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Abstract
Let (X, A, µ) be a probability space, let T be a contraction on Lp(µ) and let f in Lp(µ),

(p > 1). We provide suitable conditions over sequences (wk), (uk) and (Ak) in such a way
that the weighted ergodic limit lim

N→∞
1

AN

∑N−1
k=0 wkT uk (f) = 0 µ-a.e.. As a consequence

of our main theorems, we also deal with the so-called one-sided weighted ergodic Hilbert
transforms.

Keywords weighted ergodic averages, contractions of Hilbert space, one-sided weighted
ergodic Hilbert transformation
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1 Introduction
Let (X, A, µ) be a probability space and let T : X → X be a transformation preserving µ,
i.e. µ(T −1A) = µ(A) for any A ∈ A. In what follows, we write (T kf)(x) = f(T kx) for any
measurable function f : X → R, x ∈ X and k ≥ 1. The study of averages over iterations of T
started in 1930s with the classical Birkhoff’s Ergodic Theorem [12]. Wiener and Wintner [25]
generalized this result by showing that, for any f ∈ L1(µ), µ−almost everywhere (µ-a.e.), for
any θ ∈ R,

lim
N→∞

1
N

N−1∑
k=0

e2iπkθT k(f) exists.

Lesigne [13] went on to prove the same property when the term e2iπkθ is replaced by any
weight of the form wk = e2iπP (k), where P is a polynomial. In this way, many results on the
convergence of averages of the form

1
N

N−1∑
k=0

wkT uk(f)
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were established for various weights (wk) and for various sequences of integers (uk). Bellow
and Losert in [1] proved that, if we have (Ω, B, ν, S) a dynamical system where S has countable
Lebesgue spectrum, then for any g ∈ L∞(Ω) there exists a set Ωg of probability one such that
for any ω ∈ Ωg: for any ergodic dynamical system (X, A, µ, T ), for any f ∈ L∞(µ),

lim
N→∞

1
N

N−1∑
k=0

g(Skω)T k(f) exists µ − a.e..

As a famous extension of the work of Bellow and Losert, we have the Bourgain’s return times
theorem in [20], which states that if we take (Ω, B, ν, S) an ergodic dynamical system the
previous result stays true, see also Assani [2] and Demeter, Lacey, Tao and Thiele [9]. For
the Von Mangoldt weight in relation with the prime numbers see Eisner and Lin [29]. For
more weighted ergodic theorems, refer to Berend, Lin, Rosenblatt and Tempelman [11], Lin,
Olsen and Tempelman [22]. For a different type of weighted ergodic theorems with arithmetic
weights we refer to Cuny and Weber [8] and Buczolich [32].

In this paper, we consider the question for the rate of convergence. More precisely, we
deal with the following problem : let (wk) be a sequence of complex numbers such that∑N−1

k=0 |wk| ∼ CN where C is a positive constant and let (uk) and (Ak) be sequences of
integers and real numbers, respectively. We provide suitable conditions over these sequences
to ensure that the weighted ergodic average

1
AN

N−1∑
k=0

wkT uk(f), (1)

converges to 0 µ-a.e., where T is a contraction on Lp(µ) and f ∈ Lp(µ), (1 < p < ∞).
Depending on p, many papers [8, 18, 21, 23, 26, 27, 28] are devoted to the convergence (i.e.
a.e. or norm convergence) to 0 of the averages considered in (1). Another important matter is
to investigate the almost everywhere convergence of the so-called one-sided weighted ergodic
Hilbert transforms, namely∑

k≥1

wk

Ak
T uk(f).

For results on such subject, we can refer to [3, 5, 6, 10, 16, 24]. In what follows, we denote by
C a generic positive constant which may differ from line to line. One possible condition that
we shall make on the sequences (wk) and (uk) is as follows : there exists constants 0 < α ≤ 1
and β ∈ R such that

∣∣∣∣∣∣∑N−1
k=0 wkT uk(f)

∣∣∣∣∣∣
p,µ

≤ CNα logβ N . Two useful tools are the Riesz-
Thorin interpolation theorem (see p.95 in [4]) and the spectral inequality, that is presented
later in Section 2, which transfers the problem to the study of uniform estimates of the form
supθ∈R

∣∣∣∑N−1
k=0 wke2iπθuk

∣∣∣ ≤ CNα logβ N .
We now state our main result.

Theorem 1. Let (wk) be a bounded sequence of complex numbers and let (un) ⊂ N be a
sequence of integers. Let 1 < p < ∞, 0 < α < 1, β ≥ 0, T be a contraction on Lp(µ) and
f ∈ Lp(µ).
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1. If
∣∣∣∣∣∣∑N−1

k=0 wkT uk(f)
∣∣∣∣∣∣

p,µ
≤ CNα logβ N . Then for H > β + 1

p , we have

lim
N→∞

1

N
(p−1)α+1

p logH N

N−1∑
k=0

wkT uk(f) = 0 a.e. & sup
N>1

∣∣∣∣∣∣
∑N−1

k=0 wkT uk(f)

N
(p−1)α+1

p logH N

∣∣∣∣∣∣ ∈ Lp(µ).

2. If
∣∣∣∣∣∣∑N−1

k=M wkT uk(f)
∣∣∣∣∣∣

p,µ
≤ C(N − M)α logβ N . Then for H > β + 1

p when pα > 1 and
for H > β + 3

p when pα = 1, we have

lim
N→∞

1
Nα logH N

N−1∑
k=0

wkT uk(f) = 0 µ − a.e. & sup
N>1

∣∣∣∣∣
∑N−1

k=0 wkT uk(f)
Nα logH N

∣∣∣∣∣ ∈ Lp(µ).

This theorem provides optimal results for this type of weighted ergodic averages, which
improves a recent result derived by Fan [18] that has studied weighted ergodic averages un-
der Condition supθ∈R

∣∣∣∑N−1
k=M wke2iπθuk

∣∣∣ ≤ C(N − M)α with 1
2 ≤ α < 1, which implies that∣∣∣∣∣∣∑N−1

k=M wkT uk(f)
∣∣∣∣∣∣

2,µ
≤ C(N −M)α by the spectral Lemma. More precisely, for any dynami-

cal system (X, A, µ, T ) and any f ∈ L2(µ), he obtained the almost everywhere convergence to
0 with the normalization Nα log2 N log1+δ log N , δ > 0. Moreover, Theorem 1 can be applied
to enhance ideas of Theorem 4.2 in [23]. A weaker version of Theorem 1 was obtained in [27].

As a consequence of Theorem 1, for a Dunford-Schwartz operator on L1(µ), i.e., a con-
traction of each Lp(µ), 1 ≤ p ≤ ∞, we obtain the following.

Corollary 1. Assume that supθ∈R

∣∣∣∑N−1
k=0 wke2iπθuk

∣∣∣ ≤ CNα logβ N . Then for any Dunford-

Schwartz operator T on L1(µ), and any f ∈ Lp(µ), any H > 2β
(
1 − 1

p

)
+ 1

p where 1 < p ≤ 2,
any H > 2β

p + 1
p where 2 < p < ∞, we have

lim
N→∞

1
NΓ logH N

N−1∑
k=0

wkT uk(f) = 0 µ−a.e. & sup
N>1

∣∣∣∣∣ 1
NΓ logH N

N−1∑
k=0

wkT uk(f)
∣∣∣∣∣ ∈ Lp(µ),

where Γ =


2(p−1)2α+p+(p−1)(2−p)

p2 if 1 < p ≤ 2
2(p−1)α+p+(p−1)(p−2)

p2 if 2 < p < ∞
.

Notice that, in the particular case where p = 2, the fact that T is a contraction in L2(µ)
is sufficient to obtain the Corollary 1.

Concerning the almost everywhere convergence of the so-called one-sided weighted ergodic
Hilbert transforms, we have the following result.

Corollary 2. Under the same assumption as in the first statement of Theorem 1, for H >
1
p + β, the series

∑
k>1

wk

k
(p−1)α+1

p logH k
T uk(f) exists µ − a.e. & sup

N>1

∣∣∣∣∣∣
N∑

k=2

wk

k
(p−1)α+1

p logH k
T uk(f)

∣∣∣∣∣∣ ∈ Lp(µ).
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Motivated by the classical Davenport estimate [17] : for any β > 0, there exists a constant
Cβ such that

sup
θ∈R

∣∣∣∣∣
N∑

k=1
µ(k)e2iπkθ

∣∣∣∣∣ ≤ Cβ
N

logβ N
,

where (µ(k)) is a Möbius sequence. Several studies on the convergence of the averages con-
sidered in (1), have been conducted based on the above estimation. Recall that a Möbius
sequence is defined as µ(1) = 1, µ(k) = (−1)j if k is a product of j distinct primes, and
µ(k) = 0 otherwise. Let (X, A, µ, τ) be a measurable dynamical system. It is mentioned in
[26] that for any f ∈ L2(µ), lim

N→∞
1
N

∑N−1
k=0 µ(k)f ◦τk = 0, µ−a.e.. Abdalaoui et al [21] proved

that, the previous result remains true for any f ∈ L1(µ). In [8] Cuny and Weber obtained a
rate of convergence. More precisely, for any f ∈ Lp(µ), p > 1 and for any H > 0,

lim
N→∞

logH N

N

N∑
k=1

µ(k)f ◦ τk = 0 µ − a.e. and sup
N≥1

∣∣∣∣∣ logH N
∑N

k=1 µ(k)f ◦ τk

N

∣∣∣∣∣ ∈ Lp(µ).

Eisner [28] showed that the previous result of Abdalaoui et al [21] remains true if we
replace T k(f) by T P (k)(f), where P is a polynomial. Recently, Fan [18] extended these results
to any Bourgain’s sequence (see Section 2 in [18] for a more precise definition), and for any
bounded sequence (wk) satisfying : supθ∈R

∣∣∣∑N−1
k=0 wke2iπθuk

∣∣∣ ≤ C N
logβ N

, with β > 1
2 . In the

following results, we deal with condition of Davenport type. Our results deal with a more
general problem since we consider a general sequence of integers (uk), and not necessarily
Bourgain’s sequences.

Theorem 2. Let 1 < p < ∞, let T be a contraction on Lp(µ) and let f ∈ Lp(µ), such that,∣∣∣∣∣
∣∣∣∣∣
N−1∑
k=0

wkT uk(f)
∣∣∣∣∣
∣∣∣∣∣
p,µ

≤ C
N

logβ N
, (2)

for some β > 1
p−1 . Then, for 0 < H < β(p−1)−1

p , we have

lim
N→∞

logH N

N

N−1∑
k=0

wkT uk(f) = 0 µ − a.e. & sup
N≥1

∣∣∣∣∣ logH N

N

N−1∑
k=0

wkT uk(f)
∣∣∣∣∣ ∈ Lp(µ).

If we consider that, for any β > 0, there exists a constant Cβ, such that (2) is satisfied (as
in the Davenport estimate), then the result of Theorem 2 remains true for any H > 0.

Corollary 3. Suppose that

sup
θ∈R

∣∣∣∣∣
N−1∑
k=0

wke2iπθuk

∣∣∣∣∣ ≤ C
N

logβ N
,
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for some β > 0. Then for any Dunford-Schwartz operator T on L1(µ) and for any f ∈ Lp(µ),
if β > 1

2

(
Hp2

(p−1)2 + p
(p−1)2

)
where 1 < p ≤ 2

β > 1
2

(
Hp2

p−1 + p
p−1

)
where 2 < p < ∞

,

we have

lim
N→∞

logH N

N

N−1∑
k=0

wkT uk(f) = 0 µ − a.e. & sup
N≥1

∣∣∣∣∣ logH N

N

N−1∑
k=0

wkT uk(f)
∣∣∣∣∣ ∈ Lp(µ).

Notice that, if p = 2, T is a contraction that is sufficient to obtain Corollary 3. When p is
large enough and H = 0, the result remains true for β > 1

2 .

Corollary 4. Assume that (2) holds with β > pH
p−1 + 1

p−1 . Then we have

∑
k≥1

wk logH k

k
T uk(f) exists µ − a.e. & sup

N≥1

∣∣∣∣∣
N∑

k=1

wk logH k

k
T uk(f)

∣∣∣∣∣ ∈ Lp(µ).

The rest of this paper is organized as follows. In Section 2, we recall some known results,
which will be used in the proofs of our main theorems, including spectral theorem, Móricz’s
lemma and van der Corput’s theorem. In Section 3, we prove our theorems and their corollar-
ies. One of the main analytical tools used in proofs is Móricz’s lemma. In the last section, we
provide several examples illustrating our main results. More precisely, we construct sequences
(wk) and (uk) that are difficult to deal with previously, which satisfy the conditions of our
theorems. The applications in this context concretely prove the effectiveness of the obtained
theorems.

2 Preliminaries
In this section, we recall some known results. The first one, referred to as the spectral lemma,
reduces the problem of evaluating norms to Fourier analysis questions. Let T be a contraction
in a Hilbert space H, that is, a linear operator such that ||T (f)|| ≤ ||f || for each f ∈ H, and
put

Pn(f) = ⟨T n(f), f⟩ for n ≥ 0 and Pn(f) = P−n(f) for n < 0.

The sequence (Pn(f))n∈Z is non-negative definite. By Herglotz’s theorem, there exists a finite
positive measure µf on B(R/Z) (called the spectral measure of f) such that for all n ≥ 0, we
have

⟨T n(f), f⟩ =
∫
R/Z

exp(2iπnt)µf (dt).

The spectral lemma can be stated as follows.
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Lemma 1. (Spectral lemma). Let T be a contraction in a Hilbert space H and let f ∈ H.
Let P (x) =

∑N
k=0 akxk be a complex polynomial of degree N ≥ 0. Then we have

||P (T )f ||2 ≤
∫
R/Z

|P (exp(2iπt)|2µf (dt).

The second result is provided by Móricz. A direct consequence of Theorems 1 and 3 in
[14] is the following lemma.

Lemma 2. (Móricz’s lemma). Let 1 < p < ∞. Let (Nk) be an increasing sequence of
integers and let (Xn)n≥1 be a sequence of random variables on a probability space (X, A,P).
Assume that there exist λ ≥ 1 and a non-negative function g : N × N 7−→ R+, such that for
any j ∈ N∗, m, n ∈ JNj , Nj+1K with m < n

1. E(|
∑n

k=m+1 Xk|2) ≤ Cgλ(m, n),

2. g(m, j) + g(j, n) ≤ g(m, n) for all j ∈ Jm, nK.

Then, if λ > 1

E

 nsup
j=m+1

∣∣∣∣∣∣
j∑

k=m+1
Xk

∣∣∣∣∣∣
p ≤ C(λ)gλ(m, n) for any m, n ∈ JNj , Nj+1K with m < n,

where C(λ) is a constant only depending on λ.
If λ = 1,

E

 nsup
j=m+1

∣∣∣∣∣∣
j∑

k=m+1
Xk

∣∣∣∣∣∣
p ≤ C logp (2(n − m)) g(m, n) for any m, n ∈ JNj , Nj+1K with m < n,

where C is an absolute constant.

The following lemmas are due to van der Corput (see Theorems 3 and 4 in [30]) and will
be used in our examples.

Lemma 3. Let a and b be two integers, with a < b, and let f be a function on [a, b]. Assume
that the second derivative is such that −f ′′(x) ≥ ρ for any x ∈ [a, b], and for some ρ > 0.
Then ∣∣∣∣∣

b∑
k=a

e2iπf(k)
∣∣∣∣∣ ≤ (|f ′(b) − f ′(a)| + 2)

(
4

√
ρ

+ 3
)

.

Lemma 4. Let n ≥ 2 be an integer and put K = 2n. Suppose that a ≤ b ≤ a + N and that
f : [a, b] → R has continuous nth derivative that satisfies the inequality 0 < λ ≤ |f (n)(x)| ≤ hλ
for any x ∈ [a, b]. Then∣∣∣∣∣

b∑
k=a

e2iπf(k)
∣∣∣∣∣ ≤ ChN

(
λ

1
K−2 + N

−2
K + (Nnλ)

−2
K

)
.
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3 Proofs
Let f be a measurable function and denote by SN (f) the weighted sums associated with f ,
i.e.

SN (f) =
N−1∑
k=0

wkT uk(f).

Let (AN )N>0 be a sequence converging to infinity as N goes to infinity. In this section, we
prove Theorems 1, 2 and their corollaries. Our proofs use Móricz’s lemma in particular and
operate in the following way. Let (Nk) be an increasing sequence of integers. Let N be a
sufficiently large integer and let j ∈ N∗ be such that Nj < N ≤ Nj+1 and Nj+1 < CNj . The
main idea is to prove that for any f ∈ Lp(µ),

lim
j→∞

∣∣∣∣∣SNj (f)
ANj

∣∣∣∣∣ = 0 µ − a.e. (3)

and that

lim
j→∞

Nj+1sup
N=Nj+1

∣∣∣∣∣SN (f)
AN

−
SNj (f)

ANj

∣∣∣∣∣ = 0 µ − a.e.. (4)

Proving Equations (3) and (4) is sufficient since for any j ∈ N, we have∣∣∣∣SN (f)
AN

∣∣∣∣ ≤
∣∣∣∣∣SN (f)

AN
−

SNj (f)
ANj

∣∣∣∣∣+
∣∣∣∣∣SNj (f)

ANj

∣∣∣∣∣
≤

Nj+1sup
N=Nj+1

∣∣∣∣∣SN (f)
AN

−
SNj (f)

ANj

∣∣∣∣∣+
∣∣∣∣∣SNj (f)

ANj

∣∣∣∣∣ . (5)

To deal with (4), we introduce for any k ≥ 1 the following random variable

Xk = Sk−1(f)
Ak−1

− Sk(f)
Ak

.

Notice that for any n, m ∈ JNj , Nj+1K with m < n,

E

∣∣∣∣∣∣
n∑

k=m+1
Xk

∣∣∣∣∣∣
p

=
∣∣∣∣∣∣∣∣Sm(f)

Am
− Sn(f)

An

∣∣∣∣∣∣∣∣p
p,µ

,

The main idea is to bound
∣∣∣∣∣∣Sm(f)

Am
− Sn(f)

An

∣∣∣∣∣∣p
p,µ

by Cgλ(m, n) for λ > 1 and for some sub-
additive function g. Indeed, if we do it, then according to Móricz’s lemma we have

E
(

Nj+1sup
N=Nj+1

∣∣∣∣∣SN (f)
AN

−
SNj (f)

ANj

∣∣∣∣∣
p)

≤ Cgλ(Nj , Nj+1).
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By taking the sum over j, and by applying Beppo Levi theorem, this proves (4). Before
starting the proofs, we notice that, trivially, for 2 ≤ m < n and for AN = Nα logβ N , where
0 ≤ α ≤ 1 and β ∈ R, we have( 1

Am
− 1

An

)
≤ C

(n − m)α

nα × mα logβ m
. (6)

Proof of Theorem 1. Let Nj = [j
1

1−α ]. Notice that, for any m, n ∈ JNj , Nj+1K with m < n,
we have m < n ≤ 4

1
1−α m. First, we deal with (3) for AN = N

(p−1)α+1
p logH N . It follows from

the assumption of Theorem 1, that∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

SNj (f)

N
(p−1)α+1

p

j logH Nj

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

p,µ

≤ 1
N1−α

j logp(H−β) Nj

.

Since H > 1
p + β, this implies

∑
j≥1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

SNj (f)

N
(p−1)α+1

p

j logH Nj

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

p,µ

< ∞.

Consequently

lim
j→∞

SNj (f)

N
(p−1)α+1

p

j logH Nj

= 0 µ − a.e..

Now, we have to prove that the limit of the oscillation as defined in (4) is equal to 0 µ-a.e..
For any f ∈ Lp(µ), we write∣∣∣∣∣∣∣∣Sm(f)

Am
− Sn(f)

An

∣∣∣∣∣∣∣∣p
p,µ

≤ C

( 1
Am

− 1
An

)p

||Sm(f)||pp,µ + C
1

Ap
n

||Sn(f) − Sm(f)||pp,µ .

Since (wk) is a bounded sequence of complex numbers and ||T uk(f)||p ≤ ||f ||p this gives that
||Sn(f) − Sm(f)||pp,µ ≤ C||f ||pp(n − m)p. According to (6) and to the assumption of theorem,
we have∣∣∣∣∣∣∣∣Sm(f)

Am
− Sn(f)

An

∣∣∣∣∣∣∣∣p
p,µ

≤ C
(n − m)(p−1)α+1mpα logpβ m

m(p−1)α+1n(p−1)α+1 logpH m
+ C

(n − m)p

n(p−1)α+1 logpH n

≤ C
(n − m)(p−1)α+1

m2(p−1)α+2−pα logp(H−β) m
+ C

(n − m)p

n(p−1)α+1 logpH n

≤ C
(n − m)p

m(p−1)α+1 logp(H−β) m
,
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where the last inequality comes from the fact that (p − 1)α + 1 < p and (p − 1)α + 1 ≤
2(p − 1)α + 2 − pα. Therefore, for any m, n belonging in JNj , Nj+1K with m < n, we have

E

∣∣∣∣∣∣
n∑

k=m+1
Xk

∣∣∣∣∣∣
p

≤ C

 (n − m)

m
(p−1)α+1

p logH−β m

p

.

Applying Móricz’s lemma with λ = p and g(m, n) = n−m

m
(p−1)α+1

p logH−β m

, we obtain

E

 Nj+1sup
N=Nj+1

∣∣∣∣∣∣∣
SNj (f)

N
(p−1)α+1

p

j logH Nj

− SN (f)

N
(p−1)α+1

p logH N

∣∣∣∣∣∣∣
p ≤ Cgp(Nj , Nj+1).

Since, Nj+1 − Nj ≤ Cj
1

1−α
−1. Therefore

gp(Nj , Nj+1) ≤ C

j logp(H−β) j
.

By assumption we have H > 1
p + β, then the last term is a term of a convergent series . By

Beppo Levi’s theorem, we have

lim
j→∞

Nj+1sup
N=Nj+1

∣∣∣∣∣∣∣
SN (f)

N
(p−1)α+1

p logH N
−

SNj (f)

N
(p−1)α+1

p

j logH Nj

∣∣∣∣∣∣∣ = 0 µ − a.e..

Now, we prove the strong maximal inequality. To do it, we use (5), and we take the
supremum over j. This gives

sup
N>1

∣∣∣∣∣∣ 1

N
(p−1)α+1

p logH N

N−1∑
k=0

wkT uk(f)

∣∣∣∣∣∣
p

≤

C sup
j≥1

Nj+1sup
N=Nj+1

∣∣∣∣∣∣∣
SN (f)

N
(p−1)α+1

p logH N
−

SNj (f)

N
(p−1)α+1

p

j logH Nj

∣∣∣∣∣∣∣
p

+C sup
j≥1

∣∣∣∣∣∣∣
SNj (f)

N
(p−1)+α+1

p

j logH Nj

∣∣∣∣∣∣∣
p

.

Integrating over µ, we get∣∣∣∣∣∣
∣∣∣∣∣∣sup
N>1

∣∣∣∣∣∣ 1

N
(p−1)α+1

p logH N

N−1∑
k=0

wkT uk(f)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
p

p,µ

≤ C
∑
j≥1

gp(Nj , Nj+1)

+C
∑
j≥1

1
N1−α

j logp(H−β) Nj

.

This concludes the proof of the first statement of Theorem 1. The proof of the second
statement can be accomplished in a similar way as the first. □
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Proof of Corollary 1. Let 1 < p ≤ 2 and let 0 < t ≤ 1, such that 1
p = 1−t

1 + t
2 .

For any f ∈ L1(µ), we have

||Sn(f)||1,µ ≤ n||f ||1,µ

and by the spectral Lemma, we have, for any f ∈ L2(µ)

||Sn(f)||2,µ ≤ Cnα logβ n||f ||2,µ.

Now using the Riesz-Thorin interpolation theorem [4] between L1(µ) and L2(µ), we obtain

||Sn(f)||p,µ ≤ Cn
(2−p)+2α(p−1)

p log2β p−1
p n||f ||p,µ.

It follows from Theorem 1 that if H > 2β p−1
p + 1

p , we have the desired result.
Now, let 2 < p < ∞ and take 0 < t < 1 such that 1

p = 1−t
2 . Notice that for any f ∈ L∞(µ),

we have

||Sn(f)||∞ ≤ n||f ||∞.

Hence, performing interpolation between L2(µ) and L∞(µ), we easily obtain

||Sn(f)||p,µ ≤ Cn
(p−2)+2α

p log
2β
p n||f ||p,µ.

According to Theorem 1, the desired result holds if H > 2β
p + 1

p . □

Proof of Corollary 2. By Abel’s summation formula, we have

N−1∑
k=2

wk

k
(p−1)α+1

p logH k
T uk(f)

=
N−2∑
k=2

 1

k
(p−1)α+1

p logH k
− 1

(k + 1)
(p−1)α+1

p logH(k + 1)

 k∑
j=2

wjT uj (f)

+ 1

N
(p−1)α+1

p logH N

N−1∑
k=2

wkT uk(f).

According to Theorem 1, the last term of the right-hand side converges to 0 µ-a.e.. Moreover,
according to Lemma 1 and the fact that∣∣∣∣∣∣ 1

k
(p−1)α+1

p logH k
− 1

(k + 1)
(p−1)α+1

p logH(k + 1)

∣∣∣∣∣∣ ≤ C
1

k
(p−1)α+1

p
+1 logH k

,

10



we obtain∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k>1

 1

k
(p−1)α+1

p logH k
− 1

(k + 1)
(p−1)α+1

p logH(k + 1)

 ∣∣∣∣∣∣
k∑

j=2
wjT uj (f)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
p,µ

≤ C
∑
k>1

1

k
(p−1)α+1

p
+1 logH k

∣∣∣∣∣∣
∣∣∣∣∣∣

k∑
j=1

wjT uj (f)

∣∣∣∣∣∣
∣∣∣∣∣∣
p,µ

≤ C||f ||p,µ

∑
k>1

1
k

1−α
p

+1 logH−β k
.

The last term is finite because α < 1. According to Beppo Levi’s theorem, this proves that∑
k>1

wk

k
(p−1)α+1

p logH k

T uk(f) exists µ-a.e.. Moreover,

∣∣∣∣∣∣
∣∣∣∣∣∣sup
N>1

∣∣∣∣∣∣
N∑

k=2

wk

k
(p−1)α+1

p logH k
T uk(f)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
p,µ

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k>1

 1

k
(p−1)α+1

p logH k
− 1

(k + 1)
(p−1)α+1

p logH(k + 1)

 ∣∣∣∣∣∣
k∑

j=2
wjT uj (f)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
p,µ

+

∣∣∣∣∣∣
∣∣∣∣∣∣sup
N>1

∣∣∣∣∣∣ 1

N
(p−1)α+1

p logH N

N−1∑
k=2

wkT uk(f)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
p,µ

.

Therefore∣∣∣∣∣∣
∣∣∣∣∣∣sup
N>1

∣∣∣∣∣∣
N∑

k=2

wk

k
(p−1)α+1

p logH k
T uk(f)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
p,µ

≤ C||f ||p,µ.

□

Proof of Theorem 2. Here AN = N
logH N

. Choosing Nj = 2j and following the same lines as
in the proof of Theorem 1, we obtain for β > 1

p + H

∑
j≥1

∣∣∣∣∣
∣∣∣∣∣ logH NjSNj (f)

Nj

∣∣∣∣∣
∣∣∣∣∣
p

p,µ

≤ C
∑
j≥1

1
jp(β−H) < ∞,

which showed (3). It remains to prove (4), to do it, we write, for any m, n in JNj , Nj+1K, with
m < n and for any f ∈ Lp(µ),∣∣∣∣∣

∣∣∣∣∣ logH mSm(f)
m

− logH nSn(f)
n

∣∣∣∣∣
∣∣∣∣∣
p

p,µ

≤ C ||Sm(f)||pp,µ

∣∣∣∣∣ logH m

m
− logH n

n

∣∣∣∣∣
p

+ C
logpH n

np
||Sn(f) − Sm(f)||pp,µ .
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We now fix a > p
p−1>1. Using the assumption of theorem, we obtain

||Sm(f)||pp,µ

∣∣∣∣∣ logH m

m
− logH n

n

∣∣∣∣∣
p

≤ C
(n − m)p

mp logp(β−H) m
≤ C

(n − m)
p(a−1)

a m
p
a

mp logp(β−H) m
,

and

||Sn(f) − Sm(f)||pp,µ ≤ ||Sn(f) − Sm(f)||
p
a
p,µ ||Sn(f) − Sm(f)||

p(a−1)
a

p,µ

≤ n
p
a

log
pβ
a m

(n − m)
p(a−1)

a .

Hence∣∣∣∣∣
∣∣∣∣∣ logH mSm(f)

m
− logH nSn(f)

n

∣∣∣∣∣
∣∣∣∣∣
p

p,µ

≤ C
(n − m)

p(a−1)
a

m
p(a−1)

a logp( β
a

−H) m
.

By Móricz’s lemma applied to λ = p(a−1)
a and g(m, n) = n−m

m log
β−aH

a−1 m
, we obtain

∑
j≥1

E
(

Nj+1sup
N=Nj+1

∣∣∣∣∣ logH NjSNj (f)
Nj

− logH NSN (f)
N

∣∣∣∣∣
p)

≤ C
∑
j≥1

1
logp( β

a
−H) Nj

,

which is finite when Nj = 2j and β > 1
p−1 + pH

p−1 . The Theorem now follows from the Beppo
Levi’s theorem. □

Proof of Corollary 3. We proceed as in the proof of Corollary 1. Notice that, ||Sn(f)||p,µ ≤
n||f ||p,µ for any f ∈ Lp(µ) and by the spectral Lemma, we have for any f ∈ L2(µ)

||Sn(f)||2,µ ≤ C
n

logβ n
||f ||2,µ.

Hence, performing interpolation between L1(µ) and L2(µ) on the on hand and between L2(µ)
and L∞(µ) on the other hand and using Theorem 2, we can easily deduce the proof. □

Proof of Corollary 4. The proof follows from Abel’s summation formula and Theorem 2.
□

4 Appications
In this section, we present several examples illustrating our main results.

Example 1. Let 1 < p < ∞. Let d ∈ N∗ and δ > d. In what follows, we let ||δ|| =
min({δ}, 1 − {δ}), where {δ} denotes the fractional part of δ. As a first example, under

12



suitable conditions over K which will be given later, we obtain that, for any Dunford-Schwartz
operator T , any f ∈ Lp(µ) and any H > 1

p , if 1 < p ≤ 2,

∑
k>1

e2iπkδ

k
1−||δ||

(
p−1

p

)2 4
3(K−2) logH k

T kd(f) (7)

exists µ − a.e.. If 2 < p < ∞,

∑
k>1

e2iπkδ

k
1−||δ|| p−1

p2
4

3(K−2) logH k
T kd(f) (8)

exists µ − a.e.. Before proving this, we notice that Krause, Lacey and Wierdl [5] in their
study of the convergence of oscillatory ergodic Hilbert transforms showed that, for any f ∈
Lr(µ), 1 ≤ r < ∞, the limit

lim
N→∞

N∑
k=1

e2iπh(k)

k
T k(f)

exists µ-a.e., where h(k) is a Hardy field function. Recall that (see Section 3 in [5]) a function
of the form kδ = eδ log k is a Hardy field function. In that case, our result is more precise than
[5].

Now, we prove that (7) and (8) exist µ − a.e.. According to the proof of Corollary 1 and
to Corollary 2 it is sufficient to prove that

sup
θ∈R

∣∣∣∣∣
N∑

k=1
e2iπ(kδ+θkd)

∣∣∣∣∣ ≤ CN
1−||δ|| 2

3(K−2) , (9)

where K = 2n with n − 1 < δ < n.
In what follows, we consider the function g(x) = θxd + xδ. For any x ∈ [N1−ϵ, N ], where

ϵ is a positive constant which will be defined later, we have

g(n)(x) = δ(δ − 1) . . . (δ − (n − 1))xδ−n.

Consequently,

C(n, δ)
Nn−δ

≤ f (n)(x) ≤ C(n, δ)
N (1−ϵ)(n−δ) ,

where C(n, δ) = δ(δ − 1) . . . (δ − (n − 1)). According to Lemma 4 with λ = C(n,δ)
Nn−δ and h =

N ϵ(n−δ), we get∣∣∣∣∣∣
N∑

k=⌊N1−ϵ⌋
e2iπ(kδ+θkd)

∣∣∣∣∣∣ ≤ CN

(
1

N
n−δ
K−2 −ϵ(n−δ)

+ 1
N

2
K

−ϵ(n−δ)
+ 1

N
2δ
K

−ϵ(n−δ)

)
.
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Now, choosing ϵ = 1
3(K−2) and using the fact that δ > 1, we have∣∣∣∣∣∣

N∑
k=⌊N1−ϵ⌋

e2iπ(kδ+θkd)

∣∣∣∣∣∣ ≤ CN

(
1

N ||δ||( 1
K−2 −ϵ) + 1

N
2
K

−ϵ(n−δ)

)

≤ CN

(
1

N
||δ|| 2

3(K−2)
+ 1

N
6−n+δ
3(K−2)

)
.

Since ||δ|| ≤ 1
2 and δ > n − 1, we obtain∣∣∣∣∣∣

N∑
k=⌊N1−ϵ⌋

e2iπ(kδ+θkd)

∣∣∣∣∣∣ ≤ CN

(
1

N
||δ|| 2

3(K−2)

)
.

It follows that∣∣∣∣∣
N∑

k=1
e2iπ(kδ+θkd)

∣∣∣∣∣ ≤

∣∣∣∣∣∣
⌊N1−ϵ⌋−1∑

k=1
e2iπ(kδ+θkd)

∣∣∣∣∣∣+
∣∣∣∣∣∣

N∑
k=⌊N1−ϵ⌋

e2iπ(kδ+θkd)

∣∣∣∣∣∣
≤ C

(
N

1− 1
3(K−2) + N

1−||δ|| 2
3(K−2)

)
≤ CN

1−||δ|| 2
3(K−2) .

This proves (9).
Notice that (9) and Corollary 1 also imply that, for any Dunford-Schwartz operator T , any

f ∈ Lp(µ) and any H > 1
p ,

lim
N→∞

1
NΓ logH N

N−1∑
k=0

e2iπkδ
T kd(f) = 0 µ − a.e. & sup

N>1

∣∣∣∣∣
∑N−1

k=0 e2iπkδ
T kd(f)

NΓ logH N

∣∣∣∣∣ ∈ Lp(µ),

where Γ =

1 − ||δ||
(

p−1
p

)2 4
3(K−2) if 1 < p ≤ 2

1 − ||δ||p−1
p2

4
3(K−2) if 2 < p < ∞

.

Example 2. In this example, we take uk = k and wk = e2iπkδ for some 1 > δ > 0. First we
prove the following inequality

sup
θ∈R

∣∣∣∣∣
N∑

k=1
e2iπ(kδ+θk)

∣∣∣∣∣ ≤ CN1− δ
2 . (10)

To do it, the main idea is to apply the van der Corput theorem. Let a =
√

N , b = N and
f(x) = θx + xδ. In particular, we have

f ′(x) = θ + δxδ−1 and f ′′(x) = δ(δ − 1)xδ−2.
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Moreover for any x ∈ [
√

N, N ], we have

−f ′′(x) ≥ CN δ−2 := ρ.

According to Lemma 3, this gives

∣∣∣∣∣
N∑

k=1
e2iπ(kδ+θk)

∣∣∣∣∣ ≤

∣∣∣∣∣∣
⌊
√

N⌋∑
k=1

e2iπ(kδ+θk)

∣∣∣∣∣∣+
∣∣∣∣∣∣∣

N∑
k=⌊

√
N⌋

e2iπ(kδ+θk)

∣∣∣∣∣∣∣
≤

√
N +

(
|δN δ−1 − δN

δ−1
2 | + 2

)( C

N
δ−2

2
+ 3

)
≤ CN1− δ

2 .

This proves Equation (10). Now, according to Corollary 1, for any Dunford-Schwartz operator
T on L1(µ), any f ∈ Lp(µ) and for H > 1

p , we have

lim
N→∞

1
NΓ logH N

N∑
k=1

e2iπkδ
T k(f) = 0 µ − a.e. & sup

N>1

∣∣∣∣∣
∑N

k=1 e2iπkδ
T k(f)

NΓ logH N

∣∣∣∣∣ ∈ Lp(µ),

where Γ =

1 −
(

p−1
p

)2
δ if 1 < p ≤ 2

1 − p−1
p2 δ if 2 < p < ∞

.

Moreover, by Corollary 2, the series

∑
k>1

e2iπkδ

kΓ logH k
T k(f) exists µ − a.e. & sup

N>1

∣∣∣∣∣
N∑

k=2

e2iπkδ

kΓ logH k
T k(f)

∣∣∣∣∣ ∈ Lp(µ).

Notice that our results also improve [5].
As a remark, if we take wk = e2iπ logδ k for some δ > 2. Similarly to the proof of (10), a

simple calculation yields

sup
θ∈R

∣∣∣∣∣
N∑

k=1
e2iπ(logδ k+θk)

∣∣∣∣∣ ≤ C
N

log
δ−1

2 N
.

Then we can apply Corollaries 3 and 4.

Example 3. Here we deal with an example which was considered in [15, 23]. Let (Xk)
be a sequence of i.i.d random variables defined on some probability space (Ω, B,P), and let
Wk = e2iπXk such that E(Wk) = 0. Let (uk) be an increasing sequence of integers such that
uk = O

(
e

k

log2β k

)
for some 1 < β < 3

2 .
According to Theorem 1.1 in [15] in the one-dimensional setting, there exists some random

variable C(ω) which is almost surely (a.s.) finite and independent of M, N and θ such that,
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for almost every ω ∈ Ω,

sup
θ∈R

∣∣∣∣∣∣
N∑

k=M+1
Wk(ω)e2iπθuk

∣∣∣∣∣∣ ≤ C(ω)

√√√√ N∑
k=M+1

|Wk|2 ×
√

log uN

≤ C(ω)
√

N − M ×
√

N

logβ N
.

Theorem 2 applied to p = 2 ensures that there exists a measurable set Ω∗ ⊂ Ω of full measure,
such that for any ω ∈ Ω∗, any contraction T on L2(µ) and any f ∈ L2(µ), if 0 < H < β−1

2 ,
then

lim
N→∞

logH N

N

N−1∑
k=0

Wk(ω)T uk(f) = 0 µ−a.e. and sup
N≥1

∣∣∣∣∣ logH N

N

N−1∑
k=0

Wk(ω)T uk(f)
∣∣∣∣∣ ∈ L2(µ).

(11)

Moreover, by Corollary 4, we also obtain that

∑
k≥1

Wk(ω) logH k

k
T uk(f) exists µ − a.e..

A weak version of (11) could be derived from a theorem due to Weber. Indeed, according to
Theorem 4.2 in [23] with ϕ(x) = x

log2β x
, for any τ > 3

2 , there exists a measurable set Ω∗ ⊂ Ω
of full measure, such that for any ω ∈ Ω∗, any contraction T on L2(µ) and any f ∈ L2(µ),

lim
N→∞

1
N logτ−β N

N−1∑
k=0

Wk(ω)T uk(f) = 0 µ − a.e.,

and ∣∣∣∣∣
∣∣∣∣∣sup
N>1

∣∣∣∣∣ 1
N logτ−β N

N−1∑
k=0

Wk(ω)T uk(f)
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2,µ

≤ C(ω) ||f ||2,µ .

However, (11) is more precise.

Example 4. Let (pk)k≥1 be a squence of real numbers such that

0 ≤ pk ≤ 1,
∞∑

k=1
pk = ∞, pk ↓ 0, Nα = O

(
N∑

k=1
pk

)
& sup

k≥1

k(pk − pk+1)
pk

= O(1).

(12)

where α > 1
2 . Let (Xk) be a sequence of independent Bernoulli random variables on some

probability space (Ω, B,P) such that P(Xk = 1) = pk = 1 − P(Xk = 0). In this example, we
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consider the random set of integers N (ω) := {k ≥ 1 : Xk(ω) = 1}. In particular, we have
N (ω) = {uk(ω), k ≥ 1}, where

u1(ω) = inf{i ≥ 1 : Xi(ω) = 1} and uk+1(ω) = inf{i > uk(ω) : Xi(ω) = 1}.

In what follows we denote by

Π(N) = #N ∩ [1, N ] =
N∑

k=1
Xk.

The above random variable satisfies the following law of large numbers: a.s. lim
N→∞

Π(N)∑N

k=1 pk

= 1

(see Proposition 6.2. in [19]). Our purpose in this example is to give an estimate of Davenport
type. More precisely, for the Möbius sequence, we prove the following estimate.

Proposition 1. Almost surely

N∑
k=1

|µ(uk)| ∼ CN (13)

and, there exists some random variable C ′(ω) which is almost surely finite and independent of
N and θ such that, for almost every ω ∈ Ω,

∀ β > 0, ∃ Cβ : sup
θ∈R

∣∣∣∣∣
N∑

k=1
µ(uk)e2iπukθ

∣∣∣∣∣ ≤ C ′(ω)Cβ
N

logβ N
. (14)

Proof. To deal with (13), we write∑N
k=1 |µ(uk)|

N
=
∑uN

k=1 Xk|µ(k)|
N

=
∑uN

k=1(Xk − pk)|µ(k)|
N

+
∑uN

k=1 pk|µ(k)|
N

. (15)

Now, let sN =
∑N

k=1 pk with s0 = p1 and consider the martingale

MN =
N∑

k=1

(Xk − pk)|µ(k)|
sk

.

By computation we easily have

EM2
N ≤

N∑
k=1

pk(1 − pk)
s2

k

≤
N∑

k=1

pk

sksk−1
= 1

p1
+

N∑
k=2

( 1
sk−1

− 1
sk

)
≤ 2

p1
.

It follows from the Doob’s martingale convergence theorem, that the martingale MN converges
almost surely. Then, using the Kronecker’s lemma, we infer that, almost surely

lim
N→∞

1
sN

N∑
k=1

(Xk − pk)|µ(k)| = 0.
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Since suN ∼ Π(uN ) = N , we conclude that, almost surely

lim
N→∞

1
N

uN∑
k=1

(Xk − pk)|µ(k)| = 0.

According to (15), we have, almost surely

lim
N→∞

1
N

N∑
k=1

|µ(uk)| = lim
N→∞

1
suN

uN∑
k=1

pk|µ(k)|

It is well-known (see e.g. p.6 of [8]) that
∑N

k=1 |µ(k)| ∼ 6
π2 N . Hence

∑N
k=1 pk|µ(k)| ∼ 6

π2 sN .
Therefore

∑uN
k=1 pk|µ(k)| ∼ 6

π2 N . This concludes the proof of (13).

To deal with (14), we write

sup
θ∈R

∣∣∣∣∣
N∑

k=1
µ(uk)e2iπukθ

∣∣∣∣∣ ≤ sup
θ∈R

∣∣∣∣∣
uN∑
k=1

(Xk − pk)µ(k)e2iπkθ

∣∣∣∣∣+ sup
θ∈R

∣∣∣∣∣
uN∑
k=1

pkµ(k)e2iπkθ

∣∣∣∣∣ .
It follows from Theorem 1.1 in [15] in the one-dimensional setting, that there exists some
random variable C ′(ω) which is almost surely finite and independent of N and θ such that,
for almost every ω ∈ Ω,

sup
θ∈R

∣∣∣∣∣
uN∑
k=1

(Xk − pk)µ(k)e2iπkθ

∣∣∣∣∣ ≤ C ′(ω)
√

uN log(uN ).

By induction, we have uN ≤ CN
1
α . Hence

√
uN log(uN ) ≤ CN

1
2α log

1
2 N . Furthermore, for

any β > 0, there exists C1(β) > 0 such that N
1

2α logβ+ 1
2 N ≤ C1(β)N , consequently√

uN log(uN ) ≤ C1(β) N

logβ N
.

It remains to prove that, for any β > 0, there exists C2(β) > 0 such that

sup
θ∈R

∣∣∣∣∣
uN∑
k=1

pkµ(k)e2iπkθ

∣∣∣∣∣ ≤ C2(β) N

logβ N
. (16)

To do it, we use the Abel’s summation

logβ N

N

uN∑
k=1

pkµ(k)e2iπkθ = logβ N

N

uN −1∑
k=1

(pk −pk+1)
k∑

j=1
µ(j)e2iπjθ + puN logβ N

N

uN∑
k=1

µ(k)e2iπkθ.

This together with the Davenport estimate, implies that, there exists C3(β) > 0 such that

logβ N

N

∣∣∣∣∣
uN∑
k=1

pkµ(k)e2iπkθ

∣∣∣∣∣ ≤ C3(2β) logβ N

N

uN −1∑
k=2

(pk − pk+1) k

log2β k
+ C3(β)puN uN logβ N

N logβ(uN )
.
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Since pN ↓ 0 as N → ∞ and
∑uN

k=1 pk ∼ Π(uN ) = N , we have puN uN ≤
∑uN

k=1 pk ∼ N . Hence
puN

uN logβ N

N logβ(uN ) ≤ C.

By assumption, we have supk≥1

(
(pk−pk+1)k

pk

)
≤ C. Then

logβ N

Π(N)

N∑
k=2

(pk − pk+1)k
log2β k

≤ C
logβ N

Π(N)

N∑
k=2

pk

log2β k
.

Moreover, by Abel’s summation and the fact that 1
log2β(k) − 1

log2β(k+1) ≤ C 1
k log2β+1 k

, we obtain

logβ N

Π(N)

N∑
k=2

pk

log2β k
≤ logβ N

Π(N)

N−1∑
k=2

1
k log2β+1 k

k∑
j=1

pj +
∑N

k=2 pk

Π(N) logβ N
.

Since 1
k logβ+1 k

is a term of convergent series and
∑N

k=1 pk

logβ N
↑ ∞ as N → ∞, we have, by the

Kronecker’s lemma and using the fact that Π(N) ∼
∑N

k=1 pk,

logβ N

Π(N)

N∑
k=2

pk

log2β k
≤ C.

Which implies that

logβ N

N

uN∑
k=2

pk

log2β k
≤ C.

This proves the estimate in (16) and finishes the proof of (14).

Now, applying Corollary 3 in this context, we obtain that, there exists a measurable set
Ω∗ ⊂ Ω of full measure, such that for any ω ∈ Ω∗, any Dunford-Schwartz operator T on L1(µ)
and for any f ∈ Lp(µ), if H > 0, we have

lim
N→∞

logH N

N

N−1∑
k=0

µ(uk)T uk(f) = 0 µ−a.e. & sup
N≥1

∣∣∣∣∣ logH N

N

N−1∑
k=0

µ(uk)T uk(f)
∣∣∣∣∣ ∈ Lp(µ).

Example 5. Let 1 < p < ∞. Let (Xk) be a sequence of independent Bernoulli random
variables on some probability space (Ω, B,P) such that P(Xk = 1) = 1

log k = 1 − P(Xk = 0).
In this example, we consider the random set of integers N (ω) := {k ≥ 2 : Xk(ω) = 1}.
This set is referred to as the Cramer’s random model of primes. In particular, we have
N (ω) = {uk(ω), k ≥ 1}, where

u1(ω) = inf{i ≥ 2 : Xi(ω) = 1} and uk+1(ω) = inf{i > uk(ω) : Xi(ω) = 1}.

In what follows we denote by

Π(N) = #N ∩ [2, N ] =
N∑

k=2
Xk.
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The above random variable satisfies the following law of large numbers: lim
N→∞

Π(N) log N
N = 1

(see Proposition 6.2. in [19]). We deal with below the almost everywhere convergence of the
following average

1
Nβ

N∑
k=1

T uk(f) = 1
Π(uN )β

uN∑
k=2

XkT k(f)
(

p − 1
p

< β ≤ 1
)

.

To do it, it is sufficient to deal with the almost everywhere convergence of

1
Π(N)β

N∑
k=2

XkT k(f).

First we write

1
Π(N)β

N∑
k=2

XkT k(f) = 1
Π(N)β

N∑
k=2

(
Xk − 1

log k

)
T k(f) + 1

Π(N)β

N∑
k=2

T k(f)
log k

.

According to Theorem 1.1 in [15] in the one-dimensional setting, there exists some random
variable C(ω) which is P−a.s. finite and independent of M, N and θ such that, almost surely

sup
θ∈R

∣∣∣∣∣
N∑

k=M

(
Xk − 1

log k

)
e2iπθk

∣∣∣∣∣ ≤ C(ω)

√√√√ N∑
k=M

∣∣∣∣(Xk − 1
log k

)∣∣∣∣2 ×
√

log N

≤ C(ω)
√

N − M ×
√

log N.

According to the proof of Corollary 1 when p ≥ 2 and applying the second statement of Theorem
1, for H > 2 when p = 2 and for H > 1

P + 1
2 when p > 2, we get almost surely

lim
N→∞

1

N
p−1

p logH N

N∑
k=2

(
Xk − 1

log k

)
T k(f) = 0 µ − a.e..

Since supN>1
N

p−1
p logH N
Π(N)β is bounded, we have almost surely

lim
N→∞

1
Π(N)β

N∑
k=2

(
Xk − 1

log k

)
T k(f) = 0 µ − a.e..

Now, by Abel’s summation∣∣∣∣∣ 1
Π(N)β

N∑
k=2

T k(f)
log k

∣∣∣∣∣ ≤ 1
Π(N)β

N−1∑
k=2

log(k + 1) − log k

log(k + 1) log k

∣∣∣∣∣∣
k∑

j=2
T j(f)

∣∣∣∣∣∣+ 1
log N

∣∣∣∣∣
N∑

k=2
T k(f)

∣∣∣∣∣


≤ logβ N

Nβ

N−1∑
k=2

1
k1−β log2 k

∣∣∣∣∣∣ 1
kβ

k∑
j=2

T j(f)

∣∣∣∣∣∣+ 1
log1−β N

∣∣∣∣∣ 1
Nβ

N∑
k=2

T k(f)
∣∣∣∣∣ .

(17)
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In what follows, we only deal with the case where the function f is such that

lim
N→∞

1
Nβ

N∑
k=1

T k(f) = 0 µ − a.e.. (18)

Examples of function f satisfying the above equation are given in [7, 31, 23].
According to the above assumption, the second term of (17) converges to 0 µ-a.e.. To deal

with the first term of (17), recall that

∑
k≥1

bk = +∞ and lim
k→∞

ak = 0 =⇒ lim
N→∞

∑N
k=1 bkak∑N

k=1 bk

= 0

for any sequences (ak), (bk). Applying this to ak = 1
kβ

∑k
j=2 T j(f) and bk = 1

k1−β log2 k
, and

using the fact that logβ N
Nβ

∑N
k=2

1
k1−β log2 k

is bounded, it follows that

lim
N→∞

logβ N

Nβ

N−1∑
k=2

1
k1−β log2 k

∣∣∣∣∣∣ 1
kβ

k∑
j=2

T j(f)

∣∣∣∣∣∣ = 0 µ − a.e..

Consequently, almost surely

lim
N→∞

1
Nβ

N∑
k=1

T uk(f) = 0 µ − a.e..

As an open question, is it true that (18) implies that

lim
N→∞

1
Nβ

N∑
k=1

T pk(f) = 0 µ − a.e.

(
p − 1

p
< β ≤ 1

)
,

where P = {pk}k≥1 denotes the set of prime numbers?
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