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Abstract

The∞-parent spatial Lambda-Fleming Viot process, or∞-parent SLFV, is a model for spatially

expanding populations in which empty areas are filled with "ghost" individuals. The interest of this

process lies in the fact that it is akin to a continuous-space version of the classical Eden growth

model, while being associated to a dual process encoding ancestry and allowing one to study the

evolution of the genetic diversity in such a population.

In this article, we focus on the growth properties of the ∞-parent SLFV in two dimensions.

To do so, we first define the quantity that we shall use to quantify the speed of growth of the

area covered with the subpopulation of real individuals. Using the associated dual process and a

comparison with a first-passage percolation problem, we show that the growth of the “occupied"

region in the ∞-parent SLFV is linear in time. We use numerical simulations to approximate the

growth speed, and conjecture that the actual speed is higher than the speed expected from simple

first-moment calculations due to the characteristic front dynamics.

We then study a toy model of two interacting growing piles of cubes in order to understand

how the growth dynamics at the front edge can increase the global growth speed of the "occupied"

region. We obtain an explicit formula for this speed of growth in our toy model, using the invariant

distribution of a discretised version of the model. This study is of interest on its own right, and its

implications are not restricted to the case of the ∞-parent SLFV.

Running headline: Growth properties of the ∞-parent SLFV

Keywords: spatial Lambda-Fleming Viot process, range expansion, duality, percolation, stochas-

tic growth process, sub-additivity, speed of growth
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1 Introduction

The ∞-parent spatial Λ-Fleming Viot process, or ∞-parent SLFV, was introduced in [32] as a model

for expanding populations in R2. Its main feature is the use of "ghost" individuals (thereafter referred
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to as "type 0" individuals) to fill empty areas, adapting ideas from [13, 23]. In [13, 23, 32], ghost

individuals can reproduce as well, modelling stochastic fluctuations in population sizes, but with a

selective disadvantage against real individuals (thereafter referred to as "type 1" individuals), ensuring

that population expansions can indeed occur. In [32], it is shown that the∞-parent SLFV corresponds

to the limit of an SLFV with strong selection when the selective advantage of type 1 individuals over

type 0 individuals becomes infinitely strong. Therefore, in the limiting regime, we no longer observe

local extinctions due to the stochasticity in reproduction at the front, where densities of type 1

individuals are lower.

One of the main interests of the∞-parent SLFV lies in its dual interpretation, both as a stochastic

growth model akin to models from percolation theory, and as a population genetics process with a

spatial structure. Indeed, if we consider the area occupied by type 1 individuals, then its growth

dynamics corresponds to a continuous space version of the Eden model [14]. Moreover, and contrary

to the Eden model, the ∞-parent SLFV is equipped with tools allowing one to investigate genetic

diversity patterns, assuming that real individuals are further subdivided into different types (for

instance using the concept of "tracers", see [13, 23]). Therefore, it is potentially suited to study how

the characteristic genetic diversity patterns observed in real expanding populations [21, 22, 24] arise.

In this paper, we shall only focus on the region covered by real individuals, without specifying different

subtypes of real (or type 1) individuals. However, understanding the family structure in this model is

a first step towards the understanding of how genetic diversity evolves in a multitype population.

The ∞-parent SLFV process belongs to the family of spatial Λ-Fleming Viot processes, which are

characterised by a reproduction dynamics driven by an exogeneous Poisson point process of reproduc-

tion events rather than by individual reproduction. Informally, the ∞-parent SLFV is constructed as

follows. We consider that at any time t, the area occupied by type 1 individuals is represented by a

measurable set Et ⊆ Rd. Reproduction events are given by a Poisson point process Π on R+×R2 with

intensity measure αdt⊗dx, α > 0, which encodes the sequence of times and centres of the reproduction

events. For the moment, to ease the exposition, we consider that all reproduction events have the

same shape: a ball with fixed radius R > 0. In Section 2, we shall consider the more general case of

ellipses with random bounded parameters. Then, for all (t, z) ∈ Π, if BR(z) is the ball with centre z

and radius R and if Vol(Et− ∩ BR(z)) 6= 0, we set Et = Et− ∪ BR(z), and we do nothing otherwise.

In other words, whenever a reproduction event occurs, if the corresponding area contains some real

individuals, then one of them reproduces and completely fills the area with its descendants. When we

deal with genealogies, we shall assume that the reproducing individual is chosen uniformly at random

among the real individuals occupying the ball just before the event (though in fact we shall not need
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to specify an ancestor in our approach below).

Formulated this way, the ∞-parent SLFV is very similar to models from continuous first-passage

percolation, and in particular to the model introduced by Deijfen in [10], in which reproduction occurs

when z ∈ Et−. Contrary to the ∞-parent SLFV, this process does not jump when z /∈ Et− but

Vol(Et− ∩ BR(z)) > 0, and so we expect its growth speed to be different from that of the ∞-parent

SLFV (see [10, 11]). Moreover, and perhaps more importantly, the ∞-parent SLFV is defined for

more general initial conditions, which are not restricted to Vol(E0) < +∞. In particular, this means

that the definition we just provided is only informal: when Vol(E0) = +∞, an infinite number of

reproduction events intersect the occupied area in any time interval, and the jump rate of the process

is infinite. Rigorously, the ∞-parent SLFV is a measure-valued process, which can be defined as the

limit of a sequence of SLFVs with strong selection, or (under stricter conditions which will be satisfied

in this article) as the unique solution to a well-posed martingale problem [32]. If Vol(E0) < +∞, it can

also be defined as a process taking its values in the class of measurable subsets of Rd. In what follows,

we shall take E0 such that Vol(E0) = +∞ and we shall use the characterisation of the process as the

solution to a well-posed martingale problem (and in fact the dual process offered by this approach will

be the key ingredient of most of our proofs).

While most of the studies on SLFVs with selection were carried out in a weak selection regime

(see, e.g., [16, 17, 18] for selection against one type, [20] for general forms of selection, [6, 8, 29] for

fluctuating selection and [15] for selection against heterozygosity), the ∞-parent SLFV corresponds

to a strong selection limit, motivated by the interpretation of ghost individuals as modelling empty

areas. In particular, and contrary to previous works on SLFVs with selection, the results we obtain

do not require to rescale time, nor space. Moreover, in most SLFVs (as well as in the original ∞-

parent SLFV, see [32]), the affected areas are balls, whose radii can be fixed or random. However,

biological experiments suggest that the shape of the areas impacted by reproduction events influences

the observed genetic diversity patterns [22]. Moreover, this excludes the case of a preferential expansion

direction, for example towards a resource by a phenomenon similar to chemotaxis. Therefore, in this

article, we consider a variant of the∞-parent SLFV in which the area affected by a reproduction event

can be shaped like an ellipse rather than a ball.

In this article, we are interested in the growth properties of the occupied area in the ∞-parent

SLFV and we focus on the following questions: Is the growth linear in time ? To what extent is the

speed of growth affected by the reproduction dynamics at the front edge ? How is it affected by the

shape of the reproduction events ? In particular, we would like to compare the growth properties of

the occupied region in the ∞-parent SLFV to those of first-passage percolation models, whose most
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well-known representative is probably the Eden growth model. In order to do so, we first give a

brief overview of what is known of their growth properties. First-passage percolation processes are

stochastic growth models originally defined on a lattice (generally Zd, d ≥ 2). In these models, each

vertex is either occupied, or empty. If vertex x ∈ Zd becomes occupied at time t, and if it is connected

to a vertex y ∈ Zd by an edge (denoted e), then vertex y becomes occupied at time t + τe, where τe

is independent from one edge to another (but not necessarily identically distributed). Whether the

expansion is linear in time depends on the distribution of the time needed to pass through any given

edge of the grid (see, e.g., [4]) and whether one considers short-range percolation, such as nearest

neighbour percolation, or long-range percolation, in which two vertices x, y ∈ Zd are connected by

an edge no matter the distance between them [7, 9, 34]. In particular, when edge passing times are

distributed as in the Eden growth model, growth is linear in time for short-range percolation and

potentially faster for long-range percolation, depending on the relation between the distribution of τe

and the distance between the two vertices it connects [4, 7]. See, e.g., [10, 12, 26] for examples of

extensions of first-passage percolation models to a continuous setting.

When the growth is linear in time, in general it is possible to obtain lower and upper bounds

on the speed of growth (see, e.g., [2, 38]), or to use simulations to approximate it [1]. For other

stochastic growth models, such as the corner growth model [36], which belongs to the family of last-

passage percolation models, it is possible to obtain an explicit speed of growth for specific passage

time distributions [35]. As many other growth models, the Eden model is conjectured to belong to

the universality class of the Kardar-Parisi-Zhang (KPZ) equation [28]. This equation generates rough

fronts, whose characteristics are similar to the ones of fronts observed in some expanding biological

populations (see, e.g., [27]). Such a conjecture is notably difficult to establish; to our knowledge, it

has only been demonstrated in the case of the solid-on-solid growth model in [5].

The main result of this article is Theorem 2.11 in Section 2.3, and states that when the area

affected by a reproduction event has bounded shape parameters, the growth of the area occupied by

type 1 individuals is linear in time. In particular, this means that compared to the model of Deijfen

[10], the increased reproduction rate at the front and the unbounded initial condition do not lead

to superlinear growth. To prove this result, we first use sub-additivity arguments to show that the

growth is at least linear in time. Next, we use a comparison with a short-range percolation model to

show that the growth is also at most linear in time, which allows us to conclude. Our proof also yields

an explicit lower bound on the speed of growth.

In Section 2.4, we use numerical simulations to approximate the growth speed of the area occupied

by type 1 individuals, and we compare it to the lower bound we obtained. This bound was initially
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conjectured to be equal to (or at least a good approximation for) the growth speed, but the simulations

show that the actual speed is significantly higher. Moreover, they suggest that the growth is driven

by "spikes" which occur at the front and then thicken in all directions.

In order to understand how the spike phenomenon can make the front of an expanding population

advance faster, we consider a simple toy model in Section 5, composed of two interacting growing

piles of cubes. Its main interest is that it is possible to obtain an explicit expression for its speed of

growth. In this simplified model, new cubes can also grow sideways, at a rate which is proportional to

the height difference between the two piles. We show that the interaction between the two piles leads

to an increase in the speed of growth of each pile by a factor of ∼ 1.46 compared to the rate at which

each pile grows by itself independently of the other pile, which is in line with numerical simulations.

The proof relies on a coupling with a discretised version of the process, for which it is possible to

compute the invariant distribution.

More precisely, the paper is structured as follows. In Section 2, we define the variant of the ∞-

parent SLFV with elliptical reproduction events rigorously, introduce its dual, and define what we

mean by the "speed of growth" of the occupied region in the process. We also state the main result

of the paper, Theorem 2.11, and analyse numerical simulations of the ∞-parent SLFV in Section 2.4.

The proof of Theorem 2.11 spans two sections. In Section 3, we use the dual process to show that the

growth is at least linear in time, and provide a lower bound on the speed of growth of the process.

In Section 4, we use a comparison with a first-passage percolation process (also based on the dual

process) to show that the growth is at most linear in time. Combining the results from both sections

yields Theorem 2.11. In Section 5, we study the toy model of interacting growing piles of cubes, and

obtain an explicit expression for its speed of growth. This result is of interest in its own right, but

also explains the discrepancy between the numerical approximation for the speed of growth of the

occupied area in the ∞-parent SLFV and the value initially conjectured.

2 The∞-parent spatial Lambda-Fleming Viot process with elliptical

reproduction events

In this section, we rigorously define the ∞-parent SLFV, in the version we use in this article. Indeed,

the process was originally defined with reproduction events occurring in balls, while here we consider

that they rather occur in ellipses, as it is straightforward to generalise the construction in [32] to our

case. Then, we introduce the dual process of potential ancestors associated to the∞-parent SLFV. We

conclude by formalising what we mean by the speed of growth of the occupied area, and by explaining
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Figure 1: Ellipse with parameters (a, b, γ).

how to study it using the dual process.

2.1 Definition of the process

All the random objects we consider in this section are defined over some probability space (Ω,F ,P). We

use the notation N = {0, 1, 2, ...}. In all that follows, let µ̃ be a finite measure on (0,+∞)2×(−π/2, π/2)

such that there exists R > 0 satisfying

µ̃
((

(0,R]× (0,R]
)c × (−π/2, π/2)

)
= 0.

Let Rµ̃ be the smallest R > 0 such that this condition is satisfied. We also set

Sµ̃ = (0,Rµ̃]× (0,Rµ̃]× (−π/2, π/2).

Ellipses. We first set the notation regarding ellipses.

Definition 2.1. Let zc = (xc, yc) ∈ R2, (a, b) ∈ (0,+∞)2 and γ ∈ (−π/2, π/2). The ellipse with

centre zc and parameters (a, b, γ), denoted by Ba,b,γ(zc), is defined by:

Ba,b,γ(zc) =


xc
yc

+Aγ

ar cos(θ)

br sin(θ)

 : r ∈ [0, 1], θ ∈ [0, 2π)


where

Aγ =

cos(γ) − sin(γ)

sin(γ) cos(γ)

 .
See Figure 1 for an illustration. We denote the volume of an ellipse with parameters (a, b, γ) by

Va,b,γ := Vol(Ba,b,γ(0)).
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For all (a, b) ∈ (0,+∞)2 and γ ∈ (−π/2, π/2), if f is an element of the space Cc(R2) of all

continuous and compactly supported functions R2 → R, let

Suppa,b,γ(f) :=
{
z ∈ R2 : Vol (Ba,b,γ(z) ∩ Supp(f)) 6= 0

}
,

where Supp(f) stands for the support of f . The set Suppa,b,γ(f) can be interpreted as the set of all

potential centres z ∈ R2 for ellipses with parameters (a, b, γ) overlapping the support of f . For all

z ∈ R2 and ω : R2 → {0, 1} Lebesgue-measurable, let Θa,b,γ
z (ω) : R2 → {0, 1} be the function defined

by

Θa,b,γ
z (ω) := 1{Ba,b,γ(z)c} × ω.

If ω represents the density of type 0 (or ghost) individuals, then Θa,b,γ
z (ω) corresponds to filling the

ellipse Ba,b,γ(z) with type 1 individuals, without affecting the rest of R2.

State space. We now introduce the state space over which the ∞-parent SLFV is defined. Let M̃λ

be the space of all measures on R2 ×{0, 1} whose marginal distribution over R2 is Lebesgue measure.

In other words, M̃λ is the space of all measures M on R2 × {0, 1} such that the following property is

satisfied:

∀f ∈ Cc(R2),
∫
R2×{0,1}

f(z)M(dz, dk) =
∫
R2
f(z)dz.

By a standard decomposition theorem, for all M ∈ M̃λ, there exists ω : R2 → [0, 1] measurable such

that

M(dz, dk) = (ω(z)δ0(dk) + (1− ω(z))δ1(dk))dx. (2.1)

LetMλ be the set of all measures M ∈ M̃λ such that there exists ω : R2 → {0, 1} (instead of [0, 1])

satisfying (2.1). For all M ∈Mλ, we refer to any measurable function ω : R2 → {0, 1} satisfying (2.1)

as a density of M , and denote it by ωM . Note that ωM is not unique, but two densities will only

differ at a Lebesgue-null set of points. Therefore, since we shall only consider integrals of continuous

functions with respect to the measures describing the current state of the population, the choice of

the density ωM used in the analysis below will not matter. Moreover, ωM represents the density in

type 0 (or ghost) individuals. This choice is motivated by the duality formula proved in [32], which

we recall in Section 2.2.

We endowMλ with the topology of vague convergence. Let DMλ
[0,+∞) be the space of all càdlàg

Mλ-valued paths, endowed with the standard Skorokhod topology.

Remark 2.2. Assume that the state of the population at time t is encoded by M ∈ Mλ. Since the
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density ωM is not uniquely defined, for any given location z ∈ R2, ωM (z) is not uniquely defined.

Hence, it cannot be interpreted as the type of the individuals living there. Note however that just

below Definition 2.9, we shall introduce a way to uniquely assign a type to any given location, which

does not depend on the choice of the density.

Martingale problem. When reproduction events have bounded shape parameters, it is possible

to define the ∞-parent SLFV as the solution to a well-posed martingale problem. In order to do so,

we need to introduce some more notation. Let C1(R) be the space of all continuously differentiable

functions F : R→ R. For all f ∈ Cc(R2) and F ∈ C1(R), if ω : R2 → {0, 1} is measurable, we set

〈ω, f〉 :=
∫
R2
f(z)ω(z)dz.

Moreover, we define the function ΨF,f : M ∈Mλ → ΨF,f (M) ∈ R by

∀M ∈Mλ,ΨF,f (M) := F (〈ωM , f〉) .

The functions ΨF,f with F ∈ C1(R) and f ∈ Cc(R2) will be used as the set of functions on which

the martingale problem characterising the process of interest is defined. This martingale problem is

associated to the operator L∞µ̃ defined as follows. For all M ∈Mλ,

L∞µ̃ ΨF,f (M) :=
∫
Sµ̃

∫
Suppa,b,γ(f)

(
1− δ0

(∫
Ba,b,γ(z)

(
1− ωM (z′)

)
dz′
))

×
(
F
(
〈Θa,b,γ

z (ωM ), f〉
)
− F (〈ωM , f〉)

)
dzµ̃(da, db, dγ).

This operator encodes exactly the dynamics described informally in the Introduction. Indeed, repro-

duction events of centre z and parameters (a, b, γ) happen at rate dz ⊗ µ̃(da, db, dγ). Whenever a

reproduction event occurs, then:

1. If the affected area Ba,b,γ(z) contains a positive fraction of (real) type 1 individuals (i.e., if∫
Ba,b,γ(z) (1− ωM (z′)) dz′ 6= 0), then it is filled with type 1 individuals, as encoded by the action

of Θa,b,γ
z on ωM .

2. Otherwise, it stays filled with (ghost) type 0 individuals.

We then have the following characterisation of the∞-parent SLFV process with elliptical reproduction

events.
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Theorem 2.3. For all M0 ∈ Mλ, there exists a unique DMλ
[0,+∞)-valued process (Mt)t≥0 such

that M0 = M0 and, for all F ∈ C1(R) and f ∈ Cc(R2),

(
ΨF,f (Mt)−ΨF,f (M0)−

∫ t

0
L∞µ̃ ΨF,f (Ms)ds

)
t≥0

is a martingale.

Moreover, this process is Markovian.

The proof of this theorem is a direct generalisation of the proofs of the second part of Theorem 2.14

and of Lemma 3.8 in [32], and so we omit it.

Definition 2.4. Let M0 ∈ Mλ. The ∞-parent spatial Λ-Fleming Viot process with elliptical repro-

duction events (or ∞-parent SLFV) with initial condition M0 associated to µ̃ is the unique solution

to the martingale problem (L∞µ̃ , δM0) stated in Theorem 2.3.

Remark 2.5. From a population genetics viewpoint, the ∞-parent SLFV can be seen as modelling the

spread of an extremely advantageous gene, corresponding to the "real" type. For weaker strengths of

selection, the most classical tool to study this question is the Fisher-KPP equation [19, 30], defined

as follows. If the proportion of individuals of the favoured type at the spatial location x ∈ Rd, d ≥ 1,

and at time t ≥ 0 is given by p(t, x) ∈ [0, 1], then p(t, x) evolves according to the Fisher-KPP equation

if it is a weak solution to the equation

∂p

∂t
(t, x) = m

2 ∆p(t, x)dt+ s0p(t, x)(1− p(t, x)), ∀x ∈ Rd, ∀t ≥ 0, (2.2)

where m ≥ 0 and s0 ≥ 0 are respectively the diffusion and selection parameters.

In dimension 1, it is possible to add some stochasticity through a Wright-Fisher noise term. This

cannot be done in higher dimensions. Equation (2.2) and its stochastic counterpart in dimension 1

both admit travelling wave solutions (see, e.g., [33]), corresponding to a linear speed of spread/growth.

However, the spatio-temporal scales at which the spread of a weakly advantageous allele is modelled

by the Fisher-KPP equation are very different from the ones in which the spread of an extremely

advantageous gene is visible. The approaches and results based on the model developped here and on

the Fisher-KPP equation are thus difficult to compare.

The interest of the ∞-parent SLFV as a model for expanding populations lies in the fact that it is

associated to a dual process of potential ancestors, which can be used to study the properties of the

∞-parent SLFV. We now define this dual process, and state the duality relation.
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2.2 Dual process and duality relation

The dual process introduced in this section is defined on a different probability space (Ω,F ,P).

State space. Let Ec be the set of all subsets of R2 which are Lebesgue-measurable, connected, and

whose Lebesgue measure is finite and non-zero. The state space we consider for the dual process is

then the set Ecf of all finite unions of elements of Ec.

Definition of the dual process. We can now define the dual process, called the∞-parent ancestral

process.

Definition 2.6. Let ←−Π be a Poisson point process with intensity measure dt ⊗ dz ⊗ µ̃(da, db, dγ) on

R+ ×R2 × Sµ̃, defined on the probability space (Ω,F ,P), and let E0 ∈ Ecf . The Ecf -valued ∞-parent

ancestral process (E∞t )t≥0 with initial condition E0 associated to µ̃ is defined as follows.

First, we set E∞0 = E0. Then, for all (t, z, a, b, γ) ∈ ←−Π , if E∞t− ∩Ba,b,γ(z) has non-zero Lebesgue

measure, we set

E∞t = E∞t− ∪Ba,b,γ(z).

Lemma 2.7. The process (E∞t )t≥0 introduced in Definition 2.6 is well-defined and Markovian.

Proof. Recall that for all (t, z, a, b, γ) ∈ ←−Π, we have (a, b) ∈ (0,Rµ̃]2. Therefore,

Ba,b,γ(z) ⊆ BRµ̃(z) a.s.,

where BRµ̃(z) is the ball of radius Rµ̃ centred at z, and so we can bound the jump rate of (E∞t )t≥0

from above by that of a ∞-parent ancestral process with the same initial condition and associated to

µ̃(Sµ̃)δ(Rµ̃,Rµ̃,0)(da, db, dγ), which is finite (see Section 4 in [32]).

Duality relation. For all M ∈Mλ and E ∈ Ecf , we set

D̃(M,E) := δ0

(∫
E

(1− ωM (z)) dz
)
.

Intuitively, D̃(M,E) = 0 if the area E contains a positive fraction of real individuals when the

population state is M , and D̃(M,E) = 1 if the area is empty.

The∞-parent SLFV and the∞-parent ancestral process then satisfy the following duality relation,

whose proof is similar to the one in [32].
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Proposition 2.8. Let M0 ∈ Mλ, and let (M∞t )t≥0 be the unique solution to the martingale problem

associated to (L∞µ̃ , δM0). Let E0 ∈ Ecf , and let (E∞t )t≥0 be the ∞-parent ancestral process with initial

condition E0 associated to µ̃. Then, for all t ≥ 0,

EM0

[
D̃(M∞t , E0)

]
= EE0

[
D̃(M0, E∞t )

]
,

or equivalently,

EM0

[
δ0

(∫
E0

(
1− ωM∞t (z)

)
dz

)]
= EE0

[
δ0

(∫
E∞t

(1− ωM0(z)) dz
)]

.

This duality relation can be interpreted as follows. Whenever a reproduction event affects one area,

all the individuals in the area can be considered as potential parents. If ←−Π encodes the reproduction

events affecting the population when going backwards in time, then E∞t encodes the locations of the

potential ancestors at time 0 of the individuals living in E0 at time t. The duality relation then

states that a given area E0 contains only ghost individuals at time t if, and only if all their potential

ancestors at time 0 (located in E∞t ) are ghost individuals.

2.3 Speed of growth of the occupied region in the ∞-parent SLFV: Definition and

main result

Let HP 0 stand for the half-plane

HP 0 :=
{
(x, y) ∈ R2 : x ≥ 0

}
.

In order to show that the growth of the region occupied by type 1 individuals in the ∞-parent SLFV

is linear in time, we consider that initially, type 1 individuals cover the half-plane

HP
0 :=

{
(x, y) ∈ R2 : x < 0

}
.

That is, we take the measure MHP (dz) := ωHP (z)dz as an initial condition for the ∞-parent SLFV,

where

∀z ∈ R2, ωHP (z) = 1HP 0(z).

Let (MHP
t )t≥0 be the ∞-parent SLFV with initial condition MHP associated to µ̃. Moreover, for

all t ≥ 0, let ωHPt be a density of MHP
t .
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Definition 2.9. For all x ∈ R, let

−→τ x := min
{
t ≥ 0 : lim

ε→0
V −1
ε

∫
Bε((x,0))

ωHPt (z)dz < 1
}
,

where we recall that Bε((x, 0)) is the ball with centre (x, 0) and radius ε, and Vε is the volume of

Bε((x, 0)).

Informally, −→τ x is the first time at which the location (x, 0) is reached by type 1 individuals.

Since densities are only defined up to a Lebesgue null set, we consider that (x, 0) is occupied by type 1

individuals if, and only if all neighbourhoods of (x, 0) contain a non-zero fraction of type 1 individuals.

The following result means that once the location (x, 0) is occupied by type 1 individuals, it cannot

become empty again. However, notice that the function x → −→τ x is not necessarily increasing. See

Figure 2 for an illustration.

Lemma 2.10. Let x ∈ R. Then, for all t ≥ 0,

P
(

lim
ε→0

V −1
ε

∫
Bε((x,0))

ωHPt (z)dz < 1
∣∣∣−→τ x ≤ t

)
= 1.

This property is obvious from the set-valued informal description of the ∞-parent SLFV given in

the Introduction. However, because this description does not hold when the initial area occupied by

type 1 individuals has infinite volume, we have to work a bit more to show this property by using the

martingale problem characterisation.

Proof. We first show that for all ε > 0,

t→ P
(
V −1
ε

∫
Bε((x,0))

ωHPt (z)dz < 1
)

is a non-decreasing function.

In order to do so, let ε > 0, and let 0 ≤ t ≤ t′. Then, by Proposition 2.8,

P
(
V −1
ε

∫
Bε((x,0))

ωHPt (z)dz < 1
)

= P
(
δ0

(∫
Bε((x,0))

(1− ωHPt (z))dz
)

= 0
)

= 1− E
[
δ0

(∫
Bε((x,0))

(1− ωHPt (z))dz
)]

= 1−E
[
δ0

(∫
E∞t

(1− ωM0(z))dz
)]

,

where (E∞t )t≥0 is the ∞-parent ancestral process with initial condition Bε((x, 0)) and intensity µ̃.
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Similarly,

P
(
V −1
ε

∫
Bε((x,0))

ωHPt′ (z)dz < 1
)

= 1−E
[
δ0

(∫
E∞
t′

(1− ωM0(z))dz
)]

.

Moreover, the sequence (E∞t )t≥0 is increasing for the inclusion and since ωM0 is {0, 1}-valued, we have

E
[
δ0

(∫
E∞t

(1− ωM0(z))dz
)]
≥ E

[
δ0

(∫
E∞
t′

(1− ωM0(z))dz
)]

.

We conclude that

P
(
V −1
ε

∫
Bε((x,0))

ωHPt (z)dz < 1
)
≤ P

(
V −1
ε

∫
Bε((x,0))

ωHPt′ (z)dz < 1
)
.

Then, let t ≥ 0, and let (εn)n∈N be a sequence decreasing to 0. Since

lim
ε→0

V −1
ε

∫
Bε((x,0))

ωHPt (z)dz

exists, we have

P
(

lim
ε→0

V −1
ε

∫
Bε((x,0))

ωHPt (z)dz < 1
∣∣∣∣∣−→τ x ≤ t

)
= P

(
lim

n→+∞
V −1
εn

∫
Bεn ((x,0))

ωHPt (z)dz < 1
∣∣∣∣∣−→τ x ≤ t

)
.

Noticing that the sequence (Bεn((x, 0)))n∈N is decreasing for the inclusion, we have that if

V −1
εn

∫
Bεn ((x,0))

ωHPt (z)dz = 1

for some integer n, then this is also the case for all N ≥ n. Therefore,

P
(

lim
n→+∞

V −1
εn

∫
Bεn ((x,0))

ωHPt (z)dz = 1
∣∣∣∣∣−→τ x ≤ t

)
= P

(
∃n ∈ N, V −1

εn

∫
Bεn ((x,0))

ωHPt (z)dz = 1
∣∣∣∣∣−→τ x ≤ t

)

≤
∑
n∈N

P
(
V −1
εn

∫
Bεn ((x,0))

ωHPt (z)dz = 1
∣∣∣∣∣−→τ x ≤ t

)

≤
∑
n∈N

P
(
V −1
εn

∫
Bεn ((x,0))

ωHP−→τ x (z)dz = 1
∣∣∣∣∣−→τ x ≤ t

)

= 0

by definition of −→τ x. Here we have used the first part of the proof to pass from the second line to the

third line, which allows us to conclude.

The goal of the article is to show the following result, which tells us that the growth of the occupied

area in the ∞-parent SLFV is linear in time.
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(0,0) (2,0)(1,0)

Figure 2: State of a population evolving according to the ∞-parent SLFV at time t. Initially, type 1
individuals cover the half-plane HP 0, corresponding to the hatched area. Each grey ellipse represents
a reproduction event occurring during the time interval [0, t] which overlaps an area initially empty,
and resulting in the corresponding area being completely filled with type 1 individuals. Here −→τ 1 > t
but −→τ 2 ≤ t.

Theorem 2.11. There exists ν > 0 such that

lim
x→+∞

E [−→τ x]
x

= ν.

We can then interpret ν−1 as the limiting speed of growth of the process. As explained in the

Introduction, the proof of Theorem 2.11 spans Sections 3 and 4 and is concluded at the end of

Section 4.3.

In order to show Theorem 2.11, we make use of the dual process associated to the∞-parent SLFV,

and define an equivalent of −→τ x for the∞-parent ancestral process. In order to do so, we first introduce

a slight generalisation of the ∞-parent ancestral process which allows to take single points as initial

conditions. This process is defined on the state space

Ẽcf := E ∪
{
{z} : z ∈ R2}.

Definition 2.12. Let ←−Π be a Poisson point process with intensity measure dt⊗ dz ⊗ µ̃(da, db, dγ) on

R+ × R2 × Sµ̃, defined on the probability space (Ω,F ,P), and let z0 ∈ R2. The Ẽcf -valued ∞-parent

ancestral process (E∞,z0
t )t≥0 with initial condition {z0} and associated to µ̃ is defined as follows.

First, we set E∞,z0
0 = {z0}. Then, for all (t, z, a, b, γ) ∈ ←−Π :

• If E∞,z0
t− = {z0} and z0 ∈ Ba,b,γ(z), we set E∞,z0

t = Ba,b,γ(z).
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• If E∞,z0
t− 6= {z0} and E∞,z0

t− ∩Ba,b,γ(z) has non-zero Lebesgue measure, we set

E∞,z0
t = E∞,z0

t− ∪Ba,b,γ(z).

Using the same argument as for the initial ∞-parent ancestral process, (E∞,z0
t )t≥0 is well-defined

and Markovian. Moreover, once it jumps for the first time, its behaviour is identical to that of the

original ∞-parent ancestral process.

In all that follows, let←−Π be a Poisson point process as in Definition 2.12. For all x > 0 and all ε > 0,

let (Eε,xt )t≥0 be a sequence of ∞-parent ancestral processes with initial condition Bε((x, 0)) associated

to µ̃, all constructed using the same underlying Poisson point process ←−Π. Moreover, let (Ext )t≥0 be

the ∞-parent ancestral process with initial condition {(x, 0)} associated to µ̃, also constructed using
←−Π. That is, in the heavier notation of Definition 2.12, Ex = E∞,(x,0). Then, (Eε,xt )t≥0, ε > 0 and

(Ext )t≥0 satisfy the following property.

Lemma 2.13. For all x > 0, if tx0 is the first time at which (x, 0) is affected by a reproduction event,

then a.s. there exists εx0 > 0 such that for all t ≥ tx0 , we have

∀ε < εx0 , Eε,xt = Ext .

Furthermore, we have a.s. for all t ≥ 0,

lim
ε→0

Vol
(
Eε,xt ∩HP

0) = Vol
(
Ext ∩HP

0)
.

Concretely, εx0 is the radius of a ball around (x, 0) small enough to be included in the area of the

first event overlapping (x, 0), and not to be overlapped by any event in ←−Π occurring before tx0 (see

Condition (2.3) below).

Proof. Let x > 0, and let (tx0 , zx0 , ax0 , bx0 , γx0 ) ∈ ←−Π be the first reproduction event to affect (x, 0). In

order to show the first part of the lemma, we want to show that a.s. there exists εx0 > 0 such that

Bεx0 ((x, 0)) ⊆ Bax0 ,b
x
0 ,γ

x
0
(zx0 ) and ∀(t, z, a, b, γ) ∈ ←−Π s.t. t < tx0 ,Vol

(
Bεx0 ((x, 0)) ∩Ba,b,γ(z)

)
= 0. (2.3)

Indeed, if such a εx0 exists, then for all 0 < ε < εx0 , the first time at which (Eε,xt )t≥0 jumps is tx0 .

Moreover,

Eε,xtx0
= Eε,x0 ∪Bax0 ,b

x
0 ,γ

x
0
(zx0 )
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= Bε((x, 0)) ∪Bax0 ,b
x
0 ,γ

x
0
(zx0 )

= Bax0 ,b
x
0 ,γ

x
0
(zx0 ),

= Extx0 ,

yielding the first part of the lemma.

As the probability that (x, 0) belongs to the boundary of Bax0 ,b
x
0 ,γ

x
0
(zx0 ) is equal to zero, with

probability 1 there exists ε̃ > 0 such that

Bε̃((x, 0)) ⊆ Bax0 ,b
x
0 ,γ

x
0
(zx0 ).

Let us consider the number Nε̃ of reproduction events that affect Bε̃((x, 0)) during the time interval

[0, tx0), that is, all reproduction events (t, z, a, b, γ) ∈ ←−Π such that t ∈ [0, tx0) and

Bε̃((x, 0)) ∩Ba,b,γ(z) 6= ∅.

Since the support of µ̃ is bounded, Nε̃ is a.s. finite. By construction, the point (x, 0) belongs to none of

the finitely many closed ellipses corresponding to these events, and so the minimal distance e between

(x, 0) and these areas is a.s. positive. We can then choose any εx0 ∈ (0, e) and (2.3) holds true, which

concludes the proof of the first part of Lemma 2.13.

In order to show the second part of the lemma, let us first consider t ∈ [0, tx0), and let us assume

that εx0 exists (which is almost surely satisfied). Then,

Vol
(
Ext ∩HP

0) = Vol
(
{(x, 0)} ∩HP 0) = 0.

Moreover, by (2.3), for all 0 < ε < min(εx0 , x/2) we have

Vol
(
Eε,xt ∩HP

0) = Vol
(
Bε((x, 0)) ∩HP 0) = Vol(∅) = 0.

Therefore,

lim
ε→0

Vol
(
Eε,xt ∩HP

0) = 0 = Vol
(
Ext ∩HP

0)
.

Let us now consider t ≥ tx0 . For every ε ∈ (0, εx0), we have

Vol
(
Eε,xt ∩HP

0) = Vol
(
Ext ∩HP

0)
,
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and so

lim
ε→0

Vol
(
Eε,xt ∩HP

0) = Vol
(
Ext ∩HP

0)
.

We can now introduce an equivalent of −→τ x for the ∞-parent ancestral process.

Definition 2.14. For all x > 0, let (tx0 , zx0 , ax0 , bx0 , γx0 ) ∈ ←−Π be the first reproduction event to affect

(x, 0), and let

τ̃x :=


min

{
t ≥ 0 : lim

ε→0
Vol

(
Eε,xt ∩HP

0)
> 0

}
if there exists εx0 > 0 satisfying (2.3),

0 otherwise.

Lemma 2.15. For all x > 0, τ̃x is well-defined, and is almost surely equal to

min
{
t ≥ 0 : Ext ∩HP

0 6= ∅
}
.

In particular, τ̃x 6= 0 a.s.

Proof. Let x > 0. By Lemma 2.13, τ̃x is well-defined and almost surely equal to

min
{
t ≥ 0 : Vol

(
Ext ∩HP

0)
> 0

}
≥ tx0 ,

since the support of µ̃ is bounded. Moreover, since for all (a, b, γ) ∈ Sµ̃, the set

{
z ∈ R2 : Ba,b,γ(z) ∩HP 0 6= ∅ and Vol

(
Ba,b,γ(z) ∩HP 0) = 0

}

has zero Lebesgue measure, we have

min
{
t ≥ 0 : Vol

(
Ext ∩HP

0)
> 0

}
= min

{
t ≥ 0 : Ext ∩HP

0 6= ∅
}

a.s.,

which allows us to conclude.

In order to use (τ̃x)x>0 to derive the desired properties of (−→τ x)x>0, we shall need the following

result.

Lemma 2.16. For all x > 0, τ̃x and −→τ x have the same distribution.

Proof. Recall that constructing all the∞-parent ancestral process (Eε,xt )t≥0 using the same underlying
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Poisson point process ensures that for all t ≥ 0 and all x > 0, we have

∀0 < ε < ε′, Eε,xt ⊆ E
ε′,x
t . (2.4)

Moreover, for all ε > 0, we set

−→τ εx := min
{
t > 0 : V −1

ε

∫
Bε((x,0))

ωHPt (z)dz < 1
}

and τ̃ εx := min
{
t > 0 : Vol

(
Eε,xt ∩HP

0)
> 0

}
.

Using the same argument as in the proof of Lemma 2.15, we obtain that

τ̃x = lim
ε→0

τ̃ εx a.s.

We have a similar result for −→τ x. Indeed, for all 0 < ε < ε′, by definition of −→τ εx we can write

∫
Bε′ ((x,0))

ωHP−→τ εx
(z)dz =

∫
Bε((x,0))

ωHP−→τ εx
(z)dz +

∫
Bε′ ((x,0))\Bε((x,0))

ωHP−→τ εx
(z)dz

< Vε + Vε′ − Vε

< Vε′ .

Therefore, −→τ ε′x ≤ −→τ εx and lim
ε→0
−→τ εx exists. Moreover, for all t ≥ −→τ x, by Lemma 2.10 we have

lim
ε→0

V −1
ε

∫
Bε((x,0))

ωHPt (z)dz < 1,

and so there exists εt > 0 such that for all 0 < ε ≤ εt,

V −1
ε

∫
Bε((x,0))

ωHPt (z)dz < 1,

and hence for all 0 < ε ≤ εt, t ≥ −→τ εx. Similarly, if t > lim
ε→0
−→τ εx, then again by Lemma 2.10, there exists

εt > 0 such that for all 0 < ε ≤ εt,

V −1
ε

∫
Bε((x,0))

ωHPt (z)dz < 1

and t > −→τ x. Therefore,
−→τ x = lim

ε→0
−→τ εx a.s.
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Consequently, it is sufficient to show that −→τ εx and τ̃ εx have the same distribution for all ε > 0 in order

to conclude the proof.

Let ε > 0, and let t ≥ 0. Since t→
∫
Bε((x,0)) ω

HP
t (z)dz is non-increasing and [0, Vε]-valued, we have

PMHP
0

(−→τ εx > t) = PMHP
0

(∫
Bε((x,0))

ωHPt (z)dz = Vε

)

= PMHP
0

(
δ0

(∫
Bε((x,0))

(
1− ωHPt (z)

)
dz

)
= 1

)

= EMHP
0

[
δ0

(∫
Bε((x,0))

(
1− ωHPt (z)

)
dz

)]

= EBε((x,0))

[
δ0

(∫
Eε,xt

(
1− ωHP0 (z)

)
dz

)]

= PBε((x,0))

(
δ0

(∫
Eε,xt

(
1− ωHP0 (z)

)
dz

)
= 1

)

= PBε((x,0))
(
Vol

(
Eε,xt ∩HP 0

)
= 0

)
= PBε((x,0)) (τ̃ εx > t) .

Here we have used Proposition 2.8 to pass from the third to the fourth line.

For all x > 0, let HP x stand for the half-plane

HP x :=
{

(x′, y) ∈ R2 : x′ ≥ x
}
,

extending the notation HP 0 to the case x ≥ 0.

In practice, the set of variables (τ̃x)x>0 is not very convenient to use. Indeed, if x < x′, even if

τ̃x and τ̃x′ are constructed using the same underlying Poisson point process, this is not sufficient to

have τ̃x ≤ τ̃x′ a.s., as the underlying ∞-parent ancestral processes have different starting positions.

Therefore, we define another sequence (←−τ x)x>0 such that for all x > 0, ←−τ x and τ̃x have the same

distribution, but also such that all underlying ∞-parent ancestral processes start from the same

location (0, 0), thereby ensuring that for all 0 < x < x′, we have ←−τ x ≤ ←−τ x′ a.s. Moreover, for

every x > 0, the ∞-parent ancestral process associated to ←−τ x will have the same distribution as the

symmetric of the ancestral process associated to τ̃x with respect to the axis {(x/2, y) : y ∈ R}. In other

words, we shall be interested in the expansion of the new process "from left to right", starting from

(0, 0) and reaching abscissa x, instead of studying the expansion of Ex "from right to left", starting

from (x, 0) and reaching abscissa 0.

Let µ̃← be the finite measure on (0,+∞)2 × Sµ̃ defined by the property that for all measurable
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subsets I, J of (0,+∞) and for all −π/2 < γ1 ≤ γ2 < π/2,

µ̃←(I × J × [γ1, γ2]) = µ̃(I × J × [−γ2,−γ1]).

Let (Eεt )t≥0, ε > 0, be a sequence of ∞-parent ancestral processes associated to µ̃← with initial

condition Bε((0, 0)), constructed using the same underlying Poisson point process Π, and let (Et)t≥0 be

the∞-parent ancestral process with initial condition {(0, 0)} associated to µ̃←, also constructed using

the Poisson point process Π. For definiteness, we suppose that these new objects are also constructed

on the probability space (Ω,F ,P). We shall call Condition (2.3)’ the analogue of Condition (2.3) with

x = 0 and ←−Π replaced by Π.

Definition 2.17. Let (t0, z0, a0, b0, γ0) ∈ ←−Π be the first reproduction event to affect (0, 0), and for all

x > 0, let

←−τ x :=


min

{
t ≥ 0 : lim

ε→0
Vol (Eεt ∩HP x) > 0

}
if there exists ε0 > 0 satisfying Cond. (2.3)’,

0 otherwise.

As for (τ̃x)x>0, for all x > 0, ←−τ x is well-defined and almost surely equal to

min {t ≥ 0 : Et ∩HP x 6= ∅} .

Let us say that a point z = (x, y) ∈ R2 is at horizontal separation d of the point z′ = (x′, y′) ∈ R2 if,

and only if x− x′ = d. Then informally, ←−τ x represents the first time the ∞-parent ancestral process

starting from (0, 0) reaches points at horizontal separation of at least x from the starting location.

Moreover, we have the following lemma.

Lemma 2.18. The function x→←−τ x is nondecreasing.

Proof. We distinguish two cases. If there does not exist ε0 > 0 satisfying (2.3)’, then for all x > 0,
←−τ x = 0, and we can conclude.

If there exists ε0 > 0 satisfying (2.3), let 0 < x1 < x2. By similar arguments as in Lemma 2.13

and its proof, we can write that

∀0 < ε ≤ min(ε0, x1/2), Vol (Eεt ∩HP x1) = Vol
(
E

min(ε0,x1/2)
t ∩HP x1

)
and ∀0 < ε ≤ min(ε0, x2/2), Vol (Eεt ∩HP x2) = Vol

(
E

min(ε0,x2/2)
t ) ∩HP x2

)
.
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Let us set ε′ = min(ε0, x1/2, x2/2). Then, HP x2 ⊂ HP x1 and so

Vol
(
Eε
′
←−τ x2
∩HP x1

)
≥ Vol

(
Eε
′
←−τ x2
∩HP x2

)
= lim

ε→0
Vol

(
Eε←−τ x2

∩HP x2
)
> 0

by definition of ←−τ x2 , and so ←−τ x1 ≤ ←−τ x2 and we can conclude.

Notice that we are now studying the expansion of the backwards-in-time process in the same

direction as the occupied area in the forwards-in-time process. Conversely, (τ̃x)x>0 corresponds to

the expansion of the ∞-parent ancestral process in the opposite direction. Moreover, we recall that

(←−τ x)x>0 can be seen as being constructed using an underlying ∞-parent ancestral process which is

the symmetric of the one used to construct (τ̃x)x>0 with respect to the axis {(x/2, y) : y ∈ R}. This

observation yields the following lemma.

Lemma 2.19. For all x > 0, ←−τ x and τ̃x have the same distribution.

Proof. Let x > 0. For all t ≥ 0 and ε > 0, let Sym(Eε,xt ) be the symmetric of Eε,xt with respect to the

axis {(x/2, y) : y ∈ R}. Then, (Sym(Eε,xt ))t≥0, ε > 0 is a sequence of ∞-parent ancestral processes

with initial condition Bε((0, 0)), all constructed using the same Poisson point process having the same

distribution as Π (that is, whose intensity measure is dt⊗ dz ⊗ µ̃←(da, db, dγ)), which can be used to

construct ←−τ x. Moreover, for all t ≥ 0 and ε > 0,

Vol
(
Eε,xt ∩HP

0)
> 0 if, and only if Vol (Sym(Eε,xt ) ∩HP x) > 0,

which allows us to conclude.

In order to show Theorem 2.11, we shall use the following proposition, which is a direct consequence

of Lemmas 2.16 and 2.19.

Proposition 2.20. For all x > 0, ←−τ x and −→τ x have the same distribution.

Contrary to what is usually considered for stochastic growth models, ←−τ x does not correspond to

the growth of the ∞-parent ancestral process in a specific direction. In particular, this means that

we cannot use the results from [10] to couple Deijfen’s model to the ∞-parent ancestral process and

deduce directly that its growth is at least linear in time.
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Figure 3: Approximate speed of growth of the occupied area in the ∞-parent SLFV process, as a
function of a. For each value of a, 30 ∞-parent ancestral processes with parameters (a, b, 0) were
simulated, in order to compute E[←−τ x] for large values of x. The crosses indicate the approximate
values, and the dotted line corresponds to the linear function ν−1(a) = 2.58 a.

2.4 Numerical simulations

In order to obtain an approximation for the limiting speed of growth ν−1 by means of numerical

simulations, we can use the fact that

ν−1 =
(

lim
x→+∞

x−1E[←−τ x]
)−1

,

which is a consequence of Theorem 2.11 combined with Proposition 2.20. Indeed, the ∞-parent

ancestral is easier to simulate than its forwards-in-time counterpart, since it jumps at a finite rate at

any time, and since there are no border effects to take into account while simulating the process on

an appropriately chosen compact subset of R2.

We focus on the case in which all ellipses have the same shape parameters. In order to be able

to compare the speed of growth of the occupied regions in ∞-parent SLFV with different shape

parameters, we assume that any given location z ∈ R2 is affected by a reproduction event at rate 1.

Therefore, we take

µ̃(da, db, dγ) = V −1
a0,b0,0δa0(da)⊗ δb0(db)⊗ δ0(dγ),

where a0 ∈ (0,+∞) and b0 is chosen such that the volume of the corresponding ellipse is equal to π.

For 9 different values of a ranging from 0.33 to 3, we simulate 30 ∞-parent ancestral processes

with initial condition {(0, 0)} and parameters (a, b, 0), where b is chosen as stated above. This ensures

that we compare ∞-parent SLFV processes for which reproduction events have the same scale.

The results can be found in Figure 3. The numerical simulations show that the speed of growth is

a linear function of a (over the range of a-values considered). This speed is around 2.6 times higher
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Figure 4: Illustration of the growth dynamics of the occupied region in the ∞-parent SLFV,
with (a, b, γ) = (1, 1, 0). The images represent the same ∞-parent SLFV at four instants
0 < t1 < t2 < t3 < t4. The black area represents the area occupied by real individuals, and the
white area is empty (or equivalently, filled with ghost individuals). The expansion starts from the
left-most part of the image, and goes towards the right-most part of the image.

than the lower bound obtained in Section 3 (equal to a when γ = 0), which was initially conjectured

to be the limiting speed of the process.

Numerical simulations suggest that the growth of the process seems to be driven by "spikes" in

the expansion direction, that then thicken and grow sideways, bridging the gap with the rest of the

population. See Figure 4 for an illustration of this phenomenon. This motivates the study of a toy

model of two interacting growing piles of cubes in Section 5.

3 Lower bound on the speed of growth

In this section, we show that the growth of the occupied area in the ∞-parent SLFV, as well as that

of its dual, is at least linear in time. More precisely, we show the following result.

Proposition 3.1. There exists ν ≥ 0 such that

lim
x→+∞

E [←−τ x]
x

= ν.

The proof of this result can be found at the end of Section 3.3. By Proposition 2.20, this result is

then also true for −→τ x.

The key difference with Theorem 2.11 is that Proposition 3.1 does not require ν to be non-zero,

and hence only means that the growth is at least linear in time (and faster if ν = 0). In Section 4, we

show that indeed we have ν 6= 0, or in other words, that the growth is exactly linear in time.

Remark 3.2. Since the limiting speed of growth is given by ν−1, a lower bound on the speed of growth

amounts to an upper bound on lim
x→+∞

x−1E [←−τ x].

In order to prove Proposition 3.1, we first establish a few auxiliary results. In all that follows, let

24



Π be a Poisson point process on R+ × R2 × Sµ̃ with intensity measure dt⊗ dz ⊗ µ̃←, and let (Et)t≥0

be the ∞-parent ancestral process with initial condition {(0, 0)} and associated to µ̃←, constructed

using the Poisson point process Π. Here we use the modification of the ∞-parent ancestral process

introduced earlier, which allows to take single points as initial conditions.

3.1 Sub-additivity

We first introduce other∞-parent ancestral processes, coupled to (Et)t≥0 via the Poisson point process

Π. For all z ∈ R2 and s ≥ 0, let (Ez,st )t≥0 be the ∞-parent ancestral process with initial condition

{z} associated to µ̃←, constructed using only the reproduction events in Π occurring strictly after time

s. If s = 0, then (Ez,0t )t≥0 is the regular ∞-parent ancestral process, but if s 6= 0, then the process

is constant and equal to {z} during the time interval [0, s], and only after does it start following the

dynamics of an ∞-parent ancestral process.

Since all the processes (Ez,st )t≥0, z ∈ R2, s ≥ 0 are constructed using the same underlying Poisson

point process, we have the following result.

Lemma 3.3. For all z1, z2 ∈ R2 and 0 < s1 < s2, if z2 ∈ Ez1,s1
s2 , then a.s. for all t ≥ s2, we have

Ez2,s2
t ⊆ Ez1,s1

t .

We now introduce the following family of random variables. First, for all n ∈ N, let

T0,n : = min
{
t ≥ 0 : E(0,0),0

t ∩HP 4nRµ̃ 6= ∅
}

= min
{
t ≥ 0 : Et ∩HP 4nRµ̃ 6= ∅

}
=←−τ 4nRµ̃ ,

and let Pn be sampled uniformly at random among the points in ET0,n at horizontal separation of

exactly 4nRµ̃ from (0, 0). That is, Pn is a uniform sample from the compact set

ET0,n ∩
{

(x, y) ∈ R2 : x = 4nRµ̃
}
.

Moreover, for all 0 ≤ m ≤ n ∈ N, let

Tm,n := min
{
t ≥ 0 : EPm,T0,m

t+T0,m
∩HP 4nRµ̃ 6= ∅

}
,

where EPm,T0,m
t+T0,m

corresponds to the ∞-parent ancestral process started from Pm at time T0,m.

By construction, the family (Tm,n)0≤m≤n satisfies the following lemma.
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Lemma 3.4. For all 0 < m < n ∈ N, we have

T0,n ≤ T0,m + Tm,n.

Proof. Let 0 < m < n ∈ N. By definition,

Pm ∈ ET0,m = E
(0,0),0
T0,m

.

Therefore, using Lemma 3.3, we have a.s. for all t ≥ 0

E
Pm,T0,m
t+T0,m

⊆ Et+T0,m .

In particular, this is true for t = Tm,n, hence

E
Pm,T0,m
Tm,n+T0,m

∩HP 4nRµ̃ ⊆ ETm,n+T0,m ∩HP 4nRµ̃ ,

from which we deduce (by definition of T0,m, Pm and Tm,n) that

ETm,n+T0,m ∩HP 4nRµ̃ 6= ∅.

Therefore,

T0,n = min
{
t > 0 : Et ∩HP 4nRµ̃ 6= ∅

}
≤ Tm,n + T0,m.

By invariance by translation of the underlying Poisson point processes, the following lemmas also

hold true.

Lemma 3.5. For all n ∈ N, the joint distribution of (Tn+1,n+k+1)k≥1 is the same as the one of

(Tn,n+k)k≥1.

Lemma 3.6. For all k ∈ N \ {0}, the random variables (Tnk,(n+1)k)n≥1 are i.i.d.

In order to use Theorem 1.10 from [31] and conclude, all we need is to show that the following

lemma is true.

Lemma 3.7. For all n ∈ N, we have E[T0,n] < +∞.
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Figure 5: Ellipse with parameters (a, b, γ).

Lemma 3.7 is proved at the end of Section 3.3, using the so-called express chain that we now

define. We shall then use it to complete the proof of Proposition 3.1 (again at the end of Section 3.3).

3.2 Definition of the express chain

The use of what we shall call the express chain can be motivated by the following observation. In each

ellipse with centre z = (x, y) ∈ R2 and parameters (a, b, γ), there exists exactly one point for which

the horizontal separation from the centre is maximal: the point with coordinates

(x+ a cos(θmax) cos(γ)− b sin(θmax) sin(γ), y + a cos(θmax) sin(γ) + b sin(θmax) cos(γ)),

where θmax = arctan(−ba−1 tan(γ)). This point is at horizontal separation
√
a2 cos2(γ) + b2 sin2(γ)

from z (see Figure 5).

If we take this potential parent, wait until it is affected by a new reproduction event, and repeat,

we obtain a Markov jump process, jumping at rate

Jµ̃ :=
∫
Sµ̃
Va,b,γ µ̃(da, db, dγ), (3.1)

and going away from 0 at an average horizontal speed of Jµ̃E
[√

a2 cos2(γ) + b2 sin2(γ)
]
(modulo some

stochasticity due to the location of the centre of the reproduction event). See Appendix A for the

proof of the geometrical properties of ellipses used throughout this section.

Formally, the express chain is defined as follows.

Definition 3.8. The express chain associated to (Et)t≥0 (constructed using Π), denoted (Cexpresst )t≥0,

is the R2-valued Markov process defined as follows.

First, we set Cexpress0 = (0, 0). Then, for all (t, zc, a, b, γ) ∈ Π, if Cexpresst− ∈ Ba,b,γ(zc) and
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Figure 6: Comparison between the express chain and the∞-parent ancestral process at time t, for two
realisations of the ∞-parent ancestral process. The ellipses indicate the reproduction events which
affected the ∞-parent ancestral process until time t. The crosses represent the successive positions
of the express chain, and the black point indicates the location reached by the ∞-parent ancestral
process at time t which maximises the horizontal separation from the starting location. This location
coincides with the one reached by the express chain in the first case, but not in the second case.

zc = (xc, yc), we set:

Cexpresst = (Xexpress
t , Y express

t )

where

Xespress
t = xc + a cos(θmax) cos(γ)− b sin(θmax) sin(γ),

Y express
t = yc + a cos(θmax) sin(γ) + b sin(θmax) cos(γ)

and θmax = arctan(−ba−1 tan(γ)).

See Figure 6 for an illustration of how to construct the express chain.

The interest of the express chain lies in the following observation, whose proof is a direct conse-

quence of the definition of T0,n.

Lemma 3.9. Let n ∈ N∗. For all t ≥ 0, we have {Cexpresst ∈ HP 4nRµ̃} ⊂ {T0,n ≤ t}.

Proof. Let t ≥ 0. Since Cexpresst ∈ Et by construction, the fact the Cexpresst ∈ HP 4nRµ̃ implies that

Et ∩HP 4nRµ̃ 6= ∅, and thus that T0,n ≤ t.

Therefore, if for all n ∈ N, we set

T express0,n := min
{
t ≥ 0 : Cexpresst ∈ HP 4nRµ̃

}
,

then for all n ∈ N we have

T0,n ≤ T express0,n a.s., and so E[T0,n] ≤ E
[
T express0,n

]
. (3.2)
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In other words, in order to show Lemma 3.7, it is sufficient to obtain a similar result on E[T express0,n ].

Before studying the properties of the express chain in the next section, we introduce the following

notation. For all t ≥ 0, let N express
t be the number of jumps of the express chain in the time interval

[0, t]. For all i ∈ N \ {0}, let ti be the instant of the i-th jump of the express chain, let Ri = (RXi , RYi )

be the coordinates of the centre of the reproduction event triggering this jump, and let (ai, bi, γi) be

the parameters of the ellipse affected by the reproduction event. We then set for all i ∈ N \ {0}

Di =
√
a2
i cos2(γi) + b2i sin2(γi).

The random variable Di thus encodes the distance between the centre of the reproduction event and

the right-most point in the corresponding ellipse. Note that the random variables (Di)i≥1 are i.i.d.

3.3 Properties of the express chain

We now study some properties of the express chain, in order to obtain an upper bound on E[T express0,n ].

Let t ≥ 0. By construction,

Xexpress
t =

Nexpress
t∑
i=1

(
RXi −X

express
ti− +Di

)
(3.3)

=
Nexpress
t∑
i=1

(
RXi −X

express
ti− +Di −E[D1]

)
+ E[D1]N express

t .

The random variables (RXi − Xexpress
ti− + Di − E[Di])i≥1 are i.i.d, bounded and with mean 0 (see

Appendix A). We can then apply Hoeffding’s inequality [25] and obtain the following lemma.

Lemma 3.10. There exists C1 > 0 such that for all t ≥ 0 and n ∈ N \ {0}, for all k > 4nRµ̃E[D1]−1,

we have

P
(
Xexpress
t < 4nRµ̃

∣∣∣N express
t = k

)
≤ exp

(
−(E[D1]k − 4nRµ̃)2

C1k

)
.

Consequently, for all C ′ > 4nRµ̃E[D1]−1,

P
(
Xexpress
t < 4nRµ̃

∣∣∣N express
t > C ′

)
≤ exp

(
−(C ′E[D1]− 4nRµ̃)2

C1C ′

)
.

Proof. First, notice that the second part of the lemma is a direct consequence of the first part, along

with the variations of the function x→ exp(−(xc− d)2x−1), c, d > 0. As concerns the first part of the
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lemma, let t ≥ 0, n ∈ N \ {0} and k > 4nRµ̃E[D1]−1. Using (3.3), we have

P
(
Xexpress
t < 4nRµ̃

∣∣∣N express
t = k

)
≤ P

(
k∑
i=1

(RXi −X
express
ti− +Di −E[D1]) < 4nRµ̃ −E[D1]k

∣∣∣N express
t = k

)

= P
(

k∑
i=1

(−RXi +Xexpress
ti− −Di + E[D1]) > E[D1]k − 4nRµ̃

∣∣∣N express
t = k

)
.

We conclude by using Hoeffding’s inequality together with the fact that for all i ≥ 1,

∣∣∣RXi −Xexpress
ti−

∣∣∣ < 4Rµ̃ and |Di −E[D1]| ≤ 2Rµ̃.

In order to bound E[T express0,n ], we also need to control the number of jumps made by the express

chain over the time interval [0, t]. Recall the definition of Jµ̃ given in (3.1).

Lemma 3.11. There exists C⊗ > 0 such that for all t > 0,

P (N express
t ≤ 0.1Jµ̃t) ≤ exp(−C⊗Jµ̃t).

Proof. The proof relies on the fact that the express chain jumps at rate Jµ̃. Hence, N express
t is Poisson

distributed with parameter Jµ̃t.

Let t > 0. Using a standard Chernoff bound, we obtain

P (N express
t ≤ 0.1Jµ̃t) ≤

(eJµ̃t)0.1Jµ̃te−Jµ̃t

(0.1Jµ̃t)0.1Jµ̃t

= exp(0.1Jµ̃t) exp(−Jµ̃t)
exp(0.1Jµ̃t ln(0.1))

= exp(0.1Jµ̃t− Jµ̃t− 0.1Jµ̃ ln(0.1)),

and so taking C⊗ = Jµ̃(0.9− 0.1 ln(10)) allows us to conclude.

Combining Lemmas 3.10 and 3.11, we obtain an upper bound for E[T express0,n ].

Lemma 3.12. There exists C2 > 0 such that for all n ∈ N,

E
[
T express0,n

]
≤ C2n.
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Proof. Let n ∈ N. Then,

E
[
T express0,n

]
=
∫ ∞

0
P
(
T express0,n > t

)
dt

=
∫ t

0
P (Xexpress

t < 4nRµ̃) dt

≤ 100nRµ̃
Jµ̃E[D1] +

∫ ∞
100nRµ̃
Jµ̃E[D1]

P (Xexpress
t < 4nRµ̃) dt

≤ 100nRµ̃
Jµ̃E[D1] +

∫ ∞
100nRµ̃
Jµ̃E[D1]

P
(
N express
t ≤ Jµ̃t

10

)
dt

+
∫ ∞

100nRµ̃
Jµ̃E[D1]

P
(
{Xexpress

t < 4nRµ̃} ∩
{
N express
t >

Jµ̃t

10

})

≤ 100nRµ̃
Jµ̃E[D1] +

∫ ∞
100nRµ̃
Jµ̃E[D1]

exp(−C⊗Jµ̃t)dt (3.4)

+
∫ ∞

100nRµ̃
Jµ̃E[D1]

exp
(
− 10
C1Jµ̃t

(
Jµ̃tE[D1]

10 − 4nRµ̃
)2)

dt.

Here we have used Lemmas 3.10 and 3.11 to pass from the fourth to the fifth line. Moreover, we have

∫ ∞
100nRµ̃
Jµ̃E[D1]

exp
(
− 10
C1Jµ̃t

(
Jµ̃tE[D1]

10 − 4nRµ̃
)2 )

dt

= exp
(2E[D1]

C1
4nRµ̃

)∫ ∞
100nRµ̃
Jµ̃E[D1]

exp
(
− 10
C1Jµ̃t

t2J2
µ̃E[D1]2

100

)
exp

(
− 10
C1Jµ̃t

16n2R2
µ̃

)
dt

≤ exp
(8n
C1
Rµ̃E[D1]

)∫ ∞
100nRµ̃
Jµ̃E[D1]

exp
(
− Jµ̃t

10C1
E[D1]2

)
dt

≤ exp
(8n
C1
Rµ̃E[D1]

) 10C1
Jµ̃E[D1]2 exp

(
−Jµ̃E[D1]2

10C1

100nRµ̃
Jµ̃E[D1]

)

≤ 10C1
Jµ̃E[D1]2 exp

(
−2n
C1
Rµ̃E[D1]

)
.

Since the first term on the r.h.s of (3.4) is proportional to n, and the second and third terms decrease

exponentially fast in n, we can conclude.

We can now conclude the proof of Lemma 3.7.

Proof. (Lemma 3.7) Let n ∈ N. By Lemma 3.12,

E[T express0,n ] < +∞,

and so by (3.2),

E[T0,n] < +∞.
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We conclude this section with the proof of Proposition 3.1.

Proof. (Proposition 3.1) Combining Lemmas 3.12, 3.4, 3.5 and 3.6 with the fact that T0,n ≥ 0 for

all n, we obtain that the family (Tm,n)0≤m≤n satisfies all the assumptions of Theorem 1.10 from [31].

Therefore, there exists ν ′ ≥ 0 such that

lim
n→+∞

E[T0,n]
n

=
E[←−τ 4nRµ̃ ]

n
= ν ′.

We conclude by standard upper and lower bounding arguments, using the fact that x → E[←−τ x] is a

nondecreasing function (which is a consequence of Lemma 2.18).

Remark 3.13. If we see (Xexpress
t )t≥0 as a cumulative process (in the sense of Chapter IV.3 in [3]),

it is possible to use Theorem 3.1 from this Chapter and show that the limiting horizontal speed of

advance of the express chain is equal to Jµ̃E[D1], yielding an explicit lower bound on the speed of

growth of the occupied area in the ∞-parent SLFV. In particular, if all reproduction ellipses have

the same shape parameters (a, b, γ) and if the total mass of µ̃ is V −1
a,b,γ , which corresponds to the case

investigated using numerical simulations, then the lower bound on the speed of growth is given by√
a2 cos2(γ) + b2 sin2(γ).

4 Upper bound on the speed of growth

Recall that (Et)t≥0 is the ∞-parent ancestral process with initial condition {(0, 0)} associated to µ̃←,

constructed using Π.

In this section, we complete the result proven in Section 3 by showing that the growth of the

∞-parent SLFV and of its dual counterpart are at most linear in time. This can be rewritten as a

limiting property of E[←−τ x] as follows.

Proposition 4.1.

lim
x→+∞

E[←−τ x]
x

> 0.

The proof can be found at the end of Section 4.3. Combining this result with Proposition 3.1 gives

us the result of Theorem 2.11.

To show the result of Proposition 4.1, we first observe that it is sufficient to focus on the case

in which all reproduction events are balls of fixed radius. Indeed, we have the following comparison

result.

32



Lemma 4.2. Let ΠRµ̃ be a Poisson point process on R+ × R2 × Sµ̃ with intensity measure

µ̃←(Sµ̃)dt⊗ dz ⊗ δRµ̃(da)⊗ δRµ̃(db)⊗ δ0(γ).

Let (ERµ̃t )t≥0 be the ∞-parent ancestral process with initial condition {(0, 0)} constructed using ΠRµ̃,

and for all x > 0, let ←−τ Rµ̃x be the first time (ERµ̃t )t≥0 reaches HP x, defined as in Definition 2.17.

Then, for all x > 0,

E[←−τ x] ≥ E
[←−τRµ̃x ]

.

Proof. The proof relies on the following coupling between (Et)t≥0 and (ERµ̃t )t≥0. Instead of being

independent from Π, the Poisson point process ΠRµ̃ is constructed using the points from Π, as follows:

ΠRµ̃ :=
{
(t, z,Rµ̃,Rµ̃, 0) : (t, z, a, b, γ) ∈ Π

}
.

That is, we replace the elliptical area of each reproduction event in Π by a ball of maximal radius Rµ̃.

Since Ba,b,γ(z) ⊆ BRµ̃(z), this coupling ensures that

∀t ≥ 0, Et ⊆ ERµ̃t a.s.

Therefore, for all x > 0,

min {t ≥ 0 : Et ∩HP x 6= ∅} ≥ min
{
t ≥ 0 : ERµ̃t ∩HP x

}
a.s.,

which allows us to conclude.

To alleviate the notation, we only provide the proof of Proposition 4.1 when µ̃← = π−1δ1⊗ δ1⊗ δ0,

so that all reproduction events happen in balls of radius 1 and the rate at which a given point in space

is overlapped by an event is equal to 1. The proof can be easily generalised to balls of arbitrary fixed

radius and any intensity of events by a simple scaling of time and space. We can then use Lemma 4.2

to obtain the corresponding result for ellipses with bounded parameters.

4.1 A first-passage percolation problem

We consider the graph G on the vertex set Z2, in which (i, j) and (i′, j′) are connected by an edge if,

and only if

(i′, j′) ∈
{
(i+ 1, j), (i− 1, j), (i, j + 1), (i, j − 1), (i− 1, j − 1), (i− 1, j + 1), (i+ 1, j − 1),
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(i+ 1, j + 1)
}
.

To each edge e of G, we associate an independent exponential random variable

Ee ∼ Exp(16× π−1).

Ee corresponds to the time needed to pass through the corresponding edge. Following standard ter-

minology in first-passage percolation, we call it the passage time of the edge. The choice of the rate

of the exponential distribution ensures we can later compare the growth of the ∞-parent ancestral

process to the first-passage percolation problem we now introduce.

If Γ is a (potentially infinite) path formed by the edges e1, ..., en, ..., then the passage time of the

path Γ is defined as

EΓ =
∑
e∈Γ
Ee.

If z1, z2 ∈ Z2, we define the first-passage time Ez1,z2 from z1 to z2 (or equivalently, from z2 to z1 since

G is not oriented) as the minimum over the passage times of all the (finite) paths going from z1 to z2.

We then define
←−τ fppn := min

{
t ≥ 0 : ∃m ∈ Z, E(0,0),(n,m) ≤ t

}
.

In other words, ←−τ fppn is the time needed to reach a point at horizontal separation n from the origin,

starting from the origin.

The interest of this first-passage percolation problem lies in the fact that since the passage time

of any given edge is a.s. stricty positive, generalising Theorem 6.7 from [37] to our lattice yields the

following result.

Lemma 4.3. We have

lim
n→+∞

E[←−τ fppn ]
n

> 0.

In order to use this lemma and show Proposition 4.1, we need to be able to compare ←−τ x and
←−τ fppn . The main obstacle to this comparison lies in the fact that the ∞-parent ancestral process is

continuous in space, while the first-passage percolation problem is defined on a graph. Therefore, we

now introduce a way to "discretise" the ∞-parent ancestral process.
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(4i,4j)

x = 4i x = 4(i+1)x = 4(i-1)

C
i,j

Figure 7: Grid used to discretise the ∞-parent ancestral process when reproduction events are balls.
Each hatched square corresponds to a cell. The grey area around the site (4i, 4j), indicated by a black
cross, corresponds to the area in which centres of reproduction events have to fall to intersect the cell
Ci,j . The white areas contain all the centres of reproduction events which do not intersect any cell.

4.2 Discretisation of the ∞-parent ancestral process

In order to discretise the ∞-parent ancestral process, we first place a grid on R2, and associate a cell

to each site of the lattice. Let

V :=
{

(4i, 4j) : (i, j) ∈ Z2
}

be the underlying grid, and for all (i, j) ∈ Z2, let Ci,j be the square with centre (4i, 4j) and side

length 2. Each Ci,j , i, j ∈ Z corresponds to the cell associated to the site (4i, 4j) of the grid V. See

Figure 7 for an illustration.

This construction satisfies the two following key properties, that are consequences of the fact that

all reproduction events are balls of radius 1.

1. For all z = (x, y) ∈ R2, unless x = 4i, i ∈ Z or y = 4j + 2, j ∈ Z, the ball B1(z) intersects at

most one cell.

In other words, each reproduction events intersects at most one cell a.s. Moreover, if B1(z) does

not intersect any cell, then it means that z fell into one of the areas in white on Figure 7.

2. If we refer to a sequence of reproduction events occurring in chronological order and such that

each reproduction event intersects the previous one as a path of reproduction events, then any

path of reproduction events for which none of the corresponding balls intersect a cell is almost

surely confined in one of the white areas on Figure 7, in the sense that all the reproduction event

centres fall into the same white area almost surely.
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The discretised version of the ∞-parent ancestral process, denoted by (Dt)t≥0, is then defined as

follows. For all t ≥ 0, let

Dt :=
{

(i, j) ∈ Z2 : Ci,j ∩ Et 6= ∅
}

be the set of all cells which intersect the∞-parent ancestral process associated to µ̃← = π−1δ1⊗δ1⊗δ0

(and with initial condition (0, 0)) at time t. Let (←−τ discrn )n≥0 be the random variables defined for all

n ≥ 0 by
←−τ discrn := min {t ≥ 0 : ∃m ∈ Z, (n,m) ∈ Dt} .

Due to the structure of the grid and the size of the cells, we have the following result.

Lemma 4.4. For all n ∈ N \ {0}, we have

←−τ discrn ≤ ←−τ 4n a.s.

Proof. Let n ∈ N \ {0}. Let z ∈ R2 be the centre of the reproduction event which occurs at time ←−τ 4n

and makes the ∞-parent ancestral process reach for the first time a point at horizontal separation 4n

from the origin. Then, a.s. there exists j ∈ Z such that

B1(z) ∩ Cn,j 6= ∅,

and hence ←−τ discrn ≤ ←−τ 4n.

In all that follows, for all (i, j), (i′, j′) ∈ Z2, we say that

• the cell Ci,j is active at time t if (i, j) ∈ Dt;

• the cell Ci,j is activated at time t if (i, j) ∈ Dt and (i, j) /∈ Dt−;

• the cell Ci′,j′ activates Ci,j at time t if there exists s < t such that Ci′,j′ is active at time s, and

if there exists a path of reproduction events starting from Ci′,j′ at time s, initially overlapping

an area of Ci′,j′ containing type 1 individuals, and reaching Ci,j for the first time at time t while

not intersecting any other cell in the time interval [s, t].

Notice that under this terminology, a cell can activate another one which is already active. Moreover,

with probability one the only cells that the cell Ci′,j′ can activate are its nearest neighbours in the

graph G, that is, the cells Ci,j such that

√
(i− i′)2 + (j − j′)2 ≤

√
2.
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4.3 Comparison to the first-passage percolation problem

Let us now compare the growth of the discretised ∞-parent ancestral process (Dt)t≥0 to that of the

first-passage percolation problem introduced earlier. Recall that

←−τ fppn := min
{
t ≥ 0 : ∃m ∈ Z, E(0,0),(n,m) ≤ t

}

is the time needed by the process associated to the first-passage percolation problem to reach a point

at horizontal separation n from the origin, starting from the origin.

Proposition 4.5. The random variable ←−τ discrn is stochastically bounded from below by ←−τ fppn . That is,

for all t ≥ 0,

P
(←−τ discrn ≥ t

)
≥ P

(←−τ fppn ≥ t
)
.

Proof. First, notice that in the discretised ∞-parent ancestral process, a cell can be activated by

several neighbouring cells at the same time, but a.s. an active cell can only activate neighbouring

cells one after another. Conversely, in the first-passage percolation problem, the edges leading to a

same cell are almost surely crossed at different times, but only the first time one of these edges is

crossed matters. Therefore, it is sufficient to show that the time needed to cross an edge in the process

associated to the first-passage percolation problem is stochastically bounded from above by the time

needed for a cell to be activated once at least one of its neighbours is active.

Then, assume that at some time t, the cell Ci,j was just activated, while one of its neighbours is

still not active. Let e denote the edge between (i, j) and (i′, j′). In order for Ci′,j′ to be activated (not

necessarily by Ci,j), there needs to be a reproduction events occurring after time t and intersecting

Ci′,j′ . Such reproduction events occur at a rate bounded from above by π−1 times the volume of the

area of potential centres z such that B1(z) ∩ Ci′,j′ 6= 0, which is itself bounded by 16π−1. Therefore,

the time needed for Ci′,j′ to be activated is stochastically bounded from below by Ee, and we can

conclude.

Remark 4.6. Due to correlations between activations by neighbouring cells, it woud be more difficult to

construct a coupling with the first-passage percolation problem. However, the stochastic comparison

we obtained is sufficient.

We can now show Proposition 4.1.

Proof. (Proposition 4.1) By Proposition 4.5 and Lemma 4.4, for all n ∈ N \ {0},

E[←−τ 4n] ≥ E[←−τ discrn ] ≥ E[←−τ fppn ].
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By Lemma 4.3, we know that

lim
n→+∞

E[←−τ fppn ]
4n > 0.

Since we know that lim
n→+∞

E[←−τ n]× n−1 exists by Proposition 3.1, we obtain that

lim
n→+∞

E[←−τ 4n]
4n > 0.

We conclude by using the fact that x→←−τ x is nondecreasing by Lemma 2.18.

We conclude this section with the proof of Theorem 2.11.

Proof. (Theorem 2.11) By Proposition 3.1, we know that there exists ν ≥ 0 such that

lim
x→+∞

E[←−τ x]
x

= ν.

Moreover, by Proposition 4.1, we know that

lim
x→+∞

E[←−τ x]
x

> 0.

Therefore, ν > 0 and we conclude by using Proposition 2.20.

5 The two column growth process

The numerical simulations performed in Section 2.4 show that the speed of growth of the occupied

region in the ∞-parent SLFV is higher than the one conjectured using the express chain. Moreover,

the results suggest that the growth of the process is driven by relatively unfrequent "spikes" than

then thicken and grow sideways. In order to investigate how these spikes can significantly increase

the growth speed, we introduce the following toy model. We consider two adjacent piles of cubes,

thereafter referred to as the left pile and the right pile. Each cube has height 1. A cube is added on

top of the left (resp., right) pile at rate 1, independently from the other pile. Moreover, the piles can

also grow sideways: if there is a cube at height h in the left (resp., right) pile, and no cube at such

height in the other pile, then a cube is added to the right (resp., left) pile at height h at rate 1. In

particular, if the left pile is one cube higher than the right (resp., left) pile, then the total rate at

which the height of the right (resp., left) pile increases of 1 is equal to 2, as the growth can be due

to a new cube falling on top of the right (resp., left) pile as well as sideways growth of the left (resp.,

right) pile. See Figure 8 for an illustration of the dynamics of the process.
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area which does 
not influence front 
growth dynamics

Figure 8: Growth dynamics of the two columns growth process. The red arrows indicate possible
growth events occurring at rate 1.

Remark 5.1. The term "pile" can be slightly misleading, since it is possible to have holes in it, due to

the other pile growing sideways. See Figure 8 for an illustration.

The interest of the process lies in the following observation. If lt (resp., rt) represents the maximal

height reached by the left (resp., right) pile, then the cubes at height h < min(lt, rt) no longer

contribute to the growth of the process. Therefore, we can "reset" the process whenever lt = rt.

We now define this process, called the two columns growth process, rigorously.

5.1 The two column growth process: Definition and properties

The state space over which the process is defined is the set S̃ defined by

S̃ := {(i, j) ∈ N× N : i ≤ j} .

If (i, j) ∈ S̃, then i represents the height reached by the lowest pile, and j the height reached by the

highest pile.

Definition 5.2. Let (i, j) ∈ S̃. The two columns growth process (Gt)t≥0 = (mt,Mt)t≥0 with initial

condition (i, j), thereafter referred to as the 2-CGP, is the continuous-time Markov chain on the state

space S̃ whose transition rates are as follows. For all (i, j) ∈ S̃,

1. If i = j, then (i, j)→ (i, i+ 1) at rate 2, and no other transitions are possible.
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2. If j ≥ i+ 1, then

(i, j)→


(i, j + 1) at rate 1,

(i+ 1, j) at rate 2,

(i+ k, j), k ∈ J2, j − iK at rate 1 if j > i+ 1,

and no other transitions are possible.

These transition rates exactly encode the dynamics described earlier. Indeed, if i = j, then both

piles have the same height, and cubes fall onto each one of the piles at rate 1, yielding a total transition

rate of 2 as we do not record which pile is the highest. If i 6= j, then each pile can grow upwards

at rate 1, but the highest pile can also grow sideways. Depending on where the highest pile grows

sideways, this results in a more or less sharp increase in the height of the lowest pile.

Earlier, we saw that it was possible to "reset" the process whenever the two piles had the same

height. In order to do so, let S�� be the set

S�� := {(i, i) : i ∈ N}

of all configurations such that both piles have the same height, and let T� be the time of first return

of (Gt)t≥0 to a state belonging to S��. Our first result is an upper bound on E(0,0) [T�].

Lemma 5.3. We have

E(0,0) [T�] ≤ 3/2.

Proof. In order to do so, we first notice that T� is equal to the sum of the time needed to exit (0, 0),

which follows an exponential distribution with parameter 2, and of the time needed to reach a state

in S�� starting from (0, 1).

The first step yields an expected contribution of 1/2 to E(0,0)[T�]. Once the process is in the state

(0, 1), assuming without loss of generality that the cube fell on the right pile (which is now the highest

pile), we assign an exponential clock with parameter 1 to the highest cube of the right pile, which rings

whenever the cube attempts to grow sideways. Whenever the highest cube changes, the exponential

clock is assigned to the new highest cube. When the clock rings for the first time, we distinguish two

cases:

• Either there is no cube at the same height in the left pile, and the cube can grow sideways.

Then, we are back to a state in S��, though perhaps not for the first time.

• Either there is already a cube at the same height in the left pile. Then, we know we already
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went back to a state in S��.

Therefore,

E(0,0) [T�] ≤ 1/2 + 1,

allowing us to conclude.

We can use this lemma to obtain an upper bound on E(0,0)[MT� ] and E(0,0)[mT� ].

Lemma 5.4. We have

E(0,0)
[
MT�

]
≤ 2 and E(0,0)

[
mT�

]
≤ 2.

Proof. First, as GT� ∈ S��, we have MT� = mT� , and it is sufficient to provide an upper bound on

E(0,0)[MT� ]. Let us set

T̃ := min {t ≥ 0 : Mt 6= mt} ,

which corresponds to the time needed for the process to leave the state (0, 0). For all t ∈ [T̃ , T�), we

have Mt > mt, and the lowest pile does not contribute to the growth of the highest pile. Therefore,

over the time interval [T̃ , T�), the only way the highest pile can grow is by new cubes falling on top of

it, whose total number is given by MT� −MT̃
= MT� − 1. Moreover, since the clocks corresponding

to the upward growth of the highest pile are independent of the clocks responsible for the upward

growth of the smallest pile and for the sidewise growth at the top of the highest pile, conditionally on

T� − T̃ , the variable MT� −MT̃
follows a Poisson distribution with parameter T� − T̃ . Therefore,

E(0,0)
[
MT�

]
= E(0,0)

[
M
T̃

]
+ E(0,0)

[
MT� −MT̃

]
= 1 + E(0,0)

[
E(0,0)

[
MT� −MT̃

∣∣T� − T̃ ]]
= 1 + E(0,0)

[
T� − T̃

]
= 1− 1/2 + E(0,0)

[
T�
]

≤ 1/2 + 3/2

by Lemma 5.3, which allows us to conclude.

In order to study the speed of growth of the process, we see the 2-CGP as a cumulative process,

in the sense of Chapter VI in [3]. We obtain the following theoretical result.

Theorem 5.5. We have

lim
t→+∞

Mt

t
= lim

t→+∞

mt

t
=

E(0,0)
[
MT�

]
E(0,0) [T�] a.s.
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Proof. Let T 0
� = 0, and for all n ≥ 1, let Tn� be the time of n-th return of (Gt)t≥0 to a state in S��.

For all t > 0, let N(t) = max{n ∈ N : Tn� ≤ t}. We can rewrite mt and Mt as

mt =
N(t)∑
n=1

(
MTn�

−MTn�−1
)

+mt −MT
N(t)
�

and Mt =
N(t)∑
n=1

(
MTn�

−MTn�−1
)

+Mt −MT
N(t)
�

.

Here we have used the fact that for all n ∈ N, MTn�
= mTn�

.

Observe that the random variables (MTn�
−MTn−1

�
)n≥1 are i.i.d. The same is true for the random

variables (Tn� − Tn−1
� )n≥1. If we can show that

E(0,0)

[
max

0≤t≤T�
Mt

]
< +∞ and E(0,0)

[
max

0≤t≤T�
mt

]
< +∞, (5.1)

then we can use Theorem 3.1 from Chapter VI in [3] and conclude. As t → Mt and t → mt are

non-decreasing, this amounts to showing that E(0,0)
[
MT�

]
< +∞ and E(0,0)[mT� ] < +∞, which is a

direct consequence of Lemma 5.4.

In order to use this result and obtain the limiting speed of growth of the 2-CGP, we need to be able

to compute E(0,0)[MT� ] and E(0,0)[T�]. As a first step, we introduce the martingale problem satisfied

by the 2-CGP, which we shall use to obtain a relation between E(0,0)[MT� ] and E(0,0)[T�].

Let Cb(S̃) be the space of bounded functions f : S̃ → R. The generator G of the 2-CGP acting on

functions f ∈ Cb(S̃) is defined as follows. For all f ∈ Cb(S̃) and for all (i, j) ∈ S̃),

Gf(i, j) =1{i=j} × 2 (f(i, i+ 1)− f(i, j))

+ 1{i+1=j} × [2(f(i+ 1, j)− f(i, j)) + f(i, j + 1)− f(i, j)]

+ 1{j≥i+2} ×

2(f(i+ 1, j)− f(i, j)) + f(i, j + 1)− f(i, j) +
j−i∑
k=2

(f(i+ k, j)− f(i, j))

 .
The 2-CGP is then a solution to the following martingale problem.

Lemma 5.6. Let (i, j) ∈ S̃, and let (Gt)t≥0 = (mt,Mt)t≥0 be the 2-CGP with initial condition (i, j).

Then, for all f ∈ Cb(S̃), (
f(Gt)− f((i, j))−

∫ t

0
Gf(Gs)ds

)
t≥0

is a martingale.

We use the martingale problem with functions of the form fd : (i, j) → j1{j<d}, d ∈ N \ {0, 1}.
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Indeed, for all d ∈ N \ {0, 1} and s ≥ 0, if Gs = (ms,Ms) is such that Ms −ms ≥ 1, then

Gfd(Gs) = 1{Ms<d−1} − 1{Ms=d−1}(d− 1) (5.2)

and if ms = Ms, then

Gfd(Gs) = 21{Ms<d−1} − 2(d− 1)1{Ms=d−1}. (5.3)

We obtain the following result.

Lemma 5.7. We have

E(0,0)[MT� ] = 1
2 + E(0,0)[T�].

Proof. For all d ∈ N \ {0, 1}, let Td := inf{t ≥ 0 : Mt ≥ d}. We use the martingale problem stated in

Lemma 5.6 with the function fd : (i, j)→ j1{j<d}, d ∈ N \ {0, 1}, and the stopping time T� ∧ Td. We

obtain

E(0,0)
[
MT�∧Td

]
= E(0,0)

[
MT�∧Td1{MT�∧Td<d+2}

]
= 0 + E(0,0)

[∫ Td∧Td

0
Gfd+2(Gs)ds

]

= E(0,0)

[∫ T1

0
Gfd+2(Gs)ds

]
+ E(0,0)

[∫ T�∧Td

T1
Gfd+2(Gs)ds

]

= E(0,0) [2T1] + E(0,0) [T� ∧ Td − T1]

= E(0,0) [T1] + E(0,0)
[
T�1{T�≤Td}

]
+ E(0,0)

[
Td1{Td<T�}

]
= 1

2 + E(0,0)
[
T�1{T�≤Td}

]
+ E(0,0)

[
Td1{Td<T�}

]
.

Here we have used (5.2) and (5.3) to pass from the second to the third line. Moreover, we also have

E(0,0)
[
MT�∧Td

]
= E(0,0)

[
MT�1{T�≤Td}

]
+ E(0,0)

[
d1{T�>Td}

]
.

Therefore, if we show that

lim
d→+∞

E(0,0)
[
T�1{T�≤Td}

]
= E(0,0) [T�] , (5.4)

lim
d→+∞

E(0,0)
[
Td1{Td<T�}

]
= 0, (5.5)

lim
d→+∞

E(0,0)
[
MT�1{T�≤Td}

]
= E(0,0)

[
MT�

]
, (5.6)

and lim
d→+∞

E(0,0)
[
MTd1{Td<T�}

]
= 0, (5.7)
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then we shall be able to conclude.

In order to do so, recall that in order to come back to the set S��, the process first needs to leave

the state (0, 0), which occurs at time T1 ∼ Exp(2). Without loss of generality, we assume that the first

cube falls on the right pile. As in the proof of Lemma 5.3, we assign an exponential clock T→ ∼ Exp(1)

to the highest cube of the right pile, and move this exponential clock to the new highest cube in this

pile whenever it grows. Then, reasoning as in the proof of Lemma 5.3, we have T� ≤ T→ + T1.

Moreover, MT� ≤ d if, and only if at most d − 1 cubes fall on the right pile during the time interval

[T1, T�]. Therefore, if P(λ), λ > 0 stands for a Poisson random variable with parameter λ,

P(0,0)(T� > Td) ≤ P(P(T→) ≥ d− 1)

≤
∫ ∞

0
e−tP(P(t) ≥ d− 1)dt

≤
∫ ∞

0
e−t

E[P(t)]
d− 1 dt

≤ 1
d− 1

∫ ∞
0

te−tdt

−−−−→
d→+∞

0.

Therefore, by the dominated convergence theorem and Lemmas 5.3 and 5.4, we can write

lim
d→+∞

E(0,0)
[
T�1{Td<T�}

]
= 0 and lim

d→+∞
E(0,0)

[
MT�1{Td<T�}

]
= 0,

from which we deduce (5.4) and (5.6). Moreover,

E(0,0)
[
Td1{Td<T�}

]
≤ E(0,0)

[
T�1{Td<T�}

]
,

giving (5.5), and as t→Mt is non-decreasing,

E(0,0)
[
MTd1{Td<T�}

]
≤ E(0,0)

[
MT�1{Td<T�}

]
,

allowing us to conclude, again by a dominated convergence argument.

Using this result together with Theorem 5.5, we obtain a new expression for the speed of growth

of the process, along with explicit lower and upper bounds.

Proposition 5.8. We have

lim
t→+∞

Mt

t
= 1 + 1

2E(0,0)[T�] ∈ [4/3, 2] a.s.
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Proof. By Theorem 5.5,

lim
t→+∞

Mt

t
=

E(0,0)
[
MT�

]
E(0,0) [T�] a.s.

Moreover, by Lemma 5.7,

E(0,0)
[
MT�

]
E(0,0) [T�] =

1/2 + E(0,0) [T�]
E(0,0) [T�] = 1 + 1

2E(0,0) [T�] .

By Lemma 5.3, E(0,0) [T�] ≤ 3/2 and so

1 + 1
2E(0,0) [T�] ≥ 1 + 1/3 = 4/3.

Moreover, as T� ≥ T1 and as T1 ∼ Exp(2), we have E(0,0) [T�] ≥ 1/2. Therefore,

1 + 1
2E(0,0) [T�] ≤ 1 + 1 = 2,

allowing us to conclude.

Remark 5.9. Without the interaction with the other pile, the speed of growth of an isolated pile of cubes

would be of 1. Therefore, this first result means that the interaction between the two piles increases

the growth speed by a factor of at least 1.33, and at most 2. Considering more than two interacting

piles would increase the growth speed even more, and yield a factor closer to the one obtained for the

SLFV (whose value of 2.58 was obtained through numerical simulations in Section 2.4).

5.2 The discretised two columns growth process

The main obstacle to the study of the speed of growth of the 2-CGP lies in the fact that the process

does not jump at a constant rate: the bigger the height difference between the two columns, the faster

the process jumps. In order to circumvent this problem, we now introduce a discretised version of the

two columns growth process. Then, we explain how to couple it to the 2-CGP, and use its invariant

distribution to obtain an approximation for E(0,0)[T�] and for the speed of growth. In all that follows,

let (Gt)t≥0 = (mt,Mt)t≥0 be the 2-CGP with initial condition (0, 0). Recall that T� is the time of

first return of (Gt)t≥0 to a state in S��, and for all d ∈ N \ {0, 1}, Td = inf{t ≥ 0 : Mt ≥ d}.

Moreover, let N ∈ N \ {0, 1} and ε > 0. In order to construct the discretised 2-CGP, we make the

following observation. If t ≥ 0, then the probability that the process (Gt)t≥0 jumps at least once in

the time interval [t, t+ ε) is equal to

1− exp (−ε(Mt −mt + 2)) ≈ ε(Mt −mt + 2),
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and the probability that it jumps at least twice is bounded from above by

(1− exp (−ε(Mt −mt + 3)))2 ≈ ε2(Mt −mt + 3)2.

Therefore, if ε is small enough and if we are able to control Mt −mt, then we can consider that at

most one growth event occurs during a time interval of length ε. We use this idea to construct the

discretised 2-CGP. In order to ease the notation, we only describe the dynamics of the height difference

between the two piles, and define the discretised 2-CGP on the state space N. Note that it is possible

to recover the complete process from the evolution of the height difference. Moreover, we shall often

abuse notation and say that the discretised 2-CGP starts from the state (0, 0), or that it comes back

to a state in S�� when it comes back to the state 0.

Definition 5.10. For all ε > 0 and N ∈ N\{0, 1}, the discretised 2-CGP (Ĝ(N,ε)
n )n∈N with time step ε

and maximal height difference N is the J0, NK-valued discrete-time Markov chain with initial condition

Ĝ
(N,ε)
0 = 0 and whose transition probabilities (p̂(N,ε)

i,j )(i,j)∈J0,NK2 are defined as follows.

1. If i = 0, p̂(N,ε)
0,0 = exp(−2ε), p̂(N,ε)

0,1 = 1− exp(−2ε), and for all j ∈ J2, NK, p̂(N,ε)
0,j = 0.

2. For all i ∈ J1, N − 1K,

p̂
(N,ε)
i,j :=



0 if j > i+ 1,
2
i+2(1− exp(−(i+ 2)ε)) if j = i− 1,

exp(−(i+ 2)ε) if j = i,

1
i+2(1− exp(−(i+ 2)ε)) if j = i+ 1 or (if i 6= 1) 0 ≤ j ≤ i− 2,

3. If i = N ,

p̂
(N,ε)
N,j :=



0 if j > i+ 1,
2

N+2(1− exp(−(N + 2)ε)) if j = i− 1,

1− N+1
N+2(1− exp(−(N + 2)ε)) if j = i,

1
N+2(1− exp(−(N + 2)ε)) if 0 ≤ j ≤ i− 2,

This process has dynamics similar to those of the 2-CGP, except when the height difference between

the two piles is equal to N : the growth of the highest pile in then blocked until the lower pile grows.

This bound ensures we can compute the invariant distribution of the process.

Before studying the properties of the discretised 2-CGP, we explain how to couple it to the

(continuous-time) 2-CGP. In order to do so, for all n ∈ N, let tn := nε. Moreover, let T̂ (ε)
p be

the smallest positive integer such that (Gt)t≥0 jumps at least twice in the time interval [t
T̂

(ε)
p
, t
T̂

(ε)
p +1),
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and let T̂ (ε)
N be the smallest positive integer such that there exists t ∈ [t

T̂
(ε)
N

, t
T̂

(ε)
N +1) such thatMt ≥ N .

We then construct the coupled discretised 2-CGP (ĜN,εn )n∈N as follows.

1. First, we set Ĝ(N,ε)
0 = 0.

2. For all n ∈ J0,min(T̂ (ε)
N , T̂

(ε)
p )− 1K, we set

Ĝ
(N,ε)
n+1 = Mtn+1 −mtn+1 .

3. If T̂ (ε)
p ≤ T̂ (ε)

N , Ĝ(N,ε)
T̂

(ε)
p +1

is taken equal to the value of Mt−mt after the first jump of (Gt)t≥0 over

the time interval [t
T̂

(ε)
p
, t
T̂

(ε)
p +1). Otherwise, we set Ĝ(N,ε)

T̂
(ε)
N +1

= Mt
T̂

(ε)
N

+1
−mt

T̂
(ε)
N

+1
.

4. For n > min
(
T̂

(ε)
p + 1, T̂ (ε)

N + 1
)
, the coupling no longer holds, and (Ĝ(N,ε)

n )n∈N evolves according

to the dynamics described in Definition 5.10.

This coupling satisfies the following property.

Lemma 5.11. Let ε > 0 and N ∈ N \ {0, 1}. The coupling of the discretised 2-CGP (Ĝ(N,ε)
n )n∈N

with timestep ε and maximal height difference N to the original 2-CGP (Gt)t≥0 holds until time

min
(
T̂

(ε)
p , T̂

(ε)
N

)
. In other words, for all n ∈ N, if n ≤ min

(
T̂

(ε)
p , T̂

(ε)
N

)
, then

Ĝ(N,ε)
n = Mtn −mtn .

Moreover, let T̂ (N,ε)
� be defined as

T̂
(N,ε)
� := min

{
n ∈ N \ {0} : Ĝ(N,ε)

n = 0 but Ĝ(N,ε)
n−1 6= 0

}
.

If T̂ (N,ε)
� ≤ min

(
T̂

(ε)
N , T̂

(ε)
p

)
, then εT̂ (N,ε)

� − ε < T� ≤ εT̂ (N,ε)
� a.s.

Notice that contrary to T�, the random variable T̂ (N,ε)
� does not correspond exactly to the time

of first return of Ĝ(N,ε)
n to 0, but rather to the time needed for the process to exit state 0 and then

return to it. For instance, if Ĝ(N,ε)
1 = 0, then the time of first return to state 0 of (Ĝ(N,ε)

n )n∈N is equal

to 1, while T̂ (N,ε)
� > 1.

Proof. The first part of the lemma is a direct consequence of the coupling. Next, assume that

T̂
(N,ε)
� ≤ min

(
T̂

(ε)
N , T̂

(ε)
p

)
. By definition of T̂ (N,ε)

� , we know that

Mt
T̂

(N,ε)
�

−mt
T̂

(N,ε)
�

= 0, (5.8)
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and for all n ∈ J0, T̂ (N,ε)
� K,

Mtn −mtn 6= 0.

Moreover, (Gt)t≥0 jumps at most once over each time interval [tn, tn+1), n ∈ J0, T̂ (N,ε)
� −1K. Therefore,

for all n ∈ J0, T̂ (N,ε)
� − 1K and t ∈ [tn, tn+1),

Mt −mt ∈
{
Mtn −mtn ,Mtn+1 −mtn+1

}
,

from which we deduce that

∀t ∈
[
0, t

T̂
(N,ε)
� −1

]
, Mt −mt 6= 0.

Therefore,

T� > t
T̂

(N,ε)
� −1 = ε

(
T̂

(N,ε)
� − 1

)
.

Moreover, by (5.8), we have

T� ≤ tT̂ (N,ε)
�

= εT̂
(N,ε)
� ,

and we can conclude.

The interest of the discretised 2-CGP lies in the fact that it is possible to compute E(0,0)[T̂
(N,ε)
� ]

explicitly, using the invariant distribution of the process. The quantity εE(0,0)[T̂
(N,ε)
� ] is a good ap-

proximation for E(0,0)[T�] when ε→ 0 and N → +∞, as stated in the following result.

Proposition 5.12. We have

lim
ε→0

N→+∞
N2ε→0

εE(0,0)
[
T̂

(N,ε)
�

]
= E(0,0)[T�].

In order to show Proposition 5.12, we need two technical lemmas. The first one, Lemma 5.13,

states that for large N , with high probability, the 2-CGP comes back to a state in S�� before reaching

height N . The second one, Lemma 5.14, states that before coming back to a state in S��, under

suitable conditions on ε and N , with high probability, at most one growth event occurs in each interval

of length ε. Notice that these two lemmas describe the properties of the original (non-discretised)

2-CGP. We shall use them to show that in the limiting regime, the coupling between the discretised

2-CGP and the original process still holds at time T̂ (N,ε)
� , as whether the coupling breaks depends on

the dynamics of the original 2-CGP.

Lemma 5.13. For the non-discretised 2-CGP (Gt)t≥0 = (mt,Mt)t≥0, for all ε > 0 and N ∈ N\{0, 1},
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we have

P(0,0) (TN ≤ T� + ε) ≤ 1
2N−1 exp(ε),

where we recall that TN = inf {t ≥ 0 : Mt ≥ N}.

Proof. Let ε > 0 and N ∈ N \ {0, 1}. Adapting the proof of Lemma 5.7, we obtain that

P(0,0) (TN ≤ T� + ε) ≤ P(0,0) (P (T→ + ε) ≥ N − 1) ,

where T→ ∼ Exp(1) and where P(λ), λ > 0 stands for a Poisson random variable with parameter λ.

Therefore,

P(0,0) (TN ≤ T� + ε) ≤
∫ ∞

0
e−te−(t+ε)

 +∞∑
i=N−1

(t+ ε)i
i!

 dt
= e−ε

 +∞∑
i=N−1

∫ ∞
0

e−2t (t+ ε)i
i! dt

 .
Moreover, for all i ≥ N − 1,

∫ ∞
0

e−2t (t+ ε)i
i! dt =

[
−1

2e
−2t (t+ ε)i

i!

]∞
0

+
∫ ∞

0

1
2e
−2t (t+ ε)i−1

(i− 1)! dt

= 1
2
εi

i! + 1
2

∫ ∞
0

e−2t (t+ ε)i−1

(i− 1)! dt

=
i∑

j=0

1
2j+1

εi−j

(i− j)!

= 1
2i+1

 i∑
j=0

(2ε)i−j
(i− j)!


≤ 1

2i+1 exp(2ε).

Therefore,

P(0,0)(TN ≤ T� + ε) ≤
+∞∑

i=N−1

1
2i+1 e

2εe−ε ≤ eε 1
2N−1 ,

which concludes the proof.

Lemma 5.14. In the notation of Lemma 5.13, we have

P(0,0)

(
T̂ (ε)
p <

T�
ε

∣∣∣∣TN > T� + ε

)
≤ 2 (1− exp(−(N + 2)ε))) + 1

1− exp(−ε) (1− exp(−(N + 2)ε)))2 .

Proof. Consider the time intervals [t0, t1), [t1, t2), ..., [tbT1ε−1c, tbT1ε−1c+1), ..., [tbT�ε−1c, tbT�ε−1c+1). We
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work conditionally on TN > T� + ε. In order to have T̂ (ε)
p < T�ε

−1, one of the following events needs

to occur.

1. Another growth event occurs in the time interval [tbT1ε−1c, tbT1ε−1c+1).

This occurs with probability bounded from above by 1− exp(−(N + 2)ε).

2. At least two growth events occur in at least one of the time intervals [tbT1ε−1c+1, tbT1ε−1c+2), ...,

[tbT�ε−1c−1, tbT�ε−1c).

For each time interval, this occurs with probability bounded from above by (1−exp(−(N+2)ε))2.

3. Another growth event occurs in the time interval [tbT�ε−1c, tbT�ε−1c+1).

Again, this occurs with probability bounded from above by 1− exp(−(N + 2)ε).

Moreover, if only one growth event occurs during the time interval [tbT1ε−1c, tbT1ε−1c+1), then the

random variable bT�ε−1c−bT1ε
−1c is bounded from above by a geometric law with success probability

1− exp(−ε). Therefore,

P(0,0)

(
T̂ (ε)
p <

T�
ε

∣∣∣∣TN > T� + ε

)
≤ 2(1− exp(−(N + 2)ε)) +

+∞∑
k=2

k exp(−ε)k−1(1− exp(−ε))(1− exp(−(N + 2)ε))2

≤ 2 (1− exp(−(N + 2)ε))) + 1
1− exp(−ε) (1− exp(−(N + 2)dt)))2 ,

and we can conclude.

We can now show Proposition 5.12.

Proof. (Proposition 5.12) By Lemma 5.11, if T� ≤ min(T̂ (ε)
N , εT̂ εp), then

εT̂
(N,ε)
� − ε < T� ≤ εT̂ (N,ε)

� .

In particular, this is true if TN − ε > T� and T̂ (ε)
p ≥ T�ε−1. Then, by case disjunction,

E(0,0)[T�] =E(0,0)
[
T�1{TN<T�+ε}

]
+ E(0,0)

[
T�1{TN>T�+ε}1{T̂p(ε)<T�ε−1}

]
+ E(0,0)

[
T�1{TN>T�+ε}1{T̂p(ε)≥T�ε−1}

]
,

and similarly,

E(0,0)
[
T̂

(N,ε)
�

]
=E(0,0)

[
T̂

(N,ε)
� 1{TN<T�+ε}

]
+ E(0,0)

[
T̂

(N,ε)
� 1{TN>T�+ε}1{T̂p(ε)<T�ε−1}

]
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+ E(0,0)
[
T̂

(N,ε)
� 1{TN>T�+ε}1{T̂p(ε)≥T�ε−1}

]
.

Therefore,

εE(0,0)
[
T̂

(N,ε)
� 1{TN>T�+ε}1{T̂p(ε)≥T�ε−1}

]
− ε+ E(0,0)

[
T�1{TN<T�+ε}

]
+ E(0,0)

[
T�1{TN>T�+ε}1{T̂p(ε)<T�ε−1}

]
≤E(0,0)[T�]

≤εE(0,0)
[
T̂

(N,ε)
� 1{TN>T�+ε}1{T̂p(ε)≥T�ε−1}

]
+ E(0,0)

[
T�1{TN<T�+ε}

]
+ E(0,0)

[
T�1{TN>T�+ε}1{T̂p(ε)<T�ε−1}

]
,

and hence

εE(0,0)
[
T̂

(N,ε)
�

]
− ε+ E(0,0)

[(
T� − εT̂N,ε�

) (
1{TN<T�+ε} + 1{TN>T�+ε}1{T̂p(ε)<T�ε−1}

)]
≤E(0,0)[T�]

≤εE(0,0)
[
T̂

(N,ε)
�

]
+ E(0,0)

[(
T� − εT̂N,ε�

) (
1{TN<T�+ε} + 1{TN>T�+ε}1{T̂p(ε)<T�ε−1}

)]
.

By (5.3), we have E(0,0)[T�] ≤ 3/2. Moreover,

E(0,0)
[
εT̂

(N,ε)
�

]
≤ ε

 1
p̂

(N,ε)
0,0

+ 1
p̂

(N,ε)
1,0

+ max
i∈J2,NK

1
p̂

(N,ε)
i,0


= ε

(
1

1− exp(−2ε) + 3
2(1− exp(−3ε)) + max

i∈J2,NK

i+ 2
1− exp(−(i+ 2)ε)

)

≤ ε
( 1

1− exp(−2ε) + 3
2(1− exp(−3ε)) + N + 2

1− exp(−(N + 2)ε)

)
.

Therefore,

E(0,0)
[∣∣∣T� − εT̂ (N,ε)

�

∣∣∣] ≤ 3/2 + ε

( 1
1− exp(−2ε) + 3

2(1− exp(−3ε)) + N + 2
1− exp(−(N + 2)ε)

)

and

lim
ε→0

N→+∞
N2ε→0

E(0,0)
[∣∣∣T� − T̂ (N,ε)

�

∣∣∣] ≤ 3/2 + 1/2 + 3/6 + 1 < +∞.

Moreover, by Lemmas 5.13 and 5.14, we have

P(0,0) (TN < T� + ε) −−−−−→
ε→0

N→+∞
N2ε→0

0,
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and

P(0,0)
(
T̂ εp < T�ε

−1
∣∣∣TN > T� + ε

)
−−−−−→
ε→0

N→+∞
N2ε→0

0,

which allows us to conclude using the dominated convergence theorem.

Therefore, if we compute εE(0,0)[T̂
(N,ε)
� ] for N large enough and ε small enough, we can use the

corresponding value to approximate E(0,0)[T�]. The next section is devoted to obtaining an explicit

expression for E(0,0)[T̂
(N,ε)
� ], using the invariant distribution of (Ĝ(N,ε)

n )n≥0.

5.3 Invariant distribution of the discretised 2-CGP

Since the discretised 2-CGP is an irreductible and positive recurrent Markov chain, there exists a

relation between its invariant distribution and the expected first return times for each of its states.

We want to use this relation to obtain an explicit expression for E(0,0)[T̂
(N,ε)
� ]. However, as explained

earlier, the definition of T̂ (N,ε)
� does not correspond to how first return times for discrete-time Markov

chains are usually defined in the literature. Therefore, the invariant distribution of (Ĝ(N,ε)
n )n∈N does

not directly give access to E(0,0)[T̂
(N,ε)
� ].

In order to circumvent this problem, we now introduce the accelerated discretised 2-CGP, denoted

by (G̃(N,ε)
n )n≥0. The dynamics of this new process is identical to the one of the original discretised

2-CGP, except when the process is in state 0. In this case, the accelerated discretised 2-CGP jumps

to state 1 with probability 1. Therefore, the process cannot stay in state 0 during more than one

time step, and the time needed to first leave state 0, and then return to it is given by the invariant

distribution of the process.

Definition 5.15. The accelerated discretised 2-CGP (G̃(N,ε)
n )n∈N with timestep ε and maximal height

difference N is the J0, NK-valued discrete-time Markov chain with initial condition G̃
(N,ε)
0 = 0 and

whose transition probabilities (p(N,ε)
i,j )(i,j)∈J0,NK2 are defined as follows.

1. If i = 0, then p(N,ε)
0,0 = 0, p(N,ε)

0,1 = 1, and for all j ∈ J2, NK, p(N,ε)
0,j = 0.

2. For all i ∈ J1, NK and for all j ∈ J0, NK, p(N,ε)
i,j = p̂

(N,ε)
i,j .

Similarly as before, we shall say that (G̃(N,ε)
n )n∈N starts from the state (0, 0) (resp., comes back to

a state in S��) when it starts from (resp., comes back to) the state 0.

As stated before, the main difference between (G̃(N,ε)
n )n≥0 and (Ĝ(N,ε)

n )n≥0 lies in the fact that

(G̃(N,ε)
n )n≥0 cannot stay in the state 0 during more than one time step. Therefore, the mean time

of first return to state 0 starting from state 1 are equal for the original process and its accelerated

version. Moreover, we can compute this time for the accelerated discretised 2-CGP, since:

52



• Its mean time of first return to state 0 starting from state 0 can be computed using its invariant

distribution.

• If it starts from state 0, then it reaches state 1 in exactly one timestep.

Therefore, if T̃ (N,ε)
� stands for the time of first return of (G̃(N,ε)

n )n≥0 to 0, we have the following lemma.

Lemma 5.16. We have

E(0,0)[T̂
(N,ε)
� ] = E(0,0)[T̃

(N,ε)
� ]− 1 + 1

1− exp(−2ε) .

Proof. Indeed, (G̃(N,ε)
n )n≥0 exits the state 0 in exactly one time step, while (Ĝ(N,ε)

n )n≥0 needs a number

of time steps distributed as a geometrical law with probability of success 1− exp(−2ε) to do so.

We now compute the invariant distribution of (G̃(N,ε)
n )n≥0. In order to do so, let (p̃(N,ε)

i )0≤i≤N stand

for the invariant distribution of (G̃(N,ε)
n )n≥0. Let (A(N,ε)

i )0≤i≤N be defined by backwards induction as

follows.

1. First, we set A(N,ε)
N = 1, A(N,ε)

N−1 = N + 1 and A(N,ε)
N−2 = (N + 1)A(N,ε)

N−1 − 2A(N,ε)
N .

2. Then, for all i ∈ J2, N − 2K, we set

A
(N,ε)
i−1 = (i+ 2)A(N,ε)

i − 2A(N,ε)
i+1 −

N∑
j=i+2

A
(N,ε)
j .

3. We conclude by setting

A
(N,ε)
0 = 1

2

2A(N,ε)
1 +

N∑
j=2

A
(N,ε)
j

 (1− exp(−2ε)).

Then, the sequence (p̃(N,ε)
i )0≤i≤N can be expressed in terms of the sequence (A(N,ε)

i )0≤i≤N as follows.

Lemma 5.17. For all i ∈ J0, NK, we have

p̃(N,ε)
i = p̃(N,ε)

N A
(N,ε)
i

i+ 2
N + 2

1− exp(−(N + 2)ε)
1− exp(−(i+ 2)ε) .

Proof. We show that the result is true by backwards induction. First, we check that it is true for

i = N , i = N − 1 and i = N − 2.

A
(N,ε)
N

N + 2
N + 2

1− exp(−(N + 2)ε)
1− exp(−(N + 2)ε) = A

(N,ε)
N = 1,
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and so the property is true for i = N . Then, by definition of the invariant distribution, we have

p̃(N,ε)
N−1p

(N,ε)
N−1,N + p̃(N,ε)

N p
(N,ε)
N,N = p̃(N,ε)

N ,

and so

p̃(N,ε)
N−1 = 1

p
(N,ε)
N−1,N

p̃(N,ε)
N (1− p(N,ε)

N,N )

= N + 1
1− exp(−(N + 1)ε) p̃(N,ε)

N

(
N + 1
N + 2 (1− exp(−(N + 2)ε))

)
= p̃(N,ε)

N

N + 1
N + 2 (N + 1)1− exp(−(N + 2)ε)

1− exp(−(N + 1)ε)

and the result is true for i = N − 1. Moreover,

p̃(N,ε)
N−2p

(N,ε)
N−2,N−1 + p̃(N,ε)

N−1p
(N,ε)
N−1,N−1 + p̃(N,ε)

N p
(N,ε)
N,N−1 = p̃(N,ε)

N−1 ,

which means that

p̃(N,ε)
N−2 = 1

p
(N,ε)
N−2,N−1

[
p̃(N,ε)
N−1 (1− p(N,ε)

N−1,N−1)− p̃(N,ε)
N p

(N,ε)
N,N−1

]
= N

1− exp(−Nε) p̃(N,ε)
N

[
N + 1
N + 2A

(N,ε)
n−1

1− exp(−(N + 2)ε)
1− exp(−(N + 1)ε) (1− exp(−(N + 1)ε))

]
− N

1− exp(−Nε) p̃(N,ε)
N

[ 2
N + 2 (1− exp(−(N + 2)ε))

]
= p̃(N,ε)

N

N

N + 2
(
(N + 1)A(N,ε)

N−1 − 2A(N,ε)
N

) 1− exp(−(N + 2)ε)
1− exp(−Nε)

= p̃N
N

N + 2 A
(N,ε)
N−2

1− exp(−(N + 2)ε)
1− exp(−Nε)

by definition of A(N,ε)
n−2 .

Then, let i ∈ J2, N − 2K, and assume that the property is true for j ∈ Ji,NK. Again by definition

of the invariance property,

p̃(N,ε)
i−1 p

(N,ε)
i−1,i + p̃(N,ε)

i p
(N,ε)
i,i + p̃(N,ε)

i+1 p
(N,ε)
i+1,i +

N∑
j=i+2

p̃(N,ε)
j p

(N,ε)
j,i = p̃(N,ε)

i ,

from which we deduce

p̃(N,ε)
i−1 = 1

p
(N,ε)
i−1,i

p̃(N,ε)
i (1− p(N,ε)

i,i )− p̃(N,ε)
i+1 p

(N,ε)
i+1,i −

N∑
j=i+2

p̃(N,ε)
j p

(N,ε)
j,i


= i+ 1

1− exp(−(i+ 1)ε) p̃(N,ε)
N
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×
[
i+ 2
N + 2A

(N,ε)
i

1− exp(−(N + 2)ε)
1− exp(−(i+ 2)ε) (1− exp(−(i+ 2)ε))

− i+ 3
N + 2A

(N,ε)
i+1

1− exp(−(N + 2)ε)
1− exp(−(i+ 3)ε)

2
i+ 3(1− exp(−(i+ 3)ε))

−
N∑

j=i+2

j + 2
N + 2A

(N,ε)
j

1− exp(−(N + 2)ε)
1− exp(−(j + 2)ε)

1
j + 2(1− exp(−(j + 2)ε)


= p̃(N,ε)

N

i+ 1
N + 2

1− exp(−(N + 2)ε)
1− exp(−(i+ 1)ε)

(i+ 2)A(N,ε)
i − 2A(N,ε)

i+1 −
N∑

j=i+2
A

(N,ε)
j


= p̃NA(N,ε)

i−1
i+ 1
N + 2

1− exp(−(N + 2)ε)
1− exp(−(i+ 1)ε)

by definition of A(N,ε)
i−1 .

We now need to check that the property is true for i = 0. We have

p̃(N,ε)
1 p

(N,ε)
1,0 +

N∑
j=2

p̃(N,ε)
j p

(N,ε)
j,0 = p̃(N,ε)

0 ,

and so

p̃(N,ε)
0 =

p̃(N,ε)
1 p

(N,ε)
1,0 +

N∑
j=2

p̃(N,ε)
j p

(N,ε)
j,0


= p̃(N,ε)

N

1− exp(−(N + 2)ε)
N + 2

×

32
3

1− exp(−3ε)
1− exp(−3ε)A

(N,ε)
1 +

N∑
j=2

(j + 2)A(N,ε)
j

1− exp(−(j + 2)ε)
1

j + 2(1− exp(−(j + 2)ε))


= p̃(N,ε)

N

1
N + 2

1− exp(−(N + 2)ε)
1− exp(−2ε)

2A(N,ε)
1 +

N∑
j=2

A
(N,ε)
j

 (1− exp(−2ε))

= p̃(N,ε)
N

2
N + 2A

(N,ε)
0

1− exp(−(N + 2)ε)
1− exp(−2ε) ,

which allows us to conclude.

We can now use the invariant distribution to obtain an explicit formula for E(0,0)
[
T̂

(N,ε)
�

]
.

Proposition 5.18. We have

E(0,0)
[
T̂

(N,ε)
�

]
= 1

1− exp(−2ε) + 2A(N,ε)
0

1− exp(−2ε)

(
N∑
i=1

(i+ 2)A(N,ε)
i

1− exp(−(i+ 2)ε)

)
.

Proof. We know that

E(0,0)
[
T̃

(N,ε)
�

]
= 1

p̃(N,ε)
0

and
N∑
i=0

p̃(N,ε)
i = 1.
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Using Lemma 5.17, we obtain that

p̃(N,ε)
N

1− exp(−(N + 2)ε)
N + 2

[
N∑
i=0

(i+ 2)A(N,ε)
i

1− exp(−(i+ 2)ε

]
= 1,

and so

p̃(N,ε)
N = N + 2

1− exp(−(N + 2)ε)
1∑N

i=0
(i+2)A(N,ε)

i
1−exp(−(i+2)ε)

.

Using again Lemma 5.17 yields

p̃(N,ε)
0 = 2A(N,ε)

0
1

1− exp(−2ε)

(
N∑
i=0

(i+ 2)A(N,ε)
i

1− exp(−(i+ 2)ε)

)−1

= 1

1 +
[∑N

i=1
(i+2)A(N,ε)

i
1−exp(−(i+2)ε)

]−1
1−exp(−2ε)

2A(N,ε)
0

,

and using Lemma 5.16, we obtain

E(0,0)
[
T̂

(N,ε)
�

]
= E(0,0)

[
T̃

(N,ε)
�

]
− 1 + 1

1− exp(−2ε)

= 1 + 2A(N,ε)
0

1− exp(−2ε)

(
N∑
i=1

(i+ 2)A(N,ε)
i

1− exp(−(i+ 2)ε)

)
− 1 + 1

1− exp(−2ε)

= 1
1− exp(−2ε) + 2A(N,ε)

0
1− exp(−2ε)

(
N∑
i=1

(i+ 2)A(N,ε)
i

1− exp(−(i+ 2)ε)

)
.

We can now use Proposition 5.12 in order to compute an approximation for E(0,0)[T�].

Proposition 5.19.

E(0,0)[T�] = 1
2 + lim

ε→0
N→+∞
N2ε→0

N∑
i=1

(i+ 2)A(N,ε)
0 A

(N,ε)
i

1− exp(−(i+ 2)ε) .

Proof. By Proposition 5.12,

E(0,0)[T�] = lim
ε→0

N→+∞
N2ε→0

εE(0,0)
[
T̂

(N,ε)
�

]
.

Moreover, by Proposition 5.18,

εE(0,0)
[
T̂

(N,ε)
�

]
= 1

1− exp(−2ε) + 2A(N,ε)
0

1− exp(−2ε)

(
N∑
i=1

(i+ 2)A(N,ε)
i

1− exp(−(i+ 2)ε)

)
.
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We conclude by using the fact that

ε

1− exp(−2ε) −−→ε→0

1
2 .

We obtain that E(0,0)[T�] ' 1.46, which is higher than the lower bound of 1.33 obtained at the

end of Section 5.1.
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A Geometrical properties of ellipses

In this section, we show some geometrical properties of ellipses, which are used in other sections. In

all that follows, let zc = (xc, yc) ∈ R2, (a, b) ∈ (0,+∞) and γ ∈ (−π/2, π/2). Recall that Ba,b,γ(z) is

the ellipse defined by:

Ba,b,γ(zc) =


xc
yc

+Aγ

ar cos(θ)

br sin(θ)

 : r ∈ [0, 1], θ ∈ [0, 2π)


where

Aγ =

cos(γ) − sin(γ)

sin(γ) cos(γ)

 .
The first lemma gives the maximal horizontal separation between a point in the ellipse and its

centre. This result is used in Section 3 to construct the express chain.

Lemma A.1. Let f : [0, 1]× [−π, π)→ R be the function defined by

∀(r, θ) ∈ [0, 1]× [−π, π), f(r, θ) = ar cos(θ) cos(γ)− br sin(θ) sin(γ).

Then, f reaches its maximum for

(rmax, θmax) =
(

1, arctan
(
− b
a

tan(γ)
))

,

and

f(rmax, θmax) =
√
a2 cos2(γ) + b2 sin2(γ).

Proof. First, it is obvious that rmax = 1. Moreover, cos(θmax) must be of the same parity as cos(γ), and

sin(θ) must be of opposite parity from sin(γ). As γ ∈ (−π/2, π/2), we obtain that θmax ∈ (−π/2, π/2)
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too (that is, it cannot take the values ±π/2).

The function fθ : (−π/2, π/2)→ R such that for all θ ∈ (−π/2, π/2),

fθ(θ) := a cos(θ) cos(γ)− b sin(θ) sin(γ)

is differentiable, and for all θ ∈ (−π/2, π/2),

f ′θ(θ) = −a sin(θ) sin(γ)− b cos(θ) sin(γ).

Therefore,

f ′θ(θmax) = 0⇐⇒ a sin(θmax) cos(γ) = −b cos(θmax) sin(γ)⇐⇒ θmax = arctan
(
− b
a

tan(γ)
)
.

Moreover, since cos(γ) > 0, we can write

a cos(γ) cos(θmax)− b sin(γ) sin(θmax)

= a cos(γ) cos
(

arctan
(
− b
a

tan(γ)
))
− b sin(γ) sin

(
arctan

(
− b
a

tan(γ)
))

= a cos(γ) 1√
1 + b2

a2 tan2(γ)
+ b sin(γ)

b
a tan(γ)√

1 + b2

a2 tan2(γ)

= a2 cos2(γ)
a cos(γ)

√
1 + b2

a2 tan2(γ)
+ 1
a cos(γ)

b2 sin2(γ)√
1 + b2

a2 tan2(γ)

= a2 cos2(γ) + b2 sin2(γ)√
a2 cos2(γ) + b2 sin2(γ)

=
√
a2 cos2(γ) + b2 sin2(γ),

which concludes the proof.

The second lemma means that the mean horizontal separation of a point in the ellipse from its

centre is equal to 0. Therefore, when a point is affected by a reproduction event, the mean horizontal

separation of the centre of the corresponding ellipse from the point is equal to 0. That is:

Lemma A.2. Let Z = (x+X, y+Y ) be sampled uniformly at random in the ellipse Ba,b,γ(z). Then,

E[X] = 0.

61


	Introduction
	The -parent spatial Lambda-Fleming Viot process with elliptical reproduction events
	Definition of the process
	Dual process and duality relation
	Speed of growth of the occupied region in the -parent SLFV: Definition and main result
	Numerical simulations

	Lower bound on the speed of growth
	Sub-additivity
	Definition of the express chain
	Properties of the express chain

	Upper bound on the speed of growth
	A first-passage percolation problem
	Discretisation of the -parent ancestral process
	Comparison to the first-passage percolation problem

	The two column growth process
	The two column growth process: Definition and properties
	The discretised two columns growth process
	Invariant distribution of the discretised 2-CGP

	References
	Geometrical properties of ellipses

