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On the mantissa distribution of natural and prime number powers

We study the mantissa distribution of the natural numbers, the prime numbers, and their respective powers to a fixed exponent. This is done with respect to three distinct notions of subsequence density: the natural density, the logdensity and the loglog-density. We first prove that the mantissa sequences of the natural numbers (n) n≥1 and of the prime numbers (p n ) n≥1 are distributed following the continuous Benford law, with respect to both the log-density and the loglog-density. We then show that the mantissa sequences of the powers (n r ) n≥1 and (p r n ) n≥1 , where r ≥ 1 is a fixed exponent, tend to be distributed following the continuous Benford law, with respect to the natural density, as r goes to infinity. Finally, we provide convergence speed estimates.

Introduction

Newcomb in 1881 [START_REF] Newcomb | Note on the frequency of use of the different digits in natural numbers[END_REF], then Benford in 1938 [START_REF] Benford | The law of anomalous numbers[END_REF] drew attention to the fact that, in most collections of numbers found in daily life (physical constants, prices, stock market, geographical data and so on), the proportion of those numbers with first significant digit 1 is much greater than the expected 11% if the digits 1, 2, . . . , 9 appeared equally often as the first digit in base 10 of these numbers. Indeed, the observed frequencies of 1, 2, . . . , 9 as first digit look closer to 0.301, 0.176, 0.125, 0.097, 0.079, 0.067, 0.058, 0.051, 0.046, respectively.

For a real number x > 0, we shall denote by D(x) its first significant digit in base 10, by M(x) ∈ [1, 10[ its mantissa, by x its floor (that is, the largest integer not exceeding x), and by {x} its fractional part. Thus, we have x = M(x)10 k for some integer k, D(x) = M(x) , and {x} = x -x . Moreover, we shall denote by p n the n-th prime number (so that p 1 = 2, p 2 = 3 and so on), by log the neperian logarithm and by log 10 the logarithm in base 10.

Considerations on the invariance under scale change of the above phenomenon lead Newcomb and Benford to conclude that the mantissa of these numbers is necessarily distributed following a law with a density of type t → ct -1 , i.e. according to the continuous Benford law µ B , defined as the probability measure on the interval [1, 10[ characterized by µ B ([1, a[) = log 10 a (1 ≤ a < 10).

Note that µ B is the unique probability measure on the interval [1, 10[ which is invariant by product modulo 10, since the Lebesgue measure is the unique probability measure on [0, 1[ which is invariant by translation modulo 1. They deduced that the first digit must be distributed following ν B , where ν B is the discrete law of Benford on the set {1, . . . , 9} defined, for c = 1, . . . , 9, by

ν B (c) = µ B ( [c , c + 1[ ) = log 10 1 + 1 c .
Work in this subject developed in two directions. The first one looks for conditions on a random variable X ensuring that the mantissa M(X) is of law µ B . See [START_REF] Janvresse | From uniform distributions to Benford's law[END_REF] and [START_REF] Hill | A statistical derivation of the significant digit law[END_REF] for example, and also [START_REF] Miller | The modulo one Central Limit Theorem and Benford's law for products[END_REF] or [START_REF] Sharpe | Limit Laws and Mantissa Distributions[END_REF] for limit theorems on this subject. The second one, that we follow in this paper, looks for classical sequences (u n ) n≥1 such that the sequence (M(u n )) n≥1 is distributed following µ B with respect to the natural density if possible, or else to some other densities. See Section 2 for the subsequence densities that we shall consider in this paper, in particular the log-density and the loglog-density.

Let the nth Fibonacci number be denoted by

F n . The sequences (M(F n )) n≥1 , (M(2 n )) n≥1 , (M(3 n )) n≥1 , (M(n n ))
n≥1 and (M(n!)) n≥1 are distributed, with respect to the natural density, following µ B (see [START_REF] Posch | A Survey of Sequences and Distribution Functions satisfying the First-Digit-Law[END_REF]). Therefore the sequences

(D(F n )) n≥1 , (D(2 n )) n≥1 , (D(3 n )) n≥1 , (D(n n )) n≥1 and (D(n!)) n≥1 are all distributed following ν B .
In contrast, the sequence (D(n)) n≥1 is not distributed following ν B (or any other law) since the proportion of natural numbers whose first significant digit is 1, for example, oscillates indefinitely between the values 5 9 and 1 9 . Fuchs and Letta [START_REF] Fuchs | Le problème du premier chiffre décimal pour les nombres premiers, (French) [The first digit problem for primes[END_REF] deduce from that, with a technique of their own, that the sequence (D(p n )) n≥1 is also not distributed following ν B . Note that this result can also be obtained directly by combining the properties in Section 4 of this paper and the fact that the sequence of fractional parts ({log 10 p n }) n≥1 is not distributed following the uniform law U (see [START_REF] Parent | Exercises in Number Theory[END_REF] where it suffices to replace log by log 10 and e by 10). Recall that the uniform law

U on [0, 1[ is defined by U ([0, a[) = a (0 ≤ a < 1).
In this paper, we first deal with the sequences (M(n)) n≥1 and (M(p n )) n≥1 with respect to the log-and the loglog-density. On this theme, certain partial results are already known. In particular, Fuchs and Letta [START_REF] Fuchs | Le problème du premier chiffre décimal pour les nombres premiers, (French) [The first digit problem for primes[END_REF] show that the sequence (D(n)) n≥1 is log-distributed following ν B and they deduce from this that the sequence (D(p n )) n≥1 is loglog-distributed following ν B . Whitney [START_REF] Whitney | Initial digits for the sequence of primes[END_REF] obtains this last result by direct computations, and Duncan [START_REF] Duncan | Note on the Initial Digit Problem[END_REF] obtains it with respect to the log-density (see also [START_REF] Kanemitsu | On Benford's law: The first digit problem[END_REF], [START_REF] Cohen | Prime Numbers and the First Digit Phenomenon[END_REF] and [START_REF] Akiyama | Almost Uniform Distribution modulo 1 and the distribution of primes[END_REF] who treat close subjects). We show, in what is a stronger result (see above), that the sequences (M(n)) n≥1 and (M(p n )) n≥1 are log-distributed and loglog-distributed following µ B , and we study the speed of convergence. We then consider the sequences (M(n r )) n≥1 and (M(p r n )) n≥1 (r ∈ N * ) with respect to the natural density. We show, in a sense made precise in Section 3, that these sequences tend to be distributed, still with respect to the natural density, following µ B when r → +∞. This phenomenon is illustrated in Figure 1 below. Again, we study the speed of convergence. To the best of our knowledge, the only preceding results on Benford's law concerning sequences of sequences, or arrays of numbers, are due to Diaconis [START_REF] Diaconis | The Distribution of Leading Digits and Uniform Distribution mod 1[END_REF] and concern the binomial coefficients.

All our results are presented in base 10, but they hold in any other numeration base b, and some thoughts about this can be found in the conclusion of this paper. 

Notation and definitions

We denote by N * the set of positive integers, by Z * the set of non-zero integers, and, for all h ∈ Z * and all real number x, we set

e h (x) = exp(2iπhx)
where i 2 = -1 .

Subsequence density

Given a subsequence A of a sequence of numbers (u n ) n≥1 , the natural density of A inside (u n ) n≥1 is defined by

lim N →+∞ Card{n ≤ N : u n ∈ A} N = lim N →+∞ 1 N N n=1 1 A (u n ),
when this limit exists1 . More generally, let (w n ) n≥1 be a sequence of positive weights summing to infinity. The density of A inside (u n ) n≥1 , with respect to the w n 's, is then defined by

lim N →+∞ 1 ( N n=1 w n ) N n=1 w n 1 A (u n ) ,
when this limit exists. The natural density corresponds to the case w n = 1 for all n.

We shall also consider the cases w n = 1 n and w n = 1 pn , corresponding to what we shall call the log-density and the loglog-density, respectively, by reference to the fact that, when N → +∞, we have When u n = w n = p n , some authors (see [START_REF] Fuchs | Le problème du premier chiffre décimal pour les nombres premiers, (French) [The first digit problem for primes[END_REF] or [START_REF] Whitney | Initial digits for the sequence of primes[END_REF] for example) speak of logarithmic density relative or conditioned to the prime numbers. Note that, if A admits a natural density inside (u n ) n≥1 , then it also admits a log-density, and these two densities coincide [22, p. 272 . This can be viewed as the weak convergence to µ of the sequence of discrete probability measures (Q N ) N ≥1 where

Q N = 1 N n=1 w n N n=1 w n δ vn ,
and where δ x denotes the Dirac measure at point x.

Let us note at the outset that, if the sequence (M(u n )) n≥1 is distributed following µ B , then the sequence (D(u n )) n≥1 is distributed following ν B , and that the converse does not hold. We may also deduce that the density of the set of members of (u n ) n≥1 whose kth significant digit equals d ∈ {0, . . . , 9} is

log 10   n=10 k-1 -1 n=10 k-2 1 + 1 10n + d   ,
and that the density of the set of members whose first m significant digits give the integer N is log 10 1 + 1 N . This holds for the natural density, the log-density and the loglog-density. Therefore, when it is possible, the study of the distribution of the mantissa of the u n is much more general than that of the first significant digit.

For the above notions of density, the set of even numbers admits 1 2 as density inside the sequence (n) n≥1 of natural integers and, more generally, the set hN * admits 1 h as density inside (n) n≥1 . Therefore, these densities appropriately account for the place that A occupies inside (u n ) n≥1 .

Discrepancy

Let S = (v n ) n≥1 be a sequence of real numbers, N ∈ N * and (w n ) n≥1 a sequence of non-negative weights summing to infinity. The discrepancy modulo 1 of order N of S (see [START_REF] Drmota | Sequences, discrepancies and applications[END_REF][START_REF] Rivat | Inégalités d'Erdős-Turán[END_REF]), associated to (w n ) n≥1 , is the number

D (wn) N (S) := sup 0<a<b<1 1 ( N n=1 w n ) N n=1 w n 1 [a, b[ ({v n }) -(b -a) .
It represents in a way the distance between the uniform distribution U and the distribution, with respect to (w n ) n≥1 , of the first N terms of ({v n }) n≥1 . For the weights

w n = 1, w n = 1
n and w n = 1 pn , these numbers will be denoted D N (S), D log N (S) and D loglog N (S) , respectively. If v n = log 10 u n (n ≥ 1) where (u n ) n≥1 is a sequence of positive reals, this number is also the distance between µ B and the distribution, with respect to (w n ) n≥1 , of the first N terms of (M(u n )) n≥1 because, if v n = log 10 u n , then

D (wn) N (S) := sup 1<c<d<10 1 ( N n=1 w n ) N n=1 w n 1 [c, d[ (M(u n )) -log 10 d c .
(See the corollary in Section 4 for the link between U and µ B .) Note that, if we replace the intervals 

Results

We present here the main results of this paper. See above for the link between the discrepancy of (log 10 u n ) n≥1 and the convergence speed in the study of the distribution of (M(u n )) n≥1 . We denote by O the standard big O of Landau. Let us recall that, when a sequence is log-distributed following a probability measure µ, it is then also loglog-distributed following µ (see Section 2.1). 

D log N (S 2 ) = O (log N ) -1 (log log N ) 2 and D loglog N (S 2 ) = O (log log N ) -1 2 (log log N ) 2 .
Theorem 3. [START_REF] Cohen | Prime Numbers and the First Digit Phenomenon[END_REF] The sequence (M(p n )) n≥1 is log-distributed following the continuous law of Benford µ B . Moreover, setting S 3 = (log 10 p n ) n≥1 , we have

D log N (S 3 ) = O (log N ) -1 2 (log log N ) 2 and D loglog N (S 3 ) = O (log log N ) -1 2 (log log log N ) 2 .
We say that the mantissa of the terms in the rows of the array of positive real numbers (v r,n ) r,n≥1 tends to be distributed following µ B when r → +∞ if there exists a non-decreasing function φ from N * to N * , of infinite limit, such that

lim r→+∞ sup 1<b<10 Card {n ≤ φ(r) : M(v r,n ) < b} φ(r) -log 10 b = 0 .
This definition is most useful when the rows of the array (M(v r,n )) r,n≥1 do not admit any distribution (like in the sequel). The introduction of a truncation function φ as above is then necessary.

Theorem 3.4 The mantissa of the terms in the rows of the arrays {n r : r ≥ 1 , n ≥ 1} and {p r n : r ≥ 1 , n ≥ 1} tends to be distributed following µ B when r → +∞. Moreover, setting φ(r) = [e r ] and S r = (log 10 n r ) n≥1 or S r = (log 10 p r n ) n≥1 (r ∈ N * ), we have

D φ(r) (S r ) = O(r -1 ) .

Preliminaries

We present here the properties, already known or purely technical, used in the proofs of the results in the preceding section. The first two properties hold for the three sequences of weights (w n ) n≥1 that concern us here:

w n = 1, w n = 1 n and w n = 1 pn .
The Weyl criterion. The sequence of real numbers (v n ) n≥1 is distributed (with respect to w n ) modulo 1 following U if and only if

∀ h ∈ Z * , lim N →+∞ 1 ( N n=1 w n ) N n=1
w n e h (v n ) = 0 .

See for instance [START_REF] Kuipers | Uniform Distribution of Sequences (Dover Publications[END_REF] or [START_REF] Drmota | Sequences, discrepancies and applications[END_REF] for a proof in the case of the natural density. The proofs for the log-density and the loglog-density follow the same lines.

Corollary 4.1 Let (u n ) n≥1 be a sequence of positive real numbers. Given the sequence of weights (w n ) n≥1 , the following four properties are equivalent:

1. the sequence (M(u n )) n≥1 is distributed (with respect to w n ) following the continuous law of Benford;

2. the sequence (log 10 M(u n )) n≥1 of elements in [0, 1[ is distributed (with respect to w n ) following the uniform law;

3. the sequence (log 10 u n ) n≥1 is distributed (with respect to w n ) modulo 1 following the uniform law;

4. ∀ h ∈ Z * , lim N →+∞ 1 ( N n=1 w n ) N n=1
w n e h (log 10 u n ) = 0 .

Proof. Properties 1 and 2 are equivalent since the function log 10 is strictly monotonous as well as a → 10 a . Properties 2 and 3 are equivalent because log 10 M(x) = log 10 x (modulo 1). The equivalence between properties 3 and 4 is a direct consequence of the Weyl criterion.

The following result appears in various guises in the literature, in particular due to the still ongoing search for the best possible constants. We shall use those found in [START_REF] Drmota | Sequences, discrepancies and applications[END_REF] and [START_REF] Rivat | Inégalités d'Erdős-Turán[END_REF]. We want to point out the fact that, in the next three inequalities, the choice of the integer H ≥ 1 is free.

The Erdős-Turán inequality. Let S = (v n ) n≥1 be a sequence of elements in [0, 1[ and let N be a natural number. Then, for every natural number H, we have

D N (S) ≤ 1 H + 1 + H h=1 1 h 1 N N n=1 e h (v n ) , D log N (S) ≤ 3 2 2 H + 1 + H h=1 1 h 1 ( N n=1 1 n ) N n=1 e h (v n ) n and D log log N (S) ≤ 3 2 2 H + 1 + H h=1 1 h 1 ( N n=1 1 pn ) N n=1 e h (v n ) p n .
Proof. See [START_REF] Rivat | Inégalités d'Erdős-Turán[END_REF] for the first inequality and [START_REF] Drmota | Sequences, discrepancies and applications[END_REF] for the other two.

The following property may be found, for instance, in [START_REF] Ribenboim | The Little Book of Bigger Primes[END_REF].

Lemma 4.2 For all n ∈ N * , p n ≥ n log n and there exists a real number C 0 > 0 such that, for all integer n ≥ 3, Proof. Fix n ≥ 1 and θ = 0. Then

|p n -n log n| ≤ C 0 n log log n .
1 n n j=1 j 2iπθ = n 2iπθ R n (f )
where R n (f ) is the Riemann sum of f : t → t 2iπθ on [0, 1] with n regular steps of length

n -1 . Since 1 0 f (t) dt = 1 2iπθ + 1
, thanks to the mean value inequality, we have

R n (f ) - 1 2iπθ + 1 = n-1 j=0 j+1 n j n j + 1 n 2iπθ -t 2iπθ dt ≤ 1 n 0 1 n 2iπθ -t 2iπθ dt + n-1 j=1 j+1 n j n j + 1 n -t 2π|θ| j n dt ≤ 1 n 2iπθ 2iπθ + 1 + 2π|θ| n-1 j=1 1 2jn
.

All our proofs rely on lemma 4.7 below. To prove it we need two famous estimates that we now recall. The first one is Lemma 4.10 in [23, p. 76]. Here is the second estimate. To prove it, it suffices to rewrite the proof of Lemma 2.43 in [5, p. 253] for a non-integer parameter θ. Lemma 4.5 Fix θ = 0. For all integer ν and all real number B > 1, we have

B 1 exp(2iπ(θ log x -νx)) x dx ≤ C |θ| -1 + |θ| -1 2 ,
where C is an absolute constant.

Lemma 4.6 There exists C 1 > 0 and an integer n 0 ≥ 1 such that, for all integer n ≥ n 0 and all θ = 0, we have

n j=n 0 exp(2iπθ log j) j ≤ C 1 |θ| -1 + |θ| -1 2 + |θ| 1 2 n 0 .
Proof. Without loss of generality, we may assume θ > 0. We apply Lemma 4.4 with a = n 0 , b = n, g(x) = 1/x and f (x) = θ log x. This gives

n j=n 0 1 j exp(2iπθ log j) = θ/n-1/2<ν<θ/n 0 +1/2 n n 0 exp(2iπ(θ log x -νx)) x dx + O (1/n 0 log (θ(1/n 0 -1/n) + 2)) + O(1/n 2 0 ) . Observing that log (θ(1/n 0 -1/n) + 2) ≤ θ 1 2 /n 0 1 2 + 2 1 2 /n 0 1 2 , that 1 ≤ θ -1 2 + θ 1 2 and that n 0 ≥ 1 we obtain O (1/n 0 log (θ(1 -1/n) + 2)) + O(1/n 2 0 ) ≤ C θ -1 2 + θ 1 2 n 0 ,
where C is a constant. Applying Lemma 4.5, and observing that the number of terms in the above sum does not exceed 1 + θ(1/n 0 -1/n), it follows that there exists an absolute constant, still denoted C, such that

θ/n-1/2<ν<θ/n 0 +1/2 n n 0 exp(2iπ(θ log x -νx)) x dx ≤ C θ -1 + θ -1 2 (1 + θ(1/n 0 -1/n)) ≤ 2C θ -1 + θ -1 2 + θ 1 2 n 0 .
This concludes the proof. exp(2iπθ h log j) j .

Using Lemma 4.7, we obtain (|h| ≥ 1)

n j=|h|+1 exp(2iπθ h log j) j ≤ C 1 log b + log b 1 2 + log b -1 2 .
Finaly observes that |h| Proof. For all integer n ≥ 3 and all θ ∈ R, we have

exp(2iπθ log p n ) -exp(2iπθ log(n log n)) = p n n log n 2iπθ -1 = 1 + p n -n log n n log n 2iπθ -1 ≤ 2π|θ| |p n -n log n| n log n
as follows from the mean value inequality and taking Lemma 4.2 into account. Therefore, we may choose C 2 = 2πC 0 , where C 0 is the constant involved in Lemma 4.2.

Lemma 4.9 There exists C 3 > 0 such that, for all integer N ≥ 3 and all sequence (θ n ) n≥3 of real numbers, we have

N n=3 exp(iθ n ) n log n - exp(iθ n ) p n ≤ C 3 .
Proof. Let N ≥ 3 and a sequence (θ n ) n≥3 be fixed. Then we have 

N n=3 exp(iθ n ) n log n - exp(iθ n ) p n ≤ C 0 N n=3

Proofs

We shall now prove the results stated in Section 3. Set S 1 = (log 10 n) n≥1 , S 2 = (log 10 n log n) n≥2 , S 3 = (log 10 p n ) n≥1 and, for h ∈ Z * and n ≥ 1, θ h = h log 10 , B n = n j=1 j 2iπθ h -1 and

γ h = C 1 log |h| log 10 + log 10 + 1 √ log 10 .
The following estimates will be useful:

H h=1 θ h h = O(H) , H h=1 γ h h = O(log H) 2 and H h=1 θ h γ h h = O (H log H) . (1) 
Recall that Lemma 4.7 gives an upper bound of |B n | by γ h which is independent of n.

Proof of Theorem 3.1

1) Let us first study the sequence (M(n)) n≥1 with respect to the log-density, that is with

w n = 1 n . Fix h ∈ Z * .
Then, for all N ∈ N * , we have from Lemma 4.7:

N n=1 e h (log 10 n) n ≤ γ h . (2) 
It remains only to divide by log N and to apply Weyl's criterion in order to prove that the sequence (M(n)) n≥1 is log-distributed following µ B .

Relations ( 2) and (1) also show that, for all N ∈ N * ,

H h=1 1 h N n=1 e h (log 10 n) n = O(log H) 2
and the Erdős-Turán inequality then gives

D log N (S 1 ) ≤ 3 2 O(H -1 ) + O(log H) 2 log N .
By choosing H = log N , we obtain a convergence speed of D log N (S 1 ) to 0 at least as fast as that of (log log N ) 2 log N .

2) Let us now study the sequence (M(n)) n≥1 with respect to the loglog-density, that is with w n = 1 pn . Let us fix h ∈ Z * and the integer N ≥ 3. Observe first that, for all n ≥ 2, we have

1 log n - 1 log(n + 1) = n+1 n -1 x(log x) 2 dx ≤ 1 n(log n) 2 . (3) 
Then, thanks to Abel's transformation and Lemma 4.7, we have

N n=2 e h (log 10 n) n log n = N n=2 n 2iπθ h -1 (log n) -1 = B N (log N ) 2iπθ h -B 1 (log 2) 2iπθ h + N -1 n=2 B n 1 log n - 1 log(n + 1) ≤ |B N | + 1 + N -1 n=2 |B n | 1 n(log n) 2 ≤ γ h + 1 + γ h log 2 .
This, together with Lemma 4.9, implies

N n=2 e h (log 10 n) p n ≤ C 3 + γ h + 1 + γ h log 2 . (4) 
Relations ( 4) and [START_REF] Akiyama | Almost Uniform Distribution modulo 1 and the distribution of primes[END_REF] show that, for all N ∈ N * ,

H h=1 1 h N n=1 e h (log 10 n) p n = O(log H) 2
and the Erdős-Turán inequality then gives

D log log N (S 1 ) ≤ 3 2 O(H -1 ) + O(log H) 2 log log N .
Choosing H = log log N leads to the announced bound. This concludes the proof of Theorem 3.1.

Proof of Proposition 3.2

1) Let us first study the sequence (M(n log n)) n≥2 with respect to the log-density. Let us fix h ∈ Z * and the integer N ≥ 3. Then, thanks to Abel's transformation, relation

and Lemma 4.7, we have

N n=2 e h (log(n log n)) n = N n=2 n 2iπθ h -1 (log n) 2iπθ h = B N (log N ) 2iπθ h -B 1 (log 2) 2iπθ h + N -1 n=2 B n (log n) 2iπθ h -(log(n + 1)) 2iπθ h ≤ |B N | + 1 + N -1 n=2 |B n | 2π|θ h | n log n ≤ γ h + 1 + 2π|θ h |γ h (log log N -log log 2) . (5) 
It remains to divide by log N and to apply Weyl's criterion in order to prove that the sequence

(M(n log n)) n≥2 is log-distributed following µ B .
The Erdős-Turán inequality and relations ( 5) and ( 1) give

D log N (S 2 ) ≤ 3 2 O(H -1 ) + O(log H) 2 + O(log H) + (1 + log log N )O(H log H) log N . Choosing H = (log N ) 1 2
leads to the announced bound.

2) Let us now study the sequence (M(n log n)) n≥2 with respect to the loglog-density. Let us fix h ∈ Z * and the integer N ≥ 3 and observe that, for all n ≥ 2, we have

(log n) 2iπθ h -1 -(log(n + 1)) 2iπθ h -1 = n+1 n (2iπθ h -1) (log x) 2iπθ h -2 x dx ≤ |2πθ h -1| n(log n) 2 .
Therefore, because of Abel's transformation and Lemma 4.7, we have

N n=2 e h (log 10 (n log n)) n log n = N n=2 n 2iπθ h -1 (log n) 2iπθ h -1 = B N (log N ) 2iπθ h -1 -B 1 (log 2) 2iπθ h -1 + N -1 n=2 B n (log n) 2iπθ h -1 -(log(n + 1)) 2iπθ h -1 ≤ |B N | log N + 1 log 2 + N -1 n=2 |B n | |2πθ h -1| n(log n) 2 ≤ γ h log N + 1 log 2 + |2πθ h -1| γ h log 2 .
This, together with Lemma 4.9, implies

N n=2 e h (log 10 (n log n)) p n ≤ C 3 + γ h log N + 1 log 2 + |2πθ h -1| γ h log 2 . ( 6 
)
The Erdős-Turán inequality and relations (1) and [START_REF] Duncan | Note on the Initial Digit Problem[END_REF] give

D log log N (S 2 ) ≤ 3 2 O(H -1 ) + O(log H) 2 + O(log H) + O (H log H) log log N .
It remains only to fix H = (log log N ) 

) n ≤ γ h + 1 + γ h 2π|θ h |(1 + log log N ) + C 2 |θ h | N n=3 log log n n log n . (7) 
Since, when N → +∞, we have

N -1 n=3 log log n n log n ∼ (log log N ) 2 2 ,
it only remains to divide by log N and to apply Weyl's criterion in order to prove that the sequence (M(p n )) n≥1 is log-distributed following µ B .

The Erdős-Turán inequality and relations [START_REF] Fuchs | Le problème du premier chiffre décimal pour les nombres premiers, (French) [The first digit problem for primes[END_REF] and [START_REF] Akiyama | Almost Uniform Distribution modulo 1 and the distribution of primes[END_REF] give

D log N (S 3 ) ≤ 3 2 O(H -1 ) + O(log H) 2 + O(log H) + O (H log H) (1 + log log N ) + O(H)(log log N ) 2 log N .
Choosing H = (log N )

1 2
leads to the announced bound.

2) Let us now study the sequence (M(n log n)) n≥2 with respect to the loglog-density.

Let us fix h ∈ Z * and the integer N ≥ 3. Then, from relation ( 6) and Lemma 4.8, we have

N n=3 e h (p n ) p n ≤ C 3 + γ h log N + 1 log 2 + |2πθ h -1| γ h log 2 + C 2 |θ h | N n=3 log log n p n log n . (8) 
The Erdős-Turán inequality and relations ( 1) and ( 8) give

D log log N (S 3 ) ≤ 3 2 O(H -1 ) + O(log H) 2 + O(log H) + O (H log H) + O(H) log log N .
Then, by fixing H = (log log N )

1 2 , we get the announced bound. The proof of Theorem 3.3 is now complete.

Proof of Theorem 3.4

In the computations that follow, the term O(1) 1 r appears in each upper bound of the discrepancy. Therefore, these upper bounds can only converge to 0 if r goes to infinity.

1)

Let us first study the rows of the array (n r ) r,n≥1 with respect to the natural density (and hence, here, S r = (log 10 n r ) n≥1 for r ∈ N * ). Let us fix the integers N ≥ 1, h ≥ 1 and r ≥ 1. From Lemma 4.3, we have The Erdős-Turán inequality then gives

D N (S r ) ≤ O(H -1 ) + O(1) 1 r + O(log H) N + O(H)r log N N . (9) 
We have infinitely many choices for the values of N = φ(r) and values of H depending on r that lead to lim r→+∞ D φ(r) (S r ) = 0.

In particular, taking H = r and N = φ(r) = e r , we obtain D φ(r) (S r ) = O(r -1 ), which is the best that can be expected from relation [START_REF] Hill | A statistical derivation of the significant digit law[END_REF].

2) Let us now study the rows of the array (n r log r n) r,n≥1 with respect to the natural density (and hence, here, S r = (log 10 (n r log r n)) n≥1 ). Let us fix the integers N ≥ 3, h ≥ 1 and r ≥ 1, and set θ = rh(log 10) -1 and, for n ≥ 1, A n = n j=1 j 2iπθ and v n = log 10 (n r log r n). We first remark that, for n ≥ 2, we have

(log n) 2iπθ -(log(n + 1)) 2iπθ = 2π|θ| n+1 n (log x) 2iπθ x log x dx ≤ 2π|θ| n log n .
Therefore, because of Abel's transformation and Lemma 4.3, we have

N n=2 e h (v n ) = N n=2 n 2iπθ (log n) 2iπθ = A N (log N ) 2iπθ -A 1 (log 2) 2iπθ + N -1 n=2 A n (log n) 2iπθ -(log(n + 1)) 2iπθ ≤ N 2π|θ| + 2 + π|θ| log N + N -1 n=2 n 2π|θ| + 1 + π|θ| log n 2π|θ| n log n .
Thus, from the properties of the integral logarithm function, there exists a constant K > 0 such that

N n=1 e h (v n ) ≤ N 2π|θ| + 3 + KN log N + π|θ|(log N + 2 log log N ) + 2π 2 θ 2 log N .
Therefore, for all integer r ≥ 1 and all N ≥ 3,

H h=1 1 h N n=1 e h (v n ) = O(1) N r + O(log H) N log N + O(H)r log N + O(H 2 )r 2 log N . (10) 
This, together with the Erdős-Turán inequality, gives

D N (S r ) ≤ O(H -1 ) + O(1) 1 r + O(log H) log N + O(H)r log N N + O(H 2 )r 2 log N N .
And, for H = r and N = φ(r) = e r , we again obtain D φ(r) (S r ) = O(r -1 ).

3) Finally, let us study the rows of the array (p r n ) r,n≥1 with respect to the natural density (and hence, S r = (log 10 (p r n )) n≥1 here). Let us fix the integers N ≥ 3, h ≥ 1 and r ≥ 1, and set again v n = log 10 (n r log r n). Applying Lemma 4.8 to θ = rh(log 10) -1 and using the properties of the integral logarithm, we obtain This concludes the proof of Theorem 3.4.

Conclusion

All [START_REF] Raimi | The first digit problem[END_REF] and [START_REF] Knuth | The Art of Computer Programming volume[END_REF]). Note that, in our proofs, we have shown that, when r → +∞, the mantissa of the row terms of the array ((n log n) r ) r,n≥1 tends to be distributed following µ B .

It is very easy to verify that if (M(u n )) n≥1 is distributed (log-distributed and loglogdistributed, respectively) following µ B , then (M(u r n )) n≥1 also is for all r ∈ N * . Therefore, for all r ∈ N * , the sequences (M(n r )) n≥1 , (M(p r n )) n≥1 and (M((n log n) r )) n≥2 are log-distributed and loglog-distributed following µ B .

It is well known to the arithmeticians that, for a real number α, the sequence of fractional parts ({αn}) n≥1 is distributed following U if and only if α is an irrational number. Because of the properties recalled in Section 4, we deduce from this that the mantissa of the terms of each column of the array (p r n ) r,n≥1 (and, up to rare exceptions, of each column of (n r ) r,n≥1 ) is distributed following µ B with respect to the natural density. Moreover, the diagonal of the array (n r ) r,n≥1 is the sequence (n n ) n≥1 whose mantissa are distributed, still with respect to the natural density, following µ B [START_REF] Posch | A Survey of Sequences and Distribution Functions satisfying the First-Digit-Law[END_REF].

Figure 1 :

 1 Figure 1: Frequency of 1, 2, . . . , 9 as first digit of p r i for i ≤ 10000 and r = 1, 2 and 20. The unmarked curve is Benford's law.

  [a, b[ and [c, d[ by the intervals [0, b[ and [0, d[, we obtain the so-called star-discrepancy [5, p. 5] which is exactly, in our situation, the Kolmogorov distance between µ B and the probability measure Q N defined above with M(u n ) instead of v n .

Theorem 3 . 1

 31 The sequence (M(n)) n≥1 is log-distributed following the continuous law of Benford µ B . Moreover, setting S 1 = (log 10 n) n≥1 , we have D log N (S 1 ) = O (log N ) -1 (log log N ) 2 and D loglog N (S 1 ) = O (log log N ) -1 (log log log N ) 2 . Proposition 3.2 The sequence (M(n log n)) n≥1 is log-distributed following the continuous law of Benford µ B . Moreover, setting S 2 = (log 10 n log n) n≥2 , we have

Lemma 4 . 3

 43 For all integer n ≥ 1 and all θ = 0, we haven j=1 exp(2iπθ log j) ≤ n 2π|θ| + 1 + π|θ| log n .

Lemma 4 . 4

 44 Let f (x) and g(x) be two functions with continuous derivatives in the interval [a, b] such that f (x) and |g (x)| are non-increasing and g is positive and decreasing. Then a≤j≤b g(j) exp(2iπf (j)) = α-η<ν<β+η b a g(x) exp(2iπ(f (x) -νx)) dx + O(g(a) log(β -α + 2)) + O(|g (a)|) where β = f (a), α = f (b) and η is an arbitrary constant such that 0 < η ≤ 1.

Lemma 4 . 7

 47 There exists C > 0 (depending only on b > 1) such that, for all integer n ≥ 1 and all h ∈ Z * , we have n j=1 exp(2iπh log b j) j ≤ C + log |h|. Proof. Without loss of generality, we assume that n ≥ |h| + 1. Fix θ h = h log b .

j=1 1 j

 1 ≤ C + log |h|. This concludes the proof. Lemma 4.8 There exists C 2 > 0 such that, for all integer n ≥ 3 and all θ ∈ R, we have exp(2iπθ log p n ) -exp(2iπθ log(n log n)) ≤ C 2 |θ| log log n log n .

1 2 . 5 . 3 3 1)

 2533 This concludes the proof of Proposition 3.2. Proof of Theorem 3.Let us first study the sequence (M(p n )) n≥2 with respect to the log-density. Let us fix h ∈ Z * and the integer N ≥ 3. Then, thanks to Abel's transformation, relation (5) and Lemma 4.8, N n=3 e h (log 10 p n

πhr log N log 10 .e

 10 Thus, for all N ≥ 1 and all r ≥ 1, h (log10 n r ) = O(1) N r + O(log H) + O(H)r log N .

  (log 10 p r n ) -e h (v n )) = O(H)r N log log N log N .Relation[START_REF] Janvresse | From uniform distributions to Benford's law[END_REF] and the Erdős-Turán inequality then implyD N (S r ) ≤ O(H -1)+O(H = r and N = φ(r) = e r , we again obtain D φ(r) (S r ) = O(r -1 ).

  our results and proofs remain valid with an arbitrary numeration base b > 1, even a non-integral one. It suffices to replace log 10 by log b , the usual mantissa M by the mantissa M b in base b, and µ B by the probability µ B,b on [1, b[ defined by µ B,b ([1, a[) = log b a. This is all the more remarkable since, for example, the sequence (M b (2 n )) n≥1 is distributed following µ B,b only if b is not a rational power of 2 and there exists no random variable X such that the law of M b (X) is µ B,b for all b > 1 ([

  ]. The converse is false, in general, as shown by the set of integers whose first digit is 1 (see above). Moreover, in view of the fact that p n is equivalent to n log n as n → ∞, Theorem 14 in [8, p. 58] (or Lemma 7.1 in[13, p. 63]) proves that, if A admits a log-density inside (u n ) n≥1 , then it also admits a loglog-density, and these two densities coincide.Let (v n ) n≥1 be a sequence of elements in an interval [a, b[ and µ a probability on [a, b[. For c ∈ ]a, b[, denote A c = {v n : n ∈ N * , a ≤ v n < c}. Then we say that (v n ) n≥1 is distributed (log-distributed, loglog-distributed, respectively) following µ when, for all c ∈ [a, b[, A c admits µ([a, c[) as natural density (log-density, loglogdensity, respectively) inside (v n ) n≥1

The symbol 1 A denotes the indicator function of A.
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