The Hierarchy of Weighted Densities and the First Digit Phenomenon

Bruno Massé, Dominique Schneider

To cite this version:

Bruno Massé, Dominique Schneider. The Hierarchy of Weighted Densities and the First Digit Phenomenon. 2011. hal-03661888

HAL Id: hal-03661888

https://hal.science/hal-03661888

Preprint submitted on 8 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Hierarchy of Weighted Densities and the First Digit Phenomenon

Bruno Massé, Dominique Schneider
L.M.P.A. Joseph Liouville, Université du Littoral Côte d'Opale

February 8, 2011

Abstract

The aim of this paper is to clarify some basic and useful facts about the various notions of densities commonly used in papers on the mantissa distribution of sequences of numbers. We focus on the weighted densities and their hierarchy. Our main tools are classical properties of summation methods. Equivalence classes of weighted densities are identified and their hierarchy is stated. This permits us to give clear answers to several questions about the first digit phenomenon. Moreover, however light the weights are, we exhibit an example of a sequence of positive numbers whose mantissae do not admit any distribution in the sense of the corresponding density.

Keywords: Benford's law, first digit phenomenon, mantissa, weighted density, hierarchy

AMS classification: $60 \mathrm{~B} 10,11 \mathrm{~B} 05,11 \mathrm{~K} 99$

1 Introduction and definitions

Following the early works of Newcomb and Benford [17, 1] on real life numbers, many authors have studied the distribution of the first digit in base 10 of sequences $\left(u_{n}\right)_{n}$ of positive numbers like $u_{n}=2^{n}, u_{n}=n!, u_{n}=n^{n}, u_{n}=F_{n}$ where F_{n} is the nth Fibonacci number, $u_{n}=n$ or $u_{n}=p_{n}$ where p_{n} is the nth prime number and so on (see [19] for a survey). In the first four cases, they proved that, if $D\left(u_{n}\right)$ denotes the first digit of u_{n} and $\log _{10}$ the decimal logarithm, the natural density of $A_{k}^{u}=\left\{n \in \mathbb{N}^{*}: D\left(u_{n}\right)=k\right\}$ is $\log _{10}\left(\frac{k+1}{k}\right)$, that is to say

$$
\lim _{N \rightarrow+\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{A_{k}^{u}}(n)=\log _{10}\left(\frac{k+1}{k}\right) \quad(k=1, \ldots, 9)
$$

(here and in the sequel, $\mathbb{1}_{B}$ is the indicator function of the subset B). In particular, about 30.1% of the u_{n} have first digit 1 in the sense of the above formula. This property is known as the first digit phenomenon. Classical applications of this phenomenon are fraud detection [18] and computer design [15, 11].

In fact, we know a more precise property which needs three other definitions to be stated: the Benford's law (in base 10) is the probability measure μ_{B} on the interval [1; 10[defined by

$$
\mu_{B}\left(\left[1 ; a[)=\log _{10} a \quad(1 \leq a<10) .\right.\right.
$$

The mantissa of a positive real number x is the unique number $\mathcal{M}(x)$ in $[1 ; 10[$ such that there exists an integer k verifying $x=\mathcal{M}(x) 10^{k}$ (there exists another definition of the mantissa, but for technical reasons we shall use this one). A sequence $\left(U_{n}\right)_{n}$ of real numbers in $\left[1 ; 10\left[\right.\right.$ is called natural-Benford if it is naturally distributed as μ_{B}, that is to say if

$$
\lim _{N \rightarrow+\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{[1 ; a[}\left(U_{n}\right)=\log _{10} a \quad(1 \leq a<10)
$$

The above formula means that, for each $a \in\left[1 ; 10\left[\right.\right.$, the set $\left\{n \in \mathbb{N}^{*}: 1 \leq U_{n}<a\right\}$ admits a natural density and its natural density is $\log _{10} a$ and this can be interpreted as the weak convergence of the uniform probability measure on the set $\left\{U_{1}, \ldots, U_{N}\right\}$ to μ_{B} as $N \rightarrow+\infty$.

A sequence $\left(u_{n}\right)_{n}$ of positive numbers is also called natural-Benford if the sequence of mantissae $\left(\mathcal{M}\left(u_{n}\right)\right)_{n}$ is natural-Benford. We can now state: the sequences $\left(2^{n}\right)_{n}$, $(n!)_{n},\left(n^{n}\right)_{n}$ and $\left(F_{n}\right)_{n}$ are all natural-Benford. The study of the mantissa is of course more general than the study of the first digit and allows to derive easily the distribution of every digit and every string of digits of the u_{n}.

When $u_{n}=n$ or $u_{n}=p_{n}$ (see [8] and [24]),

$$
\begin{equation*}
\liminf _{N \rightarrow+\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{A_{1}^{u}}(n)=\frac{1}{9} \quad \text { and } \quad \limsup _{N \rightarrow+\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{A_{1}^{u}}(n)=\frac{5}{9} . \tag{1}
\end{equation*}
$$

So these two sequences do not verify the first digit phenomenon in the sense of the natural density. From [4], we know that they verify this phenomenon in the sense of the logarithmic density, that is is to say

$$
\lim _{N \rightarrow+\infty} \frac{1}{\log N} \sum_{n=1}^{N} \frac{1}{n} \mathbb{1}_{A_{k}^{u}}(n)=\log _{10}\left(\frac{k+1}{k}\right) \quad(k=1, \ldots, 9)
$$

where \log is the natural logarithm. In a way (but not the same way as above), about 30.1% of the u_{n} have first digit 1 . One corrects the defect in (1) by properly assigning lighter weights to larger numbers.

A more precise property is available in [6] and needs another definition to be stated. A sequence $\left(U_{n}\right)_{n}$ of real numbers in $[1 ; 10[$ is called logarithmic-Benford if it is logarithmically distributed as μ_{B}, that is to say if

$$
\lim _{N \rightarrow+\infty}\left(\sum_{n=1}^{N} \frac{1}{n}\right)^{-1} \sum_{n=1}^{N} \frac{1}{n} \mathbb{1}_{[1 ; a[}\left(U_{n}\right)=\log _{10} a \quad(1 \leq a<10) .
$$

The above formula means that, for each $a \in\left[1 ; 10\left[\right.\right.$, the set $\left\{n \in \mathbb{N}^{*}: 1 \leq U_{n}<a\right\}$ admits a logarithmic density and its logarithmic density is $\log _{10} a$ and again this can
be interpreted as the weak convergence of some sequence $\left(P_{N}\right)$ of discrete probability measures to μ_{B} as $N \rightarrow+\infty$, the atoms of P_{N} being again U_{1}, \ldots, U_{N}. A sequence $\left(u_{n}\right)_{n}$ of positive numbers is also called logarithmic-Benford if the sequence of mantissae $\left(\mathcal{M}\left(u_{n}\right)\right)_{n}$ is logarithmic-Benford.

We can now state: the sequences $(n)_{n}$ and $\left(p_{n}\right)_{n}$ are logarithmic-Benford. Note that [8] and [23] consider the relative logarithmic density in the set of prime numbers which is strictly weaker than the logarithmic density, as we shall see below.

In the spirit of Diaconis' work about binomial coefficients [2], it is also proved in [6] that the rows of the infinite matrix $\left(\mathcal{M}\left(u_{n}^{m}\right)\right)_{m, n}$, which are logarithmic-Benford and not natural-Benford, tend to be natural-Benford as m tends to infinity; that is to say: there exists an increasing function N from \mathbb{N}^{*} to \mathbb{N}^{*} such that

$$
\lim _{m \rightarrow+\infty} \sup _{1<a<10}\left|\frac{1}{N(m)} \sum_{n=1}^{N(m)} \mathbb{1}_{[1 ; a[}\left(\mathcal{M}\left(u_{n}^{m}\right)\right)-\log _{10} a\right|=0 .
$$

Of course, some sequences of mantissae of positive numbers are neither natural nor logarithmic-Benford. The examples of such sequences which come naturally to mind, like $\left(\mathcal{M}\left(10^{n}\right)\right)_{n}$, do admit a distribution (distinct from the Benford's one) anyway.

1.1 Some questions

The quite strange facts described above generate many questions. Here are a few ones, that shall be answered in Section 5 below:
Question 1: Are there densities which are strictly weaker (see below) than the logarithmic one?
Question 2: Are there classical sequences of positive numbers whose mantissae do not admit any distribution in the sense of natural or logarithmic densities? If yes, what about weaker densities?
Question 3: Is there an interest to consider weights lighter than $\frac{1}{n}$ or heavier than 1 ? Question 4: Is the first digit phenomenon verified by $u_{n}=2^{n}, u_{n}=n!, u_{n}=n^{n}$ or $u_{n}=F_{n}$ if we use weights heavier than 1 , like n^{α} with $\alpha>0$ or α^{n} with $\alpha>1$ for instance? If yes, is there a maximal value for α ?
Question 5: Is the first digit phenomenon verified by $u_{n}=n$ or $u_{n}=p_{n}$ if we use weights heavier than $\frac{1}{n}$, like $\frac{1}{\sqrt{n}}$ for instance? If not, does the choice of one of these weights have an influence anyway?
Question 6: If $u_{n}=n$ or $u_{n}=p_{n}$, we know from [6] that the rows of $\left(\mathcal{M}\left(u_{n}^{m}\right)\right)_{m, n}$ are logarithmic-Benford, do not admit any distribution in the sense of the natural density and tend to be natural-Benford. What will happen if we choose intermediate weights (between 1 and $\frac{1}{n}$)?

1.2 Weighted densities

This leads us, in the wake of [9] and [8] for example, to consider the general notion of weighted densities of $A \subset \mathbb{N}^{*}$ where \mathbb{N}^{*} is the set of positive integers.

Let $\left(w_{n}\right)_{n \geq 1}$ be a sequence of positive real numbers summing to infinity and, for each $N \geq 1$, let $W_{N}=\sum_{n=1}^{N} w_{n}$. One says that $A \subset \mathbb{N}^{*}$ has a w_{n}-density when the sequence $\left(\sum_{n=1}^{N} \frac{w_{n}}{W_{N}} \mathbb{1}_{A}(n)\right)_{N}$ converges and its limit is then called the w_{n}-density of A. This is the limit of the weighted frequency of the elements of A among those of \mathbb{N}^{*}. The condition on the weights w_{n} is necessary to assign the density $\frac{1}{2}$ to the set of even numbers, for example, and the density 0 to every finite subset of \mathbb{N}^{*}.

Another sequence $\left(v_{n}\right)_{n \geq 1}$ of positive real numbers summing to infinity being given, we set $V_{N}=\sum_{n=1}^{N} v_{n}$ and we say that the w_{n}-density is stronger than the v_{n}-density when, for every $A \subset \mathbb{N}^{*}$,

$$
\left(\left(\sum_{n=1}^{N} \frac{w_{n}}{W_{N}} \mathbb{1}_{A}(n)\right)_{N} \text { converges }\right) \Longrightarrow\left(\left(\sum_{n=1}^{N} \frac{v_{n}}{V_{N}} \mathbb{1}_{A}(n)\right)_{N} \text { converges }\right)
$$

and when, in this case, the two limits are equal. If either density is stronger than the other one, then the two densities are said to be equivalent.

The most commonly used weighted densities are the two we have considered above: the 1-density called natural or arithmetic density and the $\frac{1}{n}$-density called logarithmic or harmonic density. In [6], the $\frac{1}{n \log n}$-density is also considered and called the loglogdensity. In some papers on Benford's law ([8] and [23] for example), we also find the so-called logarithmic density conditioned (or relative) to the prime numbers which can be seen as the $\frac{1}{p_{n}}$-density. The other weights that come immediately to mind are $w_{n}=\alpha^{n}$ where $\alpha>1, w_{n}=n^{\alpha}$ or $w_{n}=p_{n}^{\alpha}$ with $\alpha>0$ or $-1<\alpha<0$, $w_{n}=n^{\alpha}(\log n)^{\beta}$ or $w_{n}=p_{n}^{\alpha}\left(\log p_{n}\right)^{\beta}$ with $\alpha>-1$ and $\beta \in \mathbb{R}, w_{n}$ polynomial, and $w_{n}=\frac{1}{g_{q}(n)}$ with $g_{0}(n)=n, g_{1}(n)=n \log n, g_{2}(n)=n(\log n)(\log \log n)$, and so on $(n$ large enough).

1.3 Contents

It is well known ([22, page 272] for example) that the 1-density is strictly stronger than the $\frac{1}{n}$-density and Kuipers and Niederreiter [16, page 64] mentioned a quite surprising property: all the n^{α}-densities with $-1<\alpha<0$ and $0<\alpha$ are equivalent to the 1 density. In Section 2, we state three theorems found in Hardy's book [12] which give a clear view on the hierarchy between weighted densities. To the best of our knowledge, these theorems are not mentioned in papers on Benford's law. Section 3 is devoted to new results. The first one shows that equivalent weights lead to equivalent densities. The second one proves that the hierachy between the $\frac{1}{g_{q}(n)}$-densities $(q=0,1,2, \ldots)$ is strict. The third one states that, however light the considered weights are, we can find a classical sequence of positive numbers whose mantissae do not admit any distribution in the sense of the corresponding density. Combining sections 2 and 3 enables us to identify in Section 4 an infinite number of equivalence classes of weighted densities and in Section 5 to give simple and clear answers to the questions we have listed above. We give in Section 6 a short overview on other densities used in the study of the first digit phenomenon and their connections with weighted densities. Some open problems are described in Section 7. For the sake of clarity and self-contained exposition, we give in
an Appendix the proofs of the theorems stated in Section 2, rewritten in the context of weighted densities.

We have focused on numeration in base 10, but all statements remain true in every base $b \geq 2$ except for the sequence $\left(2^{n}\right)_{n}$ which is not a Benford sequence in bases 2, 4,8 , and so on.

2 Summation methods properties

These properties are derived from Cesàro's and Toeplitz's works and are stated and proved in [12, pages 42-63] in the general context of hierarchy of summation methods applied to a sequence $\left(s_{n}\right)$ of finite sums of a series. But a close look at the proofs shows that the nature of the sequence $\left(s_{n}\right)$ is not important. We state them below in the context of weighted densities. So the sequence $\left(\mathbb{1}_{A}(n)\right)$ where $A \subset \mathbb{N}^{*}$ will take the place of $\left(s_{n}\right)$. Theorem 1 below is also stated and proved in [16, pages 63-64].

Let us recall that $\left(v_{n}\right)$ and $\left(w_{n}\right)$ are two sequences of positive real numbers summing to infinity and that $V_{N}=\sum_{n=1}^{N} v_{n}$ and $W_{N}=\sum_{n=1}^{N} w_{n}$.

Theorem 1. A sufficient condition for the w_{n}-density to be stronger than the v_{n}-density is

$$
\begin{equation*}
\left(\frac{v_{n}}{w_{n}}\right)_{n} \text { is non-increasing } \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\frac{v_{n}}{w_{n}}\right)_{n} \text { is non-decreasing and }\left(\frac{v_{N} W_{N}}{w_{N} V_{N}}\right)_{N} \text { is bounded. } \tag{3}
\end{equation*}
$$

Theorem 2 below gives a clear view on the effect of the heaviness of the weights.
Theorem 2. Let $A \subset \mathbb{N}^{*}$. If the sequence $\left(\frac{v_{n}}{w_{n}}\right)_{n}$ is non-increasing, then
$\underline{\lim }_{N} \sum_{n=1}^{N} \frac{w_{n}}{W_{N}} \mathbb{1}_{A}(n) \leq \underline{\lim }_{N} \sum_{n=1}^{N} \frac{v_{n}}{V_{N}} \mathbb{1}_{A}(n) \leq \overline{\lim }_{N} \sum_{n=1}^{N} \frac{v_{n}}{V_{N}} \mathbb{1}_{A}(n) \leq \overline{\lim }_{N} \sum_{n=1}^{N} \frac{w_{n}}{W_{N}} \mathbb{1}_{A}(n)$.
Theorem 3 below will permit us to prove that the exponential weights are not relevant in the context of weighted densities of a subset of \mathbb{N}^{*}.

Theorem 3. Let $A \subset \mathbb{N}^{*}$. If the sequence $\left(\frac{W_{N-1}}{w_{N}}\right)_{N}$ is bounded, then A cannot admit any w_{n}-density unless A is finite or cofinite.

3 New results

Let us recall that $\left(v_{n}\right)$ and $\left(w_{n}\right)$ are two sequences of positive real numbers summing to infinity and that $V_{N}=\sum_{n=1}^{N} v_{n}$ and $W_{N}=\sum_{n=1}^{N} w_{n}$.

Proposition 1. If v_{n} and w_{n} are equivalent as $n \rightarrow+\infty$, then the v_{n}-density and the w_{n}-density are equivalent too.

Proof. It is well known that V_{N} and W_{N} are equivalent as $N \rightarrow+\infty$ since the v_{n} and the w_{n} sum to infinity. So we can write $w_{n}=v_{n}+v_{n} \theta_{1}(n)$ with $\lim _{n} \theta_{1}(n)=0$ and $W_{N}=V_{N}+V_{N} \theta_{2}(N)$ with $\lim _{N} \theta_{2}(N)=0$ and

$$
\theta_{2}(N)=\sum_{n=1}^{N} \frac{v_{n}}{V_{N}} \theta_{1}(n)
$$

Consider now $A \subset \mathbb{N}^{*}$. For every $N \geq 1$,

$$
\begin{aligned}
\left|\sum_{n=1}^{N} \frac{w_{n}}{W_{N}} \mathbb{1}_{A}(n)-\sum_{n=1}^{N} \frac{v_{n}}{V_{N}} \mathbb{1}_{A}(n)\right| & \leq \sum_{n=1}^{N} \frac{v_{n}\left|V_{N}+V_{N} \theta_{1}(n)-W_{N}\right|}{W_{N} V_{N}} \\
& \leq \frac{\left|V_{N}-W_{N}\right|}{W_{N}}+\left|\sum_{n=1}^{N} \frac{v_{n}}{W_{N}} \theta_{1}(n)\right| \\
& \leq 2 \frac{V_{N}}{W_{N}}\left|\theta_{2}(N)\right| .
\end{aligned}
$$

So A admits a w_{n}-density if and only if it admits a v_{n}-density and, in this case, the two densities are equal.

Remark. In fact the above calculations imply a deeper property: Define the lower and the upper w_{n}-densities of A by $\underline{\lim }_{N} \sum_{n=1}^{N} \frac{w_{n}}{W_{N}} \mathbb{1}_{A}(n)$ and $\varlimsup_{N} \sum_{n=1}^{N} \frac{w_{n}}{W_{N}} \mathbb{1}_{A}(n)$. If v_{n} and w_{n} are equivalent, then the lower (respectively upper) w_{n}-density and the lower (respectively upper) v_{n}-density of any $A \subset \mathbb{N}^{*}$ are equal. And it is easy to verify that if two weighted densities are equivalent, the corresponding lower (or upper) densities of any $A \subset \mathbb{N}^{*}$ are not necessarily equal. For example, the upper 1 -density and the upper n-density of the set of positive integers whose first digit is 1 are respectively $\frac{5}{9}$ and $\frac{3}{4}$, although the 1-density and the n-density are equivalent as we shall see below.

The classical example of a subset of \mathbb{N}^{*} which admits a logarithmic density but does not admit any natural density is $B=\bigcup_{m=0}^{+\infty}\left\{n: e^{m} \leq n<2 e^{m}\right\}$. We now generalize this example to densities lighter than the natural and the logarithmic ones.

Set $\log ^{(1)}=\log , \exp ^{(1)}=\exp$ and, for $q \geq 1, \log ^{(q+1)}=\log { }^{(q)} \circ \log , \exp ^{(q+1)}=$ $\exp ^{(q)} \circ \exp$ and

$$
B_{q}=\bigcup_{m=0}^{+\infty}\left\{n: \exp ^{(q)}\left(e^{m}\right) \leq n<\exp ^{(q)}\left(2 e^{m}\right)\right\}
$$

With these notations, the numbers $g_{q}(n)$ (see the introduction for definition) can be defined by $g_{0}(n)=n$ and $g_{q}(n)=g_{q-1}(n) \log ^{(q)} n \quad(q \geq 1$ and n large enough).

Proposition 2. For $q \geq 1, B_{q}$ admits a $\frac{1}{g_{q}(n)}$-density, but does not admit any $\frac{1}{g_{q-1}(n)}$ density.

Proof. We shall use techniques like those of Fuchs and Letta in [4]. Let $q \geq 1, w_{n}=$ $\frac{1}{g_{q-1}(n)}, v_{n}=\frac{1}{g_{q}(n)}, W_{N}=\sum_{1}^{N} w_{n}, V_{N}=\sum_{1}^{N} v_{n}, a_{m}=\exp ^{(q)}\left(e^{m}\right), b_{m}=\exp ^{(q)}\left(2 e^{m}\right)$, $C_{m}=\left\{n: a_{m} \leq n<b_{m}\right\}, D_{m}=\left\{n: a_{m-1} \leq n<a_{m}\right\}$ and $E_{m}=\left\{n: b_{m-1} \leq n<b_{m}\right\}$.

Then

$$
\underline{\lim }_{N} \sum_{n=1}^{N} \frac{w_{n}}{W_{N}} \mathbb{1}_{B_{q}}(n)=\lim _{M} \frac{\sum_{m=1}^{M} \sum_{n \in C_{m-1}} w_{n}}{\sum_{m=0}^{M} \sum_{n \in D_{m}} w_{n}}=\lim _{m} \frac{\sum_{n \in C_{m-1}} w_{n}}{\sum_{n \in D_{m}} w_{n}}
$$

because the numbers in the numerators sum to infinity and so do the ones in the denominators. For the same reasons,

$$
\varlimsup_{N} \sum_{n=1}^{N} \frac{w_{n}}{W_{N}} \mathbb{1}_{B_{q}}(n)=\lim _{m} \frac{\sum_{n \in C_{m}} w_{n}}{\sum_{n \in E_{m}} w_{n}}
$$

Using classical integral calculations, we get $\sum_{n \in C_{m}} w_{n} \sim e^{m}, \sum_{n \in D_{m}} w_{n} \sim e^{m}-e^{m-1}$ and $\sum_{n \in E_{m}} w_{n} \sim 2\left(e^{m}-e^{m-1}\right)$ as $m \rightarrow+\infty$. Hence

$$
\underline{\lim }_{N} \sum_{n=1}^{N} \frac{w_{n}}{W_{N}} \mathbb{1}_{B_{q}}(n)=\frac{1}{e-1} \quad \text { and } \quad \overline{\lim }_{N} \sum_{n=1}^{N} \frac{w_{n}}{W_{N}} \mathbb{1}_{B_{q}}(n)=\frac{e}{2(e-1)}
$$

Since $\lim _{m} \sum_{n \in C_{m}} v_{n}=\log 2$ and $\lim _{m} \sum_{n \in D_{m}} v_{n}=\lim _{m} \sum_{n \in E_{m}} v_{n}=1$, the same arguments give

$$
\underline{\lim }_{N} \sum_{n=1}^{N} \frac{v_{n}}{V_{N}} \mathbb{1}_{B_{q}}(n)=\varlimsup_{N} \sum_{n=1}^{N} \frac{v_{n}}{V_{N}} \mathbb{1}_{B_{q}}(n)=\log 2 .
$$

The following theorem gives a general view of the $\frac{1}{g_{q}(n)}$-densities $(q=1,2, \ldots)$ in connection with the first digit phenomenon. For any real $x,\{x\}$ denotes the fractional part of x, that is to say $\{x\}=x-[x]$ where $[x]$ is the greatest integer smaller than x and δ_{x} is the Dirac measure at x. For $x>0$, we set $f(x)=\left\{\log _{10} x\right\}$.

Theorem 4. Let $q \geq 0$. The sequence $\left(\mathcal{M}\left(\log ^{(q+2)} n\right)\right)_{n}$ does not admit any distribution in the sense of the $\frac{1}{g_{q}(n)}$-density.

Proof. In the sequel, n_{0} is any integer greater than $\exp ^{(q+2)}(1)$. For $n \geq n_{0}$, let $w_{n}=$ $\frac{1}{g_{q}(n)}, x_{n}=\mathcal{M}\left(\log ^{(q+2)} n\right)$ and $y_{n}=\log _{10}\left(\log ^{(q+2)} n\right)$. For $N \geq n_{0}$, let

$$
P_{N}=\sum_{n=n_{0}}^{N} \frac{w_{n}}{W_{N}} \delta_{x_{n}} \quad \text { and } \quad Q_{N}=\sum_{n=n_{0}}^{N} \frac{w_{n}}{W_{N}} \delta_{\left\{y_{n}\right\}}
$$

where $W_{N}=\sum_{n=n_{0}}^{N} w_{n}$, and let

$$
G_{N}(t)=\sum_{n=n_{0}}^{N} \frac{w_{n}}{W_{N}} e^{i t\left\{y_{n}\right\}} \quad(t \text { real })
$$

Note that W_{N} is equivalent to $\log ^{(q+1)} N$ as $N \rightarrow+\infty$ and that G_{N} is the Fourier transform of Q_{N}. Since $f(x)=f(\mathcal{M}(x))$, we get $Q_{N}=P_{N} f^{-1}$, that is to say, $Q_{N}(I)=P_{N}\left(f^{-1}(I)\right)$ for every interval $I \subset[0,1[$. It is easy to verify that the weak convergence of the sequence $\left(P_{N}\right)_{N}$ to some probability measure μ is equivalent to the weak convergence of $\left(Q_{N}\right)_{N}$ to μf^{-1} and, by Lévy's theorem on weak convergence, this
is equivalent to the pointwise convergence of $\left(G_{N}\right)_{N}$ to the Fourier transform of μf^{-1}. So, to prove our theorem, it suffices to verify that the sequence $\left(G_{N}(2 \pi)\right)_{N}$ diverges.

Fix $N>n_{0}$. Since $e^{2 i \pi\left\{y_{n}\right\}}=e^{2 i \pi y_{n}}$, the classical Abel transform of a sum gives

$$
G_{N}(2 \pi)=e^{2 i \pi y_{N}}+\frac{1}{W_{N}} \sum_{n=n_{0}}^{N-1} W_{n}\left(e^{2 i \pi y_{n}}-e^{2 i \pi y_{n+1}}\right) .
$$

Now, the mean value inequality gives

$$
\left|e^{2 i \pi y_{n}}-e^{2 i \pi y_{n+1}}\right| \leq \frac{2 \pi(\log 10)^{-1}}{g_{q+2}(n)} \quad\left(n=n_{0}, \ldots, N-1\right)
$$

Moreover,

$$
\frac{W_{n}}{g_{q+2}(n)} \sim \frac{w_{n}}{\log ^{(q+2)} n} \quad(n \rightarrow+\infty) .
$$

Since the numbers above sum to infinity,

$$
\sum_{n=n_{0}}^{N-1} \frac{W_{n}}{g_{q+2}(n)} \sim \sum_{n=n_{0}}^{N-1} \frac{w_{n}}{\log ^{(q+2)} n} \quad(N \rightarrow+\infty)
$$

The classical generalizations of Cesàro's theorem (see [12, page 43] or the lemma in Section 8 of the present paper) show that

$$
\lim _{N \rightarrow+\infty} \sum_{n=n_{0}}^{N-1} \frac{w_{n}}{W_{N} \log ^{(q+2)} n}=0
$$

because $\lim _{n} \frac{1}{\log ^{(q+2)} n}=0$. So $\left(G_{N}(2 \pi)\right)_{N}$ diverges since $\left(e^{2 i \pi y_{N}}\right)_{N}$ diverges and

$$
\lim _{N \rightarrow+\infty} \frac{1}{W_{N}} \sum_{n=n_{0}}^{N-1} W_{n}\left(e^{2 i \pi y_{n}}-e^{2 i \pi y_{n+1}}\right)=0
$$

4 Hierarchy of weighted densities

Combining sections 2 and 3 gives a clear vision of the hierarchy between weighted densities.
General principle: Theorem 2 shows clearly that the heavier the weights w_{n} are, the rarer are the subsets A of \mathbb{N}^{*} which admit a w_{n}-density. Moreover, when A does not admit any density, the w_{n} 's heaviness affects the lower and the upper w_{n}-densities of A (see the above remark).

On this subject, we must mention [9] which contains a study of the continuity of the function $\alpha \mapsto\left(\underline{d}_{\alpha}(A), \bar{d}_{\alpha}(A)\right)$ where $A \subset \mathbb{N}^{*}$ is fixed, α is varying in $[-1 ;+\infty]$ and $\underline{d}_{\alpha}(A)$ and $\bar{d}_{\alpha}(A)$ are respectively the lower and the upper n^{α}-densities. For example, the set A of positive integers whose first digit is 1 does not admit any n^{α}-density for $\alpha>-1$, but, since it verifies the conditions of theorem 2 in [9], the function
$\alpha \mapsto\left(\underline{d}_{\alpha}(A), \bar{d}_{\alpha}(A)\right)$ is continuous at point -1 and so $\underline{d}_{\alpha}(A)$ and $\bar{d}_{\alpha}(A)$ monotonically tend to $\log _{10} 2$ as $\alpha \rightarrow-1^{+}$.
Exponential weights: The weights $w_{n}=\alpha^{n}(\alpha \neq 1)$ are not relevant because the condition $\sum_{n} w_{n}=+\infty$ implies $\alpha>1$ and then, by theorem 3 , the only subsets of \mathbb{N}^{*} which admit a w_{n}-density are the finite and the cofinite ones. The densities of these kinds of subsets of \mathbb{N}^{*} are respectively equal to 0 and 1 , whatever the value of $\alpha>1$ is.
Strict hierarchy: It is evident (see straight above) that the α^{n}-densities with $\alpha>1$ are strictly stronger than the 1-density and it is well known that the 1-density is strictly stronger than the $\frac{1}{n}$-density ([22, page 272] for example). We can now state: the $\frac{1}{n}$ density is strictly stronger than the $\frac{1}{n \log n}$-density which is strictly stronger than the $\frac{1}{n(\log n)(\log \log n)}$-density and more generally, for $q \geq 0$, the $\frac{1}{g_{q}(n)}$-density is stricly stronger than the $\frac{1}{g_{q+1}(n)}$-density. Indeed, the $\frac{1}{g_{q}(n)}$-density is stronger than the $\frac{1}{g_{q+1}(n)}$-density by the condition (2) in theorem 1 and the $\frac{1}{g_{q+1}(n)}$-density is not stronger than the $\frac{1}{g_{q}(n)}$-density as proposition 2 shows.
Natural density equivalence class: Most of the weights which come naturally to mind lead to densities which are equivalent to the 1-density. Firstly, as Kuipers and Niederreiter noticed [16, page 64], all the n^{α}-densities with $-1<\alpha$ are equivalent. Indeed, if $-1<\alpha_{1}<\alpha_{2}$, condition (2) of theorem 1 proves that the $n^{\alpha_{2}}$-density is stronger than the $n^{\alpha_{1}}$-density and condition (3) shows the converse. Secondly, for $-1<\alpha$ and $\beta \in \mathbb{R}$, the $n^{\alpha}(\log n)^{\beta}$-density is equivalent to the n^{α}-density and then to the 1-density because the condition (2) proves that it is stronger than the $\sqrt{n^{\alpha-1}}$ density and weaker than the $n^{\alpha+1}$-density. Moreover, proposition 1 shows that all the $P(n) Q(\log n)$-densities (P and Q polynomials) belong to this equivalence class too and so do the p_{n}^{α}-densities with $\alpha>-1$ because $p_{n} \sim n \log n$ as $n \rightarrow+\infty$.
Logarithmic density equivalence class: Somehow, this equivalence class is smaller than the previous one (although it possesses infinitely many elements). Condition (3) of theorem 1 shows that, if $w_{n}=\frac{(\log n)^{\alpha}}{n}$ with $\alpha>-1$, then the w_{n}-density is equivalent to the $\frac{1}{n}$-density. This and proposition 1 prove that the $\frac{P(\log n)}{n}(P$ polynomial) and the $\frac{\log p_{n}}{p_{n}}$-density (utilized in [14]) belong to this equivalence class too.
Weaker densities equivalence classes: When $w_{n}=\frac{\left(\log ^{(q+1)} n\right)^{\alpha}}{g_{q}(n)}(q \geq 1)$ with $\alpha>$ -1 , the same arguments show that the w_{n}-density is equivalent to the $\frac{1}{g_{q}(n)}$-density and again the only simple way to construct other equivalent densities seems to use proposition 1. For example, the $\frac{1}{p_{n}}$-density (utilized in [8] and [23]) and the $\frac{1}{n \log n}$ density are equivalent (case $q=1$).
Maybe the weakest density: Let $w_{n}^{(q)}=\frac{1}{g_{q}(n)}$. Then, by theorem 2, the limits below exist and we can set
$\underline{W}_{\infty}(A)=\lim _{q \rightarrow+\infty}\left(\underline{\lim }_{N} \sum_{n=1}^{N} \frac{w_{n}^{(q)}}{W_{N}^{(q)}} \mathbb{1}_{A}(n)\right)$ and $\bar{W}_{\infty}(A)=\lim _{q \rightarrow+\infty}\left(\overline{\lim }_{N} \sum_{n=1}^{N} \frac{w_{n}^{(q)}}{W_{N}^{(q)}} \mathbb{1}_{A}(n)\right)$.
And so we have defined a new lower density and a new upper density which define a density when they are equal. This new density can be named the W_{∞}-density. It is not,
apparently, a weighted density and is weaker than all the densities we have considered in the present paper.

5 Consequences for Benford sequences

We give here some answers to the questions we have listed in Section 1 .
Answer to question 1: The $\frac{1}{g_{q}(n)}$-densities for $q \geq 1$ are all strictly weaker than the logarithmic one.
Answer to question 2: Assuming that everybody agrees to consider $(\log \log n)_{n}$ as a classical sequence, theorem 4 shows that the correct answer to question 2 is yes. It also shows that, however light the weights are, we can find a sequence of positive numbers whose mantissae do not admit any distribution in the sense of the corresponding density.
Answer to question 3: Proposition 2 and theorem 4 show that there is an interest to consider densities which are strictly weaker than the logarithmic one. The question of the interest of densities strictly stronger than the natural one remains open because of the second point of Section 4.
Answer to question 4: Yes, the first digit phenomenon is verified by $u_{n}=2^{n}$, $u_{n}=n!, u_{n}=n^{n}$ or $u_{n}=F_{n}$ if we choose heavier weights like n^{α} with $\alpha>0$ and no, there is no maximal value for α. The first digit phenomenon is not verified if we choose weights like α^{n} with $\alpha>1$.
Answer to question 5: No, the first digit phenomenon is not verified by $u_{n}=n$ or $u_{n}=p_{n}$ if we choose weights like $\frac{1}{\sqrt{n}}$ because, if that was the case, it would be verified in the sense of the natural density. However, theorem 2 shows that, if we choose weights like n^{α} with $-1<\alpha<0$, that will bring the upper and the lower densities (see the remark in 3.1) together.
Answer to question 6: No line of $\left(\mathcal{M}\left(u_{n}^{m}\right)\right)_{m, n}$ admits a distribution in the sense of the natural density and then in the sense of the n^{α}-density for $-1<\alpha<0$. But these rows tend (as $m \rightarrow+\infty$) to be distributed as μ_{B} in the sense of the natural density [6]. Somehow, there is a quantum leap from $\alpha=-1$ to $\alpha=0$ (and even $\alpha=1$, and so on) as $m \rightarrow+\infty$. Of course, the last sentence of answer to question 5 is still true here.

6 Other densities

Some authors [8], [14] or [23] have introduced the notion of conditional densities relative to the set of prime numbers. The natural conditional density [8] is in fact the 1-density, the logarithmic conditional density [8] and [14] is the $\frac{1}{p_{n}}$-density and is equivalent to the $\frac{1}{n \log n}$-density by proposition 1 and the $\frac{\log p_{n}}{p_{n}}$-density [23] is equivalent to the $\frac{1}{n}$-density.

In [21], Serre claimed that Bombieri proved the following result: the analytic density of $A=\left\{n: D\left(p_{n}\right)=1\right\}$ is $\log _{10} 2$, that is to say

$$
\lim _{\sigma \rightarrow 1^{+}} \zeta(\sigma)^{-1} \sum_{n \in A} n^{-\sigma}=\lim _{\sigma \rightarrow 1^{+}}(\sigma-1) \sum_{n \in A} n^{-\sigma}=\log _{10} 2
$$

where ζ is the Riemann zeta function. This density is sometimes called Dirichlet density or ζ-density and is equivalent to the logarithmic density [22, page 274]. Moreover, the analytic density relative to prime numbers of $B \subset \mathbb{N}^{*}$ is defined by

$$
\lim _{\sigma \rightarrow 1^{+}}(-\log (\sigma-1))^{-1} \sum_{p_{n} \in B} p_{n}^{-\sigma}
$$

(Dirichlet used it to prove his theorem on arithmetic progressions), but we have not found it in papers on the first digit phenomemon.

In [7], [13], [3], [20] and [5] for instance, the H_{∞}-density is defined in the following manner. A subset $A \subset \mathbb{N}^{*}$ being given, set $H_{0, n}=\mathbb{1}_{A}(n)(n \geq 1)$ and for $m \geq 1$,

$$
H_{m, n}=\frac{1}{n} \sum_{j=1}^{j=n} H_{m-1, j} \quad(n \geq 1) .
$$

When the sequence $\left(H_{m, n}\right)_{n}$ converges, its limit is called the H_{m}-density of A. One says that A admits a H_{∞}-density when

$$
\lim _{m \rightarrow+\infty} \lim _{n} H_{m, n}=\lim _{m \rightarrow+\infty} \varlimsup_{n} H_{m, n}
$$

and then its H_{∞}-density is the common value of these two limits. Since the sequences $\left(\mathbb{1}_{A}(n)\right)_{n}$ are bounded, all the H_{m}-densities are equivalent to the natural density [12, page 62]. By Cesàro's theorem, the natural density is stronger than the H_{∞}-density. In [5], Duran shows that the H_{∞}-density is stronger than the logarithmic density. In [3], Diaconis exhibits examples which prove that the converses of these two properties are false.

In short, each conditional weighted density can be viewed as a classical weighted density and belongs to one of the equivalence classes we have listed above and the natural density is strictly stronger than the H_{∞}-density which is strictly stronger than the logarithmic density which is equivalent to the analytic density.

We have focused our attention on densities employed in papers about the first digit phenomenon papers, but the Analytic Number Theory specialists use to consider other densities. Many of them are listed in [10].

7 Conclusion

We list in this Section a few open (as far as we know) questions about weighted densities and their hierarchy.
Open question 1: What is the exact influence of the weights w_{n} over the discrepancy

$$
\sup _{1<a<10}\left|\left(\sum_{n=1}^{N} \frac{w_{n}}{W_{N}} \mathbb{1}_{[1 ; a[}\left(\left\{\mathcal{M}\left(u_{n}\right)\right\}\right)\right)-\log _{10} a\right| ?
$$

Open question 2: Is the natural density the strongest weighted density among those which are relevant in the study of mantissae distributions?

Open question 3: Can we find two weighted densities such that none of them is stronger than the other? If yes, can we find a subset of \mathbb{N}^{*} admitting two distinct weighted densities?
Open question 4: We can replace $w_{n}=1$ by $w_{n}=n^{\alpha}$ with $-1<\alpha<0$ in the study of the rows of the infinite matrix $\left(\mathcal{M}\left(u_{n}^{m}\right)\right)_{m, n}$ where $u_{n}=n$ or $u_{n}=p_{n}$. How does the choice of α influence over the choice of the function N in the formula

$$
\lim _{m \rightarrow+\infty} \sup _{1<a<10}\left|\sum_{n=1}^{N(m)} \frac{w_{n}}{W_{N(m)}} \mathbb{1}_{[1 ; a[}\left(\mathcal{M}\left(u_{n}^{m}\right)\right)-\log _{10} a\right|=0
$$

and over the convergence rate?
Open question 5: Is the analytic density relative to prime numbers equivalent to the $\frac{1}{p_{n}}$-density and then equivalent to the $\frac{1}{n \log n}$-density?
Open question 6: Is the W_{∞}-density (see the last paragraph of Section 4) strictly weaker than any $\frac{1}{g_{q}(n)}$-density?
Open question 7: Does the sequence $\left(\mathcal{M}\left(p_{n}\right)\right)$ admit a distribution in the sense of the H_{∞}-density?

8 Appendix

In the sake of clarity and self-contained presentation, here are the proofs of the three theorems stated in Section 2, rewritten in the context of weighted densities.

Lemma. Let $\left(S_{n}\right)_{n \geq 1}$ be a convergent sequence of real numbers and $\left(C_{N, n}\right)_{N, n}$ be a triangular array ($N \geq 1,1 \leq n \leq N$) of real numbers verifying

$$
\begin{gather*}
\text { the sequence }\left(\sum_{n=1}^{N}\left|C_{N, n}\right|\right)_{N} \text { is bounded, } \tag{4}\\
\forall n \geq 1, \lim _{N \rightarrow+\infty} C_{N, n}=0 \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
\forall N \geq 1, \sum_{n=1}^{N} C_{N, n}=1 \tag{6}
\end{equation*}
$$

For $N \geq 1$, we set

$$
T_{N}=\sum_{n=1}^{N} S_{n} C_{N, n} .
$$

Then the sequence $\left(T_{N}\right)_{N \geq 1}$ converges and $\left(S_{n}\right)_{n \geq 1}$ and $\left(T_{N}\right)_{N \geq 1}$ have the same limit.
Proof. Let $K>0$ be a bound evoked in (4). Let $\varepsilon>0, N_{0}$ such that, for every $n>N_{0}$
and every $N>N_{0},\left|S_{n}-S_{N}\right| \leq \varepsilon K^{-1}$ and let $N>N_{0}$. Then

$$
\begin{aligned}
\left|T_{N}-S_{N}\right| & =\left|\sum_{n=1}^{N} S_{n} C_{N, n}-S_{N} \sum_{n=1}^{N} C_{N, n}\right| \\
& =\left|\sum_{n=1}^{N_{0}}\left(S_{n}-S_{N}\right) C_{N, n}+\sum_{n=N_{0}+1}^{N}\left(S_{n}-S_{N}\right) C_{N, n}\right| \\
& \leq\left|\sum_{n=1}^{N_{0}}\left(S_{n}-S_{N}\right) C_{N, n}\right|+\varepsilon
\end{aligned}
$$

by (6) and the definition of N_{0}. It remains to remark that, by (5),

$$
\lim _{N \rightarrow+\infty}\left|\sum_{n=1}^{N_{0}}\left(S_{n}-S_{N}\right) C_{N, n}\right|=0
$$

since all the sequences $\left(S_{n}-S_{N}\right)_{N \geq 1}\left(n=1, \ldots, N_{0}\right)$ converge.

8.1 Proof of theorem 1.

Let $A \subset \mathbb{N}^{*}$ and, for every $N \geq 1$,

$$
S_{N}=\sum_{n=1}^{N} \frac{w_{n}}{W_{N}} \mathbb{1}_{A}(n) \quad \text { and } \quad T_{N}=\sum_{n=1}^{N} \frac{v_{n}}{V_{N}} \mathbb{1}_{A}(n) .
$$

Then $w_{1} s_{1}=W_{1} S_{1}$ and $w_{N} s_{N}=W_{N} S_{N}-W_{N-1} S_{N-1} \quad(N=2, \ldots)$ and then, for every $N \geq 1$,

$$
T_{N} V_{N}=\frac{v_{1}}{w_{1}} W_{1} S_{1}+\frac{v_{2}}{w_{2}}\left(W_{2} S_{2}-W_{1} S_{1}\right)+\ldots+\frac{v_{N}}{w_{N}}\left(W_{N} S_{N}-W_{N-1} S_{N-1}\right),
$$

that is to say

$$
T_{N}=\sum_{n=1}^{N} S_{n} C_{N, n}
$$

with

$$
C_{N, N}=\frac{v_{N}}{w_{N}} \frac{W_{N}}{V_{N}}
$$

and, for $n=1, \ldots, N-1$,

$$
C_{N, n}=\left(\frac{v_{n}}{w_{n}}-\frac{v_{n+1}}{w_{n+1}}\right) \frac{W_{n}}{V_{N}} .
$$

So the condition (5) of the lemma is verified. The condition (6) too since, if the $\mathbb{1}_{A}(n)$ are all equal to 1 , so are the S_{N} and the T_{N}.

If (2) is verified, then the $C_{N, n}$ are nonnegative and so the sequence $\left(\sum_{n=1}^{N}\left|C_{N, n}\right|\right)_{N}$ is constant and this gives the lemma's condition (4).

If (3) is verified, then $C_{N, N}$ is nonnegative and $C_{N, n}$ is negative for $n=1, \ldots, N-1$. Then

$$
\sum_{n=1}^{N}\left|C_{N, n}\right|=C_{N, N}-\sum_{n=1}^{N-1} C_{N, n}
$$

Since, as we have seen above,

$$
C_{N, N}+\sum_{n=1}^{N-1} C_{N, n}=1,
$$

this and the second part of second condition of theorem 1 prove that

$$
\sum_{n=1}^{N}\left|C_{N, n}\right|=2 C_{N, N}-1=2 \frac{v_{N}}{w_{N}} \frac{W_{N}}{V_{N}}-1
$$

is bounded.Condition (4) of the lemma is verified.

8.2 Proof of theorem 2.

With the same notations as in theorem 1, the coefficients $C_{N, n}$ in the formula

$$
T_{N}=\sum_{n=1}^{N} S_{n} C_{N, n}
$$

are nonnegative (see the calculations above) if the condition of theorem 2 is verified. Let $\varepsilon>0, I=\underline{\lim }_{n} S_{n}$ and N_{0} an integer such that

$$
\forall n>N_{0}, S_{n}>I-\varepsilon .
$$

Then, for each $N>N_{0}$,

$$
T_{N}>\sum_{n=1}^{N_{0}} S_{n} C_{N, n}+(I-\varepsilon) \sum_{n=N_{0}+1}^{N} C_{N, n} .
$$

This implies $\lim _{N} T_{N} \geq I-\varepsilon$ because

$$
\lim _{N \rightarrow+\infty} C_{N, n}=0 \quad\left(n=1, \ldots, N_{0}\right)
$$

and so

$$
\lim _{N \rightarrow+\infty} \sum_{n=N_{0}+1}^{N} C_{N, n}=1
$$

(recall that the $C_{N, n}$ verify the lemma's condition (6)).
The superior limits can be investigated in the same way.

8.3 Proof of theorem 3.

Let again $A \subset \mathbb{N}^{*}$ and

$$
S_{N}=\sum_{n=1}^{N} \frac{w_{n}}{W_{N}} \mathbb{1}_{A}(n) .
$$

Then, for each N,

$$
\begin{aligned}
\mathbb{1}_{A}(N)-S_{N} & =\frac{W_{N} S_{N}-W_{N-1} S_{N-1}}{w_{N}}-\frac{W_{N}-W_{N-1}}{w_{N}} S_{N} \\
& =\frac{W_{N-1}}{w_{N}}\left(S_{N}-S_{N-1}\right) .
\end{aligned}
$$

We can conclude due to Cauchy's criteria since the sequence $\left(\frac{W_{N-1}}{w_{N}}\right)_{N}$ is bounded and the sequence $\left(\mathbb{1}_{A}(N)\right)_{N}$ cannot converge unless A is finite or cofinite.

References

[1] Benford F. (1938), The law of anomalous numbers, Proceedings of the American Philosophical Society, 78, 551-572.
[2] Diaconis P. (1977), The distribution of leading digits and uniform distribution mod 1, The Annals of Probability, 5(1), 72-81.
[3] Diaconis P. (1977), Examples for the Theory of Infinite Iteration of Summability Methods, Canadian Journal of Mathematics, 29(3), 489-497.
[4] Duncan R. L. (1969), Note on the Initial Digit Problem, Fibonacci Quarterly, 7(5), 474-475.
[5] Duran J. P. (1974), Almost convergence, summability and ergodicity, Canadian Journal of Mathematics, 26, 372-387.
[6] Eliahou S., Massé B. and Schneider D. (2011), Benford's Law and the Mantissa Distribution of Natural and Prime Number Powers, Technical Report L.M.P.A., 447.
[7] Flehinger B. J. (1966), On the probability that a random integer has initial digit A, The Amererican Mathematical Monthly, 73, 1056-1061.
[8] Fuchs A. and Letta G. (1996), Le problème du premier chiffre décimal pour les nombres premiers, Electronical Journal of Combinatorics, 3(2), Research Paper 25 (electronic).
[9] Giuliano-Antonini R., Grekos G. and Mišík L. (2007), On weighted densities, Czechoslovak Mathematical Journal, 57(3), 947-962.
[10] Grekos G. (2005), On various definitions of density (survey), Tatra Mountains Mathematical Publications, 31, 17-27.
[11] Hamming R. (1976), On the distribution of numbers, Bell System Technical Journal, 49, 1609-1625.
[12] Hardy G. H. (1949), Divergent Series, Oxford University Press.
[13] Janvresse E. and de la Rue T. (2004), From uniform distributions to Benford's law, Journal of Applied Probability, 41, 1203-1210.
[14] Kanemitsu S., Nagasaka K., Rauzy G. and Shiue J-S. (1988), On Benford's law: The first digit problem, Lecture Notes in Mathematics, 1299, Springer Berlin, 158169.
[15] Knuth D. E. (1968), The Art of Computer Programming, volume 2, Reading, Massachusetts: Addison-Wesley, 238-247.
[16] Kuipers L. et Niederreiter H. (2006), Uniform Distribution of Sequences, Dover Publications New-York.
[17] Newcomb S. (1881), Note on the frequency of use of the different digits in natural numbers, American Journal of Mathematics, 4(1), 39-40.
[18] Nigrini M. J. and Mittermaier L. J. (1997), The use of Benford's law as an aid in analytical procedures, Auditing: A Journal of Practce and Theory, 16(2), 52-57.
[19] Posch P. N. (2008), A Survey of Sequences and Distribution Functions satisfying the First-Digit-Law, Journal of Statistics and Management Systems, 11(1), 1-19.
[20] Schatte P. (1987), Some estimates of the H_{∞}-uniform distribution. Monatshefte für Mathematik, 103, 233-240.
[21] Serre J-P. (1996), A Course in Arithmetic, Springer, New York.
[22] Tenenbaum G. (1995), Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, 46, Cambridge University Press.
[23] Whitney R.E. (1972), Initial digits for the sequence of primes, The Amererican Mathematical Monthly, 79, 150-152.
[24] Wintner A. (1935), On the cyclical distribution of the logarithms of the prime numbers, The Quarterly Journal of Mathematics, 6(1), 65-68.

Authors' addresses:

- Bruno Massé ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$, Dominique Schneider ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$,
${ }^{\text {a }}$ Univ Lille Nord de France, F-59000 Lille, France
${ }^{\text {b }}$ ULCO, LMPA J. Liouville, B.P. 699, F-62228 Calais, France
${ }^{c}$ CNRS, FR 2956, France
e-mail: \{bmasse, dominique.schneider\}@lmpa.univ-littoral.fr

