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Introduction. Various bounds on the absolute values of L-functions

of number fields at s = 1 and on residues at s = 1 of Dedekind zeta functions of a number field L are known. Also, better bounds depending on the splitting behavior of given prime ideals of L of small norms are known. These bounds involve a term ν L in the series expansion at s = 1 of the Dedekind zeta function of L. We explain why one should expect to have bounds on ν L which also depend on the splitting behavior in L of given prime integers. We explicitly do that for L a real quadratic number field. We deduce very good upper bounds on the residue at s = 1 of the Dedekind zeta function of a non-normal totally real cubic number field K, bounds depending on the splitting behavior of the prime p = 2 in K. We have almost reached in Theorem 1.7 an explicit bound

Res s=1 (ζ K (s)) ≤ Q 2 8 (log d L + c 2 )(log(d 2 K /d L ) + c 2 ) (1) ≤ Q 2 8 (log d K + (c 2 + c 2 )/2) 2
for the residue at s = 1 of the Dedekind zeta function of a non-normal totally real cubic number field K of discriminant of absolute value d K , where d L is the absolute value of the discriminant of the real quadratic subfield

L = Q( √ d K )
of the normal closure of K. Here, Q 2 ∈ {1, 1/2, 1/3, 1/4, 1/7} defined in (15) depends on the splitting behavior of the prime p = 2 in K and c 2 and c 2 would also depend explicitly on the splitting behavior of the prime p = 2 in K. Unfortunately, the sizes of the error terms in Theorem 1.1 and Proposition 2.1 prevent us from getting such a simple bound and we only get the bound

Res s=1 (ζ K (s)) ≤ Q 2 + o(1) 8 (log d L )(log(d 2 K /d L )) ≤ Q 2 + o(1) 8 (log d K ) 2
as d L tends to infinity and d K /d L ≥ log 2 d K . We hope somebody could deal nicely with these error terms or could find a completely different approach to get an explicit bound as close as possible to (1). Combined with the results obtained in [START_REF] Louboutin | Real zeros of Dedekind zeta functions[END_REF], this would have great consequences on the solution of the class number one problem for the non-normal sextic CM-fields (see [START_REF] Louboutin | Some explicit upper bounds for residues of zeta functions of number fields taking into account the behavior of the prime 2[END_REF] Remark 10]).

1.1. Notation. Let us set the notation we will be using throughout the paper.

Let K be a number field, of degree m = r 1 +2r 2 , absolute discriminant d K and Dedekind zeta function ζ K (s). Set

Z K (s) = d K 4 r 2 π m s/2 Γ r 1 (s/2)Γ r 2 (s)ζ K (s).
In particular, Z Q (s) = π -s/2 Γ (s/2)ζ(s). Then Z K (s) is a meromorphic function satisfying the functional equation Z K (1 -s) = Z K (s), with only two poles, at s = 0 and s = 1, both simple. We define (see [START_REF] Louboutin | Upper bounds on L(1, χ) and applications[END_REF](22)] for the positivity)

0 < λ K := Res s=1 (Z K (s)) = √ d K (2π) r 2 Res s=1 (ζ K (s)), 0 < µ K := lim s→1 1 λ K Z K (s) - 1 s(s -1) , 0 < ν K := µ K Res s=1 (ζ K (s)).
In particular, λ Q = 1 and

(2) obtaining explicit bounds on µ K is not easy. In fact, recalling that the Euler-Kronecker constant γ K of K is defined by

µ Q = (2 + γ -log( 4π 
ζ K (s) = Res s=1 (ζ K (s)) 1 s -1 + γ K + O(s -1) ,
we have

µ K = γ K + 1 + 1 2 (log d K -m(γ + log(4π
)) + r 2 log 4) and only conditional upper bounds (under the assumption of the Generalized Riemann Hypothesis) for γ K are known:

γ K log log d K ,
where the implied constants are absolute (see [IM, Theorem 3 and Corollary 3.3.2]).

1.2. Bounds on L(1, χ). In [START_REF] Louboutin | Majorations explicites de |L(1, χ)[END_REF] (see also [START_REF] Ramaré | Approximate formulae for L(1, χ)[END_REF], [Edd] and [PE]), we obtained the explicit bound (4)

|L(1, χ)| ≤ 1 2 log f χ + µ Q for the value at s = 1 of the L-function associated with a primitive and even Dirichlet character χ, of conductor f χ > 1 (see also [GS] and [Pin] for better non-explicit bounds).

This was considerably generalized in [Lou04, Theorem 1] and [Ram04, Corollary 1], leading to better explicit bounds taking into account the behavior of χ at given prime integers (see also [Toy] for better non-explicit bounds). Our present approach based on Lemma 3.1 will give a simpler proof of these latter bounds (see the first item of Theorem 1.3).

In [Lou00, Theorem 7], we generalized (4) to the case of L-functions associated with primitive characters on ray class groups of a given number field L. Focussing on characters unramified at all the infinite places of L, we obtained

|L(1, χ)| ≤ Res s=1 (ζ L (s)) × 1 2 log f χ + µ L + o(1) (5) = 1 2 Res s=1 (ζ L (s)) log f χ + ν L + o(1)
, where f χ = N (F χ ) is the norm of the finite part F χ of the conductor of χ. It took us some time to generalize (5), i.e. to obtain better bounds taking into account the behavior of χ at given prime ideals of L. In 2018, we eventually obtained a generalization of [Lou04, Theorem 1] and [Ram04, Corollary 1] (see Proposition 2.1 below for the size of the present error terms):

Theorem 1.1 (see [START_REF] Louboutin | Upper bounds on L(1, χ) taking into account a finite set of prime ideals[END_REF]Theorem 2]). Let P be a given finite set of prime ideals of a given number field L of degree m. Let N (P) = N L/Q (P) be the norm of P ∈ P . Let χ range over the non-trivial and primitive characters on ray class groups for L which are unramified at all the infinite real places of L. Set P 1 (χ) = {P ∈ P ; P F χ }. Then

|L(1, χ)| ≤ B P (χ) × Res s=1 (ζ L (s)) × 1 2 log f χ + µ L + S P (χ) + O (log(ed L )) m-1 (log(ed L f χ )) f χ ,
where the implied constant depends only on m and the norms of the prime ideals in P and where

0 ≤ B P (χ) = P∈P N (P) -1 N (P) -χ(P) ≤ 1, and 
0 ≤ S P (χ) = log 2 |P 1 (χ)| + P∈P log N (P) N (P) -1 .
Hence, by (3), whenever f χ ≥ (log(ed L )) 2 we have

(6) |L(1, χ)| ≤ B P (χ) × 1 2 Res s=1 (ζ L (s)) log f χ + ν L + O(log m-1 (ed L )
). 1.3. Main results: bounds on ν L for real quadratic number fields and on Res s=1 (ζ K (s)) for non-normal totally real cubic number fields. Let K be a non-normal totally real cubic number field. The best explicit known bound is [START_REF] Louboutin | Upper bounds for residues of Dedekind zeta functions and class numbers of cubic and quartic number fields[END_REF], where it is said to hold true for d K ≥ 146, but according to [START_REF] Cohen | A Course in Computational Algebraic Number Theory[END_REF]Appendix B4] there are only two totally real cubic number fields of discriminant less than 146, both of them being abelian). In [Lou08, Theorem 8] we obtained a better bound depending on the behavior of the prime 2 in K:

(7) Res s=1 (ζ K (s)) ≤ 1 8 (log d K + λ 3 ) 2 , where λ 3 := 2 + 2γ -2 log(4π) = -1.90761 . . . (see
(8) Res s=1 (ζ K (s)) ≤ Q 2 8 (log d K + 5) 2 ,
where Q 2 ∈ {1, 1/2, 1/3, 1/4, 1/7} defined in (15) below depends explicitly on the splitting behavior of the prime p = 2 in K. In Theorem 1.7, we will obtain still better bounds. Let N be the normal closure of K. Hence N is a totally real sextic field with Galois group isomorphic to the symmetric group of order 6. Let L be the unique (real) quadratic subfield of N. The cubic extension N/L is cyclic. Let χ N/L denote any of the two complex conjugate cubic characters associated with

N/L. Let f N/L = N L/Q (F N/L ) be the norm of the conductor F N/L of χ N/L . We have (9) (ζ K (s)/ζ(s)) 2 = ζ N (s)/ζ L (s) = L(s, χ N/L )L(s, χN/L ), which gives d 2 K = d N /d L = d 2 L f 2 N/L , i.e. (10) f N/L = d K /d L and Res s=1 (ζ K (s)) = |L(1, χ N/L )|.
Now, let L be a real quadratic number field, hence associated with a primitive even Dirichlet character χ L of conductor d L . By (4), we have

(11) Res s=1 (ζ L (s)) = L(1, χ L ) ≤ 1 2 log d L + µ Q .
While we have no explicit upper bounds on µ L in (5), we do have one on [START_REF] Louboutin | Majorations explicites du résidu au point 1 des fonctions zêta de certains corps de nombres[END_REF]Proposition 6] or [Lou01, Theorem 2], a better bound than the one in (3) for m = 2.

(12) ν L := µ L Res s=1 (ζ L (s)) ≤ 1 8 log 2 d L , by
Remark 1.2. Let L be a real quadratic number field of discriminant d L . Then

ν L = L(1, χ L ) µ Q + Λ (1, χ L ) Λ(1, χ L ) = L(1, χ L ) 1 2 log d L + 1 -log(4π) + L (1, χ L ), by (25) 
. Starting from this formula it would be difficult to end up with the factor 1/8 in (12), as by (11) it would be difficult to have anything better than a factor 1/4. Using (10), (5), (11), and (12) we obtain a bound on Res s=1 (ζ K (s)) which is better than the one in (7

) if d K ≥ d 2 L [Lou18, p. 255].
In this paper we improve upon (12) by taking into account the behavior of small prime integers in L: see ( 14) and Corollary 1.5. Then, using (10), (5), (13) for χ = χ L , and (14) we obtain a bound on Res s=1 (ζ K (s)) which is better than the one in (8

) if d K ≥ d L log 2 d L -see Theorem 1.7.
In other words, the aim of this paper is to prove Theorem 1.3 below. Not only does our present approach based on Lemma 3.1 give a simpler proof of (13) than the ones in [START_REF] Louboutin | Explicit upper bounds for |L(1, χ)| for primitive characters χ[END_REF] and [START_REF] Ramaré | Approximate formulae for L(1, χ). II[END_REF]; it also enables us to get (13) and (14) in one stroke.

Theorem 1.3. Let d 1 , d 2 ≥ 1 be coprime square-free positive integers.

(i) Let χ range over the primitive and even Dirichlet characters of conductor

f χ > 1 for which gcd(d 1 , f χ ) = 1 and d 2 | f χ . Setting c 1 (d 1 , d 2 ) = µ Q + ω(d 1 ) log 2 + p|d 1 d 2 log p
p-1 , we have an effective bound with a negative error term for ω(d 2 ) ≤ 1 and f χ large enough:

(13) |L(1, χ)| ≤ 1 2 p|d 1 d 2 p -1 p -χ(p) × {log f χ + 2c 1 (d 1 , d 2 )} + O log f χ f χ .
(ii) Let L range over the real quadratic fields for which

p | d 1 ⇒ χ L (p) = -1 and p | d 2 ⇒ χ L (p) = 0. For c 2 (d 1 , d 2 ) = 2µ Q -1 + p|d 1 2p log p p 2 -1 + p|d 2 log p
p-1 and c 3 (d 1 , d 2 ) some explicit constant depending only on d 1 and d 2 given in Section 3.1, we have an effective bound with a negative error term for ω(d 2 ) ≤ 2 and d L large enough:

(14) ν L ≤ 1 8 p|d 1 d 2 p -1 p -χ L (p) × {(log d L + 2c 2 (d 1 , d 2 )) 2 + 4c 3 (d 1 , d 2 )} + O log 2 d L √ d L .
From the effectiveness of these bounds we obtain Corollary 1.4 (compare with (4)). For any real quadratic field L we have

Res s=1 (ζ L (s)) ≤      (log d L + 2 + γ -log(4π))/2 in all cases, (log d L + 2 + γ -log π)/4 if 2 is ramified in L, (log d L + 2 + γ -log(π/4))/6 if 2 is inert in L.
Corollary 1.5 (compare with (12)). Set κ = 4µ Q -2 + (8 log 2)/3 = -0.05922 . . . and κ = 4κ 2 = 19.52508 as defined in (39). For any real quadratic field L we have

ν L ≤          (log d L ) 2 /8 in all cases, (log d L ) 2 /16 if 2 is ramified in L, ((log d L + κ) 2 + κ )/24 if 2 is inert in L, (log d L ) 2 /24 if 2 is inert in L and d L ≥ 5 • 10 71 .
Remark 1.6. Numerical computations of ν L based on [Lou98b, Section 4.2] suggest that the fourth bound (which follows from the third one) holds true whenever 2 is inert in L and d L ≥ 5. Indeed, with a 24h30mn long high precision computation on a 3GHz PC using UBASIC, we checked that max{24ν L /log 2 d L ; d L ≡ 5 (mod 8) and d L ≤ 10 5 } = 0.9055 . . . for d L = 62269. Notice that χ L (p) = 1 for p ∈ {3, 5, 7, 11, 13, 17, 19, 23, 29} and d L = 62269.

Let p ≥ 2 be a given prime. Take P equal to the set of prime ideals of L dividing p. To simplify the presentation, we assume that d L goes to infinity and that f N/L = d K /d L log 2 d L , to be allowed to use (6). By (10), ( 6) and Theorem 1.3, we have

Res s=1 (ζ K (s)) ≤ B P (χ N/L ) × 1 2 Res s=1 (ζ L (s)) log(d K /d L ) + ν L + O(log d L ) with Res s=1 (ζ L (s)) ≤ B {p} (χ L ) × 1 + o(1) 2 log d L and ν L ≤ B {p} (χ L ) × 1 + o(1) 8 log 2 d L .
Hence,

Res s=1 (ζ K (s)) ≤ Q p + o(1) 8 (log d L )(log(d 2 K /d L )) + O(log d L ),
where

Q p := B {p} (χ L ) × B {P; P|(p) in L} (χ N/L ).
From (9) and the uniqueness of the Euler product of Dirichlet series, we have

1 - 1 p s P|(p) in K 1 - 1 N K/Q (P) s -1 2 = P|(p) in L 1 - χ N/L (P) N L/Q (P) -1 1 - χN/L (P) N L/Q (P) -1
.

Hence,

Q p = 1 -1 p 3 P|(p) in K 1 - 1 N K/Q (P) (15) =                  1 if (p) = P 1 P 2 P 3 splits in K, p-1 p if (p) = P 1 P 2 2 is partially ramified in K, p-1 p+1 if (p) = P 1 P 2 in K, (p-1) 2 p 2 if (p) = P 3 is totally ramified in K, (p-1) 2 p 2 +p+1 if (p) = P is inert in K.
Putting everything together and using XY ≤ ((X + Y )/2) 2 for X, Y ≥ 0, we obtain Theorem 1.7 (compare with (7) and [Lou08, Theorem 8]). Let p ≥ 2 be a given prime integer. Let L be the real quadratic subfield of the normal closure N of a non-normal totally real cubic number field K. Let Q p be as in (15). Then

Res s=1 (ζ K (s)) ≤ Q p + o(1) 8 (log d L )(log(d 2 K /d L )) ≤ Q p + o(1) 8 log 2 d K ,
where the effective error terms tend to 0 as d L → ∞, and

d K /d L ≥ log 2 d L .
2. Proof of the size of the error term in Theorem 1.1

Proposition 2.1 (see [Lou18, Proposition 9]). Let L be a totally real number field of degree m. Let P 1 and P 2 be two disjoint finite sets of prime ideals of L. For a > 0 and X > 0, set

Π L (s) = a 1-s s -1 P∈P 1 1 - 1 N (P) s + a s s P∈P 1 1 - 2 N (P) + 1 N (P) 1-s × P∈P 2 1 - 1 N (P) s and F L (s, X) = Π L (s)X s-1 Z L (s)/ d L ,
a meromorphic functions with at most two poles, a double one at s = 1 and an at most double one at s = 0. Define

I L (X) := 1 2πi (s)=α F L (s, X) ds (16) = Res s=1 (F L (s, X)) + Res s=0 (F L (s, X)) + R L (X)
(which does not depend on α > 1), where

R L (X) := 1 2πi (s)=1-α F L (s, X) ds = 1 2πi (s)=α F L (1 -s, X) ds (17) = 1 2πi (s)=α Π L (1 -s)Z L (s) X s √ d L ds = O log m (ed L ) X .
Let χ be a non-trivial, primitive and character on a ray class group for L, unramified at all the infinite places of K. Assume that P ∈ P 1 implies P F χ and P ∈ P 2 implies P | F χ . Then

(18) P∈P 1 - χ(P) N (P) L(1, χ) ≤ I L ( f χ ) = Res s=1 (F L (s, X)) + O log m (ed L ) X .
The implied constants in (17)-( 18) depend only on a, m and the norms of the prime ideals in P .

Proof. Only the sizes of the error terms in (17) and (18) require proof.

For 1 < σ = (s) = 1 + ≤ 4 we have |ζ L (s)| ≤ ζ L (σ) ≤ ζ(σ) m , ζ(σ) = 1 σ -1 + n≥1 1 n σ - n+1 n dx x σ ≤ 1 σ -1 + n≥1 1 n σ - 1 (n + 1) σ = 1 σ -1 + 1 = σ σ -1 ≤ 4 and |Z L (s)/(X s √ d L )| ≤ -m d /2 L |Γ (σ/2)| m (4/ √ π) m /X
. By [Lou00, Lemma 10], taking = 2m/log(ed L ) we have ≤ 3 and (17) follows.

The last assertion follows from ( 16), (17) and the formula (see [Lou18, Lemma 10])

Res s=0 (F L (s, X)) = - Res s=1 (ζ L (s)) X × P∈P 1 1 - 1 N (P) ×            log X -µ L + 1 + log a -a if P 2 = ∅ and P 1 = ∅, log X -µ L + 1 + log a + P∈P log N (P) N (P)-1 if P 2 = ∅ and P 1 = ∅, log N (P 0 ) if P 2 = {P 0 }, 0 otherwise. which yields Res s=0 (F L (s, X)) (log m-1 (ed L ))(log(ed L X))/X, by (3) 
. Theorem 1.1 follows from the last assertion and the fact that

Res s=1 (F L (s, X)) = P∈P 1 - 1 N (P) × Res s=1 (ζ L (s)) × log X + µ L -1 -log a + 2 |P 1 | a + P∈P log N (P) N (P) -1 is minimal for a = 1/2 |P 1 | .
3. Proof of Theorem 1.3. In this section we use Lemma 3.1 below to prove Theorem 1.3.

Notice that the present proof of (13) drastically shortens the one of [Lou04, Theorem 1] and that the use of Lemma 3.1 would also drastically shorten the proof of [Lou18, Theorem 2].

First, in (24) and (25) we give integral representations on the vertical line (s) = α > 1 of L(1, χ) and ν L , respectively. Second, in Lemma 3.2 we prove the positivity of some inverse Mellin transforms appearing in these integral representations. Third, in (29) we deduce bounds for |L(1, χ)| and ν L as inverse Mellin transforms of some G 1 (s) = Π 1 (s)Z Q (s) and G 2 (s) = Π 2 (s)Z Q (s) for some explicit factors Π 1 (s) and Π 2 (s) depending on both d 1 and d 2 . Fourth, in (32) we reduce the proof of Theorem 1.3 to the computation of Res s=1 (G 1 (s)) and Res s=1 (G 2 (s)). Finally, in (33) and (34) we compute these residues. By Stirling's formula, in any given vertical strip we have

(19) Γ (σ + it) = O(e -π|t|/2 |t| σ-1/2 ) for α 1 ≤ σ ≤ α 2 and |t| ≥ 1.
Let χ be a primitive and even Dirichlet character of conductor f > 1. Then

Λ(s, χ) = (π/f ) -s/2 Γ (s/2)L(s, χ)
is an entire function of order one satisfying (20)

Λ(σ + it, χ) = O(e -π|t|/4 |t| M ) for α 1 ≤ σ ≤ α 2 and |t| ≥ 1,
for some M = M (α 1 , α 2 ) (e.g. see [START_REF] Davenport | Multiplicative Number Theory[END_REF]Chapter 12] and [Lou01, Sec-tion 4.1]). Recall also the functional equation

(21) Λ(1 -s, χ) = W χ Λ(s, χ)
for some complex root number W χ of absolute value equal to one (see e.g. [START_REF] Davenport | Multiplicative Number Theory[END_REF]Chapter 9]). The bounds ( 19) and ( 20) show that all the integrals on vertical lines of the complex plane below are absolutely convergent and that we are allowed to move these lines to the left, provided that we take into account the residues at the poles encountered.

Lemma 3.1. Let d 1 ≥ 1 be a square-free integer. Set

P (s, χ, d 1 ) = p|d 1 1 - χ(p) p s .
Let χ be a primitive and even Dirichlet character of conductor f > 1. Assume that gcd(d

1 , f ) = 1. Set L(s, χ, d 1 ) := n≥1 gcd(n,d 1 )=1 χ(n) n s = P (s, χ, d 1 )L(s, χ)
(the L-function associated with the character modulo d 1 f induced by χ) and Λ(s, χ, d 1 ) = (π/f ) -s/2 Γ (s/2)L(s, χ, d 1 ) = P (s, χ, d 1 )Λ(s, χ).

For a > 0 and α > 1, we have

Λ(1, χ, d 1 ) = 1 2πi (s)=α Λ(s, χ, d 1 )a 1-s s -1 + Λ(1 -s, χ, d 1 )a s s ds, (22) 
Λ (1, χ, d 1 ) = 1 2πi (s)=α Λ(s, χ, d 1 ) (s -1) 2 - Λ(1 -s, χ, d 1 ) s 2 ds, (23) 
where these integrals are absolutely convergent and do not depend on α, by (20). Moreover,

(24) p|d 1 1 - χ(p) p L(1, χ) = Λ(1, χ, d 1 )/ f
and for a real quadratic number field L we have

(25) p|d 1 1 - χ L (p) p ν L = µ Q -p|d 1 χ L (p) log p p-χ L (p) Λ(1, χ L , d 1 ) + Λ (1, χ L , d 1 ) √ d L ,
where χ L is the real primitive quadratic Dirichlet character of conductor d L associated with L.

Proof. Set

G(s) = Λ(s, χ, d 1 )a 1-s s -1 + Λ(1 -s, χ, d 1 )a s s .
The bound (20) allows us to move the vertical line of integration (s) = α > 1 to the left to (s) = 1 -α < 0. Noticing that we pick up residues at s = 1 and s = 0, both simple and of residue Λ(1, d 1 , χ), we obtain

1 2πi (s)=α G(s) ds = Res s=1 (G(s)) + Res s=0 (G(s)) + 1 2πi (s)=1-α G(s) ds = 2Λ(1, d 1 , χ) + 1 2πi (s)=α G(1 -s) ds = 2Λ(1, d 1 , χ) - 1 2πi (s)=α G(s) ds,
by making the change of variables s → 1-s to come back to the line (s) = α and then using G(1 -s) = -G(s). Identity (22) follows. In the same way, we have

Λ (1, χ, d 1 ) -(log a)Λ(1, χ, d 1 ) = 1 2πi (s)=α Λ(s, χ, d 1 )a 1-s (s -1) 2 - Λ(1 -s, χ, d 1 )a s s 2 ds,
which for a = 1 gives (23). Now, let L be a real quadratic number field . Then

W L = 1, Λ(1 -s, χ L ) = Λ(s, χ L ), (26) Λ(s, χ L ) = Z L (s)/Z Q (s) = λ L λ Q (1 + (µ L -µ Q )(s -1) + O((s -1) 2 )), and 
Λ(s, d 1 , χ L ) = P (s, χ, d 1 )Λ(s, χ L ) = λ L λ Q P (1, χ, d 1 ) 1 + µ L -µ Q + P (1, χ, d 1 ) P (1, χ, d 1 ) (s -1) + O((s -1) 2 ) .
Then (25) follows by using λ Q = 1 and ν L = λ L µ L / √ d L , for any totally real number field L. Lemma 3.2. For X > 0, c real, m ≥ 1 an integer and k ∈ {1, 2}, set

(27) F k (X, c, m) := 1 2πi (s)=α X -s Γ m (s/2) ds (s -c) k (α > max(0, c)),
an absolutely convergent integral not depending on α, by (19). Then

F k (X, c, m) > 0, ∂F 1 ∂c (X, c, m) = F 2 (X, c, m) > 0, ∂F 2 ∂c (X, c) > 0 and X → F k (X, c, m) is decreasing. Proof. Clearly, (t 1 , . . . , t m , t) → e -(t 1 +•••+tm) (t 1 • • • t m ) (α+it)/2-1 X -(α+it) (α -c + it) 2 is in L 1 (R m + × R, C
) for α > 0 and α = c. Now, for α > c we have

1 2πi (s)=α u s (s -c) 2 ds = 0 if u < 1, u c log u if u > 1.
(move the line of integration (s) = α of this absolutely convergent integral to the right to infinity for 0 < u < 1 and to the left to infinity for u > 1, in which case you pick up a residue at the pole s = c). Therefore, by Fubini's theorem, we have

F 2 (X, c, m) = J m (X, c) > 0,
where

J m (X, c) := • • • t 1 ,...,tm>0 t 1 •••tm>X 2 e -(t 1 +•••+tm) √ t 1 • • • t m X c log √ t 1 • • • t m X dt 1 • • • dt m t 1 • • • t m = 1 2 • • • t 1 ,...,tm>0 t 1 •••tm>1 e -X 2/m (t 1 +•••+tm) (t 1 • • • t m ) c/2 log(t 1 • • • t m ) dt 1 • • • dt m t 1 • • • t m .
Finally, fix X > 0 and α > 0. Let c range in (-∞, α). Clearly,

c → I m (X, c) := • • • t 1 ,...,tm>0 t 1 •••tm>1 e -X 2/m (t 1 +•••+tm) (t 1 • • • t m ) c/2 dt 1 • • • dt m t 1 • • • t m is differentiable on (-∞, α), with derivative c → J m (X, c) = F 2 (X, c, m). Us- ing Stirling's formula (19), it is clear that c → F 1 (X, c, m) is differentiable on (-∞, α), with derivative c → F 2 (X, c, m). Hence, c → I m (X, c)-F 1 (X, c, m) is constant on (-∞, α). Since lim c→-∞ I m (X, c) = lim c→-∞ F 1 (X, c, m) = 0, by 
Lebesgue's dominated convergence theorem we obtain

F 1 (X, c, m) = I m (X, c) > 0.
Finally, these two integral representations of F 1 (X, c, m) and F 2 (X, c, m) show that they are decreasing functions of X > 0.

Lemma 3.3 (see [Lou18, Lemma 7]). Set φ(δ) = p|δ (p -1) and φ(δ) = p|δ (p -2) for δ ≥ 1 a square-free integer (by convention, empty products are 1). Let n≥1 a n be absolutely convergent. Then for d 1 ≥ 1 we have

δ|d 1 µ(δ)δ n≥1 δ|n a n = δ|d 1 µ(δ)φ(δ) n≥1 gcd(n,d 1 )=δ a n and δ|d 1 φ(δ) n≥1 gcd(n,d 1 )=δ a n = δ|d 1 φ(δ) n≥1 δ|n a n . Theorem 3.4. For d ≥ 1, set P (s, d) := p|d 1 - 1 p s and Q(s, d) := p|d 1 1 - 2 p + 1 p 1-s
(empty products are 1). For d 1 and d 2 coprime square-free positive integers, k ∈ {1, 2}, a > 0, X > 0, and α > 1, set

Π k (s, a, d 1 , d 2 ) := a 1-s (s -1) k P (s, d 1 ) + a s s k Q(s, d 1 ) P (s, d 2 ), G k (s, a, d 1 , d 2 , X) := Π k (s, a, d 1 , d 2 )X s-1 Z Q (s) and (28) I k (a, d 1 , d 2 , X) := 1 2πi (s)=α G k (s, a, d 1 , d 2 , X) ds.
Then, for any primitive and even Dirichlet character χ of conductor f > 1 for which gcd(d 1 , f ) = 1 and d 2 | f , we have

(29) |Λ(1, χ, d 1 )|/ f ≤ I 1 (a, d 1 , d 2 , f ), |Λ (1, χ, d 1 )|/ f ≤ I 2 (1, d 1 , d 2 , f ).
Proof. Let the notation be as in Lemma 3.1 and (27). First, by the positivity of F k (X, c, 1) (Lemma 3.2), the absolute value of the first integral in ( 22) and ( 23)

I 1 := 1 2πi (s)=α Λ(s, χ, d 1 )a 1-s (s -1) k ds = n≥1 gcd(n,d 1 d 2 )=1 χ(n)aF k an π f , 1, 1
(where we have used χ(n) = 0 for gcd(n, d 2 ) > 1) is less than or equal to

n≥1 gcd(n,d 1 d 2 )=1 aF k an π f , 1, 1 = 1 2πi (s)=α a 1-s (s -1) k f s/2 P (s, d 1 d 2 )Z Q (s) ds.
Second, let us deal with the second integral in ( 22) and (23):

I 2 := 1 2πi (s)=α Λ(1 -s, χ, d 1 )a s s k ds.
We have

p|d 1 1 - χ(p) p s = δ|d 1 µ(δ) χ(δ) δ s = µ(d 1 )χ(d 1 ) d s 1 δ|d 1 µ(δ) χ(δ)δ s ,
by making the change of variables δ → d 1 /δ. Using (21), we obtain

Λ(1 -s, χ, d 1 ) = W χ µ(d 1 )χ(d 1 )d s-1 1 Λ(s, χ) δ|d 1 µ(δ) χ(δ)δ 1-s .
By the first assertion in Lemma 3.3, for (s) > 1 we have

L(s, χ) δ|d 1 µ(δ) χ(δ)δ 1-s = δ|d 1 µ(δ)δ n≥1 δ|n χ(n)n -s = δ|d 1 µ(δ)φ(δ) n≥1 gcd(n,d 1 )=δ χ(n)n -s .
By the second assertion in Lemma 3.3 the absolute value of

I 2 = W χ µ(d 1 )χ(d 1 ) d 1 δ|d 1 µ(δ)φ(δ) n≥1 gcd(n,d 1 )=δ χ(n)F k n ad 1 π f , 0, 1
is less than or equal to

1 d 1 δ|d 1 φ(δ) n≥1 gcd(n,d 1 )=δ gcd(n,d 2 )=1 F k n ad 1 π f , 0, 1 = 1 d 1 δ|d 1 φ(δ) n≥1 gcd(n,d 2 )=1 F k δn ad 1 π f , 0, 1 = 1 2πi (s)=α a s s k f s/2 Q(s, d 1 )P (s, d 2 )Z Q (s) ds,
where we have used χ(n) = 0 for gcd(n, d 2 ) > 1 and the positivity of F k (X, 0, 1) (Lemma 3.2). Third, the bounds in (29) with I k (a, d 1 , d 2 , X) as in (28) follow.

Lemma 3.5. Let α > 1 and let the notation be as in Theorem 3.4. Then

(30) I k (a, d 1 , d 2 , X) = ρ k (s, a, d 1 , d 2 , X) + R k (a, d 1 , d 2 , X),
where

ρ k (s, a, d 1 , d 2 , X) = Res s=1 (G k (s, a, d 1 , d 2 , X)) + Res s=0 (G k (s, a, d 1 , d 2 , X))
and

(31) R k (a, d 1 , d 2 , X) := 1 2πi (s)=α Π k (1 -s, a, d 1 , d 2 )X -s Z Q (s) ds = O(X -α ). Since Res s=0 (G k (s, a, d 1 , d 2 , X)) = O((log k X)/X) as X → +∞,
we have

(32) I k (a, d 1 , d 2 , X) = Res s=1 (G k (s, a, d 1 , d 2 , X)) + O((log k X)/X).
Proof. Moving the line (s) = α > 1 in (28) to the left to (s) = 1-α < 0 we pick up residues at s = 1 and s = 0 and using

Z Q (1 -s) = Z Q (s), we obtain R k (a, d 1 , d 2 , X) := 1 2πi (s)=1-α G k (s, a, d 1 , d 2 , X) ds = 1 2πi (s)=α G k (1 -s, a, d 1 , d 2 , X) ds = 1 2πi (s)=α Π k (1 -s, a, d 1 , d 2 )X -s Z Q (s) ds, and (30) follows. 
Lemma 3.6. Let ω(d) := p|d 1 denote the number of distinct prime divisors of d. Set (where empty products are 1 and empty sums are 0)

P (d) := p|d 1 - 1 p , S 1 (d) := p|d log p p -1 , S 2 (d) := p|d p log 2 p (p -1) 2 .
Let µ Q be as in (2). Set

µ Q := π 2 8 -γ 2 -2γ(1) = 1.04615 . . . , where 
ζ(s) = 1 s -1 + γ -γ(1)(s -1) + O((s -1) 2 ).
Let the notation be as in Theorem 3.4. Then

(33) Res s=1 (G 1 (s, a, d 1 , d 2 , X)) = P (d 1 d 2 ) × {log X + µ Q -1 -log a + 2 ω(d 1 ) a + S 1 (d 1 d 2 )}, which is minimal for a = 1/2 ω(d 1 ) , (34) 
Res s=1 (G 2 (s, 1, d 1 , d 2 , X)) = P (d 1 d 2 ) 2 × log X + µ Q -1 + S 1 (d 1 d 2 ) 2 + µ Q + 2 ω(d 1 )+1 -S 2 (d 1 d 2 ) , Res s=0 (G 1 (s, a, d 1 , d 2 , X)) = - P (d 1 ) X ×          log X -µ Q + 1 + log a -a if d 2 = d 1 = 1, log X -µ Q + 1 + log a + S 1 (d 1 ) if d 2 = 1 and d 1 > 1, log d 2 if d 2 is prime, 0 otherwise;
and

Res s=0 (G 2 (s, a, d 1 , d 2 , X)) = - P (d 1 ) 2X ×                              (log X -µ Q + 1 + log a) 2 + µ Q + 2a if d 2 = d 1 = 1, (log X -µ Q + 1 + log a + S 1 (d 1 )) 2 + µ Q + p|d 1 (p -2) log 2 p (p -1) 2 if d 2 = 1 and d 1 > 1, (log d 2 )(2 log X -2µ Q + 2 + 2 log a + 2S 1 (d 1 ) -log d 2 ) if d 2 is prime, 2(log p)(log q) if d 2 = pq, 0 otherwise. 
In particular, by (31

), for k ∈ {1, 2} we have Res s=0 (G k (s, a, d 1 , d 2 , X)) + R k (a, d 1 , d 2 , X) ≤ 0 and I k (a, d 1 , d 2 , X) ≤ Res s=1 (G k (s, a, d 1 , d 2 , X)) for ω(d 2 )
≤ k and X large enough.

3.1. Proof of Theorem 1.3. For the first bound, use (24), (29), (32), (33) for a = 1/2 ω(d 1 ) , and the last assertion of Lemma 3.6. For the second bound, using (25), (29), (32), (33) for a = 1/2 ω(d 1 ) , and (34), we obtain

p|d 1 1 + 1 p ν L = µ Q + p|d 1 log p p+1 Λ(1, χ L , d 1 ) + Λ (1, χ L , d 1 ) √ d L ≤ A × I 1 (2 -ω(d 1 ) , d 1 , d 2 , f χ ) + I 2 (1, d 1 , d 2 , d L ) = A × Res s=1 (G 1 (s, 2 -ω(d 1 ) , d 1 , d 2 , d L )) + Res s=1 (G 2 (s, 1, d 1 , d 2 , d L )) + O log 2 d L √ d L = 1 8 p|d 1 d 2 1 - 1 p {(log d L + 2c 2 (d 1 , d 2 )) 2 + 4c 3 (d 1 , d 2 )} + O log 2 d L √ d L ,
where

A = µ Q + p|d 1 log p p+1 , B = µ Q + log 2 ω(d 1 ) + S 1 (d 1 d 2 ), C = µ Q -1 + S 1 (d 1 d 2 ), D = µ Q + 2 ω(d 1 )+1 -S 2 (d 1 d 2 ), c 2 (d 1 , d 2 ) = A + C and c 3 (d 1 , d 2 ) = D + A(2B -2C -A). The error terms O log 2 d L √ d L
are negative for d L large enough, by the last assertion of Lemma 3.6.

Proof of Corollary 1.4

Remark 4.1. Take c ∈ {0, 1}, k ∈ {1, 2} and X > 0. Taking α = 2 in (27) and using |ζ(2

+ it)| ≤ ζ(2) = π 2 /6, we have 0 < Z k (X, c) := 1 2πi (s)=α X -s Z Q (s) ds (s -c) k ≤ M k (c) 12X 2 , where M k (c) := (s)=2 Γ (s/2) (s -c) k dt = ∞ -∞ πt/2 sinh(πt/2) dt ((2 -c) 2 + t 2 ) k/2 .
Moreover, M 1 (0) = 1.88826 . . . , M 1 (1) = 2.94137 . . . , M 2 (0) = 0.77941 . . . and M 2 (1) = 2.10564 . . . . Moreover, X → Z k (X, c) is decreasing and Z k (X, 0) ≤ Z k (X, 1), by Lemma 3.2. Theorem 4.2. Let χ be a primitive even Dirichlet character of conductor f > 1. Then

(35) |L(1, χ)| ≤ 1 2 log f + µ Q . Proof.
We apply (24), ( 29), (30), (31) and Lemma 3.6 with a = d 1 = d 2 = 1 and Π 1 (s, 1, 1, 1) = 1 s-1 + 1 s . We obtain

|L(1, χ)| ≤ I( √ f ), where I(X) = ρ(X) + R(X) with ρ(X) = (log X + µ Q ) -(log X -µ Q )/X, R(X) = - 1 2πi (s)=α 1 s + 1 s -1 X -s Z Q (s) ds = -Z 1 (X, 0) -Z 1 (X, 1) < 0.
Since χ is a primitive even Dirichlet character of conductor f > 1, we have

X = √ f ≥ √ 5 ≥ exp(µ Q ).
Theorem 4.3. Let p ≥ 2 be a prime. Let χ be a primitive even Dirichlet character of conductor f divisible by p. Assume that f ≥ 5p 12 log p 2 , which is the case for 2 ≤ p ≤ 139. Then

(36) |L(1, χ)| ≤ 1 - 1 p 1 2 log f + µ Q + log p p -1 .
Proof. We apply (24), (29), (30), (31) and Lemma 3.6 with a = d 1 = 1, 

d 2 = p and Π 1 (s, 1, 1, p) = 1 -1 p s 1 s-1 + 1 s . We obtain |L(1, χ)| ≤ I( √ f ), where I(X) = ρ(X) + R(X) with ρ(X) = 1 - 1 p log X + µ Q + log p p -1 - log p X , R(X) = 1 2πi (s)=α (p s-1 -1) 1 s + 1 s -1 X -s Z Q (s) ds = Z 1 (X/p, 0) + Z 1 (X/p, 1) p -Z 1 (X, 0) -Z 1 (X, 1) ≤ Z 1 (X/p, 0) + Z 1 (X/p,
(37) |L(1, χ)| ≤ p -1 p -χ(p) × 1 2 log f + µ Q + log 2 + log p p -1 .
Proof. We apply (24), ( 29), ( 30), (31) and Lemma 3.6 with a = 1/2, d 1 = p and d 2 = 1. We obtain

1 - χ(p) p L(1, χ) ≤ I( f ),
where

I(X) = ρ(X) + R(X) with ρ(X) = 1 - 1 p log X + µ Q + log 2 + log p p -1 - log X + log π-γ 2 + log p p-1 X , R(X) = 1 2πi (s)=α 2 -s s (p s-1 -1) - 2 s-1 s -1 1 - 2 p + 1 p s X -s Z Q (s) ds = 1 p Z 1 (2X/p, 0) -Z 1 (2X, 0) - p -2 2p Z 1 (X/2, 1) -1 2 Z 1 (pX/2, 1) ≤ 1 p Z 1 (2X/p, 0) ≤ p 24X 2 , by Remark 4.1. Hence, -1 - 1 p log √ f + log π-γ 2 + log p p-1 √ f + R( f ) ≤ p -12 √ f 1 -1 p log f + log π -γ + 2 log p p-1 24f ≤ p -11 √ f (log f + log π -γ) 24f if p ≥ 13.
The first bound is negative for f ≥ 5 and 2 ≤ p ≤ 61. The second bound is negative for √ f log(πe -γ f ) ≥ p/11, hence for f ≥ p 6 log p 2 and p ≥ 67.

5. Proof of Corollary 1.5 5.1. Proof of the first and second bounds in Corollary 1.5. First assume that d 1 = 1. Then Λ(s, χ, d 1 ) = Λ(s, χ). Lemma 3.1 with a = 1 and

d 1 = 1 gives Λ(1, χ L ) = 1 2πi (s)=α Λ(s, χ L ) 1 s -1 + 1 s ds (α > 1), Λ (1, χ L ) = 1 2πi (s)=α Λ(s, χ L ) 1 (s -1) 2 - 1 s 2 ds (α > 1).
By Lemma 3.2, for X > 0 we have

1 2πi (s)=α X -s Γ (s/2) 1 s -1 + 1 s ds = F 1 (X, 1, 1) + F 1 (X, 0, 1) > 0, 1 2πi (s)=α X -s Γ (s/2) 1 (s -1) 2 - 1 s 2 ds = F 2 (X, 1, 1) -F 2 (X, 0, 1) > 0.
Hence, by (25), we have ν

L ≤ I(d 2 , √ d L ), where I(d 2 , X) := 1 2πi (s)=α G(s, d 2 , X) ds = Res s=1 (G(s, d 2 , X)) + Res s=0 (G(s, d 2 , X)) + R(d 2 , X) with G(s, d 2 , X) := p|d 2 1- 1 p s 1 (s -1) 2 - 1 s 2 +µ Q 1 s -1 + 1 s X s-1 Z Q (s), Res s=1 (G(s, d 2 , X)) = P (d 2 ) 2 × log X + 2µ Q -1 + S 1 (d 2 ) 2 -µ Q -S 2 (d 2 ) , Res s=0 (G(s, d 2 , X)) = 1 2X ×          (log X -2µ Q + 1) 2 -µ Q if d 2 = 1, (log p)(2 log X -4µ Q +2-log p) if d 2 = p, 2(log p)(log q) if d 2 = pq, 0 otherwise,
where P (d), S 1 (d) and S 2 (d) are as in Lemma 3.6 and where

µ Q = 1 + (1 -µ Q ) 2 -µ Q = 1 + (1 -µ Q ) 2 -π 2 /8 + γ 2 + 2γ(1) = 0.90818 . . .

and (by taking

α = 2) R(d 2 , X) := 1 2πi (s)=1-α G(s, d 2 , X) ds = 1 2πi (s)=α G(1 -s, d 2 , X) ds = O(X -2 ).
Hence we get a neat asymptotic and effective bound which we will make explicit in Theorems 5.2 and 5.3:

Theorem 5.1. Let d 2 ≥ 1 be a square-free integer. Let L range over the real quadratic fields of discriminants divisible by d 2 . Then for d L effectively large enough we have

ν L ≤ 1 8 p|d 2 1 - 1 p × log d L + 4µ Q -2 + 2 p|d 2 log p p -1 2 .
In particular, for 

d 1 = d 2 = 1, we have G(1-s, 1, X) = -G(s, 1, 1/X)/X and R(1, X) ≤ 0,
ν L = µ L Res s=1 (ζ L (s)) ≤ 1 8 log 2 d L and ν L ≤ (log d L + 4µ Q -2) 2 /8 for d L > 145.
Take d 2 = p a prime integer. Then

I(p, X) ≤ 1 2 1 - 1 p × log X + 2µ Q -1 + log p p -1 2 -µ Q - p log 2 p (p -1) 2 + log p 2X (2 log X -4µ Q + 2 -log p) + R(p, X), where R(p, X) = 1 2πi (s)=α (p s-1 -1) 1 (s -1) 2 - 1 s 2 + µ Q 1 s -1 + 1 s X -s Z Q (s) ds ≤ Z 2 (X/p, 1) + µ Q (Z 1 (X/p, 1) + Z 1 (X/p, 0)) p ≤ p(M 2 (1) + µ Q (M 1 (1) + M 1 (0))) 12X 2 ≤ p 5X 2
, by Remark 4.1. Hence, we get Theorem 5.3 (second bound of Corollary 1.5). Let p ≥ 2 be a prime integer. Let L be a real quadratic number field of discriminant d L . Assume that p divides d L . Assume that d L ≥ 4p, which is the case for p = 2, or that p ≥ 337. Then Finally, for p = 2, we have

ν L = µ L Res s=1 (ζ L (s)) ≤ 1 8 1 - 1 p × log d L + 4µ Q -2 + 2 log p p -1 2 . For p = 2 we have 4µ Q -2 + 2 log p p-1 = 2(1 + γ -log(2π)) = -0.52132 . . . . Proof. Recall that we take X = √ f ≥ √ p, since p divides f > 1. Con- sider the function f (X) := - 1 2 1 - 1 p × µ Q + p log 2 p (p -1) 2 + log p 2X (2 log X -4µ Q + 2 -log p) + p 5X 2 . Then f (X) = - log p 2X 2 (2 log X -4µ Q -log p) - 2p 5X 3 is negative for X ≥ √ p.
R(2, X) ≤ µ Q + log 2 3 M 1 (0) 24X 2 + M 2 (0) 12X 2 + M 2 (1) 48X 2 ≤ 3 20X 2
and Res s=0 (H(s, 2, X)) + R(2, X) ≤ -1 4X 2 X log 2 X -3 5 is negative for

X = √ d L ≥ √ 5.

  ))/2 = 0.02309 . . . .Whereas we have the positivity of λK , µ K , ν K and explicit bounds (see [Lou01, Theorem 1]) (3) Res s=1 (ζ K (s)) ≤ e log d K 2(m -1) m-1 and ν K ≤ e log d K 2m m ,

  as in the proof of Theorem 4.2. Hence, we obtain (compare with Theorem 4.2):Theorem 5.2 (First bound of Corollary 1.5). Let L be a real quadratic number field of discriminant d L . Then

p+21 21 log 2 p+21 21 2 .

 2 Finally, f ( √ p) ≤ 0 for p ≥ 337 and f ( √ 4p) ≤ 0 for p ≥ 2.5.2. Proof of the third and fourth bounds in Corollary 1.5Theorem 5.4. Let p ≥ 2 be a prime integer. Let κ p ≤ 5.14084 be as in (39) below. Let L be a real quadratic number field of discriminantd L ≥ 4 Assume that χ L (p) = -1. Then ν L = µ L Res s=1 (ζ L (s)) ≤ 1 8 × p -1 p + 1 × log d L +4µ Q -2+ 4p log p p 2 -1 2 +4κ p .If p = 2, this bound holds true for d L ≥ 5. Since 4κ 2 = 19.52507 . . . and 4µ Q -2 + 4p log p p 2 -1 = -0.059224 . . . , we get the third and fourth bounds in Corollary 1.5.Proof. As in Section 3.1, we apply (25), (29), (30), (31) and Lemma 3.6 with d 1 = p , a = 1/2 and d 2 = 1. We obtain 1 + 1 p ν L ≤ I(√ d L ),whereI(X) = Res s=1 (G(s, p, X)) + Res s=0 (G(s, p, X)) + R(p, X), with G(s, p, X) := µ Q + log p p + 1 Π 1 (s, 1/2) + Π 2 (s, 1) X s-1 Z Q (s), Π k (s, a) := a 1-s (s -1) k 1 -1 p s + a s s k 1 -1 -s, 1/2) + Π 2 (1 -s, 1) X -s Z Q (s) ds.Now,Res s=1 (G(s, p, X)) 1) 2 log 2 p (39)+ log(16π) -γ p + 1 log p + 6 -µ Q + 2µ Q log 2 satisfies κ p ≤ κ 7 =5.14083 . . . and κ 2 = 4.88126 . . . . (Notice that 2µ Q -1 + 2p(log p)/(p 2 -1) = A + C = c 2 (p, 1) and κ p = c 3 (p, 1), with the notation of Section 3.1.) Moreover,Res s=0 (G(s, p, X)) = --log π p + 1 log p + µ Q -2µ Q log 2 -µ 2 Q satisfies κ p ≥ κ 2 = 0.62924 . . . . Noticing that Π 1 (1 -s, a) = 2 -s s k (p s-1 -1) -2 s-1 (s -1) k 1 -1 -s, a) = 1 s 2 (1 -p s-1 ) +

  Theorem 4.4. Let p ≥ 2 be a given prime. Let χ be a primitive even Dirichlet character of conductor f ≥ 5 not divisible by p. Assume that either 2 ≤ p ≤ 61 or f ≥

		p	1)	≤	5p 12X 2 ,
	by Remark 4.1.			
	p 6 log p	2 . Then		

  then X > 1, as v/log v ≥ e for v > 1, and since X → X log 2 X increases with X > 1, we have

	and					
	Res s=0 (H(s, p, X)) + R(p, X) ≤ -	log 2 X 4X	+	p + 21 84X 2
							= -	1 4X 2 X log 2 X -	p + 21 21
	is negative for X ≥ 4	p+21 21 log 2 p+21 21	. Indeed, if u > 1 and X ≥ 4u log 2 u =	√ log √ u	u	2
	X log 2 X ≥	4u log 2 u	log 2	4u log 2 u	= u 1 + 4	log u 1/4 2 log u 1/4 log u
							1 (s -1) k 1 -	2 p	+	1 p s
	and using (38) and Remarks 4.1, we have
	R(p, X) ≤	1 p	µ Q +	log p p + 1	Z 1 (2X/p, 0) + Z 2 (X, 0)
		+ 1 -	2 p	Z 2 (X, 1) + Z 2 (pX, 1)
	≤ µ Q +	log 3 4	pM 1 (0) 48X 2 +	M 2 (0) 12X 2 +	(p -1) 2 M 2 (1) 12p 2 X 2
	≤	p 84X 2 +	M 2 (0) + M 2 (1) 12X 2

2

≥ 1,

as v/(2 log v) ≥ e/2 ≥ 1 for v > 1.

Abstract (will appear on the journal's web site only) Various bounds on the absolute values of L-functions of number fields at s = 1 and on residues at s = 1 of Dedekind zeta functions of a number field L are known. Also, better bounds depending on the splitting behavior of given prime ideals of L of small norms are known. These bounds involve a term ν L in the series expansion at s = 1 of the Dedekind zeta function of L. We explain why one should expect to have bounds on ν L which also depend on the splitting behavior in L of given prime integers. We explicitly do that for L a real quadratic number field. We deduce very good upper bounds on the residue at s = 1 of the Dedekind zeta function of a non-normal totally real cubic number field K, bounds depending on the splitting behavior of the prime p = 2 in K.