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We study the weighted Fock spaces in one and several complex variables. We evaluate the dimension of these spaces in terms of the weight function extending and completing earlier results by Rozenblum-Shirokov and Shigekawa. C dµ(z) = ∞,

Introduction

Let ψ be a plurisubharmonic function on C n , n ≥ 1. The weighted Fock space F 2 ψ is the space of entire functions f such that

f 2 ψ = C n |f (z)| 2 e -ψ(z) dv(z) < ∞,
where dv is the volume measure on C n . Note that F 2 ψ is a closed subspace of L 2 (C n , e -ψ dv) and hence is a Hilbert space endowed with the inner product f, g ψ = C n f (z)g(z)e -ψ(z) dv(z), f, g ∈ F 2 ψ .

In this paper we study when the space F 2 ψ is of finite dimension depending on the weight ψ. This problem (at least for the case n = 1) is motivated by some quantum mechanics questions, especially by the study of zero modes, eigenfunctions with zero eigenvalues.

In [START_REF] Rozenblum | Infiniteness of zero modes for the Pauli operator with singular magnetic field[END_REF]Theorem 3.2], Rozenblum and Shirokov proposed a sufficient condition for the space F 2 ψ to be of infinite dimension, when ψ is a subharmonic function.

More precisely, they claimed that if ψ is a finite subharmonic function on the complex plane such that the measure µ = ∆ψ is of infinite mass:

(1. [START_REF] Bedford | The Dirichlet problem for a complex Monge-Ampère equation[END_REF] µ(C) = then the space F 2 ψ has infinite dimension. (For the fact that if µ = ∆ψ a non-trivial doubling measure, then F 2 ψ has infinite dimension see [START_REF] Haslinger | Complex analysis. A functional analytic approach[END_REF]Theorem 11.45]). We improve and extend somewhat the statement of Rozenblum-Shirokov in our paper, give a necessary and sufficient condition on ψ for the space F 2 ψ to be of finite dimension, and calculate this dimension. The situation is much more complicated in C n , n ≥ 2. Shigekawa established in [START_REF] Shigekawa | Spectral properties of Schrödinger operators with magnetic fields for a spin 1/2 particle[END_REF] (see also [START_REF] Haslinger | Complex analysis. A functional analytic approach[END_REF]Theorem 11.20] in a book by Haslinger), the following interesting result.

Theorem A. Let ψ : C n → R be a C ∞ smooth function and let λ 0 (z) be the smallest eigenvalue of the Levi matrix

L ψ (z) = i∂ ∂ψ(z) = ∂ 2 ψ(z) ∂z j ∂z k n j,k=1
.

Suppose that

(1.2) lim |z|→∞ |z| 2 λ 0 (z) = ∞.
Then dim F 2 ψ = ∞. Note that the condition (1.2) is not necessary. A corresponding example is given in [4, Section 11.5] (ψ(z, w) = |z| 2 |w| 2 + |w| 4 ). In this paper, we improve Theorem A by presenting a weaker condition for the dimension of the Fock space F 2 ψ to be infinite. Furthermore, we give several examples that show how far is our condition from being necessary. Finally, we consider several examples (classes of examples) of weight functions ψ of special form and evaluate the dimension of F 2 ψ . The rest of the paper is organised as follows. The case of dimension one is considered in Section 2, and the case of higher dimension is considered in Section 3.

The case of C

Given a subharmonic function ψ : C → [-∞, ∞) denote by µ ψ the corresponding Riesz measure, µ ψ = ∆ψ. Next, consider the class M d of the positive σ-finite atomic measures with masses which are integer multiples of 4π. Given a σ-finite measure µ, consider the corresponding atomic measure µ d ,

µ d = max µ 1 ∈ M d : µ 1 ≤ µ .
In fact, for every atom aδ x of µ, µ d has at the point x an atom of size 4π times the integer part of a/(4π). Denote

µ c = µ -µ d , µ d = k 4πδ x k,µ .
Denote by M c the class of the positive σ-finite measures µ such that µ d = 0. Note that if ψ is finite on the complex plane, then µ ψ has no point masses and

µ ψ ∈ M c . Furthermore, if µ ψ ∈ M c , then e -ψ ∈ L 1 loc (v). Lemma 2.1. Let ψ, ψ 1 be two subharmonic functions such that (µ ψ ) c = (µ ψ 1 ) c . Then dim F 2 ψ = dim F 2 ψ 1 . Proof.
Let F, F 1 be two entire functions with the zero sets, correspondingly, {x k,µ ψ } and {x k,µ ψ 1 } (taking into account the multiplicities). Then ∆ log

|F | 2 = (µ ψ ) d , ∆ log |F 1 | 2 = (µ ψ 1 ) d ,

and the functions

h = ψ -log |F 2 | -ψ c , h 1 = ψ 1 -log |F 2 1 | -ψ c 1 are harmonic. Let h = ℜH, h 1 = ℜH 1 for some entire functions H, H 1 .
Given an entire function f we have

f ∈ F 2 ψ ⇐⇒ C |f (z)| 2 e -ψ(z) dv(z) < ∞ ⇐⇒ C |f (z)| 2 e -ψ c (z)-h(z)-log |F (z)| 2 dv(z) < ∞ ⇐⇒ C |f (z)e -H(z)/2 /F (z)| 2 e -ψ c (z) dv(z) < ∞ ⇐⇒ C |f (z)e -H(z)/2 /F (z)| 2 e -ψ c 1 (z) dv(z) < ∞ ⇐⇒ C |f (z)e -H(z)/2 /F (z)| 2 e -ψ 1 (z)+h 1 (z)+log |F 1 (z)| 2 dv(z) < ∞ ⇐⇒ C |f (z)e -H(z)/2+H 1 (z)/2 |F 1 (z)/F (z)| 2 e -ψ 1 (z) dv(z) < ∞ ⇐⇒ f • F 1 F e -H/2+H 1 /2 ∈ F 2 ψ 1 . Thus, dim F 2 ψ = dim F 2 ψ 1 . Lemma 2.2. Let ψ be a subharmonic function such that µ ψ ∈ M c . If dim F 2 ψ < ∞, then µ ψ (C) < ∞. See the proof of [8, Theorem 3.2]. Lemma 2.3. Let ψ be a subharmonic function. Then dim F 2 ψ ≤ µ ψ (C) 4π .
Here and later on, given a real number x, ⌈x⌉ is the maximal integer smaller than x.

Proof. Set µ = µ ψ and consider a modified logarithmic potential G of the measure µ:

G(z) = 1 2π D(0,2) log|z -w| dµ(w) + 1 2π C\D(0,2) log z -w w dµ(w) = G 1 (z) + G 2 (z).
Here and later on, D(z, r) = {w ∈ C : |w -z| < r}. Since ∆G = µ = ∆ψ, by Lemma 2.1 we have dim

F 2 ψ = dim F 2 G . Next, (2.1) G 1 (z) - µ(D(0, 2)) 2π log |z| ≤ 1 2π D(0,2) log 1 - w z dµ(w) ≤ C |z| , |z| ≥ 4,
and

G 2 (z) - µ(C \ D(0, 2)) 2π log |z| = 1 2π C\D(0,2) log 1 z - 1 w dµ(w) ≤ 0, |z| ≥ 4.
Thus,

G(z) ≤ µ(C) 2π log(1 + |z|) + C 1 + |z| , z ∈ C.
Now, given an entire function f , we have

f ∈ F 2 ψ =⇒ C |f (z)| 2 (1 + |z|) -µ(C)/(2π) dv(z) < ∞.
By a Liouville type theorem, f is a polynomial of degree N such that

∞ 1 r 2N r -µ(C)/(2π) rdr < ∞. Therefore, N < -1 + µ(C)/(4π). Thus, dim F 2 ψ ≤ µ(C) 4π .
Lemma 2.4. Let ψ be a subharmonic function and suppose that µ ψ ∈ M c . Then

dim F 2 ψ ≥ µ ψ (C) 4π . Proof. Set µ = µ ψ and choose ε > 0, R > 1 such that µ(D(0, R)) 4π > µ(C) 4π + ε 2 .
Next, increasing R, we can guarantee that

µ(D(0, R)) > µ(C) - 1 2 
.

Consider a modified logarithmic potential U of measure µ:

U(z) = 1 2π D(0,R) log|z -w| dµ(w) + 1 2π C\D(0,R) log z -w w dµ(w) = U 1 (z) + U 2 (z).
Since ∆U = µ = ∆ψ, by Lemma 2.1 we have dim

F 2 ψ = dim F 2 U .
Arguing as in (2.1), we get

U 1 (z) ≥ µ(D(0, R)) 2π log |z| - C |z| , |z| ≥ 2R. Next, let |z| ≥ 2R. Then U 2 (z) = 1 2π C\(D(0,R)∪D(z,|z|/2)) log z -w w dµ(w) + 1 2π D(z,|z|/2) log z -w w dµ(w) ≥ C - 1 2π D(z,|z|/2) log z/2 z -w dµ(w) = C -U 3 (z).
Now, we apply a result by Hayman [5, Lemma 4]. The following notation is used there. Let ν be a finite positive measure. Given

z ∈ C, h > 0, set n(z, h) = ν(D(z, h)), N(z, h) = D(z,h) log h w-z dν(w). Lemma 2.5. Let z 0 ∈ C, 0 < d < h/2.
There exists a set S of area at most πd 2 such that

N(z, h/2) ≤ n(z 0 , h) log 16h d , z ∈ D(z 0 , h/2) \ S. Given m ≥ 1, denote A m = {z ∈ C : 2 m R ≤ |z| < 2 m+1 R}. Fix m ≥ 1 and k ≥ 1 and apply Lemma 2.5 with ν = 1 C\D(0,R) µ, 2 m R ≤ |z 0 | < 2 m+1 R, h = 2 m-1 R, n(z 0 , h) ≤ 1/2, and d = 2 m-k-1 R to get for some C, C 1 > 0, δ ∈ (0, 1): m 2 z ∈ A m : U 3 (z) > C 1 + δk ≤ C • 2 2m R 2 2 -2k , k ≥ 1. Hence, C (1 + |z|) -2-ε e U 3 (z) dv(z) ≤ C + C m≥1 k≥1 2 -(2+ε)m e δk × m 2 z ∈ A m : C 1 + δk ≤ U 3 (z) < C 1 + δ(k + 1) ≤ C + C m≥1 k≥1 2 -(2+ε)m e δk 2 2m R 2 2 -2k < ∞. Next, for every 0 ≤ N ≤ µ(C) 4π -1 we have C |z| 2N e -U (z) dv(z) ≤ C C |z| 2N (1 + |z|) -µ(D(0,R))/(2π) e U 3 (z) dv(z) ≤ C C (1 + |z|) -2-ε e U 3 (z) dv(z) < ∞
Here we use that µ ψ ∈ M c and, hence, e -U is locally integrable. Finally, we have

dim F 2 ψ ≥ µ(C) 4π .
Summing up Lemmata 2.1, 2.2, 2.3, and 2.4, we obtain the following result, extending and slightly correcting [8, Theorem 3.2].

Theorem 2.6. Let ψ be a subharmonic function on the complex plane. Then the Fock space F 2 ψ is finite-dimensional if and only if

(2.2) (µ ψ ) c (C) < ∞.
If ψ is finite on C, then we can write condition (2.2)

as µ ψ (C) < ∞. Finally, if (µ ψ ) c (C) < ∞, then dim F 2 ψ = (µ ψ ) c (C) 4π .
Remark 2.7. It is an interesting open question to characterize non subharmonic functions ψ such that the space F 2 ψ is of finite dimension. For some results in this direction and some physical interpretations see [START_REF] Rozenblum | Entire functions in weighted L 2 and zero modes of the Pauli operator with non-sign definite magnetic field[END_REF].

The case of C

n , n > 1 Let C n denote the n-dimensional complex Euclidean space. Given z = (z 1 , z 2 , . . . , z n ) ∈ C n , we set |z| = |z 1 | 2 + • • • + |z n | 2 . Denote B n (z, r) = {w ∈ C n : |w -z| < r}. Then B n = B n (0, 1)
is the unit ball and S n = ∂B n is the unit sphere in C n . Let dσ be the normalized surface measure on S n .

Theorem 3.1. Let ψ : C n → R be a C 2 smooth function. Given M > 0, consider ψ M (z) = M log(|z| 2 ). Suppose that for every M > 0, the function ψ -ψ M is plurisubharmonic outside a compact subset of C n . Then dim F 2 ψ = ∞.
Proof. We use the fundamental result of Bedford-Taylor [START_REF] Bedford | The Dirichlet problem for a complex Monge-Ampère equation[END_REF] on the solutions of the Dirichlet problem for the complex Monge-Ampère equation. Given M > 0, choose r M > 1 such that ψ -ψ M is plurisubharmonic on C n \B n (0, r M ). Solving the Dirichlet problem for the complex Monge-Ampère equation on B n (0, r M ) with the boundary conditions (ψ -ψ M )| ∂Bn(0,r M ) , we obtain a function u. Set

ψ M (z) = (ψ -ψ M )(z), z ∈ C n \ B n (0, r M ), u(z), z ∈ B n (0, r M ).
Then ψ M is a continuous plurisubharmonic function on C n (see also [START_REF] Demailly | Potential Theory in Several Complex Variables[END_REF]Section 7]). Now, by the Hörmander theorem ([6, Theorem 4.4.4], see also [2, Section IV]), there exists an entire function f ≡ 0 such that

C n |f (z)| 2 (1 + |z| 2 ) -3n e -ψ M (z) dv(z) < ∞.
Hence, for every 0 ≤ k ≤ M - 3 2 n, we have

C n |f (z)| 2 |z| 2k e -ψ(z) dv(z) ≤ C + C n \Bn(0,r M ) |f (z)| 2 |z| 2k e -ψ(z) dv(z) = C + C n \Bn(0,r M ) |f (z)| 2 |z| 2k e -ψ M (z) e -(ψ(z)-ψ M (z)) dv(z) ≤ C + C n \Bn(0,r M ) |f (z)| 2 |z| -3n e -ψ M (z) dv(z) < ∞.
Since M is arbitrary, we have dim

F 2 ψ = ∞.
Remark 3.2. Theorem A is an immediate corollary of Theorem 3.1. Indeed, an easy computation shows that if ψ(z) = ϕ(|z| 2 ), ϕ ∈ C 2 ((0, +∞)), then

∂ 2 ψ ∂z j ∂ zk (z) = ϕ ′′ (|z| 2 ) zj z k + ϕ ′ (|z| 2 )δ jk ,
where δ jk is the Kronecker delta symbol. This implies that

i∂ ∂ψ(z) = ϕ ′ (|z| 2 )I + ϕ ′′ (|z| 2 )z * z,
where

z * =   z1 . . . zn   , z * z = zj z k n j,k=1
. Note also that the spectrum of the matrix i∂ ∂ψ(z) is

(3.1) σ(i∂ ∂ψ(z)) = ϕ ′ (|z| 2 ), ϕ ′ (|z| 2 ) + |z| 2 ϕ ′′ (|z| 2 ) .
The first eigenvalue has multiplicity n -1 and the second one has multiplicity 1. Furthermore,

L ψ (z) = i∂ ∂ψ(z) = i∂ ∂(ψ -ψ M )(z) + M |z| 2 I - M |z| 4 z * z = L ψ-ψ M (z) + M |z| 2 I - M |z| 4 z * z. Let z ∈ C n and let V =   V 1 . . . V n 
 be a normalized eigenvector corresponding to an eigenvalue ν of L ψ-ψ M (z). By the hypothesis of Theorem A, for |z| > r M we have λ 0 (z)|z| 2 ≥ M, where λ 0 (z) is the smallest eigenvalue of L ψ (z). Thus,

ν = L ψ-ψ M (z)V, V = L ψ (z)V, V - M |z| 2 + M |z| 4 z * zV, V ≥ λ 0 (z) - M |z| 2 + M |z| 4 |zV | 2 ≥ 0.
Therefore, ψ -ψ M is plurisubharmonic on C n \ B n (0, r M ), and we are in the conditions of Theorem 3.1. Now we give an easy example when Theorem 3.1 applies while Theorem A does not work.

Example 3.3. Set ψ(z) = ϕ(|z| 2 ) = log(1 + |z| 2 ) 3/2 , z ∈ C n . Then ϕ(t) = log(1 + t) 3/2 , t > 0.
Evidently, dim F 2 ψ = ∞. We will show that condition (1.2) fails for ψ while the conditions of Theorem 3.1 are satisfied.

We have ϕ ′ (t) = 3 2

1 1 + t log(1 + t) 1/2 ,
and

ϕ ′′ (t) = - 3 2 log(1 + t) 1/2 (1 + t) 2 + 3 4(1 + t) 2 log(1 + t) 1/2 .
By (3.1), the eigenvalues of the matrix L ψ (z) are

λ 1 (z) = 3 log(1 + |z| 2 ) 1/2 2(1 + |z| 2 ) , and 
λ 2 (z) = 3 log(1 + |z| 2 ) 1/2 2(1 + |z| 2 ) 2 + 3|z| 2 4(1 + |z| 2 ) 2 log(1 + |z| 2 ) 1/2 = 3 4 2 log(1 + |z| 2 ) + |z| 2 (1 + |z| 2 ) 2 log(1 + |z| 2 ) 1/2 .
For |z| ≥ 2, the smallest eigenvalue of the matrix L ψ (z) is λ 2 (z) and lim |z|→∞ |z| 2 λ 2 (z) = 0.

Thus, condition (1.2) does not hold. On the other hand, for M > 0, the eigenvalues of matrix

L ψ-ψ M (z) are α 1 (z) = λ 1 (z) - M |z| 2 , and α 2 (z) = λ 2 (z). Since lim |z|→∞ |z| 2 λ 1 (z) = ∞ and α 2 (z) > 0, z = 0, the conditions of Theorem 3.1 are satisfied.
In the rest of the paper we show that in different situations the sufficient condition of Theorem 3.1 is not necessary for dim

F 2 ψ = ∞. Example 3.4. Set ψ(z, w) = |z| 2 + 2 log(1 + |w| 2 ), w, z ∈ C.
It is clear that dim F 2 ψ = ∞. Let us verify that for M > 2 the function ψ -ψ M is not plurisubharmonic at the points (1, w), w ∈ C.

We start with some easy computations:

∂ψ ∂z = z, ∂ 2 ψ ∂z∂z = 1, ∂ 2 ψ ∂z∂w = 0, ∂ψ ∂w = 2w 1 + |w| 2 , ∂ 2 ψ ∂w∂z = 0, ∂ 2 ψ ∂w∂w = 2 (1 + |w| 2 ) 2 .
Now, given M > 0, we have

L ψ-ψ M (z, w) = 1 0 0 2 (1+|w| 2 ) 2 + M (|z| 2 + |w| 2 ) 2 |z| 2 zw zw |w| 2 - M |z| 2 + |w| 2 I = 1 -M |w| 2 (|z| 2 +|w| 2 ) 2 M zw (|z| 2 +|w| 2 ) 2 M zw (|z| 2 +|w| 2 ) 2 2 (1+|w| 2 ) 2 -M |z| 2 (|z| 2 +|w| 2 ) 2
, and, hence,

det(L ψ-ψ M (z, w)) = 2 (1 + |w| 2 ) 2 - M|z| 2 (|z| 2 + |w| 2 ) 2 - 2M|w| 2 (1 + |w| 2 ) 2 (|z| 2 + |w| 2 ) 2 = 2(|z| 2 + |w| 2 ) 2 -M(2|w| 2 + |z| 2 (1 + |w| 2 ) 2 ) (1 + |w| 2 ) 2 (|z| 2 + |w| 2 ) 2 < 0
for M > 2, z = 1 and arbitrary w. Therefore, the conditions of Theorem 3.1 do not hold.

3.1.

Weight functions ψ of special form. In this subsection we evaluate the dimension of F 2 ψ and the applicability of our criterion in Theorem 3.1, for some concrete weight functions ψ and for ψ in some special classes.

Example 3.5. Let k ≥ 3. Set ψ(z) = |z k 1 + z k 2 | 2 , z = (z 1 , z 2 ) ∈ C 2 . Given M > 0, we have L ψ-ψ M (z) = k 2 |z 1 | 2(k-1) -M |z| 4 |z 2 | 2 k 2 (z 1 z 2 ) k-1 + M |z| 4 z 1 z 2 k 2 (z 1 z 2 ) k-1 + M |z| 4 z 1 z 2 k 2 |z 2 | 2(k-1) -M |z| 4 |z 1 | 2 ,
and, hence,

det(L ψ-ψ M (z)) = k 2 |z 1 | 2(k-1) - M |z| 4 |z 2 | 2 k 2 |z 2 | 2(k-1) - M |z| 4 |z 1 | 2 -k 2 (z 1 z 2 ) k-1 + M |z| 4 z 1 z 2 k 2 (z 1 z 2 ) k-1 + M |z| 4 z 1 z 2 = - k 2 M |z| 4 |z 1 | 2k + |z 2 | 2k + (z 1 z 2 ) k + (z 1 z 2 ) k = - k 2 M |z| 4 |z k 1 + z k 2 | 2 < 0 when z k 1 + z k 2 = 0. Thus, for M > 0, the function ψ -ψ M is not plurisubharmonic outside a compact subset of C 2 .
Next we are going to verify that dim F 2 ψ = ∞. We have

X := C 2 e -|z k 1 +z k 2 | 2 dv(z) ≍ ∞ 0 S 2 r 3 e -r 2k |ζ k 1 +ζ k 2 | 2 dσ(ζ 1 , ζ 2 ) dr ≍ S 2 |ζ k 1 + ζ k 2 | -4/k dσ(ζ 1 , ζ 2 ).
Given ε > 0, we consider the set

T ε = (ζ 1 , ζ 2 ) ∈ S 2 : |ζ k 1 + ζ k 2 | < ε . Given (ζ 1 , ζ 2 ) ∈ S 2 such that |ζ 1 | ≥ |ζ 2 |, set ζ 1 = 1 2 + r • e iθ and ζ 2 = 1 2 -r • e iϕ , r ≥ 0. If (ζ 1 , ζ 2 ) ∈ T ε , then |ζ 1 | 2 -|ζ 2 | 2 < Cε for some constant C = C(k) > 0. Hence, r ε. Next, since |ζ k 1 + ζ k 2 | < ε, we obtain that |e ikθ -e ikϕ | ε. As a result, we obtain that σ(T ε ) ε 2 . Set U s = (ζ 1 , ζ 2 ) ∈ S 2 : 2 -s < |ζ k 1 + ζ k 2 | ≤ 2 -s+1 . Then X ≍ ∞ s=0 Us |ζ k 1 + ζ k 2 | -4/k dσ(ζ 1 , ζ 2 ) ∞ s=0 2 -2s 2 4s/k = ∞ s=0 2 -2s(1-(2/k)) < ∞, since k ≥ 3. Thus, 1 ∈ F 2 ψ .
In the same way, for every α > 0 we get

C 2 e -α|z k 1 +z k 2 | 2 dv(z) < ∞.
Consider the entire functions f (z) = e β(z k

1 +z k 2 ) 2 , 0 < β < 1 2 . Since C 2 e β(z k 1 +z k 2 ) 2 2 e -|z k 1 +z k 2 | 2 dv(z) = C 2 e 2β Re((z k 1 +z k 2 ) 2 )-|z k 1 +z k 2 | 2 dv(z) ≤ C 2 e -(1-2β)|z k 1 +z k 2 | 2 dv(z) < ∞, we conclude that dim F 2 ψ = ∞. Interestingly, F 2 ψ = 0 if k = 2. Indeed, let ψ((z 1 , z 2 )) = |z 2 1 + z 2 2 | 2 , f ∈ F 2 ψ , f (z 1 , z 2 ) = (z 2 1 + z 2 2 ) s g(z 1 , z 2 ) for some s ≥ 0, where g(z 1 , z 2 ) is not a multiple of z 2 1 + z 2 2
. By the mean value property, for every

z 1 ∈ C \ D(0, 10) we have |g(z 1 , iz 1 )| 2 (1 + |z 1 |) 2 D(iz 1 ,2/(1+|z 1 |)\D(iz 1 ,1/(1+|z 1 |)) |g(z 1 , z 2 )| 2 e -|z 2 1 +z 2 2 | 2 dv(z 2 ) (1 + |z 1 |) 2 D(iz 1 ,2/(1+|z 1 |)\D(iz 1 ,1/(1+|z 1 |)) |f (z 1 , z 2 )| 2 e -|z 2 1 +z 2 2 | 2 dv(z 2 ). Hence, C |g(z 1 , iz 1 )| 2 (1 + |z 1 |) -2 dv(z 1 ) f 2 ψ ,
and by a Liouville type theorem, g(z, iz) ≡ 0. Analogously, g(z, -iz) ≡ 0. Set h(z, w) = g(z -iw, z + iw). Then h is an entire function and h(0, w) = h(w, 0) ≡ 0. Hence, h(z, w) = zwh 1 (z, w) for another entire function h 1 and g(z 1 , z 2 ) = (z 2 1 + z 2 2 )g 1 (z 1 , z 2 ) for some entire function g 1 . This contradiction shows that F 2 ψ = 0. Extending the previous example to C n with n ≥ 3 requires a bit more work.

Example 3.6. Let n ≥ 3, k ≥ n + 1. Set ψ(z) = |z k 1 + • • • + z k n | 2 , z = (z 1 , . . . , z n ) ∈ C n .
Let us verify that for M > 0, the function ψ -ψ M is not plurisubharmonic outside a compact subset of C n .

We have

L ψ (z) = k 2      |z 1 | 2(k-1) (z 1 z 2 ) k-1 . . . (z 1 z n ) k-1 (z 1 z 2 ) k-1 |z 2 | 2(k-1) . . . (z 2 z n ) k-1 . . . . . . . . . . . . (z 1 z n ) k-1 (z 2 z n ) k-1 . . . |z n | 2(k-1)      = k 2      z k-1 1 z k-1 2 . . . z k-1 n      z 1 k-1 z 2 k-1 . . . z n k-1 . Set A(z) = M |z| 4     z 1 z 2 . . . z n     z 1 z 2 . . . z n .
Then

L ψ-ψ M (z) = L ψ (z) + A(z) - M |z| 2 I.
The spectra of the matrices L ψ (z) and A(z) are

σ L ψ (z) = k 2 |z 1 | 2(k-1) + |z 2 | 2(k-1) + • • • + |z n | 2(k-1) , 0 , σ A(z) = M |z| 2 , 0 .
Let V be the a unit vector in C n orthogonal to

     z k-1 1 z k-1 2 . . . z k-1 n      and to     z 1 z 2 . . . z n     . Then L ψ-ψ M (z)V, V = L ψ (z)V + A(z)V - M |z| 2 V, V = - M |z| 2 < 0.
Thus, for M > 0, the function ψ -ψ M is plurisubharmonic at no points of C n \ {0}.

Suppose that ψ(z) = ϕ(|z| 2 ) is a radial plurisubharmonic function of class C 2 . By the computations in Remark 3.2,

(3.2) ∂ 2 ψ ∂z j ∂ zk (z) = ϕ ′′ (|z| 2 ) zj z k + ϕ ′ (|z| 2 )δ jk .
The action of the Monge-Ampère operator on ψ is

(dd c ψ) n = 4n! det ∂ 2 ψ ∂z j ∂ zk dv = 4n!(ϕ ′ (|z| 2 )) n-1 (ϕ ′ (|z| 2 ) + |z| 2 ϕ ′′ (|z| 2 )) dv. Proposition 3.7. Suppose that ψ(z) = ϕ(|z| 2 ) is a radial plurisubhar- monic function of class C 2 . Then dim F 2 ψ = ∞ if and only if (3.3) C n (dd c ψ) n = ∞.
Proof. Since the spectrum of the matrix (3.2) consists of the eigenvalues ϕ ′ (|z| 2 ) and ϕ ′ (|z| 2 ) + |z| 2 ϕ ′′ (|z| 2 ), the first eigenvalue has multiplicity n-1 and the second one has multiplicity 1, we have ϕ ′ ≥ 0, (rϕ ′ (r)) ′ ≥ 0 on R + . Furthermore, we have

C n (dd c ψ) n = C ∞ 0 (ϕ ′ (r 2 )) n-1 (ϕ ′ (r 2 ) + r 2 ϕ ′′ (r 2 )) dr 2n = C ∞ 0 d (rϕ ′ (r)) n .
Thus, (3.3) is equivalent to the relation lim r→∞ rϕ ′ (r) = ∞. Now, if rϕ ′ (r) is bounded on R + , then ψ(z) = O(log |z|), |z| → ∞, and a version of the Liouville theorem shows that dim F 2 ψ < ∞. On the other hand, if lim r→∞ rϕ ′ (r) = ∞, then log |z| = o(ψ(z)), |z| → ∞, and the polynomials belong to F 2 ψ . Hence, dim F 2 ψ = ∞. For general C 2 plurisubharmonic functions, the radial case suggests the following question. Is it true that dim F 2 ψ = ∞ if and only if (3.3) holds? Our last example gives a negative answer to this question.

Example 3.8. Given subharmonic functions ψ j on the complex plane, 1 ≤ j ≤ n, set (3.4) ψ(z 1 , . . . , z n ) = n j=1 ψ j (z j ).

Claim: dim F 2 ψ < ∞ if and only if either max j dim F 2 ψ j < ∞ or min j dim F 2 ψ j = 0.

In one direction, by the Fubini theorem, if dim F 2 ψ < ∞, then max j dim F 2 ψ j < ∞ or min j dim F 2 ψ j = 0. In the opposite direction, it is clear that if min j dim F 2 ψ j = 0, then F 2 ψ = 0. It remains to verify that if max j dim F 2 ψ j < ∞, then dim F 2 ψ < ∞. First, suppose that n = 2, dim In the same way, the functions f (•, w j ), 1 ≤ j ≤ N, belong to F 2 Hence, every a j belongs to F 2 ψ 1 . Since dim F 2 ψ 1 < ∞, we conclude that the space F 2 ψ has finite dimension. For n ≥ 2 we can just use an inductive argument. This completes the proof of Claim.

F 2 ψ 1 < ∞, N = dim F 2 ψ 2 < ∞.
Let us return to general ψ satisfying (3.4). We have 

  Fix a basis (g k ), 1 ≤ k ≤ N, in the space F 2 ψ 2 and choose a family of points(w m ), 1 ≤ m ≤ N, such that det Q = 0, where Q = g k (w m ) N k,m=1 . Next, choose f ∈ F 2 ψ .By the mean value property,|f (z, w)| 2 ≤ 1 π D(z,1) |f (ζ, w| 2 dv(ζ), z, w ∈ C.Therefore, for every z ∈ C, the function f (z, •) belongs to F 2 ψ 2 , and, hence, we havef (z, •) = N k=1 a k (z)g k .

(

  dd c ψ) n = C C n n j=1 ∆ψ j (z j ) dv(z) = C n j=1 C ∆ψ j (z j ) dv(z j ). Now, if n = 2, ψ 1 (z) = |z| 2 , ∆ψ 2 (z) = max(1 -|z|, 0), then C n (dd c ψ) n = ∞, but F 2 ψ = 0.Thus, Proposition 3.7 does not extend to general C 2smooth plurisubharmonic functions.
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Finally, let us verify that dim F 2 ψ = ∞. Set

Given ε > 0, we consider the set

Then the function f = log |P | is plurisubharmonic. Following [START_REF] Ch | Ensembles de sous-niveau et images inverses des fonctions plurisousharmoniques[END_REF], we consider the Lelong number of

If f (a) = 0, then ν f (a) = 0. Otherwise, let a = (a 1 , . . . , a n ) = 0 and f (a) = 0. Without loss of generality, we can assume that a

By homogeneity of P ,

for some constant C > 0. Arguing as in Example 3.5, we obtain first that 1 ∈ F 2 ψ and then that dim F 2 ψ = ∞ for k ≥ n + 1. At the end of the paper, we consider two special classes of weight functions ψ: radial weight functions and the functions of the form ψ(z 1 , . . . , z n ) = n j=1 ψ j (z j ).