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CHUI’S CONJECTURE IN BERGMAN SPACES

EVGENY ABAKUMOV, ALEXANDER BORICHEV, KONSTANTIN

FEDOROVSKIY

Abstract. We solve Chui’s conjecture on the simplest fractions

(i.e., sums of Cauchy kernels with unit coefficients) in weighted

(Hilbert) Bergman spaces. Namely, for a wide class of weights, we

prove that for every N , the simplest fractions with N poles on the

unit circle have minimal norm if and only if the poles are equis-

paced on the circle. We find sharp asymptotics of these norms.

Furthermore, we describe the closure of the simplest fractions in

weighted Bergman spaces, using an L
2 version of Thompson’s the-

orem on dominated approximation by simplest fractions.

1. Introduction

The starting point of our research is the following question: How to

putN point charges on the unit circle T of the complex plane C in order

to minimize the average strength of the corresponding electrostatic

field in the unit disk D, assuming forces inversely proportional to the

distance? C. K. Chui [7] conjectured in 1971 that this average strength

is minimal when the charges are equispaced on T, and, surprisingly,

this very natural and elementary conjecture is still open.

This and related questions call for the study of approximation prop-

erties of so-called simplest fractions.

We mean by a simplest fraction (the term simple partial fraction is

also used in the literature) a rational function r in the complex variable

z having the form

r(z) =
∑

0≤k<N

1

z − ak
,
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where N is a positive integer, and ak, 0 ≤ k < N , are points in

C. Note that the simplest fraction r(z) can be represented as the

logarithmic derivative of the polynomial
∏

0≤k<N(z−ak); alternatively,

the function r(z) can be thought of as the Cauchy transform of the sum

of the Dirac measures of mass one at the points a0, . . . , aN−1. Another

interpretation of the simplest fraction r is that the value r(z) represents

the complex conjugation of the electrostatic field at the point z, caused

by charges placed at the points a0, . . . , aN−1, assuming forces inversely

proportional to the distance.

The simplest fractions are an interesting and important object in

various topics of contemporary analysis. One can mention here, for

example, that in 2006 J. M. Anderson and V. Eiderman [2] solved a

long-standing problem of Macintyre–Fuchs describing the growth of the

Hausdorff content of the level sets of simplest fractions. For a recent

survey of numerous results on simplest fractions see [10].

G. R. Mac Lane [14] initiated in 1949 the study of approximation by

polynomials with restriction on the location of their zeros. One says

that a set E is a polynomial approximation set relative to a domain G

if every zero-free holomorphic function f on G can be approximated

uniformly on compact subsets of G by polynomials having zeros only

on E. Mac Lane showed that for every bounded (simply connected)

Jordan domain Ω ⊂ C with rectifiable boundary, ∂Ω is a polynomial

approximation set relative to Ω. Later, M. Thompson [17], Chui [6],

and Z. Rubinstein and E. B. Saff [16] strengthened this result by con-

sidering bounded polynomial approximation in the unit disc.

Furthermore, J. Korevaar [13] considered Mac Lane’s problem in a

more general setting and related it to approximation by simplest frac-

tions, which is one of the main objects of consideration in the present

paper. The main result of Korevaar reads as follows:

Korevaar’s theorem. Let G be a bounded simply connected domain

in C, and let E ⊂ C be such that E ∩ G = ∅. The following four

statements are equivalent:

1) The set E is a polynomial approximation set relative to G.



CHUI’S CONJECTURE IN BERGMAN SPACES 3

2) For every point w ∈ E, the function z 7→ (z − w)−1 can be ap-

proximated locally uniformly in G by polynomials having zeros only on

E.

3) There exists a system of finite families {aN,k : 0 ≤ k < N} of

points in E, such that

∑

0≤k<N

1

z − aN,k
→ 0

locally uniformly in G as N → ∞.

4) The set closE separates the plane, and G belongs to a bounded

connected component of the set C \ closE.

Thus, the possibility of approximation in the sense of the first asser-

tion of the theorem is equivalent to the possibility of approximation of

the zero function by simplest fractions with poles on E.

For a given set E ⊂ C, we consider the family of all simplest fractions

with poles on the set E:

SF(E) =

{ ∑

0≤k<N

1

z − aN,k
: N ≥ 1, aN,k ∈ E, 0 ≤ k < N

}
.

As a corollary of Korevaar’s theorem, one has the following result

about approximation of general holomorphic functions (not necessarily

zero–free ones) by simplest fractions with restrictions on the poles. Let

G be a bounded simply connected domain in C, and let K be a compact

subset of G having connected complement. Then the family SF (∂G)

is dense in the space A(K) consisting of all continuous functions on

K which are holomorphic in the interior of K. Notice that Korevaar’s

results were recently extended by P. A. Borodin [4].

In the beginning of 1970-s, Chui [7] considered yet another problem

related with the approximation by the simplest fractions with poles

lying on the unit circle. He was interested in the question whether the

set SF = SF (T) is dense in the Bergman space A1 = A1(D) consisting

of all functions holomorphic and integrable in D, and endowed with the

usual L1-norm (with respect to normalized planar Lebesgue measure

m2 on the unit disk, dm2(z) = π−1 dxdy, z = x+ iy).
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In connection with this question Chui formulated the following con-

jecture.

Chui’s Conjecture. For any positive integer N , and for any family

of points {ak}0≤k<N on the unit circle, we have
∥∥∥∥

∑

0≤k<N

1

z − ak

∥∥∥∥
L1(D)

≥
∥∥∥∥

∑

0≤k<N

1

z − e2πik/N

∥∥∥∥
L1(D)

.

For N ≥ 1 we denote

ΨN(z) =
∑

0≤k<N

1

z − e2πik/N
.

It can be easily verified (see [7]) that

(1.1) ‖ΨN‖L1(D) ≥ C

for some absolute constant C > 0. Thus, Chui’s conjecture would

imply that the set SF is not dense in A1.

The next year after the publication of Chui’s conjecture, D. J. New-

man [15] proved that the set SF is not dense in A1. More precisely, he

established that ∥∥∥∥
∑

0≤k<N

1

z − ak

∥∥∥∥
L1(D)

≥ π

18

for any collection {ak}0≤k<N of points on the unit circle.

Next, Chui studied in [8] approximation by simplest fractions in

Jordan domains in the complex plane in the Bers spaces, that is, in

the weighted L1-spaces with weights λ2−q
D , 0 < q < ∞, where λD is the

Poincaré metric for the domain D under consideration. It follows from

estimate (1.1) that the set SF is not dense in the Bers spaces in D for

every 1 < q ≤ 2. It is proved in [8] that for any Jordan domain D and

for every q > 2, the simplest fractions with poles on the boundary of

D are dense in the respective Bers space in D. The results of [8] were

later extended in [9].

Despite considerable progress in our knowledge of simplest fractions

properties, including approximation ones, the original question posed
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by Chui remains open. In this paper, we resolve a version of Chui’s con-

jecture in the context of weighted Bergman spaces of square integrable

functions, that is in the Hilbert space setting.

Throughout the paper we use the following notation: for positive A

and B, A . B means that there is a positive numerical constant C

such that A ≤ CB, while A & B means that B . A, and A ≍ B

means that both A . B and B . A.

2. Main results

Let us recall that for α > −1 the (standard) weighted Bergman space

A2
α = A2

α(D) consists of all functions f holomorphic in D for which the

norm ‖f‖α is finite, where

‖f‖2α = (α + 1)

∫

D

|f(z)|2 (1− |z|2)α dm2(z).

We refer the reader to the book [12] where one can find a thorough

exposition of the theory of standard weighted Bergman spaces.

More generally, if g is an integrable positive function on the interval

[0, 1], we consider the corresponding weighted Bergman space

A2
(g) =

{
f ∈ Hol(D) : ‖f‖2(g) = κg

∫

D

|f(z)|2 g(1− |z|2) dm2(z) < ∞
}
,

where κg = (
∫ 1

0
g(t) dt)−1 is the normalization constant. It can be

verified directly that the fractions (z − λ)−1, λ ∈ T, belong to A2
(g) if

and only if

(2.1)

∫

0

g(s)

s
ds < ∞.

Recall that we denote by SF the set of all simplest fractions with poles

on T. For every α > 0 we have SF ⊂ A2
α, and for every α ∈ (−1, 0] we

have SF ∩A2
α = ∅. So, in what follows we suppose that α > 0.

First, we establish an analogue of Chui’s conjecture for a wide class

of Bergman weighted spaces, namely, we prove that for N point masses

on the unit circle, the norm of the corresponding Cauchy transform is

the smallest if and only if these point masses are equispaced on T.
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Theorem 1. Let g 6≡ 0 be a concave non-decreasing function on [0, 1]

satisfying (2.1) and such that g(0) = 0. Then for every integer N ≥ 1

and for every family of points {ak}0≤k<N on the unit circle we have
∥∥∥∥

∑

0≤k<N

1

z − ak

∥∥∥∥
(g)

≥
∥∥∥∥

∑

0≤k<N

1

z − e2πik/N

∥∥∥∥
(g)

=
∥∥ΨN

∥∥
(g)
.

Furthermore, if {ak}0≤k<N are points on the unit circle such that
∥∥∥∥

∑

0≤k<N

1

z − ak

∥∥∥∥
(g)

=
∥∥ΨN

∥∥
(g)
,

then the points {ak}0≤k<N are equispaced on the unit circle.

Corollary 2. For every α ∈ (0, 1], for every integer N ≥ 1, and for

every family of points {ak}0≤k<N on the unit circle we have
∥∥∥∥

∑

0≤k<N

1

z − ak

∥∥∥∥
α

≥
∥∥ΨN

∥∥
α
.

It is easy to see that the sequence of norms

∥∥ΨN

∥∥
α
=

∥∥∥∥
NzN−1

zN − 1

∥∥∥∥
α

tends to zero as N → ∞ for 0 < α < 1, tends to a positive finite

number for α = 1, and tends to +∞ for α > 1. The following result

provides with the exact asymptotics. As usual, we denote by ζ and Γ

the Riemann zeta-function and the Gamma function, respectively.

Theorem 3. For every α > 0 we have

lim
N→∞

Nα−1‖ΨN‖2α = Γ(α+ 2)ζ(α+ 1) > 0.

In particular,

lim
N→∞

‖ΨN‖1 =
π√
3
.

For general g, we can obtain weaker asymptotical estimates on the

norms ‖ΨN‖(g).

Proposition 4. Let g satisfy (2.1). Then

‖ΨN‖2(g) ≍ N

∫ 1/N

0

g(t) dt

t
+N2

∫ 1

1/N

(1− t)Ng(t) dt, N → ∞.
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Corollary 5. (A) For every c > 0 we have

exp(−cN) . ‖ΨN‖(g) = o(N1/2), N → ∞.

(B) If g(t) = o(t), t → 0, then ‖ΨN‖(g) = o(1), N → ∞.

(C) If q > 1 and g(t) = log−q(2/t), then

‖ΨN‖2(g) ≍
N

logq−1N
, N → ∞.

(D) If q > 0 and g(t) = exp(−t−q), then

log(1/‖ΨN‖(g)) ≍ N q/(q+1), N → ∞.

We do not know whether the equispaced distribution remains to be

optimal for the spaces A2
α when α > 1. Nevertheless, we show that

asymptotically this is true up to a constant:

Theorem 6. Let α > 1. For some absolute constant C1 > 0 and for

some number C2(α) > 0, we have

αC1N
1−α ≤ min

ak∈T, 0≤k<N

∥∥∥∥
∑

0≤k<N

1

z − ak

∥∥∥∥
2

α

≤ C2(α)N
1−α, N ≥ 1.

Given a weighted Bergman space, it is natural to ask which elements

of the space can be approximated in norm by the simplest fractions

with poles on T. Our next result answers this question. It turns out

that one can approximate either “everything” or “nothing” depending

on g:

Theorem 7. Let g 6≡ 0 satisfy (2.1). Then

clos A2
(g)

SF =




SF , t = O(g(t)), t → 0,

A2
(g), g(t) = o(t), t → 0.

In particular, SF is closed nowhere dense in A2
α when 0 < α ≤ 1

and is dense in A2
α when α > 1.

In the case α = 1 we have a more precise result. Set

SFN =
{ ∑

0≤j<N

1

z − zN,j

: zN,j ∈ T, 0 ≤ j < N
}
.

The sets SFN are compact in A2
α for α > 0, N ≥ 1.
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Theorem 8. For every f ∈ A2
1, we have

lim
N→∞

distA2
1
(f,SFN) =

π√
3
.

This result shows, in particular, that the set SF is a ((π/
√
3) + ε)-

net in the space A2
1, for small ε > 0; considering the functions −ΨN

with large N we see that the set SF is not a ((π/
√
3) − ε)-net in the

space A2
1, for small ε > 0.

In 1967 Thompson [17] (answering a question posed by Korevaar in

1965) obtained that for every bounded analytic function f in D, there

exist hn ∈ ⋃
N≥n SFN , n ≥ 1, converging to f uniformly on compact

subsets of D and such that

sup
n≥1, z∈D

(1− |z|)|hn(z)| < ∞.

His proof used the results and the constructions by Mac Lane in [14].

Let us formulate a somewhat improved version of Thompson’s theorem.

Let H∞ = H∞(D) denote the space of bounded analytic functions

in the unit disc.

Theorem 9. Let f ∈ H∞. For every ε > 0, for every compact subset

K of D, and for every N ≥ N(f, ε,K) there exists h ∈ SFN such that

‖f − h‖L∞(K) ≤ ε,

|h(z)| ≤ 1

1− |z| + C0‖f‖H∞ log
e

1− |z| , z ∈ D,

for some absolute constant C0.

To prove Theorems 7 and 8 we use an Lp version of Thompson’s

theorem which we will formulate below. Whereas the simplest fractions

h constructed in the proof of Theorem 9 have “almost” equispaced

poles, our Theorem 10 shows that the average growth of h along the

concentric circles rT is not much faster than that of the corresponding

simplest fraction ΨN .

Given β > 0, denote

ρ(β) =
1 + β

((1 + β)1/(p−1) − 1)p−1
> 0
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for 1 < p < ∞ and ρ(β) = 1 for p = 1, so that, by a simple calculation,

we have

(x+ y)p ≤ (1 + β)xp + ρ(β)yp, x, y ≥ 0.

Theorem 10. Let f ∈ H∞, 1 ≤ p < ∞. For every ε, β > 0, for every

compact subset K of D, and for every N ≥ N(f, ε,K) there exists

h ∈ SFN such that

‖f − h‖L∞(K) ≤ ε,
∫ 1

0

|h(e2πisr)|p ds ≤ (1 + β)

∫ 1

0

|ΨN(e
2πisr)|p ds(2.2)

+ ρ(β)Cp
0‖f‖pH∞ logp

e

1− r
, 0 < r < 1,

for C0 as in Theorem 9.

Remark 11. Our estimates on h in Theorem 10 improve on those in

Theorem 9. Namely, for 1 < p < ∞ and r ∈ (1−N−1, 1), Theorem 10

gives

Ir :=

∫ 1

0

|h(e2πisr)|p ds . N(1 − r)1−p,

which improves on the estimate Ir . (1 − r)−p that we can get from

Theorem 9. If 1 − r = A/N for large fixed A, then Theorem 10 gives

Ir . Npe−pA while Theorem 9 gives Ir . NpA−p, N → ∞.

Our results motivate the following open questions.

Question 1. Does Theorem 1 hold for larger classes of g? For instance,

for g(t) = tα, α > 1 ?

Question 2. It would be of interest to have more information about

the mutual location of the sets SFn in the spaces A2
α. In particular,

are pairwise distances between these sets bounded away from 0 in the

space A2
1 ? Our conjecture is that the answer is positive, and, moreover,

if α > 0, n, k ≥ 1, then

distA2
α
(SFn,SFn+k) = ‖Ψk‖α .
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We finish this section with a few words about the organization of the

paper and the methods used.

Theorems 1, 3, and 6 and Proposition 4 are proved in Section 4.

The proof of Theorem 1 uses some classical results on trigonometric

series and a convexity argument, which is discussed in Section 3. The

proofs of Theorem 3 and Proposition 4 are direct calculations. In the

proof of Theorem 6 we use moment estimates for systems of unimodular

numbers going back to J. W. S. Cassels.

In Section 5 we establish Theorems 9 and 10 generalizing Thompson’s

theorem. Using the ideas of [14] and [17], we provide a short argument

with better pointwise and integral estimates.

Theorems 7 and 8 are proved in Section 6. Their proofs use Theo-

rem 10. In Remark 15 we indicate an alternative way to get the density

of SF in A2
α, α > 1.

3. Auxiliary lemmas

Let g be a function satisfying the conditions of Theorem 1. For

integer k ≥ 0 we set

c(g),k =

∫ 1

0

tkg(1− t) dt > 0,

and define the function

ϕ(g)(t) =
∑

k≥0

c(g),k cos((k + 1)t), t ∈ R.

Notice that condition (2.1) is equivalent to the fact that ϕ(g)(0) < ∞.

Next, for every α > 0, let gα(t) = tα, t ≥ 0, cα,k = c(gα),k, and

ϕα = ϕgα, so that

cα,k =

∫ 1

0

tk (1− t)α dt, k ≥ 0

and

ϕα(t) =
∑

k≥0

cα,k cos((k + 1)t), t ∈ R.

Notice that for α > 0 we have

cα,k ≍ k−(α+1), k → ∞.
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Both ϕ(g) (for the aforesaid g) and ϕα (for α > 0) are 2π-periodic

even continuous functions.

We need the following convexity lemma.

Lemma 12.

(1) For every function g satisfying the conditions of Theorem 1, the

function ϕ(g) is strictly convex on (0, 2π).

(2) The function ϕα, α > 0, is strictly convex on (0, 2π) if and only

if α ∈ (0, 1].

Proof. (A) First we prove that the function ϕ = ϕ1 is strictly convex.

We have

c1,k =
1

(k + 1)(k + 2)
, k ≥ 0,

and, hence,

ϕ(t) =
∑

k≥1

cos(kt)

k(k + 1)
.

Therefore, for every t ∈ (0, 2π) we obtain

ϕ′(t) = −
∑

k≥1

sin(kt)

k + 1
= −

∑

k≥1

sin(kt)

k + 1
+
∑

k≥1

sin(kt)

k
− π − t

2

=
∑

k≥1

sin(kt)

k(k + 1)
− π − t

2
,

and, hence,

ϕ′′(t) =
1

2
+
∑

k≥1

cos(kt)

k + 1
.

Now we are going to use the following result from the book by N. Bari

[3, Chapter 1, Section 30]. Let {ak}k≥0 be a decreasing convex sequence

of positive numbers, limk→∞ ak = 0. Then (a0/2)+
∑

k≥1 akcos(kt) ≥ 0,

t ∈ (0, 2π), because

a0
2

+
∑

k≥1

akcos(kt) =
1

2

∑

j≥0

(j + 1)∆2ajFj+1(t), t ∈ (0, 2π),



12 E. ABAKUMOV, A. BORICHEV, K. FEDOROVSKIY

where ∆2aj = ∆aj − ∆aj+1, ∆aj = aj − aj+1, j ≥ 0, and Fj are the

Fejér kernels,

Fj(t) =
1

j

(sin(jt/2)
sin(t/2)

)2

≥ 0, j ≥ 1.

In our situation, ak = 1/(k+1), ∆2ak > 0, k ≥ 0, and, hence, we have

ϕ′′(t) > 0 on (0, 2π).

(B) Let g be a function satisfying the conditions of Theorem 1. Then

we have

ϕ(g)(t) =
∑

k≥0

cos((k + 1)t)

∫ 1

0

sk g(1− s) ds

= Re eit
∫ 1

0

∑

k≥0

eitk sk g(1− s) ds

= Re

∫ 1

0

1

e−it − s
g(1− s) ds

=

∫ 1

0

cos t− s

1 + s2 − 2s cos t
g(1− s) ds.

Hence, ϕ(g) ∈ C∞((0, 2π)).

Furthermore,

ϕ(g)(t) =

∫ 1

0

cos t− s

1 + s2 − 2s cos t
g(1− s) ds

= −1

2

∫ 1

0

g(1− s) d log(1 + s2 − 2s cos t)

= −1

2

∫ 1

0

log(1 + s2 − 2s cos t) g′(1− s) ds,

for 0 < t < 2π. Hence,

ϕ′
(g)(t) = −

∫ 1

0

s sin t

1 + s2 − 2s cos t
g′(1− s) ds, 0 < t < 2π,

and

ϕ′′
(g)(t) = −

∫ 1

0

s cos t(1 + s2 − 2s cos t)− 2s2 sin2 t

(1 + s2 − 2s cos t)2
g′(1− s) ds

=

∫ 1

0

s
2s− (1 + s2) cos t

(1 + s2 − 2s cos t)2
g′(1− s) ds, 0 < t < 2π.
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Thus, ϕ(g) is strictly convex on
[
π
2
, π

]
. Next, let us observe that

ϕ′′
(g)(t) = ϕ′′

(g)(2π − t) on (0, 2π). Hence, ϕ(g) is strictly convex on[
π
2
, 3π

2

]
.

Since the function ϕ1 is strictly convex on (0, 2π), we obtain that

∫ 1

0

ht(s) ds > 0,

for 0 < t <
π

2
, where

ht(s) = s
2s− (1 + s2) cos t

(1 + s2 − 2s cos t)2
.

Take now t ∈
(
0, π

2

)
and choose (the unique) st ∈ (0, 1) such that

2st = (1 + s2t ) cos t. Then ht(s) < 0 for s ∈ (0, st) and ht(s) > 0 for

s ∈ (st, 1). Furthermore,

ϕ′′
(g)(t) =

∫ 1

0

ht(s) g
′(1− s) ds

≥
∫ st

0

ht(s) g
′(1− st) ds+

∫ 1

st

ht(s) g
′(1− st) ds =

g′(1− st)

∫ 1

0

ht(s) ds ≥ 0.

Suppose now that ϕ′′
(g)(t) = 0. Then g′(1 − st) = 0, and, hence,

g′ = 0 on the interval [1− st, 1], and ϕ′′
(g)(t) =

∫ 1

st
ht(s) g

′(1− s) ds > 0,

which is impossible. Therefore, the function ϕ(g) is strictly convex on

(0, π
2
). Using once again that ϕ′′

(g)(t) = ϕ′′
(g)(2π − t), we conclude that

ϕ(g) is strictly convex on (0, 2π).

(C) By the result of (B), the function ϕα is strictly convex on (0, 2π)

for α ∈ (0, 1].

(D) It remains to notice that for any α > 1 the function ϕα is not

convex. Indeed, for such α we have ϕα ∈ C1(R), and, since ϕα attains

its maximum at the point t = 0, this function cannot be convex on

(0, 2π). The lemma is proved. �

The next lemma pertains to the convex analysis.
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Lemma 13. Let ϕ be a 2π-periodic even continuous function strictly

convex on (0, 2π). Then for every N ≥ 2 we have

(3.1) inf
ϑj∈[0,2π), 0≤j<N

∑

0≤j,k<N, j 6=k

ϕ(ϑj − ϑk) =
∑

0≤j,k<N, j 6=k

ϕ
(
2πj
N

− 2πk
N

)
.

Furthermore, if ϑj ∈ [0, 2π), 0 ≤ j < N , and
∑

0≤j,k<N, j 6=k

ϕ(ϑj − ϑk) =
∑

0≤j,k<N, j 6=k

ϕ
(
2πj
N

− 2πk
N

)
,

then the points eiϑj are equispaced on the unit circle.

Proof. Changing, if necessary, the enumeration of ϑj , we can assume

that the infimum in (3.1) is taken over 0 ≤ ϑ0 ≤ ϑ1 ≤ . . . ≤ ϑN−1 ≤ 2π.

Furthermore, set ϑk+jN = ϑk + 2πj, 0 ≤ k < N , j ∈ Z. Since
∑

0≤j,k<N, j 6=k

ϕ(ϑj − ϑk) =
∑

1≤s<N

∑

0≤j<N

ϕ(ϑj+s − ϑj),

it suffices to verify that for every 1 ≤ s < N
∑

0≤j<N

ϕ(ϑj+s − ϑj) ≥ Nϕ
(
2πs
N

)
,

and that the equality is attained only if the differences ϑj+s − ϑj do

not depend on j.

Fix 1 ≤ s < N and set n = gcd(N, s), m = N/n. It remains to prove

(3.2)
∑

0≤p<m

ϕ(ϑj+(p+1)s − ϑj+ps) ≥ mϕ
(
2πs
N

)
, 0 ≤ j < n,

and

(3.3)

{
the equality in (3.2) is attained only if

ϑj+(p+1)s − ϑj+ps =
2πs
N
, 0 ≤ j < n, 0 ≤ p < m.

Denote ℓ = s/n. We have 1 ≤ ℓ < m. Let

Xℓ =
{
x = (x0, . . . , xm−1) ∈ [0, 2π]m :

∑

0≤q<m

xq = 2πℓ
}
.

Now, to get (3.2) and (3.3) we need only to establish the inequality

(3.4)
∑

0≤q<m

ϕ(xq) ≥ mϕ
(
2πℓ
m

)
, x ∈ Xℓ,
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and the property

(3.5)
∑

0≤q<m

ϕ(xq) = mϕ
(
2πℓ
m

)
⇐⇒ x = (2πℓ

m
, 2πℓ

m
, . . . , 2πℓ

m
), x ∈ Xℓ.

By a compactness argument, we can find y = (y0, . . . , ym−1) ∈ Xℓ

such that
∑

0≤q<m

ϕ(yq) = min
x∈Xℓ

∑

0≤q<m

ϕ(xq).

If yq 6= yq+1 for some q, then we can replace yq and yq+1 by (yq+yq+1)/2,

and, by the strict convexity of ϕ, the sum of the values of ϕ will decay,

which is impossible. Hence, yq = 2πℓ/m, 0 ≤ q < m, which proves

(3.4) and (3.5), and concludes the proof of the lemma. �

4. Proofs of Theorems 1, 3, 6, and Proposition 4

Proof of Theorem 1. Let N ≥ 1, ϑk ∈ [0, 2π], 0 ≤ k < N ,

f(z) =
∑

0≤k<N

1

z − eiϑk
, z ∈ D.

Denote by ‖ · ‖ the norm and by 〈·, ·〉 the scalar product in the space

A2
(g). If ϑ = ϑ2 − ϑ1, then

Re

〈
1

z − eiϑ1
,

1

z − eiϑ2

〉

= κg Re

∫

D

(∑

k≥0

e−i(k+1)ϑ1zk
)
·
(∑

j≥0

e−i(j+1)ϑ2zj
)
· g(1− |z|2) dm2(z)

= κg Re

∫

D

∑

k≥0

|z|2keiϑ(k+1)g(1− |z|2) dm2(z)

= 2κg Re

∫ 1

0

∑

k≥0

r2keiϑ(k+1)g(1− r2) r dr

= κg Re
∑

k≥0

eiϑ(k+1)

∫ 1

0

tkg(1− t) dt

= κg

∑

k≥0

c(g),k cos((k + 1)ϑ) = κgϕ(g)(ϑ).
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Therefore,

‖f‖2 =
〈 ∑

0≤k<N

1

z − eiϑk
,
∑

0≤k<N

1

z − eiϑj

〉

=
∑

0≤k<N

∥∥∥
1

z − eiϑk

∥∥∥
2

+ κg

∑

0≤j,k<N, j 6=k

ϕ(g)(ϑk − ϑj)

= N
∥∥∥

1

z − 1

∥∥∥
2

+ κg

∑

0≤j,k<N, j 6=k

ϕ(g)(ϑk − ϑj).

By Lemma 12, the function ϕ(g) is strictly convex on (0, 2π), and by

Lemma 13, the quantity ‖f‖ attains its minimum if and only if the

points eiϑk , 0 ≤ k < N , are equispaced on the unit circle, and, hence,

‖f‖ = ‖ΨN‖. �

Proof of Theorem 3. Given N ≥ 1, we have

‖ΨN‖2α = (α + 1)

∫

D

∣∣∣∣
NzN−1

1− zN

∣∣∣∣
2

(1− |z|2)α dm2(z)

=
α + 1

π

∫ 1

0

(∫ 2π

0

dt

|1− rNeiNt|2
)
(NrN−1)2(1− r2)αr dr.

By a direct computation one verifies that

∫ 2π

0

dt

|1− xeit|2 =
2π

1− x2
, 0 ≤ x < 1.

Therefore,

‖ΨN‖2α = 2(α+ 1)

∫ 1

0

N2r2N−2(1− r2)αr

1− r2N
dr

Using the substitution r = e−s/(2N), we obtain

Nα−1‖ΨN‖2α = (α + 1)

∫ +∞

0

(
N(1− e−s/N)

)α

es − 1
ds.
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Since 1 − e−x ≤ x for x ≥ 0, by the Lebesgue dominated convergence

theorem we conclude that

lim
N→∞

Nα−1‖ΨN‖2α = (α+ 1)

∫ +∞

0

sα

es − 1
ds

= (α+ 1)
∑

k≥1

∫ +∞

0

sαe−ks ds

= (α+ 1)
∑

k≥1

k−α−1

∫ +∞

0

sαe−s ds

= Γ(α+ 2)ζ(α+ 1).

�

Remark 14. The same calculation shows that for every α > 0, the

sequence {Nα−1‖ΨN‖2α}N≥1 is monotonically increasing.

Proof of Proposition 4. As in the proof of Theorem 3, we have

‖ΨN‖2(g) ≍
∫ 1

0

N2r2N−2g(1− r2)r

1− r2N
dr ≍ N2

∫ 1

0

rN−1g(1− r)

1− rN
dr

= N2

∫ 1−(1/N)

0

rN−1g(1− r)

1− rN
dr +N2

∫ 1

1−(1/N)

rN−1g(1− r)

1− rN
dr

≍ N2

∫ 1−(1/N)

0

rNg(1− r) dr +N2

∫ 1

1−(1/N)

g(1− r)

N · (1− r)
dr

= N2

∫ 1

1/N

(1− r)Ng(r) dr +N

∫ 1/N

0

g(r)

r
dr.

�

Proof of Theorem 6. The upper estimate follows from Theorem 3.

Fix α > 1, N ≥ 1, and ak ∈ T, 0 ≤ k < N . To establish the lower

estimate, it suffices to verify that for some absolute constant C > 0 we

have

(4.1) I :=

∫

N−1<1−|z|2<2N−1

∣∣∣∣
∑

0≤k<N

1

z − ak

∣∣∣∣
2

dm2(z) ≥ CN.

Since ∑

0≤k<N

1

z − ak
= −

∑

s≥0

zs
∑

0≤k<N

as+1
k ,
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we have

I =
∑

s≥0

∫

N−1<1−t<2N−1

ts
∣∣∣
∑

0≤k<N

as+1
k

∣∣∣
2

dt & N−1
∑

0≤s≤2N−1

∣∣∣
∑

0≤k<N

as+1
k

∣∣∣
2

.

Now, to get (4.1), it remains to check that

(4.2)
∑

1≤j≤2N

∣∣∣
∑

0≤k<N

bjk

∣∣∣
2

≥ δN2,

for some absolute constant δ > 0 and for every family of unimodular

numbers {bk}0≤k<N .

Individually, the sums Sj =
∑N−1

k=0 bjk could be of order O(
√
N) for

1 ≤ j ≤ NB, B > 1, (see [11] for a probabilistic approach and [1] for

a deterministic algebraic approach). However, the sum of the squares

of the moduli of Sj for j between 1 and (1 + ε)N (not between 1 and

N) admits a good lower estimate like in (4.2). Our argument here is

inspired by that of J. W. S. Cassels in [5].

For every M ≥ 1 we have

∑

1≤j≤M

(
1− j

M + 1

)∣∣∣
∑

0≤k<N

bjk

∣∣∣
2

=
∑

1≤j≤M

(
1− j

M + 1

)(
N +

∑

0≤k,m<N, k 6=m

(bk b̄m)
j
)

= N
∑

1≤j≤M

(
1− j

M + 1

)
+

∑

0≤k<m<N

∑

|j|≤M,j 6=0

(
1− |j|

M + 1

)
(bk b̄m)

j

=
NM

2
+

∑

0≤k<m<N

∑

|j|≤M

(
1− |j|

M + 1

)
(bk b̄m)

j −
∑

0≤k<m<N

1

≥ NM

2
+

∑

0≤k<m<N

∑

|j|≤M

(
1− |j|

M + 1

)
(bk b̄m)

j − N(N − 1)

2

≥ N(M −N + 1)

2
,

because the Fejér kernel is non-negative,

∑

|j|≤M

(
1− |j|

M + 1

)
eijx = FM+1(x) ≥ 0, x ∈ R.
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Choose now M = 2N . Then

∑

1≤j≤2N

∣∣∣
∑

0≤k<N

bjk

∣∣∣
2

≥
∑

1≤j≤2N

(
1− j

2N + 1

)∣∣∣
∑

0≤k<N

bjk

∣∣∣
2

≥ N2

2
.

�

5. Proofs of Theorems 9 and 10

Proof of Theorem 9. Denote M = ‖f‖H∞ . Given N ≥ 1, set

WN(t) = Nt− 2

∫ t

0

Re(e2πiuf(e2πiu)) du, t ≥ 0.

We have WN (0) = 0, WN(1) = N ,

|W ′
N(t)−N | ≤ 2M, t ≥ 0.

For sufficiently large N , the function WN increases, and we set xN,k =

W−1
N (k), 0 ≤ k ≤ N . We have

(5.1) |xN,k+1 − xN,k| = N−1 +O(N−2M), 0 ≤ k < N, N → ∞.

Put

hN(z) =
∑

0≤k<N

1

z − e2πixN,k
.

Then hN ∈ SFN .

Given z = re2πis ∈ D, choose 0 ≤ m < N such that

∣∣e2πis − e2πixN,m
∣∣ = min

0≤k<N

∣∣e2πis − e2πixN,k
∣∣.

Set yN,k = xN,m + (k −m)/N , 0 ≤ k < N . By (5.1), we have

|e2πixN,k−e2πiyN,k | = O(N−1M |1−e2πi(k−m)/N |), 0 ≤ k < N, N → ∞,

and

|z − e2πixN,k | ≍ |z − e2πiyN,k |, 0 ≤ k < N, N > N(M).

Furthermore,

∑

0≤k<N

1

z − e2πiyN,k
= e−2πixN,mΨN(ze

−2πixN,m).
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Therefore,

∣∣hN(z)− e−2πixN,mΨN(ze
−2πixN,m)

∣∣(5.2)

≤
∑

0≤k<N

∣∣∣
1

z − e2πixN,k
− 1

z − e2πiyN,k

∣∣∣

=
∑

0≤k<N

|e2πixN,k − e2πiyN,k |
|z − e2πixN,k | · |z − e2πiyN,k |

= O(N−1M)
∑

0≤k<N

|1− e2πi(k−m)/N |
|z − e2πiyN,k |2

= O(N−1M)
( ∑

0≤j<N(1−|z|)

j/N

(1− |z|)2 +
∑

N(1−|z|)≤j<N

j/N

(j/N)2

)

= O(N−1M)
( 1

N(1 − |z|)2
∑

0≤j<N(1−|z|)

j + N
∑

N(1−|z|)≤j<N

1

j

)

≤ C0M log
e

1− |z| ,

for some absolute constant C0, for N ≥ N(M).

Since

|ΨN(z)| ≤
1

1− |z| ,

we conclude that

|hN(z)| ≤
∣∣e−2πixN,mΨN(ze

−2πixN,m)
∣∣

+
∣∣hN(z)− e−2πixN,mΨN (ze

−2πixN,m)
∣∣

≤ 1

1− |z| + C0M log
e

1− |z| , z ∈ D, N ≥ N(M).

Furthermore, given z ∈ D, we have

f(z) =
1

2πi

∫

T

f(ζ)

ζ − z
dζ =

1

2πi

∫

T

ζf(ζ) + ζf(ζ)

ζ(ζ − z)
dζ

=
1

πi

∫

T

Re(ζf(ζ))

ζ(ζ − z)
dζ = 2

∫ 1

0

Re(e2πitf(e2πit))

e2πit − z
dt

and

0 =

∫ 1

0

1

e2πit − z
dt.
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Hence,

f(z) =

∫ 1

0

W ′
N(t)

z − e2πit
dt,

and

|f(z)−hN(z)| =
∣∣∣∣
∑

0≤k<N

(∫ xN,k+1

xN,k

W ′
N (t)

z − e2πit
dt− 1

z − e2πixN,k

)∣∣∣∣

=

∣∣∣∣
∑

0≤k<N

∫ xN,k+1

xN,k

e2πit − e2πixN,k

(z − e2πit)(z − e2πixN,k)
W ′

N (t) dt

∣∣∣∣

= 2π

∣∣∣∣
∑

0≤k<N

∫ xN,k+1

xN,k

e2πixN,k
t− xN,k +O(N−2)

(z − e2πixN,k)2 +O(N−1)
W ′

N(t) dt

∣∣∣∣

=
π

N

∣∣∣∣
∑

0≤k<N

( e2πixN,k

(z − e2πixN,k)2
+O(N−1M)

)∣∣∣∣

for N ≥ N(M). Since K is a compact subset of D, we have

∣∣∣
∑

0≤k<N

e2πiyN,k

(z − e2πiyN,k)2

∣∣∣ =
∣∣∣

N2zN−1

(e2πiNyN,1 − zN )2

∣∣∣ → 0,

uniformly in z ∈ K as N → ∞, and

|f(z)− hN (z)| ≤
π

N

∑

0≤k<N

∣∣∣
e2πixN,k

(z − e2πixN,k)2
− e2πiyN,k

(z − e2πiyN,k)2

∣∣∣+ o(1)

.
C(K)M

N2

∑

0≤k<N

|1− e2πi(k−m)/N |+ o(1) = o(1),

uniformly in z ∈ K as N → ∞, �

Proof of Theorem 10. We use the notation from the proof of Theo-

rem 9. Given f ∈ H∞, ε > 0, and a compact subset K of D, choose

N ≥ N(f, ε,K) and hN ∈ SFN constructed in the proof of Theorem 9

so that

‖f − hN‖L∞(K) ≤ ε,

It remains to verify the integral estimate (2.2). Fix r ∈ (0, 1) and

set

v1(e
2πit) = |ΨN(e

2πitr)|, 0 ≤ t < 1.
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Since

v1(e
2πit) =

NrN−1

|e2πitNrN − 1| , 0 ≤ t < 1,

the function t 7→ v1(e
2πit) is even and decreases on [0, 1/(2N)]. Fur-

thermore, we set

v2(e
2πit) =




v1
(
e2πit

)
, e2πit ∈ U := {e2πiu : − π

N
≤ u ≤ π

N
},

v1
(
eπi/N

)
, e2πit /∈ U,

w(t) =

∫ t

0

vp2(e
2πiu) du, 0 ≤ t ≤ 1.

Then the function t 7→ v2(e
2πit) is decreasing on [0, 1], and the function

w is concave on [0, 1].

If

(5.3)
∣∣e2πis − e2πixN,m

∣∣ = min
0≤k<N

∣∣e2πis − e2πixN,k
∣∣,

then, by (5.2), we have

|hN(e
2πisr)| ≤ |ΨN(ze

−2πixN,m)|+ C0M log
e

1− r
.

Using the argument in the proof of (5.2) we obtain that, under condi-

tion (5.3), if

∣∣e2πis − e2πixN,m
∣∣ ≥

∣∣1− eπi/N
∣∣,

then

|hN (e
2πisr)| ≤ |ΨN(e

πi/N)|+ C0M log
e

1− r
.

Since the function t 7→ v1(e
2πit) is even, we conclude that

|hN(e
2πisr)| ≤ v2(e

2πi|s−xN,m|) + C0M log
e

1− r
.

We divide the interval [0, 1] into subintervals J2k = [xN,k, (xN,k +

xN,k+1)/2], J2k+1 = [(xN,k + xN,k+1)/2, xN,k+1], 0 ≤ k < N .
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Then
∫ 1

0

|hN(e
2πisr)|p ds =

∑

0≤k<N

∫

J2k∪J2k+1

|hN(e
2πisr)|p ds

≤ (1 + β)

(∫

J2N−1∪J0

vp2(e
2πis) ds+

∑

0<k<N

∫

J2k−1∪J2k

vp2(e
2πi|s−xN,k|) ds

)

+ρ(β)Cp
0‖f‖pH∞ logp

e

1− r

= (1 + β)
∑

0≤k<N

(
w(|J2k|) + w(|J2k+1|)

)
+ ρ(β)Cp

0‖f‖pH∞ logp
e

1− r
,

where |J | is the length of J . Since the function w is concave and∑
0≤k<N(|J2k|+ |J2k+1|) = 1, we conclude that

∫ 1

0

|hN (e
2πisr)|p ds ≤ (1 + β) · 2Nw

( 1

2N

)
+ ρ(β)Cp

0‖f‖pH∞ logp
e

1− r

= (1 + β)

∫ 1

0

|ΨN(e
2πisr)|p ds+ ρ(β)Cp

0‖f‖pH∞ logp
e

1− r
.

�

6. Proofs of Theorems 7 and 8

Proof of Theorem 7. Denote by S(g) the closure of the set SF in A2
(g).

Since ‖f‖(g1) ≤ ‖f‖(g2) when g1 ≤ g2, we need only to consider the

cases g(t) = t and g(t) = o(t), t → 0.

(A) Let g(t) = t. Then A2
(g) = A2

1. We are going to verify that

(6.1) lim inf
N→∞

inf
g∈SFN

‖f − g‖21 ≥
π2

3
, f ∈ A2

1.

Since every SFN is compact in A2
1, we can then conclude that S(g) =

SF .

Assume that (6.1) does not hold. Then for some ε ∈ (0, π2/12) we

find f ∈ A2
1, a sequence {Nm}m≥1 such that limm→∞Nm = ∞, and a

sequence {fm}m≥1, fm ∈ SFNm
, m ≥ 1, such that

(6.2) ‖f − fm‖21 ≤
π2

3
− 4ε, m ≥ 1.

Given δ ∈ (0, 1), put gδ(t) = min(δ, t). Since

(6.3) |f(z)|2gδ(1− |z|2) ≤ |f(z)|2(1− |z|2), z ∈ D,
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and the function z 7→ |f(z)|2(1−|z|2) is integrable on D, by Lebesgue’s

dominated convergence theorem we have

lim
δ→0

∫

D

|f(z)|2gδ(1− |z|2) dm2(z) = 0.

Choose δ ∈ (0, 1) such that
∫

D

|f(z)|2gδ(1− |z|2) dm2(z) ≤
ε2

8
.

By (6.2) and (6.3) we have
∫

D

|f(z)− fm(z)|2gδ(1− |z|2) dm2(z) ≤
π2

6
− 2ε, m ≥ 1,

and, hence,
∫

D

|fm(z)|2gδ(1− |z|2) dm2(z)

≤
(
1 +

ε

4

)∫

D

|f(z)− fm(z)|2gδ(1− |z|2) dm2(z)

+
(
1 +

4

ε

)∫

D

|f(z)|2gδ(1− |z|2) dm2(z)

≤ π2

6
− ε, m ≥ 1.

Since the function gδ is concave and non-decreasing, gδ(0) = 0, and∫

0

gδ(t)t
−1 dt < ∞, we can apply Theorem 1 and obtain

∫

D

|ΨNm
(z)|2gδ(1− |z|2) dm2(z) ≤

π2

6
− ε, m ≥ 1.

Since the functions ΨNm
tend to 0 uniformly on compact subsets of D

as m → ∞, we conclude that
∫

D

|ΨNm
(z)|2(1− |z|2) dm2(z) ≤

π2

6
− ε

2
, m ≥ m(δ),

which contradicts to Theorem 3.

This contradiction establishes relation (6.1) and, hence, the equality

S(g) = SF for g(t) = t.

(B) Let g(t) = o(t), t → 0, and let f ∈ A2
(g). Replacing f by the

function z 7→ f((1 − δ)z) with small positive δ, we can assume that

f ∈ H∞. By Theorem 10, there exist hN ∈ SFN , such that hN tend
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to f uniformly on compact subsets of D, N → ∞, and for r ∈ (0, 1) we

have
∫ 1

0

|hN (e
2πisr)|2 ds ≤ 2

∫ 1

0

|ΨN(e
2πisr)|2 ds+ 2C2

0‖f‖2H∞ log2
e

1− r
.

By Corollary 5 (B), we conclude that

‖f − hN‖2(g) → 0, N → ∞.

Thus, S(g) = A2
(g). �

Remark 15. Given α > 1, denote by Sα the closure of the set SF in

A2
α. An alternative way to prove that Sα = A2

α for α > 1, follows the

scheme proposed by Korevaar in [13] (with a reference to A. Beurling).

Namely, in the case α > 2, we use that limN→∞ ‖ΨN‖α = 0 to show that

the functions z 7→ −(z−w)−1, w ∈ T, belong to Sα. As a consequence,

the real linear space R spanned by the family of functions
{ iw

(z − w)2
:

w ∈ T

}
is contained in the set Sα. In the case 1 < α ≤ 2, using an

explicit but more complicated argument we can establish that the real

linear space R̃ spanned by the family
{ 1

z − w
: w ∈ T

}
is contained

in the set Sα. Then an argument based on the Hahn–Banach theorem

permits us to show that, for α > 2, R is dense in A2
α (for α > 1, R̃ is

dense in A2
α), and to conclude.

Proof of Theorem 8. Because of (6.1), we need only to verify that for

every f ∈ A2
1, ε > 0, and for every N ≥ N(f, ǫ), there exists h ∈ SFN

such that

‖f − h‖21 ≤
π2

3
+ ε.

Replacing f by z 7→ f((1 − δ)z) with small positive δ, we can assume

that f ∈ H∞. Given 0 < β < 1, choose η ∈ (0, 1) such that
∫

D\(1−η)D

|f(z)|2 dm2(z) +

∫ 1

1−η

(1− r2) log2
e

1− r
dr < β2.

By Theorem 10, for every N ≥ N(f, ǫ), there exists h ∈ SFN such

that

‖f − h‖2L∞((1−η)D) < β
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and

∫ 1

0

|h(e2πisr)|2 ds ≤ (1 + β)

∫ 1

0

|ΨN(e
2πisr)|2 ds

+
1 + β

β
C2

0‖f‖2H∞ log2
e

1− r
, 0 < r < 1.

Then

‖f − h‖21

= 2

∫

(1−η)D

|f(z)− h(z)|2(1− |z|2) dm2(z)

+ 2

∫

D\(1−η)D

|f(z)− h(z)|2(1− |z|2) dm2(z)

≤ β + 2(1 + β−1)

∫

D\(1−η)D

|f(z)|2(1− |z|2) dm2(z)

+ 2(1 + β)

∫

D\(1−η)D

|h(z)|2(1− |z|2) dm2(z)

≤ β + 2β(1 + β) + 2(1 + β)2
∫

D\(1−η)D

|ΨN(z)|2(1− |z|2) dm2(z)

+
2(1 + β)2

β

∫

D\(1−η)D

C2
0‖f‖2H∞(1− |z|2) log2 e

1− |z| dm2(z)

≤ (5 + C1 · C2
0‖f‖2H∞)β + 2(1 + β)2

π2

6
≤ π2

3
+ ε,

for sufficiently small β. �
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