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An elementary proof of the compactness of the trace operator

on a Lipschitz domain

Clément DENIS

Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

Abstract

In the setting of bounded strongly Lipschitz domains, we present a short and simple proof of the compactness
of the trace operator acting on square integrable vector fields with square integrable divergence and curl, with
a boundary condition. We rely on earlier trace estimates established in a similar setting.

1 Introduction and main theorem

The compactness of the trace operator on a bounded strongly Lipschitz domain Ω is well known in the scalar case.
In fact it is continuous from H1(Ω) to H

1
2 (∂Ω), and the compactness of the injection H

1
2 (∂Ω) ↪→ L2(∂Ω) ensures

that Tr|∂Ω maps compactly H1(Ω) to L2(∂Ω). By looking coordinate by coordinate the scalar case implies that
vector fields in H1(ΩR) are also compact. However for less regular vector fields the situation is slightly different.
In the study of Maxwell and Navier-Stokes equations, it is interesting to study vector fields u ∈ L2(Ω,R) with
div u ∈ L2(Ω) and curlu ∈ L2(Ω,Md(R)), with a boundary condition on either ν · u or ν ∧ u. A natural boundary
condition is ν · u = 0, and in this case the trace operator is still compact. In this paper we investigate a more
general boundary condition where ν · u is only in some Lp spaces (p > 2).

Let δ > 0 and let

Xδ
T =

{
u ∈ L2(Ω,Rd) ; div u ∈ L2(Ω), curlu ∈ L2(Ω,Rd) and ν · u ∈ L2+δ(∂Ω)

}
and

Xδ
N =

{
u ∈ L2(Ω,Rd) ; div u ∈ L2(Ω), curlu ∈ L2(Ω,Rd) and ν ∧ u ∈ L2+δ(∂Ω,Md(R))

}
.

where Ω is a domain of Rd.
Xδ
T and Xδ

N are Banach spaces when equipped with the natural norms

‖u‖XδT = ‖u‖L2(Ω,Rd) + ‖ div u‖L2(Ω) + ‖ curlu‖L2(Ω,Md(R)) + ‖ν · u‖L2+δ(∂Ω) (1)

‖u‖XδN = ‖u‖L2(Ω,Rd) + ‖ div u‖L2(Ω) + ‖ curlu‖L2(Ω,Md(R)) + ‖ν ∧ u‖L2+δ(∂Ω,Md(R)). (2)

We also denote by XT and XN the subspaces of Xδ
T and Xδ

N with (respectively) ν · u = 0 and ν ∧ u = 0 on ∂Ω.
Our aim is to prove the following theorem:

Theorem 1.1. Let δ > 0, let Ω ⊂ Rd be a strongly Lipschitz domain. Then the trace operator Tr|∂Ω maps compactly

Xδ
T (or Xδ

N ) to L2(∂Ω,Rd).

The trace operators on the spaces XT,N are well understood for domains with regular boundaries. When Ω has

a regular enough boundary, the space XT and XN are in fact included in H1(Ω,Rd): for example if Ω is C
3
2 +ε

[6], if Ω is C1,1 [1, Theorems 2.9, 2.12], or even if Ω is convex [9]. If Ω is piece-wise C∞ and C2-diffeomorphic

to a polyhedron, there exists ε > 0 such that XT and XN are subsets of H
1
2 +ε(Ω,R3), as in [5]. In all those

cases, the compactness of the trace operator derives from the scalar case by applying scalar estimates coordinate
by coordinate.

If ν · u is non-zero but in L2(∂Ω), the trace operator is continuous - see for example [7, Theorem 11.2] for a
general results for Lp spaces on manifolds. The compactness of the trace operator, however, is not known. In
order to obtain compactness, one possibility is to add some regularity to ν · u: consider for example the space{
u ∈ L2(Ω,Rd) ; div u ∈ L2(Ω), curlu ∈ L2(Ω,Md(R)) and ν · u ∈ H 1

2 (∂Ω)
}

. It is a subspace of Xδ
T for some δ >
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0, and in the case of a C1,1 domain in dimension 3, Amrouche and Seloula proved in [2, Theorem 3.5] that it is in
fact a subspace of H1(Ω,R3).

On a Lipschitz domain however, this method fails: ν is only in L∞(∂Ω,Rd) so ν · u fails to be in H
1
2 (∂Ω) even

when u ∈ H1(Ω,Rd). Both XT and XN are still subspaces of H
1
2 (Ω,Rd) (see [3] for dimension 2 and 3 and [7,

Theorem 11.2] for the general result). However Costabel recently proved in [4] that there exist C1 domains such

that XT and XN are in none of the H
1
2 +ε(Ω,Rd) spaces. It is consequently impossible to operate coordinate by

coordinate, but we can still prove that the trace operator is compact as soon as the integrability of the boundary
condition is better than L2. Our main tool is an estimate established in [8] ; it can be adapted in the Xδ

T or Xδ
N

settings, allowing us to prove first the continuity, then the compactness of the trace operator.

2 Notations

In this paper we will denote by Ω a bounded strongly Lipschitz domain, i.e. an open connected subset of Rd, whose
boundary can locally be written as the graph of a Lipschitz function and which is only on one side of its boundary.

Definition 2.1. We recall that Ω is a special Lipschitz domain if there exist a basis of Rd and a Lipschitz function
ω from Rd−1 to R such that

Ω = {x = (xh, xd) ∈ Rd−1 × R ; xd > ω(xh)}. (3)

Then the outward normal ν at x = (xh, ω(xh)) ∈ ∂Ω is defined almost everywhere by:

ν(xh, ω(xh)) =
1√

1 + |∇hω(xh)|2
(∇hω(xh),−1) , (4)

where ∇h is the horizontal gradient acting on the horizontal variable xh.
Since ω is Lipschitz, its gradient is bounded. Thus there is a constant c > 0 such that 1√

1+|∇hω(xh)|2
≥ c for

almost every xh ∈ Rd−1. We can then denote by θ ∈ [0, π2 [ the angle between the vertical direction and the outward
normal:

θ = arccos

(
inf

xh∈Rd−1

1√
1 + |∇hω(xh)|2

)
. (5)

And writing e = (0Rd−1 ,−1) we get for almost every xh ∈ Rd−1:

0 < cos θ ≤ 1√
1 + |∇hω(xh)|2

= e · ν(xh, ω(xh)). (6)

In order to get a compactness result on the trace operator, we of course need a bounded domain. We can make
use of the special Lipschitz case through a finite covering:

Definition 2.2. We recall that Ω ⊂ Rd is a bounded strongly Lipschitz domain if Ω is open, connected, bounded,
and there exists a finite cover (Ωk)1≤k≤N of ∂Ω such that for every k, Ω ∩ Ωk coincide with a special Lipschitz
domain.

Since Ωk ∩ Ω coincides with a special Lipschitz domain, it is possible to define a minimal angle between the
outward normal and the local vertical direction on each ∂Ω ∩Ωk, as in (5): there exist a vector ek and an angle θk
such that k, for every x ∈ ∂Ω ∩ Ω, cos θk ≤ ek · ν(x). Since there is a finite number of cos θk, we can define γ as:

γ = min (cos θk ; 1 ≤ k ≤ N) . (7)

γ only depends on ∂Ω and the choice of the covering (Ωk)k∈J0,NK. In every case we have γ > 0.

Finally let us introduce some notations for vectorial analysis: let Ω be either a special Lipschitz or bounded
strongly Lipschitz domain, and let u ∈ L2(Ω,Rd). We denote by curlu ∈ Md(R) the antisymmetric part of the
Jacobian matrix of first order partial derivatives in the sense of distributions:

( curlu)i,j =
1√
2

(∂iuj − ∂jui) =
1√
2

(∇u− (∇u)T )i,j , 1 ≤ i, j ≤ d. (8)

We use on Md(R) the scalar product 〈v, w〉 =
∑d
i,j=1 vi,jwi,j for v = (vi,j)1≤i,j≤d , w = (wi,j)1≤i,j≤d ∈ Md(R),

and we denote by |.| the associated norm.
We also define the wedge product of two vectors e and f of Rd by e ∧ f = 1√

2
(eifj − ejfi)1≤i,j≤d ∈Md(R).

Finally for any u ∈ L2(Ω,Rd) we can make sense of ν · u and ν ∧ u as distributions on ∂Ω, as in [8].
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3 Proof of Theorem 1.1

In this section we prove the continuity and compactness of the trace operator. We will only write it in the Xδ
T case,

as the proof in for Xδ
N is exactly similar.

� First we prove the continuity of the operator

Tr|∂Ω : Xδ
T → L2(∂Ω,Rd). (9)

Let u ∈ Xδ
T be a vector field. Applying estimate (4.12) in [8], there exists a constant C(Ω) such that:∥∥Tr|∂Ωu
∥∥2

L2(∂Ω,Rd)
≤ 2

γ
‖u‖L2(Ω,Rd)

(
2 ‖curlu‖L2(Ω,Md(R)) + 2 ‖div u‖L2(Ω) + C(Ω) ‖u‖L2(Ω,Rd)

)
(10)

+

((
4

γ2
+

2

γ
+ 1

)
min

{
‖ν ∧ u‖2L2(∂Ω,Md(R)) , ‖ν · u‖

2
L2(∂Ω)

})
.

Since Ω is bounded, L2+δ(∂Ω) ⊂ L2(∂Ω) and there exists a new constant C(Ω) such that:∥∥Tr|∂Ωu
∥∥2

L2(∂Ω,Rd)
≤C(Ω) ‖u‖L2(Ω,Rd)

(
‖curlu‖L2(Ω,Md(R)) + ‖div u‖L2(Ω) + ‖u‖L2(Ω,Rd)

)
(11)

+ C(Ω) min
{
‖ν ∧ u‖2L2+δ(∂Ω,Md(R)) , ‖ν · u‖

2
L2+δ(∂Ω)

}
.

Finally we get
∥∥Tr|∂Ωu

∥∥2

L2(∂Ω,Rd)
≤ C(Ω)‖u‖2

XδT
, so Tr|∂Ω is bounded from Xδ

T to L2(∂Ω,Rd).

� This estimate on the trace actually allows us to prove the compactness as follow:

Let (un)n∈N be a sequence in Xδ
T , bounded by a constant K > 0.

The embedding Xδ
T ↪→ L2(Ω,Rd) is compact, because X0

T ↪→ L2(Ω,Rd) is compact (see the third remark after
Theorem 11.2 in [7]). We can extract a subsequence, again denoted u, such that:

un −−−−→
n→∞

u in L2(Ω,Rd).

Besides the injection L2+δ(∂Ω) ↪→ L2(∂Ω) is also compact, so for any sequence ν · u ∈ L2+δ(∂Ω) and for any
ν ∧ u ∈ L2+δ(∂Ω,Md(R)), we can also extract subsequences converging in L2.

Let `, k be two integers. Applying estimate (11) to u` − uk we get:∥∥Tr|∂Ω(u` − uk)
∥∥2

L2(∂Ω,Rd)
≤ C(Ω) ‖u` − uk‖L2(Ω,Rd) ‖u` − uk‖XδT

+ C(Ω) min
{
‖ν ∧ (u` − uk)‖2L2(∂Ω,Md(R)) , ‖ν · (u` − uk)‖2L2(∂Ω)

}
.

Since the sequence (un)n∈N is bounded by K, ‖u` − uk‖XδT ≤ 2K. Moreover (un)n∈N converges in L2(Ω,Rd),
and both (ν∧u)n∈N and (ν ·u)n∈N converge in L2 norms, so (Tr|∂Ωun)n∈N is a Cauchy sequence in L2(∂Ω,Rd).
This proves that if (un)n∈N is bounded inXδ

T , then there exists a subsequence of (un)n∈N such that (Tr|∂Ωun)n∈N
converges in L2(∂Ω,Rd), which proves that the trace operator is compact.
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