Let κ > 0 and 0 < c < 1 8(1+κ) . If |A| ≤ cn, B 1 ≤ N κ 8(1+κ) and

(67) B 1 ≤ N log p γ 1 1 4 log g then (68) |V (q 1 , χ 1 )| g,κ,c N g -|A| v 2 N n 3 (log n) n log 3 n 1- 1 8(1+κ)c + BN 3/4 v N .
Remark 11.12. The condition (67) on B 1 will be responsible for the fact that, for some bases g (for instance of the form g = 2 • 3 k ), we obtain a proportion c 0 which tends to 0 as g tends to +∞. Indeed, the parameter B 1 must also satisfy

N 2C 2 (g)c log C 1 (g) c (log N ) 8 = o(B 1 )
(see Remark 8.3). Together with (67), this implies that 2C 2 (g)c log

C 1 (g) c < log p γ 1 1
4 log g , which requires c to be small enough.

Condition (67) will permit us to ensure in the proof below that there is an appropriate ν such that s | g ν (see ( 70) and ( 71)).

Remark 11.13. For the contribution of the "bad" characters to be an admissible error, by (61), we will need the upper bound in (68) to be good enough to counterbalance the upper bound in (62). This will force us to take a small value of c in Section 13.

Proof. We write q 1 = sq 1 where (q 1 , g) = 1 and any prime factor of s is a prime factor of g. Assume that 0 < c 1 < 1 4(1+κ) and ν ≥ 0 and m ≥ 0 are integers such that s | g ν , ν + 100 ≤ m ≤ n, B 1 ≤ g κ(m-ν) 4(1+κ) and |A ∩ {ν, . . . , m -1}| ≤ c 1 (m -ν). Since B 1 ≤ g m , by applying Lemma 11.10, we obtain

|V (q 1 , χ 1 )| v 2 N (log N ) 2 (log log N ) 1≤q 0 ≤B 1 /q 1 (q 1 g,q 0 )=1, q 0 sf 0≤ <g n-m g m ≤k 2 <( +1)g m q 0 | k 2 f n,A,d (k 2 )χ 1 (k 2 ) + Bg m q 1 v N . Since B 1 /q 1 ≤ B 1 /q 1 ≤ g κ(m-ν)
4(1+κ) /q 1 , it follows from Lemma 5.32 that

|V (q 1 , χ 1 )| (69) g,κ,c 1 v 2 N (log N ) 2 (log log N )g n-|A| (m -ν) m -ν log 3 (m -ν) 1- 1 4(1+κ)c 1 + Bg m q 1 v N .
We now show that the choice c 1 = 2c, ν = n/4 and m = ν + n/2 is suitable. Clearly,

0 < c 1 < 1 4(1+κ) and since m -ν ≥ n/2, we have ν + 100 ≤ m ≤ n, B 1 ≤ g κ(m-ν) 4(1+κ) and |A ∩ {ν, . . . , m -1}| m -ν ≤ |A| n/2 ≤ 2c = c 1 .
It remains to establish that s | g ν . Since any prime factor of s is a prime factor of g, there exist σ 1 , . . . , σ t ≥ 0 such that s = t i=1 p σ i i . Thus

(70) s | g ν ⇔ ν ≥ max 1≤i≤t σ i γ i .
Since s ≤ q 1 ≤ B 1 , we have for any 1 ≤ i ≤ t, p

σ i i ≤ B 1 , hence (71) σ i γ i ≤ log B 1 log p γ i i ≤ log B 1 log p γ 1 1 . Moreover, since B 1 ≤ N log p γ 1 1
4 log g , the right-hand side of (71) is ≤ n/4 ≤ ν. It follows that s | g ν . By (69), this choice of c 1 , ν and m leads to

|V (q 1 , χ 1 )| g,κ,c v 2 N (log N ) 2 (log log N )g n-|A| n n log 3 n 1- 1 8(1+κ)c + Bg 3n/4 q 1 v N
which completes the proof.

Lemma 11.14. There exist an absolute constant ξ 1 > 0 and

T 1 = T 1 (g) ≥ 3 such that if (72) T ≥ T 1 and η * ≤ ξ 1 (log(B 1 T ) log log(B 1 T )) -3/4
then, for any (χ 1 mod q 1 ) ∈ B(T, η * ), q 1 has a prime factor which does not divide g.

Proof. We denote by P the set of prime factors of g. It follows from Lemma 6.4 that there exist an absolute constant ξ 1 > 0 and T 1 = T 1 (g) ≥ 3 such that if T and η * satisfy (72) then, for any primitive character χ 1 mod q 1 such that 1 < q 1 ≤ B 1 and such that the prime factors of q 1 are in P, we have for any zero ρ = β + iγ of L(s, χ 1 ) such that |γ| ≤ T :

β < 1 -ξ 1 (log(q 1 T ) log log(q 1 T )) -3/4 ≤ 1 -ξ 1 (log(B 1 T ) log log(B 1 T )) -3/4 ≤ 1 -η *
and thus (χ 1 mod q 1 ) / ∈ B(T, η * ), which completes the proof. 

p γ i i . Let b 1 such that B 1 = N b 1 and b such that B = N b . Let 0 < t < 1, α > 0, ε > 0 and c > 0. There exists n 1 = n 1 (t, α, g) ≥ 1 such that if n ≥ n 1 , |A| ≤ cn, (73) c + b 1 < 1/8, b 1 ≤ log p γ 1 1 4 log g , b + (1 + ε)(5b 1 + 3t) ≤ 1
then

I N P = O g,c,ε,b 1 N g -|A| v 2 N n 4-1 8c + b 1 c +α(1+ε)(5b 1 +3t) (log n) 3 8c + v N n α(1+ε)(5b 1 +3t) log n N 1/4-b-c + O g,c,ε N g -|A| v 2 N n 2-α(1-b-(1+ε)(5b 1 +3t)) log n + v N (log N ) 4 N t-b-b 1 + O N g -|A| v N (log N ) 2 N b-3b 1 -c . Proof. Let T = N t and η * = α log g log n n = α log n log N . There exists n 1 = n 1 (g, t, α) ≥ 200 such that if n ≥ n 1 then T ≥ T 1 ≥ 3 and 0 < η * ≤ ξ 1 log(N 2 ) log log(N 2 ) -3/4 ≤ 1/2
where T 1 and ξ 1 are as in Lemma 11.14 (T 1 depends only on g and ξ 1 > 0 is an absolute constant). We henceforth assume that n ≥ n 1 . In order to estimate I N P , we first note that

I N P = I G + I B
where I G and I B are defined by (54) and (59) respectively.

By (61) and Lemma 11.8, we obtain

|I B | ε (log log N ) (B 5 1 T 3 ) (1+ε)η * max χ 1 mod q 1 ∈B(T,η * ) |V (q 1 , χ 1 )| g,ε (log n) n α(1+ε)(5b 1 +3t) max χ 1 mod q 1 ∈B(T,η * ) |V (q 1 , χ 1 )|
where V (q 1 , χ 1 ) is defined by (60). Let (χ 1 mod q 1 ) ∈ B(T, η * ). Since B 1 T ≤ N 2 , T and η * satisfy (72). It follows from Lemma 11.14 that q 1 has a prime factor which does not divide g.

Since B 1 ≤ N log p γ 1 1
4 log g , we are allowed to apply Lemma 11.11 with κ = 8b 1 1-8b 1 > 0 which satisfies c < 1 8 -b 1 = 1 8(1+κ) and B 1 = N κ 8(1+κ) and we obtain

|V (q 1 , χ 1 )| g,b 1 ,c N g -|A| v 2 N n 3 (log n) n log 3 n 1-1 8c + b 1 c + BN 3/4 v N .
It follows that

|I B | g,c,ε,b 1 (log n) n α(1+ε)(5b 1 +3t)   N g -|A| v 2 N n 3 (log n) n log 3 n 1-1 8c + b 1 c + BN 3/4 v N    ≤ N g -|A| v 2 N n 4-1 8c + b 1 c +α(1+ε)(5b 1 +3t) (log n) 3 8c + v N n α(1+ε)(5b 1 +3t) log n N 1/4-b-c
(for the last inequality, we used that g |A| ≤ N c ). It remains to estimate I G . By Lemma 11.3,

I G = I G 1 + O N B 3 1 B v N (log N ) 2 = I G 1 + O N g -|A| v N (log N ) 2 N b-3b 1 -c
where I G 1 is defined by (55). Since c + b 1 < 1/8, we have c < 1/4 and B 1 ≤ N 1/8 . It follows from (56) and Lemma 5.28 with Q = B 1 and κ = 1 that

|I G 1 | g,c N g -|A| n 2 U (T, η * ).
Moreover, since b+(1+ε)(5b 1 +3t) ≤ 1, we have (B 5 1 T 3 ) 1+ε ≤ N B ≤ N B v N . Thus, by Lemma 11.7,

U (T, η * ) ε N B(B 5 1 T 3 ) 1+ε -η * v 2 N log log N + BB 1 T (log N ) 2 v N = n -α(1-b-(1+ε)(5b 1 +3t)) v 2 N log log N + (log N ) 2 v N N t-b-b 1 , hence |I G 1 | g,c,ε N g -|A| v 2 N n 2-α(1-b-(1+ε)(5b 1 +3t)) log n + v N (log N ) 4 N t-b-b 1 .
This completes the proof.

Conclusion on the minor and major arcs

In this section, we will combine the previous results regarding the contribution of the minor and major arcs to obtain: Proposition 12.1. Let g ≥ 2 be an integer and g = t i=1 p γ i i be the prime decomposition of g where p γ 1 1 = min 1≤i≤t p γ i i . Let b 1 , b, t, α, ε and c be positive real numbers such that

(74) b 1 < b ≤ 1/5, c + b 1 < 1/8, b 1 ≤ log p γ 1 1 4 log g , b + (1 + ε)(5b 1 + 3t) ≤ 1.
There exists n 0 = n 0 (g, b 1 , b, t, α) ≥ 200 such that for any n ≥ n 0 , A ⊂ {0, . . . , n-1} satisfying 0 ∈ A and |A| ≤ cn and for any d = (d j ) j∈A ∈ {0, . . . , g -1} A such that (d 0 , g) = 1, we have

0≤k<g n Λ(k)f n,A,d (k) = N g -|A| g ϕ(g) 1 + O g,c,ε n 6-α(1-b-(1+ε)(5b 1 +3t)) log n + (log N ) 6 N t-b-b 1 +O g,c,ε,b 1 n 8-1 8c + b 1 c +α(1+ε)(5b 1 +3t) (log n) 3 8c + n 2+α(1+ε)(5b 1 +3t) log n N 1/4-b-c +O g,c,b 1 n 3-1 2c + 2b 1 c (log n) 3 2c + O (log N ) 4 N b-3b 1 -c +O    (log N ) 4 N b 1 2 -C 2 (g)c log C 1 (g) c      
where N = g n and C 1 (g) and C 2 (g) are defined respectively by [START_REF] Harman | Primes with preassigned digits[END_REF] and [START_REF] Harman | Primes with preassigned digits. II[END_REF].

Proof. Let n ≥ 1, N = g n , B 1 = N b 1 , B = N b and v N = (log N ) 2 . There exists n 2 = n 2 (b 1 , b) ≥ 200 such that if n ≥ n 2 then g ≤ B 1 , 4B 1 (log N ) 2 ≤ B < N 4B 1 
so that B 1 and B satisfy the condition (4) and v N satisfies (43). We henceforth assume that n ≥ max(n 2 , log N 0 log g , n 1 ) where N 0 is the same absolute constant as in Lemma 11.2 and

n 1 = n 1 (t, α, g) is as in Lemma 11.15. Let A ⊂ {0, . . . , n -1} such that 0 ∈ A and |A| ≤ cn and let d = (d j ) j∈A ∈ {0, . . . , g -1} A such that (d 0 , g) = 1. Since 0 < c < 1/8 ≤ 2e -1 ≤ C 1 (g)e -1 , B 1 ≤ N 1/8 ≤ N 2/5
and |A| ≤ cn, it follows from Lemma 10.1 that

0≤k<g n Λ(k)f n,A,d (k) = I P 1 + I N P (75) + O   N g -|A| (log N ) 4 N b 1 2 -C 2 (g)c log C 1 (g) c    + O N g -|A| (log N ) 4 N b-b 1 -c
where I P 1 is defined by (48) and I N P is the contribution of the nonprincipal characters in (45) (note that, since b ≤ 1/2, the second O(•) in (50) enters in the third one). Since c + 2b 1 < 1/8 + 1/8 < 1/2, N ≥ N 0 and b ≤ 0.2, we are allowed to apply Lemma 11.2 with κ = 4b 1 1-4b 1 > 0 which satisfies c < 1 2(1+κ) and B 1 = N κ 4(1+κ) . We obtain

I P 1 = N g -|A| g ϕ(g) 1 + O g,c,b 1 n 3-1 2c + 2b 1 c (log n) 3 2c + O N g -|A| (log N ) 3 N b-b 1 -c
(for the rightmost term, we used that g |A| ≤ N c ).

Since n ≥ n 1 and (73) is satisfied, it follows from Lemma 11.15 that

I N P = O g,c,ε,b 1 N g -|A| n 8-1 8c + b 1 c +α(1+ε)(5b 1 +3t) (log n) 3 8c + n 2+α(1+ε)(5b 1 +3t) log n N 1/4-b-c + O g,c,ε N g -|A| n 6-α(1-b-(1+ε)(5b 1 +3t)) log n + (log N ) 6 N t-b-b 1 + O N g -|A| (log N ) 4 N b-3b 1 -c .
To complete the proof, it suffices to insert these estimates of I P 1 and I N P into (75).

13. Completion of the proof of Theorem 2.1 and Theorem 2.7

In this section, we will complete the proof of Theorem 2.1 by providing an explicit admissible value of c 0 (g, δ 0 ) for general integer g ≥ 2 and real number δ 0 ≥ 0 (see Theorem 13.3). We will then be able to prove Theorem 2.7.

In order to define an admissible value of c 0 (g, δ 0 ), we will need the following two lemmas (they will be proved in Sections 13.1 and 13.2). Lemma 13.1. For g ≥ 2, δ 0 ≥ 0 and x > 0, we denote

(76) y g (x) = 2 log g x log C 1 (g) x
where C 1 (g) is defined by [START_REF] Harman | Primes with preassigned digits[END_REF] and

(77) h g,δ 0 (x) = x(8 + δ 0 ) + y g (x) + (6 + δ 0 ) x(17y g (x) + 3x) 1 -20y g (x) -4x .
For any g ≥ 2 and δ 0 ≥ 0, (i) the equation 20y g (x) + 4x = 1 has a unique solution

x = x 1 (g) on ]0, 1/2[, (ii) the equation h g,δ 0 (x) = 1 8 has a unique solution x = c 1 (g, δ 0 ) on ]0, x 1 (g)[, (iii) if x ∈ ]0, 1/2[ satisfies 20y g (x) + 4x < 1 and h g,δ 0 (x) ≤ 1 8 then x ≤ c 1 (g, δ 0 ). Moreover, (iv) for any g ≥ 2, c 1 (g, δ 0 ) is a decreasing function of δ 0 , (v) for any δ 0 ≥ 0, c 1 (g, δ 0
) is an increasing function of g, (vi) for δ 0 = 0, c 1 (g, δ 0 ) tends to 0 ≈ 0.00927 as g → ∞.

Lemma 13.2. Let g ≥ 2 be an integer and g = t i=1 p γ i i be the prime decomposition of g where p γ 1 1 = min 1≤i≤t p γ i i . Let y g be the function defined by (76) and

β g = log p γ 1 1 4 log g . (i) The equation y g (x) = β g has a unique solution x = c 2 (g) on ]0, 1/2[. (ii) If 0 < x < 1/2 satisfies y g (x) ≤ β g then x ≤ c 2 (g). (iii) c 2 (g) < βg 2 . (iv) If g ≥ 6 then c 2 (g) ≥ βg 2 2 π log g -1 log g 1 1-1 log g ∼ βg 2 as g → ∞. (v) If (g i ) i is
a strictly increasing sequence of integers larger than or equal to 2 such that (β g i ) i is constant then the sequence (c 2 (g i )) i is increasing. (vi) If g is a prime power then, for any δ 0 ≥ 0, c 1 (g, δ 0 ) ≤ c 2 (g).

We will then establish in Section 13.3: Theorem 13.3. For any g ≥ 2 and δ 0 ≥ 0, Theorem 2.1 holds with c 0 = min (c 1 , c 2 ) where c 1 = c 1 (g, δ 0 ) is defined in Lemma 13.1 (ii) and c 2 = c 2 (g) is defined in Lemma 13.2 (i).

Theorem 2.1 is an immediate corollary of Theorem 13.3. The c 0 in Theorem 13.3 satisfies the properties stated in Remark 2.8:

1. It follows from Lemma 13.1 (iv) that, for any given g ≥ 2, the largest value of c 0 is obtained for δ 0 = 0. 2. If g is a prime power then, for any δ 0 ≥ 0, it follows from Lemma 13.2 (vi) that c 0 = c 1 which is an increasing function of g (see Lemma 13.1 (v)). Moreover, in the special case where δ 0 = 0, c 1 tends to 0.00927... as g → ∞ (see Lemma 13.1 (vi)). 3. If a ≥ 2 is an integer then (β a i ) i is constant and thus, by Lemma 13.1 (v) and Lemma 13.2 (v), for any δ 0 ≥ 0, the function i → c 0 (a i , δ 0 ) is increasing. 4. For any δ 0 ≥ 0, we have c 0 ≤ c 2 < β g /2 by Lemma 13.2 (iii). We will finally obtain Theorem 2.7 as a consequence of Theorem 13.3 in Section 13.4.

13.1. Proof of Lemma 13.1. (i) An elementary calculation shows that the functions y g and y g : x → 20y g (x) + 4x are strictly increasing on ]0, 1/2] ⊂ ]0, C 1 (g)e -1 ]. Moreover, y g (x) tends to 0 as x tends to 0 and y g (1/2) ≥ 4 • 1/2 > 1. As a consequence, there is a unique

x 1 = x 1 (g) ∈ ]0, 1/2[ such that y g (x 1 ) = 1.
(ii) If 0 < x < x 1 = x 1 (g) then y g (x) < y g (x 1 ) = 1 so that h g,δ 0 (x) is well-defined. Since y g and y g are strictly increasing on ]0, x 1 [, h g,δ 0 is also strictly increasing on ]0, x 1 [. Moreover, h g,δ 0 (x) tends to 0 as x tends to 0 and h g,δ 0 (x) tends to +∞ as x tends to x 1 . As a consequence, there is a unique c 1 = c 1 (g, δ 0 ) ∈ ]0, x 1 [ such that h g,δ 0 (c 1 ) = 1/8.

(iii) If 0 < x < 1/2 satisfies 20y g (x) + 4x < 1 then, since y g is increasing on ]0, 1/2] and y g (x 1 ) = 1, we have x < x 1 . Moreover, since h g,δ 0 is strictly increasing on ]0, x 1 [ and h g,δ 0 (x) ≤ 1 8 = h g,δ 0 (c 1 ), it follows that x ≤ c 1 . (iv) Let g ≥ 2 and δ 0 ≥ δ 0 ≥ 0. By denoting c 1 = c 1 (g, δ 0 ) and c 1 = c 1 (g, δ 0 ), we have

h g,δ 0 (c 1 ) ≤ h g,δ 0 (c 1 ) = 1/8 = h g,δ 0 (c 1 ). Since h g,δ 0 is strictly increasing on ]0, x 1 (g)[, it follows that c 1 ≤ c 1 .
(v) For x > 0 and t > 1, we define z x (t) = 1 log t log 2 πx log t . By an elementary calculation, z x is decreasing on exp eπx 2 , +∞ . Moreover, for g ≥ 6, y g (x) = 2x(1 + z x (g)) and it follows that if 0 < x ≤ 2 log 6 eπ then (g ≥ 6 → y g (x)) is decreasing. For 2 ≤ g ≤ 6, we check that if 0 < x < 1/2 then y 2 (x) ≥ y 3 (x) ≥ y 4 (x) ≥ y 5 (x) ≥ y 6 (x) (we leave the details to the reader). This proves that if 0 < x ≤ 2 log 6 eπ then (g

≥ 2 → y g (x)) is decreasing. Let g ≥ g ≥ 2, x 1 = x 1 (g) and x 1 = x 1 (g ). Since 4x 1 ≤ 20y g (x 1 ) + 4x 1 = 1, we have x 1 ≤ 1/4 ≤ 2 log 6
eπ and thus y g (x 1 ) ≤ y g (x 1 ). It follows that y g (x 1 ) ≤ y g (x 1 ) = 1 = y g (x 1 ).

Since y g is strictly increasing on ]0, 1/2[, we deduce that x 1 ≥ x 1 . Let δ 0 ≥ 0, c 1 = c 1 (g, δ 0 ) and c 1 = c 1 (g , δ 0 ). Since c 1 < x 1 ≤ 2 log 6 eπ , we have y g (c 1 ) ≤ y g (c 1 ) and thus also y g (c 1 ) ≤ y g (c 1 ) < y g (x 1 ) = 1. It follows that h g ,δ 0 (c 1 ) ≤ h g,δ 0 (c 1 ) = 1/8 = h g ,δ 0 (c 1 ). Since h g ,δ 0 is strictly increasing on ]0, x 1 [ and c 1 < x 1 ≤ x 1 , it follows that c 1 ≥ c 1 .

(vi) Let δ 0 ≥ 0. For g ≥ 2, since 1/8 = h g,δ 0 (c 1 (g, δ 0 )) ≥ 8c 1 (g, δ 0 ), we have c 1 (g, δ 0 ) ≤ 1/64. Since c 1 (g, δ 0 ) is an increasing function of g and c 1 (g, δ 0 ) ≥ c 1 (2, δ 0 ) > 0, there exists 0 < δ 0 ≤ 1/64 such that c 1 (g, δ 0 ) tends to δ 0 as g → ∞. Moreover, for g ≥ 6, y g (c 1 (g, δ 0 )) = 2c 1 (g, δ 0 ) 1 + 1 log g log 2 πc 1 (g,δ 0 ) log g and thus y g (c 1 (g, δ 0 )) tends to 2 δ 0 as g → ∞. It follows that h g,δ 0 (c 1 (g, δ 0 )) tends to

1 8 = δ 0 (8 + δ 0 ) + 2 δ 0 + (6 + δ 0 ) δ 0 (17 • 2 δ 0 + 3 δ 0 ) 1 -20 • 2 δ 0 -4 δ 0 = δ 0 10 + δ 0 + 37(6 + δ 0 ) δ 0 1 -44 δ 0 as g → ∞.
In particular, for δ 0 = 0, δ 0 = 0 is a solution of 218 4 log g = β g . As a consequence, there is a unique c 2 = c 2 (g) ∈ ]0, 1/2[ such that y g (c 2 ) = β g .

(ii) If 0 < x < 1/2 is such that y g (x) ≤ β g then, since y g is strictly increasing on ]0, 1/2], we have x ≤ c 2 .

(iii) It follows from the inequality C 1 (g) ≥ g that if 0 < x < 1 then y g (x) > 2x and thus 2c 2 < y g (c 2 ) = β g .

(iv) Since g ≥ 6 and y g (c 2 ) = β g , we obtain by using the inequality log(1 + u) ≤ u:

log β g 2 = log c 2 + log 1 + 1 log g log 2 log g πc 2 ≤ log c 2 + 1 log g log 2 log g πc 2 , hence β g 2 ≤ c 1-1 log g 2 2 log g π 1 log g
and the lower bound for c 2 claimed in (iv) follows. We then note that 2 π log g

-1 log g 1 1-1 log g = exp - 1 log g -1 log 2 π log g → 1, as g → ∞.
Since log βg 2 = log 2 βg ≤ log 8 log g log 2 , we obtain

1 1-1 log g -1 log βg 2 log log g log g and thus β g 2 1 1-1 log g ∼ β g 2 , as g → ∞
which completes the proof of (iv). (v) Let (g i ) i be a strictly increasing sequence of integers larger than or equal to 2 such that (β g i ) i is constant, say equal to β. Let i ≤ i and denote c 2 = c 2 (g i ) and c 2 = c 2 (g i ). By (iii), c 2 < βg i 2 ≤ 1 8 . In the proof of Lemma 13.1 (v), we established that if 0 < x ≤ 2 log 6 eπ then (g ≥ 2 → y g (x)) is decreasing. It follows that

y g i (c 2 ) ≤ y g i (c 2 ) = β = y g i (c 2 ).
Since y g i is strictly increasing on ]0, 1/2[, we deduce that c 2 ≥ c 2 .

(vi) Let δ 0 ≥ 0 and denote c 1 = c 1 (g, δ 0 ). In the proof of Lemma 13.1, we established that c 1 < x 1 = x 1 (g) < 1/2, y g : x → 20y g (x) + 4x is strictly increasing on ]0, 1/2] and y g (x 1 ) = 1. It follows that 20y g (c 1 ) ≤ y g (c 1 ) < y g (x 1 ) = 1 and thus y g (c 1 ) < 1/20. Moreover, if g is a prime power then β g = 1/4 and thus y g (c 1 ) < β g which implies by (ii) that c 1 ≤ c 2 .

13.3. Proof of Theorem 13.3. We are now ready to prove Theorem 13.3. Let δ 0 ≥ 0, g ≥ 2 be an integer and g = t i=1 p γ i i be the prime decomposition of g where p γ 1 1 = min 1≤i≤t p γ i i . Let c 0 = min (c 1 , c 2 ) ∈ ]0, 1/2[ where c 1 = c 1 (g, δ 0 ) is defined in Lemma 13.1 and c 2 = c 2 (g) is defined in Lemma 13.2 and let c such that 0 < c < c 0 .

Using the function y g defined by (76), we denote for 0 < x < 1/2 and ε ≥ 0,

b 1 (x, ε) = y g (x) + ε, b(x, ε) = 3b 1 (x, ε) + x + ε, t(x, ε) = b(x, ε) + b 1 (x, ε) + ε, b 2 (x, ε) = (1 + ε)(5b 1 (x, ε) + 3t(x, ε))
and we define

h 1 (x, ε) = b(x, ε) + b 2 (x, ε), h 2 (x, ε) = x(8 + δ 0 + ε) + b 1 (x, ε) + (6 + δ 0 + ε) x b 2 (x, ε) 1 -h 1 (x, ε) (if h 1 (x, ε) < 1).
We check that, for ε = 0, h 1 (x, 0) = 20y g (x) + 4x and h 2 (x, 0) = h g,δ 0 (x) where h g,δ 0 is defined by (77). Let x 1 = x 1 (g) be defined by Lemma 13.1 (i). The function h 1 (•, 0) is strictly increasing on ]0, x 1 ] (see the proof of Lemma 13.1). Since c < c 0 ≤ c 1 < x 1 and h 1 (x 1 , 0) = 1, we have h 1 (c, 0) < 1. Since h 1 (c, ε) tends to h 1 (c, 0) as ε → 0, there exists ε 1 = ε 1 (g, c) > 0 such that if 0 ≤ ε < ε 1 then h 1 (c, ε) < 1 and thus h 2 (c, ε) is well-defined.

Moreover, h 2 (•, 0) is strictly increasing on ]0, x 1 [ (see the proof of Lemma 13.1) and thus h 2 (c, 0) < h 2 (c 1 , 0) = 1/8. Since h 2 (c, ε) is well-defined for 0 ≤ ε < ε 1 and h 2 (c, ε) tends to h 2 (c, 0) < 1/8 as ε → 0, there exists ε 2 = ε 2 (g, δ 0 , c) such that 0 < ε 2 < ε 1 and if 0 ≤ ε < ε where N = g n . Thus, by (78) and by using that h 2 = c(8

+ δ 0 + ε) + b 1 + (6+δ 0 +ε) c b 2 1-h 1
, we obtain .

By taking δ = δ 0 + ε/2 > δ 0 , δ depends only on g, δ 0 and c and the term in O(•) is g,δ 0 ,c n -δ , which establishes (1) and thus completes the proof of Theorem 13.3.

13.4. Proof of Theorem 2.7. We use the notations of Lemmas 13.1 and 13.2. For each pair (g, δ 0 ), we check numerically that the corresponding value of c 0 in Table 1 satisfies c 0 ∈ ]0, 1/2[, 20y g (c 0 ) + 4c 0 < 1, h g,δ 0 (c 0 ) ≤ 1 8 and y g (c 0 ) ≤ β g . By Lemma 13.1 (iii) and Lemma 13.2 (ii), this implies that c 0 ≤ c 1 (g, δ 0 ) and c 0 ≤ c 2 (g). It follows from Theorem 13.3 that Theorem 2.1 holds with c 0 .

14. Proof of Theorem 2.5

We will need the following corollary of Theorem 2.1. Corollary 14.1. Let g ≥ 2 be an integer and δ 0 ≥ 0 be a real number. Let c 0 = c 0 (g, δ 0 ) ∈ ]0, 1/2[ be as in Theorem 2.1. For any 0 < c < c 0 , there exist n 0 = n 0 (g, δ 0 , c) ≥ 1 and δ = δ(g, δ 0 , c) > δ 0 such that for any integer n ≥ n 0 , A ⊂ {0, . . . , n -1} satisfying 0 ∈ A and |A| ≤ cn and for any (d j ) j∈A ∈ {0, . . . , g -1} A such that (d 0 , g) = 1, we have and to note that since |A| ≤ cn, we have √ g n ≤ g n-|A| g (c-1/2)n and since c-1/2 < c 0 -1/2 < 0 and δ depends only on g, δ 0 and c, we have g (c-1/2)n g,δ 0 ,c n -δ .

We are now ready to prove Theorem 2.5. Let n ≥ 2, A ⊂ {0, . . . , n -1} and (d j ) j∈A ∈ {0, . . . , g -1} A . By partial summation, we obtain Remark 15.2. For general g ≥ 2 and δ 0 ≥ 0, we will show that under GRH, Theorem 2.1 holds with c 0 = c 0 (g, δ 0 ) which is defined as a solution of an equation (see Lemma 15.9 and Theorem 15.10). For any given g ≥ 2, the largest value of c 0 (g, δ 0 ) is obtained for δ 0 = 0. Moreover, for any δ 0 ≥ 0, c 0 (g, δ 0 ) is an increasing function of g and tends to 1 2(7+δ 0 ) as g → ∞. In particular, for δ 0 = 0, c 0 (g, δ 0 ) tends to 1/14 ≈ 0.07142 as g → ∞.

15.1. Major arcs contribution under GRH. In this section, we will see that assuming GRH permits obtaining stronger results regarding I P 1 and I N P (than those obtained unconditionally in Section 11). 

(log N ) 4     + O N c B 1 B (log N ) 4    
where C 1 (g) and C 2 (g) are defined respectively by [START_REF] Harman | Primes with preassigned digits[END_REF] and [START_REF] Harman | Primes with preassigned digits. II[END_REF].

Proof. The parameters B 1 and B clearly satisfy the condition (4). We put v N = (log N ) 2 which satisfies (43). Since 0 < c < 1 2(1+κ) < 1 2 ≤ 2e -1 ≤ C 1 (g)e where I P 1 is defined by (48) and I N P is the contribution of the nonprincipal characters in (45). Since we assume GRH, it follows from Lemma 15.5 that

I P 1 = N g -|A| g ϕ(g)   1 + O g,κ,c   n 2 log n n log 3 n 1- 1 2(1+κ)c   + O g,κ,c B N 1/2 (log N ) 6   + O N B 1 B (log N ) 3
and by Lemma 15.7,

I N P = O g,κ,c N g -|A| BB 1 N 1/2 (log N ) 6 .
To complete the proof, it suffices to insert these estimates of I P 1 and I N P into (85) and to use that g |A| ≤ N c .

  extends the definition of D(n, A, d) given in Section 1.3) and by f n,A,d the indicator function of the set D(n, A, d):

2 / 3 P

 23 (log d P ) 8/3 .

Remark 7 . 2 .

 72 (v) w(y) = O e -|y| 1/2 for any y ∈ R, where w(y) = R w(u) e(-yu)du. Since w has compact support, it follows that w ∈ C ∞ (R) and all derivatives of w are bounded.

Lemma 7 . 3 .

 73 If w : R → R satisfies the conditions of Lemma 7.1 then, for any real numbers 0 < t < 1 2 and v ≥ 1, we have (a) k∈Z t | w (kt)| = O(1), (b)

Proof. This is [ 20 ,Lemma 7 . 8 .

 2078 Theorem 2 p. 98]. If g ∈ C 1 ([a, b]) and b -a ≥ a 0.75 e (log a) 0.8 +(log a) 0.1 log a, a ≥ a 0 ≥ e then a<k≤b g(k)Λ(k) = a<k≤b g(k) + O M (b -a)e -(log a) 0.1 where M = |g(b)| + b a |g (t)| dt. Proof. Let t 0 = a+a 0.75 e (log a) 0.8 ≤ b. For any t 0 ≤ t ≤ b, since t-a ≥ a 0.75 e (log a) 0.8 , Lemma 7.6 gives

  log a)a 0.75 e (log a) 0.8 and since (log a)a 0.75 e (log a) 0.8 ≤ (b -a) e -(log a) 0.1 , we obtain for any a ≤ t ≤ b, R a (t) = O (b -a)e -(log a) 0.1 .

  d 1 which has already been studied in Section 8 to bound the contribution of the minor arcs.

2 then h 2 p γ 1 1 4p γ 1 1 4 1 < log p γ 1 1 4 1 8c + b 1 c 1 2c + 2b 1 c

 2111141111 (c, ε) < 1/8. Since c < c 0 ≤ c 2 and since b 1 (•, 0) = y g is strictly increasing on ]0, 1/2[, we have b 1 (c, 0) < b 1 (c 2 , 0) = y g (c 2 ) = log log g (seeLemma 13.2). Since b 1 (c, ε) tends to b 1 (c, 0) as ε → 0, we deduce that there existsε 3 = ε 3 (g, c) > 0 such that if 0 ≤ ε < ε 3 then b 1 (c, ε) < log log g . We henceforth take ε = min( ε 2 2 , ε 3 2 , 1 64) > 0 and we putb 1 = b 1 (c, ε), b = b(c, ε) = 3b 1 + c + ε, t = t(c, ε) = b + b 1 + ε, b 2 = b 2 (c, ε) = (1 + ε)(5b 1 + 3t)and (78)h 1 = h 1 (c, ε) = b + b 2 , h 2 = h 2 (c, ε), α = 6 + δ 0 + ε 1 -h 1 which satisfy (a) h 1 < 1, (b) h 2 < 1/8, (c) b log g .Moreover, we check that h 1 ≥ 20b 1 . By (a), this implies b 1 < 1/20. We also check that h 2 ≥ c(8+ δ 0 + ε) + b 1 ≥ 8c,which implies by (b) that c < 1/64 and (79) c(3+ δ 0 + ε) + 2b 1 ≤ h 2 + b 1 < 1/8 + 1/20 < 1/2.We also deduce thatb 1 + c < 1/8, 3b 1 + 2c < 1/4, b < 1/5.In particular, b 1 , b, t, ε and c satisfy (74). In addition, ε, b 1 , b, t, b 2 and α are positive and we can check that they depend only on g, δ 0 and c. It follows from Proposition 12.1 that there exists n 0 = n 0 (g, δ 0 , c) ≥ 200 such that for any n ≥ n 0 , A ⊂ {0, . . . , n -1} satisfying 0 ∈ A and |A| ≤ cn and for any d = (d j ) j∈A ∈ {0, . . . , g -1} A such that (d 0 , g) = 1, we have0≤k<g n Λ(k)f n,A,d (k) = N g -|A| g ϕ(g) 1 + O g,δ 0 ,c n 6-α(1-b-(1+ε)(5b 1 +3t)) log n + (log N ) 6 N t-b-b 1 +O g,δ 0 ,c n 8-+α(1+ε)(5b 1 +3t) (log n) 3 8c + n 2+α(1+ε)(5b 1 +3t) log n N 1/4-b-c+O g,δ 0 ,c n 3-(log n)3 2c + O (log N ) 4 N b-3b 1 -c +O (log N ) 4

1 c) 4 N ε/ 2 .

 142 )f n,A,d (k) = N g -|A| g ϕ(g) 1 + O g,δ 0 ,c n -δ 0 -ε log n + (log N ) 6 N ε +O g,δ 0 ,c nBy using the inequalities h 2 < 1/8, b + c < 1/5 + 1/64 < 1/4, the fact that α, b 2 , b and ε depend only on g, δ 0 and c and the inequality (79), it follows that0≤k<g n Λ(k)f n,A,d (k) = N g -|A| g ϕ(g) 1 + O g,δ 0 ,c n -δ 0 -ε (log n) 3 2c

  p<g n ∀j∈A, ε j (p)=d j log p = g n-|A| g ϕ(g) 1 + O g,δ 0 ,c n -δ .Proof. It suffices to write0≤k<g n ∀j∈A, ε j (k)=d j Λ(k) -p<g n ∀j∈A, ε j (p)=d j log p ≤ p ν <g n ν≥2 log p ≤ π √ g n log g n √ g n

g n- 1 2 g 15 .Theorem 15 . 1 .

 1215151 ≤p<g n f n,A,d (p) = 1 log g n g n-1 ≤p<g n f n,A,d (p) log p n-1 ≤p<g n f n,A,d (p) log p = 1 log g n 1 n -1 g n-1 ≤p<g n f n,A,d (p) log p. Moreover, if n -1 ∈ A and d n-1 ≥ 1 then, for any k < g n-1 , we have f n,A,d (k) = 0, hence(81)p<g n f n,A,d (p) = 1 log g n 1 + O 1 n p<g n f n,A,d (p) log p.Theorem 2.5 then follows immediately from (81) and Corollary 14.1. Explicit admissible values of c 0 under GRH The purpose of this section is to provide explicit admissible values of c 0 under GRH (Generalized Riemann Hypothesis). Assume GRH. Theorem 2.1 holds with c 0 = c 0 (g, δ 0 ) given in

15. 1 . 1 . 2 .Proposition 15 . 8 .

 112158 Estimate of I P 1 under RH. We will need the following lemma.Lemma 15.3. Assume RH. If g ∈ C 1 ([a, b]) and a ≥ 2 then a<k≤b g(k)Λ(k) = a<k≤b g(k) + O M b 1/2 (log b) 2 where M = |g(b)| + b a |g (t)| dt.By Lemma 5.28, since B 1 ≤ N κ4(1+κ) and |A| ≤ cn, the double sum over q 2 and k 2 on the right-hand side of (84) isg,κ,c N g -|A| (log N ) 2 .This completes the proof.[START_REF] Huxley | Large sieves and zero-density theorems[END_REF].Conclusion on the minor and major arcs under GRH. Assume GRH. Let g ≥ 2 be an integer and c > 0 be a real number. Let n ≥ 100, A ⊂ {0, . . . , n-1} and d = (d j ) j∈A ∈ {0, . . . , g -1} A such that 0 ∈ A and (d 0 , g) = 1. We denote N = g n . If |A| ≤ cn then for any real numbers κ > 0, B 1 and B satisfyingg ≤ B 1 ≤ N κ 4(1+κ) , 4B 1 (log N ) 2 ≤ B )f n,A,d (k) = N g -|A| g ϕ(g)   1 + O g,κ,c

- 1 ,

 1 B 1 ≤ N 1/4 ≤ N 2/5 and |A| ≤ cn, Lemma 10.1 asserts that0≤k<g n Λ(k)f n,A,d (k) = I P 1 + I N P + O g -|A| BB 1 N (log N ) 2 + O N g -|A| N c B 1 B (log N ) 4

Table 1 .

 1 . c 0 (g, δ 0 ) • 10 3

	a δ 0 a a 0 a	g a a	2 2.1 3.1 3.6 4.0 4.2 4.7 6.8 3 4 5 6 10 10 3 2 • 3 100 2 200 0.7 9.0
	0.5		2.1 3.0 3.6 3.9 4.1 4.6 6.6	0.7	8.6
	1		2.0 3.0 3.5 3.8 4.0 4.5 6.4	0.7	8.3
	10		1.7 2.3 2.6 2.8 2.9 3.2 4.2	0.7	5.1
	100		0.71 0.81 0.86 0.88 0.90 0.93 1.02	0.7	1.08

  11.2.3. Conclusion for I N P . We summarize the results of Sections 11.2.1 and 11.2.2 in the following lemma.

	Lemma 11.15. Let g = t i=1 p γ i i be the prime decomposition of g where p γ 1 1 = min 1≤i≤t

Table 2 .

 2 

	a δ 0 a a 0 a	g 2 a a 16 24 29 31 33 37 52 3 4 5 6 10 10 3 2 • 3 100 2 200 68 69
	0.5	15 23 28 30 32 35 49	64	64
	1	15 23 27 29 31 34 47	60	60
	10	11 15 17 18 19 20 25	28	29
	100	3.5 3.9 4 4.1 4.1 4.2 4.5	4.6	4.6

Table 2 .

 2 c 0 (g, δ 0 ) • 10 3 under GRH We will prove Theorem 15.1 in Section 15.3.3.

Proof. Since we assume RH, we have for any x ≥ 2, ψ(x) = x + O x 1/2 (log x) 2 (see for instance [START_REF] Montgomery | Multiplicative number theory. I. Classical theory[END_REF]Theorem 13.1 p. 419]). It follows that for any a ≤ t ≤ b,

To complete the proof, it suffices to apply Lemma 7.5.

We are now able to establish a more precise version of Lemma 11.1 under RH. Lemma 15.4. Assume RH. For any 1 ≤ q ≤ B 1 and K 2 (q) ≤ k 2 ≤ N -K 2 (q), we have

Proof. We denote by Σ(q, k 2 ) the left-hand side sum and we put a = k 2 -qN B v N and b = k 2 + qN B v N . As in the proof of Lemma 11.1, since

Moreover, as in the proof of Lemma 11.1, since

and since 1

which completes the proof.

We derive the following estimate of I P 1 (defined by (48)) under RH.

Lemma 15.5. Assume RH. Let κ > 0 and 0 1+κ) and |A| ≤ cn then

Proof. It follows from (48) and (82) that

where Σ 1 and Σ 2 are defined as in the proof of Lemma 11.2. Moreover, since |A| ≤ cn and B 1 ≤ N κ 4(1+κ) , we obtain as in the proof of Lemma 11.2

which completes the proof.

15.1.2. Upper bound for I N P under GRH.

Lemma 15.6. Assume GRH. If χ 1 mod q 1 is a primitive character such that

Proof. We denote by Σ(χ 1 , q 2 , k 2 ) the sum on the left-hand side of (83) and we put q

Since we assume GRH and χ 1 is nonprincipal, we have for any x ≥ 2,

(see for instance [28, Theorem 13.7 p. 425]). It follows that

We derive the following estimate of I N P (defined by (53)) under GRH. Lemma 15.7. Assume GRH. Let κ > 0 and 0 < c < 1 2(1+κ) . If B 1 ≤ N κ 4(1+κ) and |A| ≤ cn then

Proof. It follows from (53) that

where U is defined by

Moreover, by Lemma 15.6,

15.3. Completion of the proof of Theorem 15.1. In this section, we will provide an explicit admissible value of c 0 (g, δ 0 ) under GRH for general integer g ≥ 2 and real number δ 0 ≥ 0 (see Theorem 15.10). We will then be able to prove Theorem 15.1.

In order to define an admissible value of c 0 (g, δ 0 ), we will need the following lemma (it will be proved in Section 15.3.1). Lemma 15.9. For g ≥ 2 and x > 0, let y g (x) be defined by (76). For any g ≥ 2 and δ 0 ≥ 0, (i) the equation

(iii) for any g ≥ 2, c 0 (g, δ 0 ) is a decreasing function of δ 0 , (iv) for any δ 0 ≥ 0, c 0 (g, δ 0 ) is an increasing function of g, (v) for any δ 0 ≥ 0, c 0 (g, δ 0 ) tends to 1 2(7+δ 0 ) as g → ∞. We will then establish in Section 15.3.2: Theorem 15.10. Assume GRH. For any g ≥ 2 and δ 0 ≥ 0, Theorem 2.1 holds with c 0 = c 0 (g, δ 0 ) defined in Lemma 15.9 (i).

We will finally obtain Theorem 15.1 as a consequence of Theorem 15.10 in Section 15.3.3. 15.3.1. Proof of Lemma 15.9. For g ≥ 2, δ 0 ≥ 0 and x > 0, we define k g,δ 0 (x) = 4y g (x) + 2x(3 + δ 0 ).

(i) An elementary calculation shows that the functions y g and k g,δ 0 are strictly increasing on ]0, 1/2] ⊂ ]0, C 1 (g)e -1 ]. Moreover, k g,δ 0 (x) tends to 0 as x → 0 and

(ii) If 0 < x < 1/2 is such that k g,δ 0 (x) ≤ 1 then, since k g,δ 0 is strictly increasing on ]0, 1/2], we have x ≤ c 0 .

(iii) Let g ≥ 2 and δ 0 ≥ δ 0 ≥ 0. By denoting c 0 = c 0 (g, δ 0 ) and c 0 = c 0 (g, δ 0 ), we have

Since k g,δ 0 is strictly increasing on ]0, 1/2[, it follows that c 0 ≤ c 0 .

(iv) Let δ 0 ≥ 0 and g ≥ g ≥ 2. We denote c 0 = c 0 (g, δ 0 ) and c 0 = c 0 (g , δ 0 ). We established in Section 13.1 (v) that if 0 < x ≤ 2 log 6 eπ then (g ≥ 2 → y g (x)) is decreasing. Since 6c 0 ≤ k g,δ 0 (c 0 ) = 1, we have c 0 ≤ 1/6 ≤ 2 log 6 eπ and it follows that

) is an increasing function of g and c 0 (g, δ 0 ) ≥ c 0 (2, δ 0 ) > 0, there exists δ 0 > 0 such that c 0 (g, δ 0 ) tends to δ 0 as g → ∞. Moreover, for g ≥ 6,

15.3.2. Proof of Theorem 15.10. Let g ≥ 2, δ 0 ≥ 0 and c 0 ∈ ]0, 1/2[ where c 0 = c 0 (g, δ 0 ) is defined in Lemma 15.9. Assume GRH and take any c such that 0 < c < c 0 . Let k g,δ 0 be the function defined in Section 15.3.1. Since k g,δ 0 is strictly increasing on ]0, 1/2], we have k g,δ 0 (c) < k g,δ 0 (c 0 ) = 1. Thus, there exists ∆ = ∆(g, δ 0 , c) > 0 such that

We define b 1 = y g (c) + ∆ which satisfies b 1 + 3+δ 0 2 c < 1/4 and we easily see that there exists n 0 = n 0 (g, b 1 ) ≥ 100 such that for any n ≥ n 0 , by denoting N = g n , we have g ≤ N b 1 and 4(log N ) 3 ≤ N 1 4 -b 1 . Note that n 0 depends only on g, δ 0 and c. We assume now that n ≥ n 0 and we define

The choice of n 0 guarantees that g ≤ B 1 and 4B 

The power of n in the term in the first O g,κ,c (•) is E := 3 -1 2(1+κ)c . Since 1/4 -b 1 -c/2 > 0 and ∆ > 0, we obtain for any δ such that E < -δ,

Moreover, since b 1 + 3+δ 0 2 c < 1/4, we have E < -δ 0 . This allows us to choose δ = 1 2 (δ 0 -E) so that E < -δ and δ > δ 0 . Since ∆, b 1 , κ and δ depend only on g, δ 0 and c, we obtain For each pair (g, δ 0 ), we check numerically that the corresponding value of c 0 in Table 2 satisfies c 0 ∈ ]0, 1/2[ and 4y g (c 0 ) + 2c 0 (3 + δ 0 ) ≤ 1 where y g be defined by (76). It follows from Lemma 15.9 (ii) and Theorem 15.10 that if we assume GRH then Theorem 2.1 holds with c 0 .