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Upper bounds on residues of Dedekind zeta functions of
non-normal totally real cubic fields

by

STEPHANE R. LOUBOUTIN (Marseille)

1. Introduction. Various bounds on the absolute values of L-functions
of number fields at s = 1 and on residues at s = 1 of Dedekind zeta functions
of a number field IL are known. Also, better bounds depending on the splitting
behavior of given prime ideals of I of small norms are known. These bounds
involve a term 1, in the series expansion at s = 1 of the Dedekind zeta
function of L. We explain why one should expect to have bounds on vy,
which also depend on the splitting behavior in I of given prime integers.
We explicitly do that for L a real quadratic number field. We deduce very
good upper bounds on the residue at s = 1 of the Dedekind zeta function
of a non-normal totally real cubic number field K, bounds depending on
the splitting behavior of the prime p = 2 in K. We have almost reached in
Theorem an explicit bound

) Resct (Ge(s)) < 2 (log s + ) log(d /) + )
< %(log dg + (c2 + 0/2)/2)2
for the residue at s = 1 of the Dedekind zeta function of a non-normal

totally real cubic number field K of discriminant of absolute value dg, where
dy, is the absolute value of the discriminant of the real quadratic subfield
L = Q(V/dxk) of the normal closure of K. Here, Qo € {1,1/2,1/3,1/4,1/7}
defined in depends on the splitting behavior of the prime p = 2 in K
and ¢z and ¢, would also depend explicitly on the splitting behavior of the
prime p = 2 in K. Unfortunately, the sizes of the error terms in Theorem [I.]
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2 S. R. Louboutin

and Proposition [2.1] prevent us from getting such a simple bound and we
only get the bound

Q2 +o(1) Q2+ o(1)
8 8

as dr, tends to infinity and dx /dp, > log? dg. We hope somebody could deal
nicely with these error terms or could find a completely different approach to
get an explicit bound as close as possible to . Combined with the results
obtained in [Loul5|, this would have great consequences on the solution
of the class number one problem for the non-normal sextic CM-fields (see

[Lou08, Remark 10]).

Ress=1(Ck(s)) < (log dy.)(log(dg /dy.)) < (log di )

1.1. Notation. Let us set the notation we will be using throughout the
paper.

Let K be a number field, of degree m = r1+2r9, absolute discriminant dg
and Dedekind zeta function (k(s). Set

dK 8/2
2es) = (i ) 7 /T 6)6t)
In particular, Zg(s) = 7~*/2I'(5/2)¢(s). Then Zk(s) is a meromorphic func-
tion satisfying the functional equation Zx(1 — s) = Zgk(s), with only two
poles, at s = 0 and s = 1, both simple. We define (see [Lou98b, (22)| for the
positivity)

Vg

0 < Ak := Ress=1(Zk(s)) = W Ress—1(Ck(s)),
0< g := iig%{;KZK(S) - s(sl—l)}’

0 < vk := pug Ress=1(Ck(9)).
In particular, Ag = 1 and
(2) po = (2+ v —log(4m))/2 = 0.02309.. ..

Whereas we have the positivity of Ak, uk, vk and explicit bounds (see
[Lou01l Theorem 1])

m—1 m
(3) Res;=1(Ck(s)) < <2e(71;g_d]11§)> and v < <ek2)ildK> ’

obtaining explicit bounds on pk is not easy. In fact, recalling that the Fuler—
Kronecker constant yg of K is defined by

Ck(s) = Ress=1(Ck(s)) <._<;11 + vk + O(s — 1)),



Upper bounds on L(1,x) and Ress=1(Cx(s)) 3

we have
pg =Yk + 1+ %(log dg — m(vy +log(4m)) + rolog 4)

and only conditional upper bounds (under the assumption of the Generalized
Riemann Hypothesis) for vk are known:

vk < loglog dg,

where the implied constants are absolute (see [IM, Theorem 3 and Corol-
lary 3.3.2]).

1.2. Bounds on L(1,x). In [Lou93] (see also [Ram01], [Edd]| and [PE]),
we obtained the explicit bound

(4) IL(L,x)] < 5log fy + ng

for the value at s = 1 of the L-function associated with a primitive and even
Dirichlet character x, of conductor f, > 1 (see also [GS| and [Pin] for better
non-explicit bounds).

This was considerably generalized in [Lou04, Theorem 1| and [RamO04)
Corollary 1], leading to better explicit bounds taking into account the behav-
ior of x at given prime integers (see also [Toy] for better non-explicit bounds).
Our present approach based on Lemma [3.1| will give a simpler proof of these
latter bounds (see the first item of Theorem [1.3)).

In [Lou00, Theorem 7|, we generalized to the case of L-functions
associated with primitive characters on ray class groups of a given number
field L. Focussing on characters unramified at all the infinite places of L., we
obtained

(5) L1, 0] < Resec1(Gi(s)) x (1og fy + paz) +o(1)

= 5 Resy—1(CL(s)) log fy + 1 + o(1),
where f,, = N(F) is the norm of the finite part F, of the conductor of x. It
took us some time to generalize , i.e. to obtain better bounds taking into
account the behavior of x at given prime ideals of L. In 2018, we eventually

obtained a generalization of |[Lou04, Theorem 1| and [Ram04, Corollary 1]
(see Proposition below for the size of the present error terms):

THEOREM 1.1 (see [Loul8, Theorem 2|). Let P be a given finite set of
prime ideals of a given number field L of degree m. Let N(P) = NL/Q(P) be
the norm of P € P. Let x range over the non-trivial and primitive characters
on ray class groups for I which are unramified at all the infinite real places

of L. Set Pi(x) ={P € P; P{Fy}. Then
IL(1,x)| < Bp(x) x Rese—1(CL(5)) % (3108 fy + L + Sp(x))
(log(edy))™ " (log(edw fy))
+ o< NS )
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where the implied constant depends only on m and the norms of the prime
tdeals in P and where

0<Bp(x) =[]

PeP

<1

— )

N(P)—1 ‘
N(P) = x(P)

and

1 N
0 5p(x) = o201 4 3 JENP)
per v

Hence, by , whenever f,, > (log(edy))? we have
(6)  [L(1,x)| < Bp(x) x (3 Ress—1(Cu(s)) log fy + 1) + O(log™ ™ (edy)).

1.3. Main results: bounds on v, for real quadratic number fields
and on Ress—1((k(s)) for non-normal totally real cubic number fields.
Let K be a non-normal totally real cubic number field. The best explicit
known bound is

(7) Ress—1(Cx(5)) < g(logdi + X3)°,

where A3 := 2+ 2y — 2log(4m) = —1.90761 ... (see |Loull], where it is said
to hold true for dxg > 146, but according to [Coh, Appendix B4| there are
only two totally real cubic number fields of discriminant less than 146, both
of them being abelian). In [Lou08, Theorem 8] we obtained a better bound
depending on the behavior of the prime 2 in K:

®) Res,-1(Gi(s)) < 2 (log dic + 5)°

where Q2 € {1,1/2,1/3,1/4,1/7} defined in below depends explicitly
on the splitting behavior of the prime p = 2 in K. In Theorem [I.7], we will
obtain still better bounds. Let N be the normal closure of K. Hence N is a
totally real sextic field with Galois group isomorphic to the symmetric group
of order 6. Let L be the unique (real) quadratic subfield of N. The cubic
extension N/L is cyclic. Let xy/1 denote any of the two complex conjugate
cubic characters associated with N/L. Let fy/, = Ny q(Fn1) be the norm
of the conductor Fy,r, of Xn/L-

We have
(9) (Gie(5)/¢())* = Gu(s) /Culs) = L(s, xn/m) L(s, xXvyn),
which gives d% = dn/dy, = ILfN/IL? ie.
(10) fyw =dx/dy and  Ress=1(Ck(s)) = |L(1, xn/L)|-

Now, let L be a real quadratic number field, hence associated with a primitive
even Dirichlet character xg, of conductor dy,. By . we have

(11) Res—1(¢L(s)) = L(1,x1) < 5 logdL + pg.
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While we have no explicit upper bounds on y, in (5)), we do have one on

(12) v, = pr, Ress=1(CL(s)) < Llog? dr,

by [Lou98al, Proposition 6] or |[Lou0l, Theorem 2|, a better bound than the
one in for m = 2.

REMARK 1.2. Let IL be a real quadratic number field of discriminant df..
Then

v = L(1,x1) (ﬂ@ * m>

= L(1,x1) (3 logdL + 1 —log(4m)) + L' (1, x1),

by . Starting from this formula it would be difficult to end up with the
factor 1/8 in , as by it would be difficult to have anything better
than a factor 1/4.

Using (10} (11), and we obtain a bound on Ress—1 (Cx(s)) which
(7 D i

is better than the one in f dg > d? |Loul8, p. 255|. In this paper
we improve upon by taking into account the behav10r of small prlme

integers in L see and Corollary 1.5 . Then, using , , ) for
X = XL, and (14} we obtaln a bound on Ress—1 CK( ) Which is better than

the one in 1f dg > dy, log? dp—see Theorem
In other words, the aim of this paper is to prove Theorem below. Not

only does our present approach based on Lemma give a simpler proof of
than the ones in [Lou04] and [Ram04]; it also enables us to get and

in one stroke.

THEOREM 1.3. Let dy,ds > 1 be coprime square-free positive integers.

(i) Let x range over the primitive and even Dirichlet characters of conductor
fx > 1 for which ged(dy, fy) = 1 and da | fy. Setting c1(d1,d2) = pg +
w(di)1og2 + 3,4 4, l;%f, we have an effective bound with a negative
error term for w(ds) < 1 and fy large enough:

1
13) 12001 < 5{ T1

pldida

p—1
p—x(p)

} x {log fx+261(d1,d2)}+0<1(\)§£()-

(ii) Let L range over the real quadratic fields for which p|d; = x1(p) = —1

and p|dy = xi(p) = 0. For ca(di,d2) = 2ug — 1+ 324 2510” +

Zp\dg l;ff and c3(dy,d2) some explicit constant depending only on d;

and do given in Section we have an effective bound with a negative
error term for w(da) < 2 and dy, large enough:




6 S. R. Louboutin

{ H p_l} x {(log dy, + 2ca(dy, d2))? + 4cs(dy, da)}

Jidv, P~ XL(P) Y
og" drL
0] .
i <¢d )

COROLLARY 1.4 (compare with (). For any real quadratic field L we
have

From the effectiveness of these bounds we obtain

(logdp, + 2+ v —log(4m))/2  in all cases,
Ress=1(¢L(s)) < < (logdy, + 2 + v —log ) /4 if 2 is ramified in 1L,
(logdy, + 2+~ —log(m/4))/6 if 2 is inert in L.
COROLLARY 1.5 (compare with (12)). Set x = 4ug — 2 + (8log2)/3 =

—0.05922... and k' = 4ke = 19.52508 as defined in . For any real
quadratic field I we have

(log dy.)?/8 in all cases,
n < (log dy,)?/16 if 2 s ramified in L,
~ | ((Qogdy + k)? + &) /24 if 2 is inert in L,
(log dy,)?/24 if 2 is inert in L and dy, > 5- 1071

REMARK 1.6. Numerical computations of vy, based on [Lou98b, Section
4.2| suggest that the fourth bound (which follows from the third one) holds
true whenever 2 is inert in I and dp, > 5. Indeed, with a 24h30mn long
high precision computation on a 3GHz PC using UBASIC, we checked that
max{24vy /log?dy; dp, = 5 (mod 8) and dp, < 10°} = 0.9055... for dp, =
62269. Notice that x1(p) =1 for p € {3,5,7,11,13,17,19, 23,29} and dy, =
62269.

Let p > 2 be a given prime. Take P equal to the set of prime ideals of L
dividing p. To simplify the presentation, we assume that dp, goes to infinity

and that fy/1, = di/dp, > log? dy., to be allowed to use @ By , @ and
Theorem [I.3] we have

Ress=1(Ck(s)) < Bp(xa/L) x {5 Ress=1(¢u(s)) log(di /dv.) + v} + O(log dr.)

with
14 0(1)

Ress=1(CL(s)) < By (xw) x log dy,

and

14+ o(1
vL < By (xw) 8( ) log? d..

Hence,

(log di.) (log(dZ /dv)) + O(log dv),

Resoo1(Ge(s)) < 200
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where
Qp := By (XL) X Bp,p|(p) inLy (Xni/L)-

From @ and the uniqueness of the Euler product of Dirichlet series, we have

((=5), 1,0~ wgmr) )

Bl(p)inK
xn/L(P) > - ( Xn/L(P) > -
- A VEANIAD I (F QA VEASAAD I
7>|(£ImL< Npo(P) Npo(P)
Hence,
(1-2)°
(15) Qp = £

H‘m 1nK( W)

1 if (p) = P1 P2 Ps splits in K,

pp%l if (p) = P1P2 is partially ramified in K,
kg =P nk

(pggl P (p) = P23 is totally ramified in K

p(zp;;il if (p) =P is inert in K

Putting everything together and using XY < ((X +Y)/2)? for X,Y > 0,
we obtain

THEOREM 1.7 (compare with and [Lou08, Theorem 8|). Let p > 2
be a given prime integer. Let 1L be the real quadratic subfield of the normal
closure N of a non-normal totally real cubic number field K. Let Q, be as

n . Then
Ress=1(Ck(s)) < (log dy.) (log (di /dy.)) <

where the effective error terms tend to 0 as dp, — oo, and dg/dy, > log2 dr,.

@p+o(1) @p +o(1)
8 8

log® d,

2. Proof of the size of the error term in Theorem [L.1]

PROPOSITION 2.1 (see |[Loul8, Proposition 9]). Let L be a totally real

number field of degree m. Let P; and P» be two disjoint finite sets of prime
ideals of L. For a >0 and X > 0, set

(T ) < T b))

PeP; PeP;y
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and
Fi.(s, X) = I (s)X*" ' Z1.(s) /\/du,

a meromorphic functions with at most two poles, a double one at s =1 and
an at most double one at s = 0. Define

1

" 2mi

(16)  IL(X): | FL(s, X)ds

R(s)=c
= Ress=1(FL(s, X)) + Ress—o(FL(s, X)) + RL(X)

(which does not depend on o > 1), where

(17)  Ryp(X):= ! S F]L(S,X)ds:L S FrL(1-s,X)ds

T 2mi 2ri
R(s)=1—« R(s)=c
_ L S H]L(l — S)Z]L(S) ds = O(log (edL)>.
2mi R(9)=a Xs\/dy, X

Let x be a non-trivial, primitive and character on a ray class group for L,
unramified at all the infinite places of K. Assume that P € P; implies P { Fy
and P € Py implies P | Fy. Then

o (I 3o

PeP

< IL(\/fy) = Rese=1 (FL(s, X)) + 0(105,;((6‘@4))‘

The implied constants in f depend only on a, m and the norms of

the prime ideals in P.

Proof. Only the sizes of the error terms in and require proof.
For 1 <o =R(s) =1+ € <4 we have |(1(s)| < (L(o) < (o)™,

>1 n
1 1 1 1 o 4
< = _ — 1= <
_0—1+;(n‘7 (n-l—l)") o117 o—1" ¢

and |Zy(s)/(X*VdL)| < e dy/*|(o/2)|™(4/y/7)™/X. By [Lon00, Lem-
ma 10|, taking € = 2m/log(edy,) we have ¢ < 3 and follows.

The last assertion follows from , and the formula (see [Loul8|
Lemma 10])
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Ress—o(FL(s, X)) = _RGSSZ;((CL(S)) x { H (1 B N(177)>}

PePy
log X — pp, +1+1loga —a if P, =0 and P, =0,
y logX—uLJrqulogaJrZPep% if P, =0 and P # 0,
log N (Py) if P, = {Po},
0 otherwise.

which yields Ress—o(Fi(s, X)) < (log™ *(edy))(log(edX))/X, by (3).
Theorem [l follows from the last assertion and the fact that

Res—1 (FiL(s, X)) = { 11 (1 - N(173)>}

PeP

x Ress=1(CL(s)) X {logX—i-,u]L —1—loga+ 2Mla + Z m}

PeP

is minimal for a = 1/2/71]. u

3. Proof of Theorem [1.3l In this section we use Lemma [3.7] below to
prove Theorem [T.3]

Notice that the present proof of drastically shortens the one of
[Lou04, Theorem 1] and that the use of Lemma would also drastically
shorten the proof of [Loul8, Theorem 2].

First, in and we give integral representations on the vertical
line RN(s) = a > 1 of L(1,x) and v, respectively. Second, in Lemma
we prove the positivity of some inverse Mellin transforms appearing in these
integral representations. Third, in we deduce bounds for |L(1, x)| and
vy, as inverse Mellin transforms of some G1(s) = II1(s)Zg(s) and Ga(s) =
II5(s)Zg(s) for some explicit factors I11(s) and IIz(s) depending on both
dy and ds. Fourth, in (32) we reduce the proof of Theorem to the com-
putation of Ress—1(G1(s)) and Ress=1(G2(s)). Finally, in and we
compute these residues.

By Stirling’s formula, in any given vertical strip we have

(19)  I'(o+it) = 0(e™/2|t]7=1/2)  for oy < 0 < ay and |t| > 1.

Let x be a primitive and even Dirichlet character of conductor f > 1. Then
As,x) = (r/ f)**I(s/2)L(s, )

is an entire function of order one satisfying

(20) Ao +it,x) = O(e ™ 4tM)  for a; < o < ap and |t| > 1,

for some M = M(aj,a2) (e.g. see [Davl Chapter 12| and [Lou0ll, Sec-
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tion 4.1]). Recall also the functional equation
(21) A(l - S>X) = WXA(Sv X)

for some complex root number W, of absolute value equal to one (see e.g.
[Davl, Chapter 9]). The bounds and show that all the integrals on
vertical lines of the complex plane below are absolutely convergent and that
we are allowed to move these lines to the left, provided that we take into
account the residues at the poles encountered.

LEMMA 3.1. Let dy > 1 be a square-free integer. Set
P(s,x.d1) =[] (1 - X(f))
pld1 p

Let x be a primitive and even Dirichlet character of conductor f > 1. Assume

that ged(dy, f) = 1. Set

Xn
Lovd) = Y M py sy
n>1
ged(n,di)=1

(the L-function associated with the character modulo dy f induced by x) and
A(57 X dl) = (W/f)_S/2F(S/2)L(Sa e dl) = P(Sa e dl)A(S7 X)
Fora >0 and a > 1, we have

1—s . s
(22)  A(L,x,dy) = 12 S {A(57X7dl)a L A= s x.di)a }ds,

2 s—1 s
R(s)=a

1 _ i A(‘SvX’dl) o A(l — s?Xadl)
(23) A (1aX7dl) = o " S)_ { (S _ 1)2 s2 ds,

where these integrals are absolutely convergent and do mot depend on «,
by . Moreover,

(24) {TI(1-22) 200 = a0 a7

pldi

and for a real quadratic number field I we have

(25)

{H (1 — XL(M) }VL (1o = 2pja, Wsog)p)/l(la)(hdl) + A'(1, xwL, d1)
p Vi, )

where x1, s the real primitive quadratic Dirichlet character of conductor dr,
associated with L.

pldi
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Proof. Set

A(s,x,dy)ar=* A1 — s, x,d1)a®
+ .
s—1 s
The bound allows us to move the vertical line of integration R(s) = a>1
to the left to R(s) = 1 — a < 0. Noticing that we pick up residues at s = 1
and s = 0, both simple and of residue A(1,dy, x), we obtain

G(s) =

| G(s)ds = Ress—1(G(5)) + Ress—0(G(s)) + = | G(s)ds

2mi 2mi
R(s)=a R(s)=1—a
1 1
= 2A(1 — 1- = 2A(1 - —
()5 | GU=ddi=2Md) —55 | G

by making the change of variables s — 1—s to come back to the line ®(s) = «
and then using G(1 — s) = —G(s). Identity follows. In the same way,
we have
A/(lv X5 dl) - (IOg Q)A(lv X5 dl)
1 S {A(83X7d1)a1_s A(l — S)Xadl)as}d
= — S,

i —1)2 n 2
271 R(9)=a (s—1) s

which for a = 1 gives .
Now, let L be a real quadratic number field . Then Wy, = 1, A(1 — s, x1.)
= A(s, xv),

(26)  A(s,x) = ZL(s)/Zg(s) = /A\g(l + (L — pg)(s — 1) + O((s — 1)%)),

and

A(S)dhXL) - P(S7Xa dl)A(‘SvX]L)

— igp(l,x, d1){1 + <MJL — pg + IM> (s=1)4+0O((s— 1)2)}.

Then follows by using Ag = 1 and v, = Ay, /v/dL, for any totally real
number field L. =

LEMMA 3.2. For X >0, ¢ real, m > 1 an integer and k € {1,2}, set

1 e m ds
(27) Fi(X,e,m) = o | x—rm(s/2) o (o > max(0, ¢)),
R(s)=c
an absolutely convergent integral not depending on «, by . Then
oF OF:
Fu(X,c,m) > 0, aTl(X’ c,;m) = Fy(X,e,m) > 0, a—;(x, ¢)>0

and X — Fi(X,c,m) is decreasing.
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Proof. Clearly,

. X—(a—i—it)
tyee s tm,t —(trtttm) (L p Ylait)/2-1 A T
(b1, tm, ) 1 € (- tm) (v — ¢+ it)?

is in L'(R7 x R, C) for a > 0 and o # c. Now, for a > ¢ we have

u® 0 ifu<l,
2mi S (s—c)QdS:{cl if
R(s)=cx ulogu if u > 1.
(move the line of integration R(s) = « of this absolutely convergent integral
to the right to infinity for 0 < v < 1 and to the left to infinity for v > 1, in
which case you pick up a residue at the pole s = ¢). Therefore, by Fubini’s
theorem, we have

Fy(X,e,m) = Jn(X,c) >0,

where
1t \€ -1 dtq---dt
n(X,0)i= o] ettt (ﬁ) log <m> 1 dty,
X X t1- -t
tl"")tm>0
ti-tm>X2
= SS o X (brettm) (410 g, )2 Tog (b - -+ ) #
t14eestm >0 1 m
t1tm>1
Finally, fix X > 0 and a > 0. Let ¢ range in (—o0, «). Clearly,
m dty---dt
cr I (X, c) = SS e XMttt (g g e/ %
o, £ >0 1+ tm
tl ‘t'm>].

is differentiable on (—oo, ), with derivative ¢ — Jp,, (X, ¢) = F5(X, ¢, m). Us-
ing Stirling’s formula (19)), it is clear that ¢ — Fy (X, ¢, m) is differentiable on
(—o0, ), with derivative ¢ — F»(X, ¢, m). Hence, ¢ — I,(X, c)— F1(X, ¢, m)
is constant on (—oo, a). Since lime—s oo L1 (X, ¢) = lim,, _ F1(X, ¢, m)=0,
by Lebesgue’s dominated convergence theorem we obtain

Fi(X,e,m) =1In(X,c) > 0.

Finally, these two integral representations of F1(X,c,m) and Fa(X,c,m)
show that they are decreasing functions of X > 0. =

LeMMA 3.3 (see [Loul8, Lemma 7]). Set ¢(8) = [[,5(p—1) and ¢(6) =
Hp|6(P —2) for 6 > 1 a square-free integer (by convention, empty products
are 1). Let anl an be absolutely convergent. Then for di > 1 we have

S U =SB0 Y an

d|d1 n=>1 dldy n>1
d|n ged(n,d1)=6
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and

S0 Y an=Y"60Y an.

d|dy n>1 dld1 n>1
ged(n,d1)=48 dln

THEOREM 3.4. Ford > 1, set

Pt =T[(1-3) wt Qua=T[(1-2+ L)

pld pldi

(empty products are 1). For dy and dy coprime square-free positive integers,
ke{l,2},a>0, X >0, and a > 1, set

1-—s as
(500, d2) = { Pl + QL) Pl ),

a
Gi(s,a,dy,da, X) := Ik (s, a, dl,dg)Xsilz@(S)

(s — 1)k

and
1

(28) Ix(a,di, dy, X) i= o— | Gils,a,di,dp, X)ds.
T
R(s)=a

Then, for any primitive and even Dirichlet character x of conductor f > 1

for which ged(dy, f) =1 and da | f, we have
|A(17X7d1)|/\/} < Il(aa dl’d27 \/f)7

A (1 x )|V < Ia(1,dy, do, V).
Proof. Let the notation be as in Lemma and .
First, by the positivity of F;(X, ¢, 1) (Lemmal3.2)), the absolute value of

the first integral in and
1 A(s, x,d1)ar* P
I = e S wds — Z x(n)aFy( an f’l’l

R(s)=c n>1
ged(n,didz)=1

(29)

(where we have used x(n) = 0 for ged(n,d2) > 1) is less than or equal to

1 1-s .
Z aFy, <an\/§,1,1> =5 S ) (Sa_ 1)kf /2P(s,d1d2)ZQ(s) ds.

ged(n,dida)=1

Second, let us deal with the second integral in and :

I = % S AL - 8;13(’ di)a’ ds.
(s)=a
We have
(1= X20) = S04 = X S oo
pld1 d|d1 d|d1
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by making the change of variables § +— d;/J. Using , we obtain

A(L = 5, X, d1) = Wyp(dy)x(d)d] " A(s, %) D p(8)x(8)6" .
Slds

By the first assertion in Lemma E for R(s) > 1 we have

L(s,%) Y u(6)x(8)6 5 =D " u(8)6 > x(n)

(5‘d1 (5|d1 n>1
dln
=D u®e6) Y, x(mn .
dldy n>1
ged(n,d1)=6

By the second assertion in Lemma [3.3] the absolute value of

n= DO S 600) S xwn (4 F01)

d|dq n>1
ged(n,d1)=4

is less than or equal to
n [w
Fi| —4/=,0,1
20 Y A(gF01)
5|d1 n>1

ged(n,dy ) =6
*qu S 7 <5”\/7 0 1>
n>1 Nadi V£

ged(n,d2)=1
J\d =
ged(n,d2)=1

1 S
- — Z—ka/QQ(s,dl)P(s,dg)Z@(s) ds,
R(s)=a

where we have used x(n) = 0 for ged(n,d2) > 1 and the positivity of

Fi,(X,0,1) (Lemma[3.2).
Third, the bounds in with Ix(a,d;,d2, X) as in follow. m

LEMMA 3.5. Let a > 1 and let the notation be as in Theorem [3.4. Then
(30) Ix(a,di,d, X) = pi(s,a,di, d2, X) + Ry(a, di, da, X),
where
pk(s,a,dy,da, X) = Ress=1(Gk(s,a,di,d2, X)) + Ress—o(Gx(s, a,di,ds, X))
and
(31)
Ri(a, dy, do, X) := zi [ 11— 50,1, do) X = Zg(s) ds = O(X ).

iy
R(s)=c
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Since

Res,—o(Gr(s,a,dy,da, X)) = O((log" X)/X) as X — +oo,
we have
(32)  Ii(a,dy,dy, X) = Rese—1(Gr(s,a,dy, dz, X)) + O((log* X)/X).

Proof. Moving the line R(s) = a>11in to the left to R(s) = 1—a<0
we pick up residues at s = 1 and s = 0 and using Zg(1 — s) = Zg(s), we
obtain

1
Ri(a,dy,dy, X) := | Gr(s,a,di,dp, X) ds

T omi
R(s)=1—«
_ 1 Gr(1 = s,a,dy,dy, X)d
= o k S, a, ay, az, S
R(s)=a
1
= I (1 — X757
271 R(s)= k’( S>a7d17d2) Q(S) dS,

and follows. m
LEMMA 3.6. Let w(d) == >,

divisors of d. Set (where empty products are 1 and empty sums are 0)
1 lo log?
P(d) ;:H<1—>, Si(d) =Y B gy =y LB
p p—1 (p—1)
pld pld pld
Let nug be as in . Set

41 denote the number of distinct prime

2

/ m 2
Ho = — — —2v(1) = 1.04615. ..

where

C(5) = — +7 =215 = 1)+ O((s — 1),

Let the notation be as in Theorem B4l Then
(33) Resszl(Gl(s,a,dl,dg,X))

= P(dydy) x {log X + g — 1 —loga + 2°Wqa + S (d1da)},
which is minimal for a = 1/2+(@),

P(dyds)

(34) Resszl(G2(8717d17d27X)) =

x {(log X + pg — 1+ Si(drdp))* + piy + 2 — Sy (dyda) },
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Ress—o(G1(s,a,dy,d2, X))

log X —ug +1+loga—a if do=dy =1,
_ P(d1) " log X —pg+1+loga+ Si(di) if do=1 and dy > 1,
X log do if do is prime,
0 otherwise;
and
P(dy)

ReSSZO(G2(57a7d17d27X)) == 2X

(log X — pg + 1 +loga)? + pg + 2a if do=dy =1,
2)1

(log X — pg + 1 +loga + S1(d1))* + pg + Z p(p)lo)%p

pld1
% if do=1and dy > 1,
(log d)(2log X — 2ug + 2 + 2loga + 251 (d1) — log da)

if do is prime,
2(logp)(logq) if d2 = pq,
0 otherwise.
In particular, by B1)), for k € {1,2} we have Ress—o(Gk(s,a,d1,d2, X)) +

Ri(a,dy,d2, X) < 0 and Ix(a,di,d2, X) < Ress=1(G(s,a,di,da, X)) for
w(dy) <k and X large enough.

3.1. Proof of Theorem -. For the first bound, use . . ,

. for a = 1/2¥(41) and the last assertion of Lemma For the second
bound, using 1 - . . for a = 1/2"J(d1 and 1.' we obtain
{H <1 . 1> } (g + gy 2B AL XL, di) + A'(1, X1, di )
“) by =
p Vi
pldi

< A x Il<2_w(d1)adlad27 V fX) + IQ(lvdlad27 V d]L)
= A x Rese—1(G1(5,27“M) dy, dy, \/dL)) + Ress—1(Ga(s, 1, dy, da, \/dL))

log? d]L>
" o(
Vi
1

_ 8{1)%1]@ (1 - ;) }{(log di + 2ca(dy, d))? + des(dy, d)} + O<IO§Z€L),

where A = uQ + Zp\dl p+1 , B= HQ + log gw(di) + Sl(dldg) C = HQ — 1+
Sl(dldg), D= ,u +2w(d1)+1 Sg(dldg), Cg(dl, dg) =A+C and Cg(dl,dg) =
D + A(2B — 2C — A). The error terms O(M) are negative for dy, large

NG
enough, by the last assertion of Lemma
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4. Proof of Corollary

REMARK 4.1. Take ¢ € {0,1}, k € {1,2} and X > 0. Taking o = 2 in
and using |¢(2 + it)| < ¢(2) = 7%/6, we have

1 s ds My(c)
= — <
0<ZuX. =50 | X7Zo(s) (s —oF = 12x2°
R(s)=a
where
I'(s/2) mt/2 dt
M, = = .
k() %(S) (5= c)k t _SOO sinh(mt/2) ((2 — ¢)? + t2)k/2
Moreover, M;(0) = 1.88826..., M;(1) = 2.94137..., M(0) = 0.77941 .

and M(1) =2.10564 . ... Moreover, X — Zi(X, c) is decreasmg and Zg(X, O)
< Z(X,1), by Lemma .

THEOREM 4.2. Let x be a primitive even Dirichlet character of conductor
f>1. Then

(35) \L(l x)| < l10gf + po-

Proof. We apply (|24 , , 1 , and Lemma with a = di =
do = 1 and II1(s,1,1,1) = We obtain |L(1, X)‘ < I(\/f), where

I(X) =p(X)+ R(X )Wlth
p(X) = (log X + pug) — (log X — pg) /X,

1 11 .
R(X)——zm,ms)_ <S+3_1>X Zg(s)ds

= —Z1(X,0) - Z1(X,1) <0.

Since x is a primitive even Dirichlet character of conductor f > 1, we have

X =VF>V52exp(ug). =

THEOREM 4.3. Let p > 2 be a prime. Let x be a pm’mz’tive even Dirichlet

character of conductor f divisible by p. Assume that f > ( ) , which is
the case for 2 < p < 139. Then

1 1 logp
(36) IL(1, ) < |1-= log f+pe+ =7
P 2 -1
Proof. We apply (124] . . - and Lemma witha =d; =1,

dy =pand I (s,1,1,p) = (1 — -5 ) (& 1—1— . We obtaln IL(1,x)| < I(Vf),
where I(X) = p(X) + R(X )Wlth

1 logp log p
X)=(1—-=)(logX —
p(X) < p)(og thot o 1) i

12 logp
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R(X) = 2% §R(S'X):a(zos‘1 -1) C + - i 1>X_5Z@(s) ds
p
Z(X[p.0)+ Z(X/p,1) _ 5p
- P - 12X2%°

by Remark .

THEOREM 4.4. Let p > 2 be a given prime. Let x be a primitive even
Dirichlet character of conductor f > 5 not divisible by p. Assume that either
2<p<6lorf> (610gp) . Then

p— 1gp>
37 L(1, < |—F log f + nug +log2 + ——
37 1) i ( & f +pg +log2 + P

Proof. We apply , , , ) and Lemma with a = 1/2,

diy = p and dy = 1. We obtain

(- X(p))L(LX)' < I/7),

b

where I(X) = p(X) + R(X) with
log7r'y logp
1 log p log X + +5
X)=(1-= log X log 2
p(X) < 5 {<0g + po +1log2 + _1> X ;
1 28 251 2 1

X)=—— s 1) — 1— =4 =) X *Zy(s)d

) 270 )= { P ) S—1< p+ps>} als)ds

1 -2
= 21(2X/p,0) = Z1(2X,0) - pzp Z1(X/2,1) — 1 Z1(pX /2, 1)

p
24X72’

< 1zl<2X/zo, 0) <

by Remark 1] Hence,

1 log m—~ logp
(-

p e
p—12/F(1 - )(logf+log7r—7+21°gp)
B 24 f
< b= 11\/7(102g4j;+ logm —7) £p> 13,

The first bound is negative for f > 5 and 2 < p < 61. The second bound is
negative for v/flog(re™7f) > p/11, hence for f > (61pgp)2 and p > 67. =




Upper bounds on L(1,x) and Ress=1(Cx(s)) 19
5. Proof of Corollary
5.1. Proof of the first and second bounds in Corollary First

assume that dy = 1. Then A(s, x,d1) = A(s, x). Lemma [3.1] with a = 1 and
d; =1 gives

1 1 1
A(LX]L) = 277” S A(S7XIL){S_1 + S} ds (Oé > ].),
R(s)=a
1 1

R(s)=a

By Lemma [3.2] for X > 0 we have

1 iy 11,
5 | X F(s/2){_+S}ds_Fl(X,l,l)—i—Fl(X,O,l)>0,
R(s)=a
= | xr(s/2) 1 ds = Fp(X,1,1) — F5(X,0,1) >0
27?2'%()_ § (s—=1)2 s S S '

Hence, by , we have v, < I(dz,+/dL), where

I(d2, X) == S G(s,d2, X)ds
R(s)=a
= Resszl(G(s, dg, )) + RGSSZQ(G(S, dQ,X)) + R(dg, X)

with
1 1 1 11
doy, X) := 1—— - - XS—IZ
oo ) =TT (1) v et
pld2
P(d
Res=1(G(s,da, X)) = (22) % { (log X +2ug — 1+ 51(d2))* — s — Sa(da) },
(log X — 2ug + 1)* — ) if dy = 1,
1 1 2log X — 4 2-1 if do =
Ress—o(G(s,d2, X)) = == x (logp)(2log po+ ogp) 1 5
2X | 2(logp)(log q) if dy = pq,
0 otherwise,

where P(d), S1(d) and S2(d) are as in Lemma [3.6| and where

py =14 (1—pg)* — gy =1+ (1 —pg)* —7°/8 + %+ 2v(1) = 0.90818.....
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and (by taking a = 2)

1
R(dy, X) = o— | G(s,dp, X)ds
R(s)=1—«

=L | Gl—sda, X)ds = O(X72).

2
R(s)=c

Hence we get a neat asymptotic and effective bound which we will make
explicit in Theorems and

THEOREM 5.1. Let do > 1 be a square-free integer. Let I range over the
real quadratic fields of discriminants divisible by do. Then for dy, effectively
large enough we have

1 1 log p 2
<= 1—- logdy +4pug —2+2 .
VL_8{H< p>}x(0g LAY Zp—l)
pld2 plda
In particular, for dy = d2 = 1, we have G(1—s,1,X) = —=G(s,1,1/X)/X
and R(1,X) <0, as in the proof of Theorem [4.2| Hence, we obtain (compare
with Theorem [4.2)):

THEOREM 5.2 (First bound of Corollary . Let IL be a real quadratic
number field of discriminant d,. Then

v, = pr Rese=1(CL(s)) < § log” dy,
and vi, < (logdy, + 4ug — 2)?/8 for dy, > 145.

Take do = p a prime integer. Then

1 1 logp\®> , plog’p
I X)< ~(1-= log X + 2ug — 14+ 8P\ _
(P, )_2( p>x{<og e +p—1) o= p=1)?

logp

+2X

(2log X — 4ug + 2 — logp) + R(p, X),

1 B 1 1 1 1\ .
=— o - “)ix—z
ZQ(X/pv 1) +:U’Q(Z1(X/p71) +Zl(X/p7 0))

p
PO (1) + g (1) + M1 (0)) _
12X2 ~ 5X?’
by Remark Hence, we get

<
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THEOREM 5.3 (second bound of Corollary . Let p > 2 be a prime
integer. Let 1L be a real quadratic number field of discriminant dy,. Assume
that p divides dy,. Assume that dy, > 4p, which is the case for p = 2, or that
p > 337. Then

1 1 21lo
v, = up, Ress=1(¢L(s)) < 3 <1 — p> <10gdL +4ug — 2+ ; gf) )

For p = 2 we have 4ug — 2+ 2182 = 2(1 + v — log(2m)) = —0.52132. ...

Proof. Recall that we take X = /f > /p, since p divides f > 1. Con-
sider the function

o -3(-3) <

log p P
2log X — 4 2—1 g
Then |
2p
'(X) = —28P 9100 X — dpg — log p) — —L

is negative for X > ,/p. Finally, f(\/p) <0 for p > 337 and f(y/4p) < 0 for
p>2. =

5.2. Proof of the third and fourth bounds in Corollary

THEOREM 5.4. Let p > 2 be a prime integer. Let k, < 5.14084 be as
in below. Let 1L be a real quadratic number field of discriminant dy, >

p+21 2
(4%) . Assume that x(p) = —1. Then
log® 5=

1 p—1 4plo
v, = pr, Resg=1((L(s)) < 3 §+1 {<logdm+4u@ 2+ d gf) +4/<;p}.

If p = 2, this bound holds true for dy, > 5. Since 4ke = 19.52507. .. and
dpg — 2 + 4p1°gp = —0.059224 ..., we get the third and fourth bounds in

Corollary @

Proof. As in Section we apply . . and Lemma
withdy =p,a=1/2 and d2 = 1. We obtain 1 VL < I(\/dy where

I(X) = Ress=1(G(s,p, X)) + Resszg(G(s,p, X))+ R(p, ),
with

G(s,p, X) = { (u@ + lof_’i)nl(s, 1/2) + I (s, 1)}X5_1ZQ(3),

1-s s
a 1 a 2 1
[i(s,a) (s —1)* <1 Ps) sk <1 p p18>
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and
(38)  R(p,X)
1 log p -
_ IH(1—8,1/2) + ITs(1 — 5,1) $ X °Zo(s) ds.
T ) {<“@+p+1> AL )} ooy ds
R(s)=a
Now,
1 1 2plogp 2
Res,—1(G(s,p, X)) = 2(1_]0) X {<logX+2uQ—1+ 21 + Kp ¢,
where
1 1 1
39 [ + + )10%21)
(39) ? (p—l (p=1)2  (p+1)?
log(167m) — ~ "
—————1logp+6 — g + 2uglog 2
P gp Hg T 4HQ 108

satisfies £, < k7 = 5.14083 ... and ko = 4.88126.... (Notice that 2ug — 1 +
2p(logp)/(p?> —1) = A+ C = c2(p, 1) and K, = c3(p, 1), with the notation
of Section [3.1}) Moreover,

1 1 2p1 2
ResSO(G(s,p,X))——zX<1—p> X {<logX+1+ pp20—g1p) +/f;},

where

1 1 1
40 Ko = — — log?
(0) P <p—1 (p—1)2 (p+1)2> e r
24y —logm

p+1
satisfies /i; >k, =0.62924 . ... Noticing that

275 251 2 1
(- = ot =) - T (1224 ),

10gp+,u</@—2u@log2—,u(2@

1 1 2 1
L(l-sa)=—=1-p Nt —(1-=4 =
2( Saa) 82( p )+(S—1)k< p+p5>
and using (38) and Remarks we have

1 logp
R aX Sf +
e

>Z1(2X/p, 0) + Z2(X,0)

+ (1 - ;)ZZ(X, 1)+ Z2(pX, 1)

4 log3\ pM1(0)  Ma(0) (p—1)2My(1)
HO™ = ) agx? T 1ax2 12p2 X2
P M>(0) + My(1)
— 84X7? 12X2

IN
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and
log? X p+21
Ress=o(H (s, p, X)) + R(p, X) < == 5~ + 05
1 p+21
T 4x2 ( 21 >
p+21 Vu_ )2
is negative for X > 4@- Indeed, if v > 1 and X > log u (log‘/ﬂ)

then X > 1, as v/logv > e for v > 1, and since X X log? X increases
with X > 1, we have

4u 4u log( U1/41/4) 2
Xlog® X > log? =1 pq2losw ) 5
2 2
log” u log” u logu

as v/(2logv) >e/2 > 1 for v > 1.
Finally, for p = 2, we have

log2\ M;(0) = My(0) | M>(1) 3
2,X) < <
k(2 X) < <”‘@+ 3 )24)(2 12X2 " 48X2 ~ 20X?2

and Ress—o(H(s,2,X)) + R(2,X) < —
X=+d.>5 u

W(X log? X — 7) is negative for
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Abstract (will appear on the journal’s web site only)

Various bounds on the absolute values of L-functions of number fields
at s = 1 and on residues at s = 1 of Dedekind zeta functions of a number
field L are known. Also, better bounds depending on the splitting behavior
of given prime ideals of L of small norms are known. These bounds involve a
term v, in the series expansion at s = 1 of the Dedekind zeta function of L.
We explain why one should expect to have bounds on v, which also depend
on the splitting behavior in L of given prime integers. We explicitly do that
for L a real quadratic number field. We deduce very good upper bounds on
the residue at s = 1 of the Dedekind zeta function of a non-normal totally
real cubic number field K, bounds depending on the splitting behavior of the
prime p = 2 in K.
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