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Abstract

We prove an asymptotic formula for the mean-square average of L- functions associated
to subgroups of characters of sufficiently large size. Our proof relies on the study of certain
character sums A(p, d) recently introduced by E. Elma, where p ≥ 3 is prime and d ≥ 1 is any
odd divisor of p− 1. We obtain an asymptotic formula for A(p, d) which holds true for any
odd divisor d of p− 1, thus removing E. Elma’s restrictions on the size of d. This answers a
question raised in Elma’s paper. Our proof relies both on estimates on the frequency of large
character sums and techniques from the theory of uniform distribution. As an application,

in the range 1 ≤ d ≤ log p
3 log log p we obtain the significant improvement h−p,d ≤ 2

(
(1+o(1))p

24

)m/4

over the trivial bound h−p,d � (dp
24 )m/4 on the relative class numbers of the imaginary number

fields of conductor p ≡ 1 mod 2d and degree m = (p− 1)/d, where d ≥ 1 is odd.

1 Introduction

Throughout the paper d ≥ 1 will be an odd integer and p will be an odd prime satisfying p ≡ 1
(mod 2d). We also write logj for the j-th iterated logarithm. We let Xp denote the multiplicative
cyclic group of order p−1 of the Dirichlet characters mod p and let X ∗p denote the set with p−2
elements of the non-trivial Dirichlet characters mod p. Whenever m divides p − 1, we let χp,m
denote any one of the φ(m) characters in Xp of order m. Notice that χp,m is odd, i.e. such that
χp,m(−1) = −1, if and only if d = (p− 1)/m is odd, which implies that m is even.
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Let h−p,d be the relative class number of the imaginary subfield Kp,d of the cyclotomic field
Q(ζp) of even degree (Kp,d : Q) = m and odd relative degree (Q(ζp) : Kp,d) = d (e.g. see [Was,
Chapter 4]). For d = 1, we have Kp,1 = Q(ζp) and it has long been known that

h−p,1 = h−Q(ζp) ≤ 2p
( p

24

)(p−1)/4
= 2p

( p
24

)m/4
, (1)

see [Met] and [Wal]. See also [Lou93] where it is explained how to get explicit bounds better
than (1) of the type h−p,1 ≤ 2p(1+o(1))(p/C)(p−1)/4 for any constant C greater than 4π2. Notice

also that by [AC] we have h−p,1 = 2p1+o(1)
( p

4π2

)(p−1)/4
and see [Gra] for more subtle results

according to which Kummer’s conjecture on the asymptotic behavior h−p,1 ∼ 2p
( p

4π2

)(p−1)/4
is

unlikely to be true.
Denote by wp,d the number of complex roots of unity contained in Kp,d; we have wp,1 = 2p

and wp,d = 2 for d > 1. The following bound holds (e.g. see [Was, Chapter 4, page 42] for the
equality and then use the arithmetic-geometric mean inequality):

h−p,d = wp,d

m/2∏
j=1

√
p

2π
L(1, χ2j−1

p,m ) ≤ wp,d
(
pM(p,m)

4π2

)m/4
, (2)

where M(p,m) denotes the following mean square of L(1, χ) as χ runs over the m/2 odd char-
acters in the only subgroup of order m of Xp:

M(p,m) :=
2

m

m/2∑
j=1

|L(1, χ2j−1
p,m )|2. (3)

Therefore explicit formulas (or asymptotic formulas) for M(p,m) allow to give precise upper

bounds of type h−p,d ≤ C1 · Cm/42 . For d = 1, H. Walum deduced (1) in [Wal] by proving that

M(p, p− 1) =
π2

6

(
1− 1

p

)(
1− 2

p

)
. (4)

For d = 3, 5, some explicit formulas for M(p,m) have been obtained in certain cases by the first
author (see Section 2.2) allowing him to give upper bounds on h−p,3 and h−p,5. These results will
be generalized in Proposition 7 below. In all these situations M(p, (p − 1)/d) is asymptotic to
π2/6. It is unrealistic to obtain an explicit formula for all values of d and the following simple
argument gives a trivial bound on M(p,m). Since in M(p,m) we consider only m/2 of the
(p− 1)/2 odd Dirichlet characters that appear in M(p, p− 1), we have

M(p,m) ≤ 2
m
p−1

2 M(p, p− 1) = dM(p, p− 1) = dπ
2

6

(
1− 1

p

)(
1− 2

p

)
. (5)

By (2), this implies that

h−p,d ≤ 2

(
dp

24

) p−1
4d

= 2

(
dp

24

)m/4
. (6)

For a given m it is hopeless to get an asymptotic on M(p,m). Indeed, it is reasonable to
conjecture that for a given even integer m there are infinitely many primes p ≡ 1+m (mod 2m)
for which M(p,m) � (log log p)2 and infinitely many primes p ≡ 1 + m (mod 2m) for which
M(p,m)� (log log p)−2 (see [Lou16, bottom of page 166 and top of page 167]).
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The aim of the paper is to give an asymptotic formula for M(p,m) when m is of reasonable
size with respect to p and an upper bound when m is small. As a consequence we obtain a
significant improvement upon the trivial bound (6).

Theorem 1 As p tends to infinity and d ≥ 1 runs over the odd divisors of p − 1 such that
1 ≤ d ≤ log p

3 log log p , we have the asymptotic formula

M(p,m) = M(p, (p− 1)/d) =
π2

6

(
1 +O(d(log p)2p−

1
d−1 )

)
=
π2

6
(1 + o(1)) , (7)

which implies the upper bound

h−p,d ≤ 2

(
(1 + o(1))p

24

)m/4
. (8)

If the previous bound does not apply but d is such that log d = o(log p/ log2 p), we have for some
absolute constant C > 0

M(p,m) = M(p, (p− 1)/d) ≤ C(log2 d)2 (9)

which implies, in this range of d, the upper bound

h−p,d ≤ (Cp(log2 d)2)m/4. (10)

Remarks 2 The asymptotic formula (7) answers a question raised in [Lou16, Section 6, Ques-
tion 2]. It should be emphasized that the error term in (7) is almost optimal, in view of Proposi-
tion 8. Furthermore (8) is in accordance with the known asymptotics (see [Lou96b, Theorem 4])

log h−p,d ∼
m+o(1)

4 log p. For very large d, the bound M(p,m) � log2 p remains the best known.
This is not surprising if we look at the very extreme case d = (p − 1)/2 and p ≡ 3 (mod 4).

In that situation, χ is the quadratic character given by the Legendre symbol χ(n) =
(
n
p

)
and

M(p,m) = |L(1, χ)|2. Under GRH, Littlewood [Lit] proved that L(1, χ) � log2 p but improving
upon the bound L(1, χ) � log p remains out of reach unconditionally. On the other hand we
cannot expect a uniform bound for M(p,m) better than (log2 p)

2. Indeed, Chowla [Cho] proved
unconditionally that there are infinitely many quadratic characters χ such that L(1, χ)� log2 p.
This supports the hypothesis that the bound (9) could be sharp.

Finally, let d be an odd integer and p ≡ 1 (mod 2d) be a prime integer. Let χ be an odd
Dirichlet character of (even) order m = (p− 1)/d dividing p− 1 and prime conductor p ≥ 3. Set

A(p, d) =
1

p− 1

p−1∑
N=1

 ∑
1≤n1,n2≤N
χ(n1)=χ(n2)

1

 (11)

(the results depend only on p and d, not on the choice of χ). Then the paper is organized as
follows. To begin, in Section 2, we recall (and give a simple proof of) a formula discovered by
Elma relating M(p,m) to the character sums A(p, d) defined in (11). In Section 3, Proposition
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8, we show that for a certain family of primes p and d we can compute exactly M(p,m) using
properties of Dedekind sums. Finally, in Section 4, we answer a question of Elma and prove the
following asymptotic formula for A(p, d) which directly implies Theorem 1 (see Section 5):

Theorem 3 As p tends to infinity and d ≥ 1 runs over the odd divisors of p− 1, we have

A(p, d) =
(2d+ 1)p

6
+ o(dp).

A crucial point of the analysis comes from the fact that the average in (3) is made over a
family of m/2 characters which could be of any size with respect to p. The same difficulty carries
into the analysis of A(p, d) with a character sum averaged over a subgroup of F∗p of size d. On
the one hand when d is small (see Theorem 10) we write A(p, d) as an average of a function
evaluated at equidistributed points modulo 1 and use techniques from discrepancy theory. On
the other hand, when d is large (see Theorem 19) we rely on character sums techniques and
incorporate recent estimates on the frequency of large character sums [BGGK].

2 Elma’s character sums

2.1 Elma’s character sums and the mean square value M(p,m)

E. Elma proved a nice connection between the mean square values M(p,m)’s and these character
sums A(p, d). We give a simple and short proof of [Elm, Theorem 1.1]:

Theorem 4 Let χ be a primitive Dirichlet character modulo f > 2, its conductor. Set S(k, χ) =∑k
l=0 χ(l) and let L(s, χ) =

∑
n≥1 χ(n)n−s be its associated Dirichlet L-series. Then

f−1∑
k=1

|S(k, χ)|2 =
f2

12

∏
p|f

(
1− 1

p2

)
+ aχ

f2

π2
|L(1, χ)|2, where aχ :=

{
0 if χ(−1) = +1,

1 if χ(−1) = −1.

Proof. Our simple proof is based on an easy to remember idea: we apply Parseval’s formula∫ 1
0 |F (x)|2dx =

∑∞
n=−∞ |cn(F )|2 to the function x ∈ [0, 1) 7→ F (x) :=

∑
0≤l≤fx χ(l) extended

to x ∈ R by 1-periodicity. The reader would be able to reconstruct the argument using this
simple idea. Let us now give all the details. Since χ is primitive, the Gauss sums τ(n, χ) =∑f

k=1 χ(k) exp(2πink/f) and τ(χ) = τ(1, χ) satisfy τ(n, χ) = χ(n)τ(χ) and |τ(χ)|2 = f , e.g.
see [Was, Lemmas 4.7 and 4.8]. (These properties are easy to check when f = p ≥ 3 is prime).
Since x 7→ F (x) = S(k, χ) is constant for x ∈ [k/f, (k + 1)/f), we have

∫ 1

0
|F (x)|2dx =

f−1∑
k=0

∫ (k+1)/f

k/f
|F (x)|2dx =

f−1∑
k=0

∫ (k+1)/f

k/f
|S(k, χ)|2dx =

1

f

f−1∑
k=0

|S(k, χ)|2,

and the n-th Fourier coefficient of F is given by

cn(F ) =

∫ 1

0
F (x)e−2πinxdx =

f−1∑
k=0

∫ (k+1)/f

k/f
F (x)e−2πinxdx =

f−1∑
k=0

S(k, χ)

∫ (k+1)/f

k/f
e−2πinxdx.
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Hence, by [Was, Theorem 4.2] we have

c0(f) =
1

f

f−1∑
k=0

S(k, χ) =
1

f

f−1∑
k=0

k∑
l=0

χ(l) =
1

f

f−1∑
l=0

(f − l)χ(l) = − 1

f

f−1∑
l=0

lχ(l) = L(0, χ)

and for n 6= 0 we have

cn(F ) =

f−1∑
k=0

S(k, χ)
exp

(
−2πin(k+1)

f

)
− exp

(
−2πink

f

)
−2πin

=

f−1∑
k=1

(S(k, χ)− S(k − 1, χ)) exp
(
−2πink

f

)
2πin

(notice that S(0, χ) = S(f − 1, χ) = 0)

=
τ(−n, χ)

2πin
=
τ(χ)

2πi
× χ(−n)

n
= −χ(−1)c−n(F ).

Now, L(0, χ) = 0 if χ(−1) = +1 and |L(0, χ)|2 = f
π2 |L(1, χ)|2 if χ(−1) = −1, e.g. see [Was,

Chapter 4, page 30]. Therefore, Parseval’s formula gives

1

f

f−1∑
k=0

|S(k, χ)|2 = aχ
f

π2
|L(1, χ)|2 + 2

∑
n≥1

gcd(n,f)=1

f

4π2
× 1

n2
= aχ

f

π2
|L(1, χ)|2 +

f

12

∏
p|f

(
1− 1

p2

)

and the desired result follows. Notice that this proof is similar to the ones in [BC]. •

Corollary 5 Let χ be an odd Dirichlet character of (even) order m dividing p − 1 and prime
conductor p ≥ 3. Set d = (p− 1)/m (an odd integer) and let A(p, d) be as in (11). Then

M(p,m) :=
2

m

m−1∑
j=0
j odd

|L(1, χj)|2 =
π2

6

p− 1

p2
(12A(p, d)− (4d+ 1)p− d− 1) . (12)

In particular,
(4d+ 1)p+ d+ 1

12
≤ A(p, d) ≤ (5d+ 1)p+ d+ 1

12
. (13)

Moreover, by [Lou96a], we have

0 ≤M(p,m) ≤ (log p+ 2 + γ − log π)2/4. (14)

Proof. By Theorem 4, for j odd we have

|L(1, χj)|2 = −π
2

12

(
1− 1

p2

)
+
π2

p2

p−1∑
k=1

|S(k, χj)|2

The χj ’s are primitive modulo p for 1 ≤ j ≤ m − 1, whereas χ0 is the non-primitive trivial
Dirichlet character modulo p. Therefore, on the one hand we have

m−1∑
j=0

p−1∑
k=1

|S(k, χj)|2 =

m−1∑
j=0

p−1∑
k=1

∣∣∣∣∣
k∑
l=1

χj(l)

∣∣∣∣∣
2

=

m−1∑
j=0

p−1∑
k=1

∑
1≤l1,l2≤k

χj(l1)χj(l2) = m(p− 1)A(p, d),
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by using the orthogonality relation

m−1∑
j=0

χj(n1)χj(n2) =

{
m if χ(n1) = χ(n2) 6= 0,

0 otherwise.

On the other hand, Theorem 4 gives

m−1∑
j=1

p−1∑
k=1

|S(k, χj)|2 =
(m− 1)(p2 − 1)

12
+
mp2

2π2
M(p,m).

Since
p−1∑
k=1

|S(k, χ0)|2 =

p−1∑
k=1

∣∣∣∣∣
k∑
l=1

1

∣∣∣∣∣
2

=

p−1∑
k=1

k2 =
(p− 1)p(2p− 1)

6
,

it follows that

m(p− 1)A(p, d) =
m(p2 − 1)

12
+

(p− 1)2(4p+ 1)

12
+
mp2

2π2
M(p,m).

The desired identity (12) follows.
Now, noticing that M(p,m) ≥ 0, the lower bound on A(p, d) in (13) follows from (12).

Finally, by (5) we have

M(p,m) ≤ dπ2

6

(
1− 1

p

)
.

Plugging this bound in (12) we obtain the upper bound on A(p, d) in (13). •

By (2) and (12), upper bounds on A(p, d) would yield upper bounds on h−p,d. More precisely,

for d > 1, M(p,m) ≤ π2/6 which is equivalent to A(p, d) <
(
(4d+ 2)p+ d+ 2

)
/12 would yield

h−p,d ≤ 2(p/24)m/4.

Remarks 6 Corollary 5 gives 13p+4
12 ≤ A(p, 3) ≤ 16p+4

12 , whereas A(p, 3) = 14p+4
12 , by (18) below.

Hence it should be possible to improve upon the upper bound in (13).

2.2 Exact formulas for M(p,m) and A(p, d) in specific cases

There are only four cases listed below where an explicit formula for A(p, d) is known.

1. By (4) and (12), for d = 1 we have

A(p, 1) =
p

2
=

(2d+ 1)p

6
. (15)

2. For d = 3 we proved in [Lou16, Theorem 1] that

M(p, (p− 1)/3) =
π2

6

(
1− 1

p

)
(for p ≡ 1 (mod 6)) (16)

and the corresponding bound on the relative class number

h−p,3 ≤ 2
( p

24

)(p−1)/12
= 2

( p
24

)m/4
. (17)
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By (12), this gives for d = 3 and p ≡ 1 (mod 6),

A(p, 3) =
7p+ 2

6
=

(2d+ 1)p

6
+ o(p). (18)

3. For d = 5 we proved in [Lou16, Theorem 5] that

M(p, (p− 1)/5) =
π2

6

(
1 +

2a(a+ 1)2 − 1

p

)
(for p > 5 of the form p = a5−1

a−1 ). (19)

and the corresponding bound on the relative class number

h−p,5 ≤ 2
( p

24

)(p−1)/20
= 2

( p
24

)m/4
. (20)

By (19) and (12), this implies

A(p, 5) =
11p+ 3

6
+
a(a+ 1)2p

6(p− 1)
=

(2d+ 1)p

6
+ o(p). (21)

4. For d = (p− 1)/2 and 3 < p ≡ 3 (mod 4). In that situation, χ is the quadratic character

given by the Legendre symbol χ(n) =
(
n
p

)
, L(1, χ) = πhQ(

√
−p)/
√
p and (12) gives

A(p, (p− 1)/2) =
4p2 − p+ 1

24
+

p2

2π2(p− 1)
|L(1, χ)|2

=
4p2 − p+ 1

24
+
ph2

Q(
√
−p)

2(p− 1)
=
dp

3
+O(p log2 p),

where we used the bound |L(1, χ)| � log p.

Remarks 7 In fact, d = 1 is the only case for which we could come up with a direct proof of the
formula for A(p, d). Indeed, we have χp,p−1(n1) = χp,p−1(n2) if and only if n1 ≡ n2 (mod p).
Hence,

A(p, 1) =
1

p− 1

p−1∑
N=1

N =
p

2
.

It would be nice to have similar independent and direct proofs of (18) and (21).

3 Evaluation of M(p,m) for primes p = (ad−1)/(a−1) ≡ 1 (mod 2d)

We gave an explicit formula for A(p, 3), see (18), and one for A(p, 5), but only for the primes p
of the form p = (a5 − 1)/(a− 1), see (21). After some numerical computation for primes of the
form (a5 − 25)/(a− 2) or (a5 − 35)/(a− 3) we could not guess any formula for M(p, (p− 1)/5)
or A(p, 5). However, we now prove a general result which recover (16) and (19) (let us say that
we forgot to deal with the case a < 0 in the proof of [Lou16, Theorem 5]). We want to point
out that here again we do not directly compute A(p, d). Instead we give an exact formula for
M(p,m) and then use (12) to deduce an expression for A(p, d).
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Proposition 8 Set Ql(X) = (X l − 1− l(X − 1))/(X − 1)2 ∈ Z[X], l ≥ 1. Hence, Q1(X) = 0,
Q2(X) = 1 and Ql(X) = X l−2 + 2X l−3 + · · ·+ (l− 2)X + (l− 1) for l ≥ 2. Let d ≥ 3 be a prime
integer. For a prime integer of the form p = (ad − 1)/(a− 1) for some a 6= −1, 0, 1, we have

M(p, (p− 1)/d) =
π2

6

(
1 +

2a(a+ 1)2Q d−1
2

(a2)− 1

p

)
, (22)

A(p, d) =
(2d+ 1)p+ d+1

2

6
+

p

p− 1
·
a(a+ 1)2Q d−1

2
(a2)

6
=

2d+ 1

6
p+O

(
p1− 1

d−1

)
, (23)

and
h−p,d ≤ 2 (p/24)m/4 for p = (ad − 1)/(a− 1) with a ≤ −2.

Proof. We keep the notation of [Lou16], use the properties of Dedekind sums

s(c, d) =
1

4d

|d|−1∑
n=1

cot
(πn
d

)
cot
(πnc
d

)
(c ∈ Z, d ∈ Z \ {−1, 0, 1})

recalled in [Lou16] and set l = (d − 1)/2. To deal in one stroke with the two cases a ≤ −2
and a ≥ 2 we have extended the definition of Dedekind sums, allowing d to be negative. The
reciprocity and complementary laws for these generalized Dedekind sums are

s(c, d) + s(d, c) =
c2 + d2 − 3|cd|+ 1

12cd
and s(1, d) =

d2 − 3|d|+ 2

12d
.

Set pk = (ak − 1)/(a− 1). By [Lou16, Corollary 3] we have

M(p, (p− 1)/d) =
π2

6

(
1 +

N

p

)
, where N = 24

(
l∑

k=1

s(ak, p)

)
− 3 +

2

p
.

Now, p ≡ pk (mod ak) and ak ≡ 1 (mod pk) for 1 ≤ k ≤ d. Hence

s(ak, p) =
a2k + p2 − 3|a|kp+ 1

12akp
− s(p, ak) =

a2k + p2 − 3|a|kp+ 1

12akp
− s(pk, ak)

and

s(pk, a
k) =

p2
k + a2k − 3|pkak|+ 1

12pkak
− s(ak, pk) =

p2
k + a2k − 3|pkak|+ 1

12pkak
− s(1, pk),

by the reciprocity law for Dedekind sums. Since

s(1, pk) =
p2
k − 3|pk|+ 2

12pk
,

by the complementary law for Dedekind sums, we obtain

s(ak, p) =
a2k + p2 − 3|a|kp+ 1

12akp
−
(
p2
k + a2k − 3|pkak|+ 1

12pkak
−
p2
k − 3|pk|+ 2

12pk

)
.
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The contribution of the three terms with absolute values is equal to − εk

4 + ε2k+1

4 − εk+1

4 , where
ε = a/|a| is the sign of a and therefore εk+1 is the sign of pk. Hence, this contribution is equal
to −1

4 whatever the value of ε ∈ {−1, 1}. Since this contribution does not depend on ε, we may
get rid of the absolute values and we obtain

s(ak, p) =
a2k + p2 − 3akp+ 1

12akp
−
(
p2
k + a2k − 3pka

k + 1

12pkak
−
p2
k − 3pk + 2

12pk

)
=

a2k + p2 − 3akp+ 1

12akp
−
(
pk − 3ak

12ak
− pk − 3

12
+
a2k + 1

12akpk
− 2

12pk

)
=

a2k + p2 − 3akp+ 1

12akp
−
(
pk(1− ak)

12ak
+

(ak − 1)2

12akpk

)
=

a2k + p2 − 3akp+ 1

12akp
−
(

(1− a)p2
k

12ak
+

(a− 1)(ak − 1)

12ak

)
and

s(ak, p) =
a2k + p2 − 3akp+ 1

12akp
+ (a− 1)

p2
k + 1− ak

12ak
.

Notice that the more natural congruence p ≡ pk−1 (mod ak) and ak ≡ a (mod pk−1) would lead
to slightly more complicated computations.
An easy but boring computation using

∑l
k=1 b

k = b(bl − 1)/(b − 1) then finally yields N =
2a(a+ 1)2Ql(a

2)− 1, as desired. •

Remarks 9 It is a long standing conjecture that there are infinitely many primes of the form
p = (ad− 1)/(a− 1), as first investigated in the special case of Mersenne primes 2p− 1 (a = 2).
More precise results about the number of such primes less than x are expected. This is sometimes
called the Lenstra-Pomerance-Wagstaff conjecture (see the survey [Pom] for more information
and references on this topic).

4 Asymptotic behavior of Elma’s sums and proof of Theorem 3

Let us remark that
A(p, d)

dp/3
=

pM(p,m)

2π2d(p− 1)
+ 1 +

1

4d
+

1

4p
+

1

4dp
,

by (12). Hence, as d/ log2 p tends to infinity (or equivalently m = o(p/ log2 p)), we have by (14)

A(p, d) ∼ dp

3
, (24)

as noticed in [Elm]. However, according to the results of Section 2.2, for a given d we cannot
expect this asymptotic but rather the refined asymptotic

A(p, d) ∼ (2d+ 1)p

6
. (25)

Our goal in this section is to prove Theorem 3, i.e. that (25) indeed holds true without any
restriction on the size of the parameter d.
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We will split the discussion into two cases depending on whether d goes or not to infinity.
Theorem 3 follows from Theorems 10 (d small) and 19 (d large) proved below. In the former

case, we obtain the more precise asymptotic expansion A(p, d) ∼ (2d+1)p
6 . By (12), this allows

us to deduce an asymptotic formula for M(p,m). In the latter case, Theorem 3 is not sufficient
to infer an asymptotic formula for M(p,m) and only implies an upper bound.

4.1 Asymptotic for small d’s

Our goal in this section is to prove the following theorem which gives Theorem 3 for small d’s:

Theorem 10 Let d range over the odd integers. Set γ(d) = maxk|d φ(k) ≤ d − 1. Let p range
over the prime integers such that p ≡ 1 (mod 2d). Then we have the following asymptotic
formula

A(p, d) =
2d+ 1

6
p+O

(
d(log p)2p1−1/γ(d)

)
=

2d+ 1

6
p+O

(
dp(log p)2p−1/(d−1)

)
where the implicit constant in the error term is absolute.
In particular, in the range 1 ≤ d ≤ log p

3 log log p , we have

A(p, d) ∼ 2d+ 1

6
p.

Remarks 11 Observe that γ(d) = d− 1 whenever d is an odd prime. Hence by (23) the power
of p in the error term of Theorem 10 is optimal.

4.1.1 Results from uniform distribution theory

For any fixed integer s, we consider the s-dimensional cube Is = [0, 1]s equipped with its s-
dimensional Lebesgue measure λs. We denote by B the set of rectangular boxes of the form

s∏
i=1

[αi, βi) = {x ∈ Is, αi ≤ xi < βi}

where 0 ≤ αi < βi ≤ 1.
If S is a finite subset of Is, we define the discrepancy D(S) by

D(S) = sup
B∈B

∣∣∣∣#(B ∩ S)

#S
− λs(B)

∣∣∣∣ .
The discrepancy measures in a quantitative way the deviation of a pointset S from equidistribu-
tion. In particular a sequence of sets Sn is uniformly distributed if and only if D(Sn) −−−→

n→∞
0.

In order to state a quantitative version of this phenomenon known as the Koksma-Hlawka
inequality, the concept of functions of bounded Hardy-Krause variation is used. In words, the
Hardy-Krause variation is the sum of the Vitali variations 1 of all the restrictions of f to the
faces of Is.

1To have a rough idea in two dimensions, look at the variation of f over the rectangle R := [x1, x2] × [y1, y2],
namely vR(f) := f(x2, y2)−f(x1, y2)−f(x2, y1)+f(x1, y1). The Vitali variation can then be obtained by summing
vR(f) over a partition of I2 and taking the supremum over all possible partitions.
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Theorem 12 [DT, Theorem 1.14] Let f(x) a function of bounded variation on Is in the sense
of Hardy and Krause and x1, . . . ,xN a finite sequence of points in Is. Then∣∣∣∣∣ 1

N

N∑
i=1

f(xi)−
∫
Is

f(u)dλs(u)

∣∣∣∣∣ ≤ V (f)D(S)

where V (f) is the Hardy-Krause variation of f (see also [KN, Chapter 2]).

In order to estimate the discrepancy, we recall the inequality of Erdős-Turán-Koksma:

Theorem 13 [DT, Theorem 1.21]. Let S = {x1, . . . ,xN} be a set of points in Is and H a
positive integer. Then we have

D(S) ≤
(

3

2

)s 2

H + 1

∑
0<‖h‖∞≤H

1

r(h)

∣∣∣∣∣ 1

N

N∑
n=1

e(〈h,xN〉)

∣∣∣∣∣
 , (26)

where e(z) = exp(2πiz), r(h) =

s∏
i=1

max{1, |hi|} for h = (h1, . . . , hs) ∈ Zs and 〈, 〉 denotes the

standard inner product in Rs.

4.1.2 Notions from pseudo random generators theory

In the rest of the paper the results of the previous section will only be used for s = 2.
We introduce some tools from the theory of pseudo-random generators and optimal coefficients
in a very basic situation. We refer for more information to the survey of Korobov [Kor], the
work of Niederreiter [Nied77, Nied78] or the book of Konyagin and Shparlinski [KS, Chapter 12]
and keep their notations. For any prime p and integer 1 ≤ λ ≤ p− 1 we define

σ(λ, p) :=
∑

0<‖h‖∞≤p−1

δp(h1 + h2λ)

r(h)

where δp(a) = 1 if a = 0 mod p and δp(a) = 0 otherwise.
For any λ, we define

ρ(λ, p) = min
h6=0

r(h)

where the min is taken over all non trivial solutions h = (h1, h2) of the congruence

h1 + h2λ = 0 mod p.

The next lemma shows that 1
ρ(λ,p) and σ(λ, p) are relatively close to each other:

Lemma 14 [Nied77, Theorem 3.8]. There exists C > 0 such that, for any prime p ≥ 3, and
λ ∈ {1, . . . , p− 1} we have

1

ρ(λ, p)
≤ σ(λ, p) ≤ C (log p)2

ρ(λ, p)
. (27)

In some cases which are of interest for our problem, we can control from below ρ(λ, p):
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Lemma 15 Let λ be an element order k ≥ 3 in the multiplicative group F∗p. Then

ρ(λ, p) ≥ p1/φ(k)/
√

8,

where φ denotes as usual the Euler’s totient function.

Proof. Let
Φk(X) =

∑
0≤l≤φ(k)

alX
l =

∏
1≤l≤k

gcd(k,l)=1

(X − ζ lk)

denote the k-th cyclotomic polynomial. Set

‖Φk(X)‖2 =

 ∑
0≤l≤φ(k)

|al|2
1/2

=

(
1

2π

∫ 2π

0
|Φk(e

it)|2dt
)1/2

≤ 2φ(k).

We clearly have Φk(λ) = 0 mod p. For h = (h1, h2) 6= 0 we define P (X) = h1 + h2X. Assume
that P (λ) = 0 mod p, then p divides the resultant R = Res(P,Φk). The polynomial Φk being
irreducible of degree ≥ 2, we deduce that R 6= 0. It follows that |R| ≥ p. Since R is the
determinant of the Sylvester matrix of P (X) and Φk(X), by Hadamard’s inequality we have

|R| ≤ ‖P (X)‖deg Φk(X)
2 ‖Φk(X)‖degP (X)

2 ≤
(
h2

1 + h2
2

)φ(k)/2
2φ(k) ≤ (max(|h1|, |h2|))φ(k) 8φ(k)/2.

Hence we have
r(h) ≥ max(|h1|, |h2|) ≥ |R|1/φ(k)/

√
8 ≥ p1/φ(k)/

√
8.

All together we obtain the lower bound ρ(λ, p)� p1/φ(k)/
√

8. •

4.1.3 Reduction to a problem of equidistribution

Set H = ker(χ), the subgroup of F∗p of order d. We interpret the condition χ(n1) = χ(n2) as

n1n
−1
2 ∈ H. We write H as a disjoint union

H =
⋃
k|d

Hk, where Hk := {θ ∈ H, ord(θ) = k}.

Proposition 16 For any pair (x, y) of I2 we define

fd(x, y) =
x

d− 1
+ min(x, y).

We have the following relation

A(p, d) =
1

p− 1

∑
1≤n1,n2≤p−1
χ(n1)=χ(n2)

min(n1, n2) =
p

(p− 1)

∑
k|d
k 6=1

∑
θ∈Hk

∑
x mod p

fd

(
x

p
,
xθ

p

)
.
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Proof. Changing the order of summation in (11) and making the change of variables (n1, n2) 7→
(p− n1, p− n2), we do have

(p− 1)A(p, d) =
∑

1≤n1,n2≤p−1
χ(n1)=χ(n2)

(p−max(n1, n2)) =
∑

1≤n1,n2≤p−1
χ(n1)=χ(n2)

min(n1, n2).

Now we have ∑
1≤n1,n2≤p−1
χ(n1)=χ(n2)

min(n1, n2) =
∑

x mod p

x+
∑
θ∈H
θ 6=1

min(x, θx)

 .

We remark that if θ 6= 1, we have

min(x, θx) = pfd

(
x

p
,
xθ

p

)
− x

d− 1
.

Using the decomposition H =
⋃
k|d Hk and summing over H, the proposition follows. •

Remarks 17 The reader might wonder why we did not express directly the sum A(p, d) using the
more natural function on Id given by g(x1, . . . , xd) =

∑d
i=1 min(x1, xi) evaluated at the points(

x
p ,

xλ
p , . . . ,

xλd−1

p

)
, where λ generates H. This comes from the fact that these points are not

equidistributed in Id because they lie in the hyperplane of equation x1 + · · ·+ xd = 0.

4.1.4 Proof of Theorem 10

We introduce the set of points in I2:

Sθ =

{(
x

p
,
xθ

p

)
, x mod p

}
for any θ ∈ H\{1}. By Theorem 12 we have for any θ∣∣∣∣∣∣1p

∑
x mod p

fd

(
x

p
,
xθ

p

)
−
∫
I2

fd(u, v)dudv

∣∣∣∣∣∣ ≤ V (fd)D(Sθ).

It is easy to compute the integral and obtain∫
I2

fd(u, v)dudv =
1

2(d− 1)
+

1

3
.

Applying Proposition 16 and simplifying, we obtain the equation

A(p, d) =
2d+ 1

6
p+O (ET ) (28)

where the error term is

ET := pV (fd)

∑
k|d
k 6=1

∑
θ∈Hk

D(Sθ)

 . (29)



Second moment of L-functions, character sums and relative class numbers 14

The readers can easily convince themselves that V (fd) � 1 independently of d. Indeed we
have V (fd) ≤ 1

d−1V ((x, y)→ x) + V (min(x, y))� 1 using basic properties of the Hardy-Krause
variation (see for instance [AD, Equation (22)]) and the fact that the function (x, y)→ min(x, y)
is of bounded Hardy-Krause variation. 2

Hence to finish the proof, we need to bound the sum of discrepancies. Applying Theorem 26
with H = p− 1 we obtain

D(Sθ) ≤
(

3

2

)2
2

p
+

∑
0<‖h‖∞≤p−1

1

r(h)

∣∣∣∣∣1p
p∑

x=1

e

(
h1x+ h2xθ

p

)∣∣∣∣∣
 .

Using the orthogonality relations∑
b mod p

e(bn/p) =

{
p, if n ≡ 0 (mod p),
0, if n 6≡ 0 (mod p),

we can bound the sum over h by

σ(θ, p) :=
∑

0<‖h‖∞≤p−1

δp(h1 + h2θ)

r(h)

using the notations of subsection 4.1.2. For θ ∈ Hk, we apply consecutively Lemma 14 and
Lemma 15 to obtain

σ(θ, p) ≤ C(log p)2/p1/φ(k)

for an absolute constant C. Hence recalling that γ(d) = maxk|d φ(k) and summing over k, we
arrive at

ET = pV (fd)

∑
k|d
k 6=1

∑
θ∈Hk

D(Sθ)

� d(log p)2p1−1/γ(d).

This concludes the proof of Theorem 10, in view of Equation (28).

4.2 Asymptotic for large d’s

For a given non-principal Dirichlet character χ mod p, where p is a prime, let

M(χ) := max
1≤x≤p

∣∣∣∣∣∣
∑
n≤x

χ(n)

∣∣∣∣∣∣
and its renormalization

m(χ) =
M(χ)

eγ
√
p/π

.

The Pólya–Vinogradov Theorem states that

m(χ)� log p (30)

2Indeed the Hardy-Krause variation is obtained as a sum of the Vitali variations of min(x, y), min(x, 1) and
min(1, y).
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for all non-principal characters χ mod p. Apart from some improvements on the implicit con-
stant, this remains the state-of-the-art for the general non-principal character. However, for
most of the characters M(χ) is much smaller and we can study how often M(χ) is large. The
best result in this direction was obtained in [BGGK]:

Theorem 18 Let η = e−γ log 2. If 1 ≤ τ ≤ log2 p−M for some M ≥ 4, then

Φp(τ) :=
1

p− 1
# {χ mod p : m(χ) > τ} ≤ exp

{
−e

τ−2−η

τ
(1 +O((log τ)/τ))

}
.

We are now in a position to prove Theorem 3 for large d’s.

Theorem 19 We have
A(p, d) = dp/3 +O(p log2 p),

where the implicit constant in this error term is absolute and effective. Moreover, if d and p go
to infinity with log d = o(log p/ log2 p), then we have the better asymptotic

A(p, d) = dp/3 +O(p(log2 d)2),

where the implicit constant in this error term is absolute and effective. Consequently, if d goes
to infinity, then

A(p, d) = dp/3 + o(dp).

Remarks 20 The condition log d = o(log p/ log2 p) could be made more explicit by specifying
the constants in the proof below. Notice also that whereas Theorem 3 follows from Theorems 10
and 19, it does not follow from Theorem 10 and (24).

Proof. The first part of the Theorem follows directly from (12) and the inequality |L(1, χ)�
log p. This could also be proved following our argument below and using only the Pólya–
Vinogradov inequality. Let us now focus on the case log d = o(log p/ log2 p). The condition
χ(n1) = χ(n2) is equivalent to n1n

−1
2 lying in the kernel of χ, which is a subgroup of order d

of the multiplicative cyclic group F∗p. We apply the orthogonality of characters in the subgroup
< χ > of order m generated by χ ∈ Xp and rewrite the sum A(p, d) defined in (11) as

A(p, d) =
1

(p− 1)

p−1∑
N=1

1

m

∑
Ψ∈Xp

Ψm=χ0

∑
1≤n1,n2≤N

Ψ(n1n
−1
2 ).

Separating the contribution of the trivial character from the others, this leads us to the equation

A(p, d) =
d

(p− 1)2

p−1∑
N=1

N2 +
1

(p− 1)

p−1∑
N=1

1

m

∑
Ψ∈X∗p

Ψm=χ0

∣∣∣∣∣∣
∑

1≤n≤N
Ψ(n)

∣∣∣∣∣∣
2

.

We have trivially

d

(p− 1)2

p−1∑
N=1

N2 =
dp

3
+

dp

6(p− 1)
= dp/3 +O(d).
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Therefore we are left to bound the contribution of non-trivial characters and

A(p, d) = dp/3 +O

(
d

R

(p− 1)2

)
(31)

where

R :=

p−1∑
N=1

∑
Ψ∈X∗p

Ψm=χ0

∣∣∣∣∣∣
∑

1≤n≤N
Ψ(n)

∣∣∣∣∣∣
2

.

Let us set the parameter τ = min{C(log2 d), log2 p −M}, where M is the constant appearing
in Theorem 18 and C is some large constant which will be specified later. We introduce the
following set of characters

X τp,0 =
{

Ψ ∈ X ∗p : m(Ψ) ≤ τ
}

and further define for every integer 1 ≤ j ≤ J

X τp,j :=
{

Ψ ∈ X ∗p : 2j−1τ < m(Ψ) ≤ 2jτ
}
,

where J is chosen in order to allow an application of Theorem 18. Precisely, we choose J such
that

τ2J ≤ log2 p−M < τ2J+1.

We now split the characters appearing in the summation in R as follows

X ∗p =

 J⋃
j=0

X τp,j

⋃{
Ψ ∈ X ∗p : m(Ψ) > 2Jτ

}
.

Notice that if τ = log2 p−M then J = 0 and we only split the summation depending on whether
m(Ψ) ≤ log2 p−M or not. Remark that there are at most m characters Ψ ∈ X τp,0 appearing in
the sum. Hence, it follows from Theorem 18 and the inequality (30) that

R �
p−1∑
N=1

mpτ2 + p2
J∑
j=1

τ222jΦp(τ2j−1) + p2(log p)2Φp(τ2J)


�

p−1∑
N=1

mpτ2 + p2
J∑
j=1

τ222j exp

{
− eτ2j−1

100τ2j

}
+ p2(log p)2 exp

{
− eτ2J

100τ2J

} . (32)

The summation over j in the right hand side of (32) is clearly dominated by its first term. Thus
we obtain after summing over N and recalling our choice of J :

R� p3

d
τ2 + p3τ2 exp

{
−c1

eτ

τ

}
+ p3(log p)2e−c2 log p/ log log p (33)

for some absolute constants c1, c2 > 0. We insert (33) in (31) and choose C large enough in
the definition of τ to ensure that the second and third term in the right hand side of (33)
have negligible contribution. This is indeed possible due to the restriction on the size of d and
concludes the proof. •
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5 Proof of Theorem 1

The first part of Theorem 1 follows from Theorem 10 and (12). The second part follows from
Theorem 19 and (12).

6 Concluding remarks

We solved Elma’s question about the asymptotic behavior of the character sums A(p, d) regard-
less of the size of d. As already noticed above, for d large, this is not precise enough to deduce an
asymptotic formula for the mean-square value M(p,m). To conclude, let us say that the upper
bound (9) could be obtained by working directly with L(1, χ) following our method of proof
of Theorem 19. This requires results about the distribution of L(1, χ) as the ones obtained by
Granville and Soundararajan [GS1, GS2] instead of Theorem 18.
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