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Abstract

The aim of this paper is to clarify some basic and useful facts about the various

notions of densities commonly used in papers on the mantissa distribution of se-

quences of numbers. We focus on the weighted densities and their hierarchy. Our

main tools are classical properties of summation methods. Equivalence classes

of weighted densities are identi�ed and their hierarchy is stated. This permits

us to give clear answers to several questions about the �rst digit phenomenon.

Moreover, however light the weights are, we exhibit an example of a sequence of

positive numbers whose mantissae do not admit any distribution in the sense of

the corresponding density.

Keywords: Benford's law, �rst digit phenomenon, mantissa, weighted density,

hierarchy
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1 Introduction and de�nitions

Following the early works of Newcomb and Benford [17, 1] on real life numbers, many

authors have studied the distribution of the �rst digit in base 10 of sequences (un)n of

positive numbers like un = 2n, un = n!, un = nn, un = Fn where Fn is the nth Fibonacci

number, un = n or un = pn where pn is the nth prime number and so on (see [19] for a

survey). In the �rst four cases, they proved that, if D(un) denotes the �rst digit of un

and log10 the decimal logarithm, the natural density of Auk = {n ∈ N∗ : D(un) = k} is
log10

(
k+1
k

)
, that is to say

lim
N→+∞

1

N

N∑
n=1

1Auk (n) = log10

(
k + 1

k

)
(k = 1, . . . , 9)

(here and in the sequel, 1B is the indicator function of the subset B). In particular,

about 30.1% of the un have �rst digit 1 in the sense of the above formula. This property

is known as the �rst digit phenomenon. Classical applications of this phenomenon are

fraud detection [18] and computer design [15, 11].
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In fact, we know a more precise property which needs three other de�nitions to be

stated: the Benford's law (in base 10) is the probability measure µB on the interval

[1; 10[ de�ned by

µB([1; a[ ) = log10 a (1 ≤ a < 10) .

The mantissa of a positive real number x is the unique numberM(x) in [1; 10[ such

that there exists an integer k verifying x =M(x)10k (there exists another de�nition of

the mantissa, but for technical reasons we shall use this one). A sequence (Un)n of real

numbers in [1; 10[ is called natural-Benford if it is naturally distributed as µB, that is

to say if

lim
N→+∞

1

N

N∑
n=1

1[1; a[(Un) = log10 a (1 ≤ a < 10) .

The above formula means that, for each a ∈ [1; 10[ , the set {n ∈ N∗ : 1 ≤ Un < a}
admits a natural density and its natural density is log10 a and this can be interpreted

as the weak convergence of the uniform probability measure on the set {U1, . . . , UN}
to µB as N → +∞ .

A sequence (un)n of positive numbers is also called natural-Benford if the sequence

of mantissae (M(un))n is natural-Benford. We can now state: the sequences (2n)n,

(n!)n, (nn)n and (Fn)n are all natural-Benford. The study of the mantissa is of course

more general than the study of the �rst digit and allows to derive easily the distribution

of every digit and every string of digits of the un.

When un = n or un = pn (see [8] and [24]),

lim inf
N→+∞

1

N

N∑
n=1

1Au1 (n) =
1

9
and lim sup

N→+∞

1

N

N∑
n=1

1Au1 (n) =
5

9
. (1)

So these two sequences do not verify the �rst digit phenomenon in the sense of the

natural density. From [4], we know that they verify this phenomenon in the sense of

the logarithmic density, that is is to say

lim
N→+∞

1

logN

N∑
n=1

1

n
1Auk (n) = log10

(
k + 1

k

)
(k = 1, . . . , 9)

where log is the natural logarithm. In a way (but not the same way as above), about

30.1% of the un have �rst digit 1. One corrects the defect in (1) by properly assigning

lighter weights to larger numbers.

A more precise property is available in [6] and needs another de�nition to be stated.

A sequence (Un)n of real numbers in [1; 10[ is called logarithmic-Benford if it is loga-

rithmically distributed as µB, that is to say if

lim
N→+∞

(
N∑
n=1

1

n

)−1 N∑
n=1

1

n
1[1; a[(Un) = log10 a (1 ≤ a < 10) .

The above formula means that, for each a ∈ [1; 10[ , the set {n ∈ N∗ : 1 ≤ Un < a}
admits a logarithmic density and its logarithmic density is log10 a and again this can
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be interpreted as the weak convergence of some sequence (PN) of discrete probability

measures to µB as N → +∞ , the atoms of PN being again U1, . . . , UN . A sequence

(un)n of positive numbers is also called logarithmic-Benford if the sequence of mantissae

(M(un))n is logarithmic-Benford.

We can now state: the sequences (n)n and (pn)n are logarithmic-Benford. Note

that [8] and [23] consider the relative logarithmic density in the set of prime numbers

which is strictly weaker than the logarithmic density, as we shall see below.

In the spirit of Diaconis' work about binomial coe�cients [2], it is also proved in [6]

that the rows of the in�nite matrix (M(umn ))m,n, which are logarithmic-Benford and

not natural-Benford, tend to be natural-Benford as m tends to in�nity; that is to say:

there exists an increasing function N from N∗ to N∗ such that

lim
m→+∞

sup
1<a<10

∣∣∣∣∣∣ 1

N(m)

N(m)∑
n=1

1[1; a[(M(umn ))− log10 a

∣∣∣∣∣∣ = 0 .

Of course, some sequences of mantissae of positive numbers are neither natural nor

logarithmic-Benford. The examples of such sequences which come naturally to mind,

like (M(10n))n, do admit a distribution (distinct from the Benford's one) anyway.

1.1 Some questions

The quite strange facts described above generate many questions. Here are a few ones,

that shall be answered in Section 5 below:

Question 1: Are there densities which are strictly weaker (see below) than the loga-

rithmic one?

Question 2: Are there classical sequences of positive numbers whose mantissae do not

admit any distribution in the sense of natural or logarithmic densities? If yes, what

about weaker densities?

Question 3: Is there an interest to consider weights lighter than 1
n
or heavier than 1?

Question 4: Is the �rst digit phenomenon veri�ed by un = 2n, un = n!, un = nn or

un = Fn if we use weights heavier than 1, like nα with α > 0 or αn with α > 1 for

instance? If yes, is there a maximal value for α?

Question 5: Is the �rst digit phenomenon veri�ed by un = n or un = pn if we use

weights heavier than 1
n
, like 1√

n
for instance? If not, does the choice of one of these

weights have an in�uence anyway?

Question 6: If un = n or un = pn, we know from [6] that the rows of (M(umn ))m,n are

logarithmic-Benford, do not admit any distribution in the sense of the natural density

and tend to be natural-Benford. What will happen if we choose intermediate weights

(between 1 and 1
n
)?

1.2 Weighted densities

This leads us, in the wake of [9] and [8] for example, to consider the general notion of

weighted densities of A ⊂ N∗ where N∗ is the set of positive integers.
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Let (wn)n≥1 be a sequence of positive real numbers summing to in�nity and, for

each N ≥ 1, let WN =
∑N

n=1wn. One says that A ⊂ N∗ has a wn-density when the

sequence
(∑N

n=1
wn
WN

1A(n)
)
N
converges and its limit is then called the wn-density of

A. This is the limit of the weighted frequency of the elements of A among those of N∗.
The condition on the weights wn is necessary to assign the density 1

2
to the set of even

numbers, for example, and the density 0 to every �nite subset of N∗.
Another sequence (vn)n≥1 of positive real numbers summing to in�nity being given,

we set VN =
∑N

n=1 vn and we say that the wn-density is stronger than the vn-density

when, for every A ⊂ N∗,((
N∑
n=1

wn
WN

1A(n)

)
N

converges

)
=⇒

((
N∑
n=1

vn
VN

1A(n)

)
N

converges

)

and when, in this case, the two limits are equal. If either density is stronger than the

other one, then the two densities are said to be equivalent.

The most commonly used weighted densities are the two we have considered above:

the 1-density called natural or arithmetic density and the 1
n
-density called logarithmic

or harmonic density. In [6], the 1
n logn

-density is also considered and called the loglog-

density. In some papers on Benford's law ([8] and [23] for example), we also �nd

the so-called logarithmic density conditioned (or relative) to the prime numbers which

can be seen as the 1
pn
-density. The other weights that come immediately to mind

are wn = αn where α > 1, wn = nα or wn = pαn with α > 0 or −1 < α < 0,

wn = nα(log n)β or wn = pαn(log pn)
β with α > −1 and β ∈ R, wn polynomial, and

wn = 1
gq(n)

with g0(n) = n, g1(n) = n log n, g2(n) = n(log n)(log log n), and so on (n

large enough).

1.3 Contents

It is well known ([22, page 272] for example) that the 1-density is strictly stronger than

the 1
n
-density and Kuipers and Niederreiter [16, page 64] mentioned a quite surprising

property: all the nα-densities with −1 < α < 0 and 0 < α are equivalent to the 1-

density. In Section 2, we state three theorems found in Hardy's book [12] which give a

clear view on the hierarchy between weighted densities. To the best of our knowledge,

these theorems are not mentioned in papers on Benford's law. Section 3 is devoted to

new results. The �rst one shows that equivalent weights lead to equivalent densities.

The second one proves that the hierachy between the 1
gq(n)

-densities (q = 0, 1, 2, . . .) is

strict. The third one states that, however light the considered weights are, we can �nd

a classical sequence of positive numbers whose mantissae do not admit any distribution

in the sense of the corresponding density. Combining sections 2 and 3 enables us to

identify in Section 4 an in�nite number of equivalence classes of weighted densities and

in Section 5 to give simple and clear answers to the questions we have listed above. We

give in Section 6 a short overview on other densities used in the study of the �rst digit

phenomenon and their connections with weighted densities. Some open problems are

described in Section 7. For the sake of clarity and self-contained exposition, we give in
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an Appendix the proofs of the theorems stated in Section 2, rewritten in the context

of weighted densities.

We have focused on numeration in base 10, but all statements remain true in every

base b ≥ 2 except for the sequence (2n)n which is not a Benford sequence in bases 2,

4, 8, and so on.

2 Summation methods properties

These properties are derived from Cesàro's and Toeplitz's works and are stated and

proved in [12, pages 42�63] in the general context of hierarchy of summation methods

applied to a sequence (sn) of �nite sums of a series. But a close look at the proofs

shows that the nature of the sequence (sn) is not important. We state them below in

the context of weighted densities. So the sequence (1A(n)) where A ⊂ N∗ will take the
place of (sn). Theorem 1 below is also stated and proved in [16, pages 63�64].

Let us recall that (vn) and (wn) are two sequences of positive real numbers summing

to in�nity and that VN =
∑N

n=1 vn and WN =
∑N

n=1wn.

Theorem 1. A su�cient condition for the wn-density to be stronger than the vn-density

is (
vn
wn

)
n

is non-increasing (2)

or (
vn
wn

)
n

is non-decreasing and

(
vNWN

wNVN

)
N

is bounded . (3)

Theorem 2 below gives a clear view on the e�ect of the heaviness of the weights.

Theorem 2. Let A ⊂ N∗. If the sequence

(
vn
wn

)
n

is non-increasing, then

limN

N∑
n=1

wn
WN

1A(n) ≤ limN

N∑
n=1

vn
VN

1A(n) ≤ limN

N∑
n=1

vn
VN

1A(n) ≤ limN

N∑
n=1

wn
WN

1A(n) .

Theorem 3 below will permit us to prove that the exponential weights are not

relevant in the context of weighted densities of a subset of N∗.

Theorem 3. Let A ⊂ N∗. If the sequence
(
WN−1

wN

)
N
is bounded, then A cannot admit

any wn-density unless A is �nite or co�nite.

3 New results

Let us recall that (vn) and (wn) are two sequences of positive real numbers summing

to in�nity and that VN =
∑N

n=1 vn and WN =
∑N

n=1wn.

Proposition 1. If vn and wn are equivalent as n→ +∞, then the vn-density and the

wn-density are equivalent too.
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Proof. It is well known that VN and WN are equivalent as N → +∞ since the vn and

the wn sum to in�nity. So we can write wn = vn + vnθ1(n) with limn θ1(n) = 0 and

WN = VN + VNθ2(N) with limN θ2(N) = 0 and

θ2(N) =
N∑
n=1

vn
VN

θ1(n) .

Consider now A ⊂ N∗. For every N ≥ 1,

∣∣∣∣∣
N∑
n=1

wn
WN

1A(n)−
N∑
n=1

vn
VN

1A(n)

∣∣∣∣∣ ≤
N∑
n=1

vn |VN + VNθ1(n)−WN |
WNVN

≤ |VN −WN |
WN

+

∣∣∣∣∣
N∑
n=1

vn
WN

θ1(n)

∣∣∣∣∣
≤ 2

VN
WN

|θ2(N)| .

So A admits a wn-density if and only if it admits a vn-density and, in this case, the

two densities are equal.

Remark. In fact the above calculations imply a deeper property: De�ne the lower and

the upper wn-densities of A by limN

∑N
n=1

wn
WN

1A(n) and limN

∑N
n=1

wn
WN

1A(n). If vn

and wn are equivalent, then the lower (respectively upper) wn-density and the lower

(respectively upper) vn-density of any A ⊂ N∗ are equal. And it is easy to verify that if

two weighted densities are equivalent, the corresponding lower (or upper) densities of

any A ⊂ N∗ are not necessarily equal. For example, the upper 1-density and the upper

n-density of the set of positive integers whose �rst digit is 1 are respectively 5
9
and 3

4
,

although the 1-density and the n-density are equivalent as we shall see below.

The classical example of a subset of N∗ which admits a logarithmic density but does

not admit any natural density is B =
⋃+∞
m=0{n : em ≤ n < 2em}. We now generalize

this example to densities lighter than the natural and the logarithmic ones.

Set log(1) = log, exp(1) = exp and, for q ≥ 1, log(q+1) = log(q) ◦ log , exp(q+1) =

exp(q) ◦ exp and

Bq =
+∞⋃
m=0

{n : exp(q)(em) ≤ n < exp(q)(2em)}.

With these notations, the numbers gq(n) (see the introduction for de�nition) can be

de�ned by g0(n) = n and gq(n) = gq−1(n) log(q) n (q ≥ 1 and n large enough).

Proposition 2. For q ≥ 1, Bq admits a 1
gq(n)

-density, but does not admit any 1
gq−1(n)

-

density.

Proof. We shall use techniques like those of Fuchs and Letta in [4]. Let q ≥ 1, wn =
1

gq−1(n)
, vn = 1

gq(n)
, WN =

∑N
1 wn, VN =

∑N
1 vn, am = exp(q)(em), bm = exp(q)(2em),

Cm = {n : am ≤ n < bm} , Dm = {n : am−1 ≤ n < am} and Em = {n : bm−1 ≤ n < bm} .

6



Then

limN

N∑
n=1

wn
WN

1Bq(n) = lim
M

∑M
m=1

∑
n∈Cm−1

wn∑M
m=0

∑
n∈Dm wn

= lim
m

∑
n∈Cm−1

wn∑
n∈Dm wn

because the numbers in the numerators sum to in�nity and so do the ones in the

denominators. For the same reasons,

limN

N∑
n=1

wn
WN

1Bq(n) = lim
m

∑
n∈Cm wn∑
n∈Em wn

.

Using classical integral calculations, we get
∑

n∈Cm wn ∼ em,
∑

n∈Dm wn ∼ em − em−1

and
∑

n∈Em wn ∼ 2(em − em−1) as m→ +∞. Hence

limN

N∑
n=1

wn
WN

1Bq(n) =
1

e− 1
and limN

N∑
n=1

wn
WN

1Bq(n) =
e

2(e− 1)
.

Since limm

∑
n∈Cm vn = log 2 and limm

∑
n∈Dm vn = limm

∑
n∈Em vn = 1, the same

arguments give

limN

N∑
n=1

vn
VN

1Bq(n) = limN

N∑
n=1

vn
VN

1Bq(n) = log 2 .

The following theorem gives a general view of the 1
gq(n)

-densities (q = 1, 2, . . .) in

connection with the �rst digit phenomenon. For any real x, {x} denotes the fractional
part of x, that is to say {x} = x− [x] where [x] is the greatest integer smaller than x

and δx is the Dirac measure at x. For x > 0, we set f(x) = {log10 x}.

Theorem 4. Let q ≥ 0. The sequence
(
M(log(q+2) n)

)
n
does not admit any distribu-

tion in the sense of the 1
gq(n)

-density.

Proof. In the sequel, n0 is any integer greater than exp(q+2)(1). For n ≥ n0, let wn =
1

gq(n)
, xn =M(log(q+2) n) and yn = log10(log(q+2) n). For N ≥ n0, let

PN =
N∑

n=n0

wn
WN

δxn and QN =
N∑

n=n0

wn
WN

δ{yn}

where WN =
∑N

n=n0
wn, and let

GN(t) =
N∑

n=n0

wn
WN

eit{yn} (t real) .

Note that WN is equivalent to log(q+1)N as N → +∞ and that GN is the Fourier

transform of QN . Since f(x) = f(M(x)), we get QN = PNf
−1, that is to say,

QN(I) = PN(f−1(I)) for every interval I ⊂ [0, 1[. It is easy to verify that the weak

convergence of the sequence (PN)N to some probability measure µ is equivalent to the

weak convergence of (QN)N to µf−1 and, by Lévy's theorem on weak convergence, this
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is equivalent to the pointwise convergence of (GN)N to the Fourier transform of µf−1.

So, to prove our theorem, it su�ces to verify that the sequence (GN(2π))N diverges.

Fix N > n0. Since e
2iπ{yn} = e2iπyn , the classical Abel transform of a sum gives

GN(2π) = e2iπyN +
1

WN

N−1∑
n=n0

Wn(e
2iπyn − e2iπyn+1) .

Now, the mean value inequality gives

∣∣e2iπyn − e2iπyn+1
∣∣ ≤ 2π(log 10)−1

gq+2(n)
(n = n0, . . . , N − 1) .

Moreover,
Wn

gq+2(n)
∼ wn

log(q+2) n
(n→ +∞) .

Since the numbers above sum to in�nity,

N−1∑
n=n0

Wn

gq+2(n)
∼

N−1∑
n=n0

wn

log(q+2) n
(N → +∞) .

The classical generalizations of Cesàro's theorem (see [12, page 43] or the lemma in

Section 8 of the present paper) show that

lim
N→+∞

N−1∑
n=n0

wn

WN log(q+2) n
= 0

because limn
1

log(q+2) n
= 0. So (GN(2π))N diverges since (e2iπyN )N diverges and

lim
N→+∞

1

WN

N−1∑
n=n0

Wn(e
2iπyn − e2iπyn+1) = 0 .

4 Hierarchy of weighted densities

Combining sections 2 and 3 gives a clear vision of the hierarchy between weighted

densities.

General principle: Theorem 2 shows clearly that the heavier the weights wn are, the

rarer are the subsets A of N∗ which admit a wn-density. Moreover, when A does not

admit any density, the wn's heaviness a�ects the lower and the upper wn-densities of

A (see the above remark).

On this subject, we must mention [9] which contains a study of the continuity of

the function α 7→ (dα(A), dα(A)) where A ⊂ N∗ is �xed, α is varying in [−1; +∞] and

dα(A) and dα(A) are respectively the lower and the upper nα-densities. For example,

the set A of positive integers whose �rst digit is 1 does not admit any nα-density

for α > −1, but, since it veri�es the conditions of theorem 2 in [9], the function
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α 7→ (dα(A), dα(A)) is continuous at point −1 and so dα(A) and dα(A) monotonically

tend to log10 2 as α→ −1+.

Exponential weights: The weights wn = αn (α 6= 1) are not relevant because the

condition
∑

nwn = +∞ implies α > 1 and then, by theorem 3, the only subsets of N∗

which admit a wn-density are the �nite and the co�nite ones. The densities of these

kinds of subsets of N∗ are respectively equal to 0 and 1, whatever the value of α > 1

is.

Strict hierarchy: It is evident (see straight above) that the αn-densities with α > 1

are strictly stronger than the 1-density and it is well known that the 1-density is strictly

stronger than the 1
n
-density ([22, page 272] for example). We can now state: the 1

n
-

density is strictly stronger than the 1
n logn

-density which is strictly stronger than the
1

n(logn)(log logn)
-density and more generally, for q ≥ 0, the 1

gq(n)
-density is stricly stronger

than the 1
gq+1(n)

-density. Indeed, the 1
gq(n)

-density is stronger than the 1
gq+1(n)

-density

by the condition (2) in theorem 1 and the 1
gq+1(n)

-density is not stronger than the
1

gq(n)
-density as proposition 2 shows.

Natural density equivalence class: Most of the weights which come naturally to

mind lead to densities which are equivalent to the 1-density. Firstly, as Kuipers and

Niederreiter noticed [16, page 64], all the nα-densities with −1 < α are equivalent.

Indeed, if −1 < α1 < α2, condition (2) of theorem 1 proves that the nα2-density is

stronger than the nα1-density and condition (3) shows the converse. Secondly, for

−1 < α and β ∈ R, the nα(log n)β-density is equivalent to the nα-density and then

to the 1-density because the condition (2) proves that it is stronger than the
√
nα−1-

density and weaker than the nα+1-density. Moreover, proposition 1 shows that all the

P (n)Q(log n)-densities (P and Q polynomials) belong to this equivalence class too and

so do the pαn-densities with α > −1 because pn ∼ n log n as n→ +∞.

Logarithmic density equivalence class: Somehow, this equivalence class is smaller

than the previous one (although it possesses in�nitely many elements). Condition (3)

of theorem 1 shows that, if wn = (logn)α

n
with α > −1, then the wn-density is equivalent

to the 1
n
-density. This and proposition 1 prove that the P (logn)

n
(P polynomial) and

the log pn
pn

-density (utilized in [14]) belong to this equivalence class too.

Weaker densities equivalence classes: When wn =
(log(q+1) n)

α

gq(n)
(q ≥ 1) with α >

−1, the same arguments show that the wn-density is equivalent to the 1
gq(n)

-density

and again the only simple way to construct other equivalent densities seems to use

proposition 1. For example, the 1
pn
-density (utilized in [8] and [23]) and the 1

n logn
-

density are equivalent (case q = 1).

Maybe the weakest density: Let w
(q)
n = 1

gq(n)
. Then, by theorem 2, the limits below

exist and we can set

W ∞(A) = lim
q→+∞

(
limN

N∑
n=1

w
(q)
n

W
(q)
N

1A(n)

)
and W∞(A) = lim

q→+∞

(
limN

N∑
n=1

w
(q)
n

W
(q)
N

1A(n)

)
.

And so we have de�ned a new lower density and a new upper density which de�ne a

density when they are equal. This new density can be named theW∞-density. It is not,

9



apparently, a weighted density and is weaker than all the densities we have considered

in the present paper.

5 Consequences for Benford sequences

We give here some answers to the questions we have listed in Section 1.

Answer to question 1: The 1
gq(n)

-densities for q ≥ 1 are all strictly weaker than the

logarithmic one.

Answer to question 2: Assuming that everybody agrees to consider (log log n)n
as a classical sequence, theorem 4 shows that the correct answer to question 2 is

yes. It also shows that, however light the weights are, we can �nd a sequence of

positive numbers whose mantissae do not admit any distribution in the sense of the

corresponding density.

Answer to question 3: Proposition 2 and theorem 4 show that there is an interest

to consider densities which are strictly weaker than the logarithmic one. The question

of the interest of densities strictly stronger than the natural one remains open because

of the second point of Section 4.

Answer to question 4: Yes, the �rst digit phenomenon is veri�ed by un = 2n,

un = n!, un = nn or un = Fn if we choose heavier weights like nα with α > 0 and no,

there is no maximal value for α. The �rst digit phenomenon is not veri�ed if we choose

weights like αn with α > 1.

Answer to question 5: No, the �rst digit phenomenon is not veri�ed by un = n or

un = pn if we choose weights like 1√
n
because, if that was the case, it would be veri�ed

in the sense of the natural density. However, theorem 2 shows that, if we choose weights

like nα with −1 < α < 0, that will bring the upper and the lower densities (see the

remark in 3.1) together.

Answer to question 6: No line of (M(umn ))m,n admits a distribution in the sense of

the natural density and then in the sense of the nα-density for −1 < α < 0. But these

rows tend (as m → +∞) to be distributed as µB in the sense of the natural density

[6]. Somehow, there is a quantum leap from α = −1 to α = 0 (and even α = 1, and so

on) as m→ +∞. Of course, the last sentence of answer to question 5 is still true here.

6 Other densities

Some authors [8], [14] or [23] have introduced the notion of conditional densities relative

to the set of prime numbers. The natural conditional density [8] is in fact the 1-density,

the logarithmic conditional density [8] and [14] is the 1
pn
-density and is equivalent to the

1
n logn

-density by proposition 1 and the log pn
pn

-density [23] is equivalent to the 1
n
-density.

In [21], Serre claimed that Bombieri proved the following result: the analytic density

of A = {n : D(pn) = 1} is log10 2, that is to say

lim
σ→1+

ζ(σ)−1
∑
n∈A

n−σ = lim
σ→1+

(σ − 1)
∑
n∈A

n−σ = log10 2

10



where ζ is the Riemann zeta function. This density is sometimes called Dirichlet density

or ζ-density and is equivalent to the logarithmic density [22, page 274]. Moreover, the

analytic density relative to prime numbers of B ⊂ N∗ is de�ned by

lim
σ→1+

(− log(σ − 1))−1
∑
pn∈B

p−σn

(Dirichlet used it to prove his theorem on arithmetic progressions), but we have not

found it in papers on the �rst digit phenomemon.

In [7], [13], [3], [20] and [5] for instance, the H∞ -density is de�ned in the following

manner. A subset A ⊂ N∗ being given, set H0,n = 1A(n) (n ≥ 1) and for m ≥ 1,

Hm,n =
1

n

j=n∑
j=1

Hm−1,j (n ≥ 1) .

When the sequence (Hm,n)n converges, its limit is called the Hm-density of A. One

says that A admits a H∞-density when

lim
m→+∞

limnHm,n = lim
m→+∞

limnHm,n

and then its H∞-density is the common value of these two limits. Since the sequences

(1A(n))n are bounded, all the Hm-densities are equivalent to the natural density [12,

page 62]. By Cesàro's theorem, the natural density is stronger than the H∞-density.

In [5], Duran shows that the H∞-density is stronger than the logarithmic density. In

[3], Diaconis exhibits examples which prove that the converses of these two properties

are false.

In short, each conditional weighted density can be viewed as a classical weighted

density and belongs to one of the equivalence classes we have listed above and the

natural density is strictly stronger than the H∞-density which is strictly stronger than

the logarithmic density which is equivalent to the analytic density.

We have focused our attention on densities employed in papers about the �rst digit

phenomenon papers, but the Analytic Number Theory specialists use to consider other

densities. Many of them are listed in [10].

7 Conclusion

We list in this Section a few open (as far as we know) questions about weighted densities

and their hierarchy.

Open question 1: What is the exact in�uence of the weights wn over the discrepancy

sup
1<a<10

∣∣∣∣∣
(

N∑
n=1

wn
WN

1[1; a[({M(un)})

)
− log10 a

∣∣∣∣∣ ?
Open question 2: Is the natural density the strongest weighted density among those

which are relevant in the study of mantissae distributions?

11



Open question 3: Can we �nd two weighted densities such that none of them is

stronger than the other? If yes, can we �nd a subset of N∗ admitting two distinct

weighted densities?

Open question 4: We can replace wn = 1 by wn = nα with −1 < α < 0 in the study

of the rows of the in�nite matrix (M(umn ))m,n where un = n or un = pn. How does the

choice of α in�uence over the choice of the function N in the formula

lim
m→+∞

sup
1<a<10

∣∣∣∣∣∣
N(m)∑
n=1

wn
WN(m)

1[1; a[(M(umn ))− log10 a

∣∣∣∣∣∣ = 0

and over the convergence rate?

Open question 5: Is the analytic density relative to prime numbers equivalent to the
1
pn
-density and then equivalent to the 1

n logn
-density?

Open question 6: Is the W∞-density (see the last paragraph of Section 4) strictly

weaker than any 1
gq(n)

-density?

Open question 7: Does the sequence (M(pn)) admit a distribution in the sense of

the H∞-density?

8 Appendix

In the sake of clarity and self-contained presentation, here are the proofs of the three

theorems stated in Section 2, rewritten in the context of weighted densities.

Lemma. Let (Sn)n≥1 be a convergent sequence of real numbers and (CN,n)N,n be a

triangular array (N ≥ 1, 1 ≤ n ≤ N) of real numbers verifying

the sequence

(
N∑
n=1

|CN,n|

)
N

is bounded, (4)

∀n ≥ 1 , lim
N→+∞

CN,n = 0 (5)

and

∀N ≥ 1 ,
N∑
n=1

CN,n = 1 . (6)

For N ≥ 1, we set

TN =
N∑
n=1

SnCN,n .

Then the sequence (TN)N≥1 converges and (Sn)n≥1 and (TN)N≥1 have the same limit.

Proof. Let K > 0 be a bound evoked in (4). Let ε > 0, N0 such that, for every n > N0

12



and every N > N0, |Sn − SN | ≤ εK−1 and let N > N0. Then

|TN − SN | =

∣∣∣∣∣
N∑
n=1

SnCN,n − SN
N∑
n=1

CN,n

∣∣∣∣∣
=

∣∣∣∣∣
N0∑
n=1

(Sn − SN)CN,n +
N∑

n=N0+1

(Sn − SN)CN,n

∣∣∣∣∣
≤

∣∣∣∣∣
N0∑
n=1

(Sn − SN)CN,n

∣∣∣∣∣+ ε

by (6) and the de�nition of N0. It remains to remark that, by (5),

lim
N→+∞

∣∣∣∣∣
N0∑
n=1

(Sn − SN)CN,n

∣∣∣∣∣ = 0

since all the sequences (Sn − SN)N≥1 (n = 1, . . . , N0) converge.

8.1 Proof of theorem 1.

Let A ⊂ N∗ and, for every N ≥ 1,

SN =
N∑
n=1

wn
WN

1A(n) and TN =
N∑
n=1

vn
VN

1A(n) .

Then w1s1 = W1S1 and wNsN = WNSN−WN−1SN−1 (N = 2, . . .) and then, for every

N ≥ 1,

TNVN =
v1

w1

W1S1 +
v2

w2

(W2S2 −W1S1) + . . .+
vN
wN

(WNSN −WN−1SN−1) ,

that is to say

TN =
N∑
n=1

SnCN,n

with

CN,N =
vN
wN

WN

VN

and, for n = 1, . . . , N − 1,

CN,n =

(
vn
wn
− vn+1

wn+1

)
Wn

VN
.

So the condition (5) of the lemma is veri�ed. The condition (6) too since, if the 1A(n)

are all equal to 1, so are the SN and the TN .

If (2) is veri�ed, then the CN,n are nonnegative and so the sequence
(∑N

n=1 |CN,n|
)
N

is constant and this gives the lemma's condition (4).

If (3) is veri�ed, then CN,N is nonnegative and CN,n is negative for n = 1, . . . , N−1.

Then
N∑
n=1

|CN,n| = CN,N −
N−1∑
n=1

CN,n .

13



Since, as we have seen above,

CN,N +
N−1∑
n=1

CN,n = 1 ,

this and the second part of second condition of theorem 1 prove that

N∑
n=1

|CN,n| = 2CN,N − 1 = 2
vN
wN

WN

VN
− 1

is bounded.Condition (4) of the lemma is veri�ed.

8.2 Proof of theorem 2.

With the same notations as in theorem 1, the coe�cients CN,n in the formula

TN =
N∑
n=1

SnCN,n

are nonnegative (see the calculations above) if the condition of theorem 2 is veri�ed.

Let ε > 0, I = limnSn and N0 an integer such that

∀n > N0 , Sn > I − ε .

Then, for each N > N0,

TN >

N0∑
n=1

SnCN,n + (I − ε)
N∑

n=N0+1

CN,n .

This implies limNTN ≥ I − ε because

lim
N→+∞

CN,n = 0 (n = 1, . . . , N0)

and so

lim
N→+∞

N∑
n=N0+1

CN,n = 1

(recall that the CN,n verify the lemma's condition (6)).

The superior limits can be investigated in the same way.

8.3 Proof of theorem 3.

Let again A ⊂ N∗ and

SN =
N∑
n=1

wn
WN

1A(n) .

Then, for each N ,

1A(N)− SN =
WNSN −WN−1SN−1

wN
− WN −WN−1

wN
SN

=
WN−1

wN
(SN − SN−1) .

We can conclude due to Cauchy's criteria since the sequence
(
WN−1

wN

)
N
is bounded and

the sequence (1A(N))N cannot converge unless A is �nite or co�nite.
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