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Fermat’s last theorem proved in Hilbert arithmetic.  

II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem  
with or without induction 

Vasil Penchev, vasildinev@gmail.com 

Bulgarian Academy of Sciences: Institute of Philosophy and Sociology 

Dept. of Philosophy of Science 

Abstract. The paper is a continuation of another paper (https://philpapers.org/rec/PENFLT-2) published as 

Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the 

eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division 

of  qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by 

the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is 

considered as dual to quantum contextuality. The relevant mathematical structure is Hilbert arithmetic in a 

wide sense (https://dx.doi.org/10.2139/ssrn.3656179), in the framework of which Hilbert arithmetic in a 

narrow sense and the qubit Hilbert space are dual to each other. A few cases involving set theory are 

possible: (1) only within the case “n=3” and implicitly, within any next level  of “n” in Fermat’s equation; 

(2) the identification of the case “n=3” and the general case utilizing the axiom of choice rather than the 

axiom of induction. If the former is the case, the application of set theory and arithmetic can remain 

disjunctively divided: set theory, “locally”, within any level; and arithmetic, “globally”, to all levels. If the 

latter is the case, the proof is thoroughly within set theory. Thus, the relevance of Yablo’s paradox to the 

statement of Fermat’s last theorem is avoided in both cases. The idea of “arithmetic mechanics” is sketched: 

it might deduce the basic physical dimensions of mechanics (mass, time, distance) from the axioms of 

arithmetic after a relevant generalization, Furthermore, a future Part III of the paper is suggested: FLT by 

mediation of Hilbert arithmetic in a wide sense can be considered as another expression of Gleason’s 

theorem in quantum mechanics: the exclusions about (n = 1, 2) in both theorems as well as the validity for 

all the rest values of “n” can be unified after the theory of quantum information. The availability 

(respectively, non-availability) of solutions of Fermat’s equation can be proved as equivalent to the non-

availability (respectively, availability) of a single probabilistic measure as to Gleason’s theorem. 

Keywords: arithmetic mechanics, Gleason’s theorem, Fermat’s last theorem (FLT), Hilbert arithmetic, 

Kochen and Specker’s theorem, Peano arithmetic, quantum information 

 

IX INSTEAD OF INTRODUCTION: A SET-THEORETICAL “GESTALT CHANGE”1  

This paper is the continuation (respectively, Part II to Part I) dedicated to the eventual 

arithmetical and inductive proof of Fermat’s Last Theorem (further, notated as FLT) if one has 

proved that it is an insoluble statement after the Gödel (1931) incompleteness theorems valid to 

the triple of (Peano) arithmetic, (ZFC) set theory, and propositional logic. The idea of that proof 

(in the previous Part I) consists in the exclusion of set theory (and more precisely “actual infinity” 

after the axiom of infinity) from that triple, thus being reduced to the pair of “Fermat arithmetic” 

and propositional logic after an “epoché to infinity” (analogical to Husserl’s “epoché to reality”) 

furthermore being natural in Fermat’s age, inexperienced to infinity (a concept entered 

 
1 The enumeration of the sections continues from Part I, so the first section in Part II of the paper turns 

out to be “IX”.  
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mathematics a few centuries later after Cantor’s set theory). Nonetheless, set theory in the 

framework of “Hilbert mathematics” is anyway used, but only as a “Wittgenstein ladder” being 

removable in the ultimate syllogism of the proof (which might claim to be the “lost proof of 

Fermat” heralded by Fermat himself, but without demonstrating it).  

One can imagine a symmetric approach to the proof of FLT in the same paradigm if (now) 

arithmetic is utilized to be the “Wittgenstein ladder” to an only set-theoretical proof since the 

Gödel incompleteness does not admit the simultaneous use of arithmetic and set theory, but it does 

not predetermine which exactly to serve as a “Wittgenstein ladder” to the other one, in terms of 

which alone to be written the ultimate text of the proof. 

A fundamental prejudice ostensibly rejected still by Lobachevski’s geometry as the historically 

first non-Euclidean geometry, but persisting even novaday, particularly as to FLT, can be 

subjected. That prejudice consists in the implicit and unarticulated postulate that any theorem 

(particularly FLT) is valid in any axiomatic system or respectively that there exists a “privileged” 

(somehow) axiomatic system, in which it has to be valid. For example, the theorem that the sum 

of the angles of any triangle is 2𝜋 is valid in Euclidean geometry, but it is false in general in any 

non-Euclidean geometry. So, one should expressly refer to which axiomatic system a theorem 

claims to be true. 

For example and as to FLT, the axiomatic system by default nowadays is meant to be that of 

arithmetic and set theory (and propositional logic to which both are first-order logics) since they 

are the foundations of the “standard mathematics” for almost all mathematicians or at least the 

“privileged reference frame” to which any other axiomatic system is to be reducible by a relevant 

model in it.  

Nevertheless, Yablo’s paradox can easily demonstrate that FLT obeys it and consequently, 

FLT is a Gödel insoluble statement (traced in detail in Part I). So, it is not a theorem in the standard 

mathematics at issue. Anyway, this does not reject that FLT is a theorem in some other axiomatic 

systems, e.g. in Fermat arithmetic (i.e. Peano arithmetic after the “epoché to infinity”) or in Hilbert 

arithmetic (borrowed the pattern of two dual Peano arithmetics from the qubit Hilbert space in turn 

originating from the usual separable complex Hilbert space of quantum mechanics). 

As far as the last statement is already proved statement in the previous Part I, the present Part 

II is concentrated on the alternative, but not less consistent conjecture that set theory or its minimal 

extension, if need be, can also be a relevant axiomatic framework, in which FLT is a true theorem. 

The main obstacle still at first glance consists in the fact that FLT is an arithmetical statement 

rather than a set-theoretical one, thus needing at least a few arithmetic axioms even to be only 

formulated.   

Different approaches can resolve that problem under the condition sine qua non for the Gödel 

dichotomy to be suspended somehow. The core of all those approaches consists in avoiding the 

direct contradiction of the axiom of induction (in Peano arithmetic) and the axiom of infinity (in 

ZFC set theory or equivalent to it in other axiomatic systems of set theory2), for example by means 

of: (1) Peano arithmetic (“PA” further) without induction (i.e. partial Peano arithmetic, or PPA 

 
2 Keyser (1903) suggests one from the first reflections on the relation of the two axioms. 



further), by the way, being absolutely sufficient for the formulation of FLT, for which the axiom 

of induction is redundant; (2) a special infinite set of all natural numbers only within it the axiom 

of induction to be valid furthermore without any restriction of the bijection of any other set on that 

special set and guaranteed by the axiom of choice; (3) the axiom of induction can be kept even to 

all sets (unlike  the first option where it is removed) under the necessary condition to be “doubled”3 

(i.e. as a model of transfinite induction by two finite inductions in two dual Peano arithmetics, thus 

being independent of each other). 

A comment to the option (1) is to be the following. The axiom of induction is a strong and 

successful tool for mathematics and its eventual absence would make many proofs impossible, 

difficult or very complicated and sophisticated. However, it can be substituted by alternative or 

equivalent instruments based on the axiom of choice. Indeed, it, as in the option (2), allows for any 

infinite set (or even finite set, but under additional conditions or conventions) to be mapped 

bijectively into PPA. If one utilize Hilbert arithmetic in a narrow sense, being dual to the qubit 

Hilbert space (thus both constituting Hilbert arithmetic in a wide sense), the property of unitarity 

(in turn being what is able to conserve energy conservation in quantum mechanics: Penchev 2020 

October 5) together with the function successor verified to be valid as to an investigated set are 

sufficient to restore the axiom of induction in a modified form consistent to axiom of infinity 

(Penchev 2021 August 24). 

Indeed, one can test the case generating the contradiction of Peano arithmetic and set theory, 

namely, the immediate corollary from the axiom of induction that all natural numbers are finite, 

but simultaneously the set of all natural numbers is infinite in virtue of the axiom of infinity (in 

ZFC set theory). If that is the case, the unitarity of Hilbert arithmetic is to be valid to the set at 

issue, and the axiom of induction, only to its elements. Then, one can refer to Gentzen’s cut-

elimination (1935) in order to verify the investigated property of the set at issue conserving both 

unitarity and function successor remaining consistent to each other unlike the converse case of the 

Gödel dichotomy implying either incompleteness or inconsistency as to the investigated property 

(e.g. as in Horská 2014).  

In other words, the difference from the Gödel dichotomy consists in the fact that the Gentzen 

cut-elimination can act “from an infinite set to its elements”, all of which are finite, but the 

converse statement is false as the Gödel dichotomy can be interpreted: that is “from all natural 

numbers to their set”. That asymmetry of the two opposite directions (namely: (1) “from an infinite 

set to its finite elements” after Gentzen; (2) “from all finite and enumerable elements to a certain 

infinite set” after Gödel) can be visualized also extensionally (as Gödel did) by the set of all 

insoluble statements (and meant by the second and dual Peano arithmetics in Hilbert arithmetic), 

but this is not necessary, i.e. it is optional. 

If the axiom of induction is substituted by unitarity underline by the axiom of choice4 as this 

is described above, a much shorter pathway from the FLT(3) to FLT is thus pioneered: FLT(3) 

 
3 The papers of Maliaukiené (1997; 2000) share the context of an analogical idea.  
4 Another pathway (possibly equivalent) for the substitution of the axiom of induction by the axiom of 

choice can be outlined involving nonstandard models in relation to the axiom of inductions as Rabin (1961) 



doubled dually in the dual Peano arithmetic implies immediately FLT without the “crutch” of 

induction, and rather directly by virtue of the completeness of Hilbert arithmetic. Anyway, this 

pathway is to be traced in mathematical detail, e.g as in Section XIV. Furthermore, that doubling 

can be interpreted also as a self-referential application of FLT(3) proved by the Kochen-Specker 

theorem to itself, getting discusable again there. 

 A comment to the option (2) is to be the following. If that is the case, FLT is valid only to that 

special set, only within which the axiom of induction is valid, but furthermore, to all bijections on 

it guaranteed by the axiom of choice. This means that FLT(3) should be proved to that set of all 

natural numbers, then it to be transferred within it as a statement to all natural numbers, to which 

the arithmetical variables 𝑥, 𝑦, 𝑧 refer, and finally: the axiom of induction can be applied within it 

(as in the previous Part I) therefore proving FLT absolutely, but only to all natural numbers.   

A comment to the option (3) is the following. This is the solution of Hilbert arithmetic. It 

establishes implicitly a new form of transfinite induction consisting of two independent or dual 

usual finite induction which can be also and rather loose interpreted as a “Hamilton version” of 

the usual finite inductions where its finite and transfinite “parts” are not successive, but in parallel 

and the transfinite part is homomorphic to a second finite induction dual to the initial finite 

induction5.  

Thus, the structure of the two inductions to which transfinite reduction has been reduced  

repeats that of the two dual Peano arithmetics6 of Hilbert arithmetic and within which they can be 

exhaustively and unambiguously embodied. Furthermore, that scheme allows for transfinite 

induction to be interpreted as a single finite induction after the concept of natural numbers has 

been generalized to well-ordered series of information (strings or binary “messages”) as well as if 

the extraordinary “2:1” (“transcendental”) bijection is involved: (𝑃− ⊗ 𝑃+ → 𝑃0) → 𝑃 where the 

notations are the following: “𝑃−,  𝑃+” for the two dual Peano arithmetics of Hilbert arithmetic; 

“⊗” for Cartesian product; “→ 𝑃0
” for the mapping into “Fermat arithmetic” (defined in Part I as 

Peano arithmetic after a newly Husserl-like “epoché to infinity” rather than to reality); “→ 𝑃” for 

the mapping into the standard Peano arithmetic (i.e. granting implicitly the eventual context of set 

theory and thus, the Gödel incompleteness unlike Fermat arithmetic yet naively inexperienced to 

it or to the distinction of finiteness and infinity).  

Indeed, that nonstandard bijection can be also called “informational” since it substitutes any 

arithmetic unit by a bit of information, any natural number “𝑛” by a binary string of length “𝑛” 

bits, and the single finite induction of Peano arithmetic, by two finite inductions independent of 

 
as well as (and absolutely independently) as Germansky (1961), the latter furthermore containing a wider 

reflection on the relation of those axioms. The relation of transfinite induction and recursive well-orderings 

(respectively, the axiom of choice) is mean in detail, for example, in: Friedman, S̆čedrov (1985). 
5 If the second “dual” induction is successively substituted by corresponding well-ordered qubits of the 

qubit Hilbert space (only in virtue of the axiom of choice), and then by, by probability distributions, that 

model of transfinite induction can be represented also by “epsilon substitution” as Towsner (2005) suggests. 

The approach of Rose (1972) can be interpreted as analogical. 
6 The approach of Hirst (1999) implies an analogical context. 



each other and thus equivalent to transfinite induction7. This can convince us that the former option 

of the informational interpretation of “natural numbers” and the latter option utilizing the 

nonstandard bijection are equivalent to each other as well as to transfinite induction reduced to 

two finite and independent inductions. 

An additional, but important notice is that the implicit connotation of nonstandard bijection to 

nonstandard interpretation (e.g. as in Robinson’s “Nonstandard8 analysis” in 1966) is intentional. 

In other words, nonstandard bijection can be considered as a nonstandard interpretation of the 

usual bijection as well as the unity of both standard and nonstandard analysis as the same. Indeed, 

if one delivers two interpretations (such as standard and nonstandard interpretations) of the same 

mathematical structure (e.g. that of infinitesimal analysis whether standard or nonstandard) it is 

simultaneously an interpretation of nonstandard bijection in turn: since two identical copies of the 

same can absolutely equivalently represent a single unit of the same and furthermore, that 

representation as whole, a bit of information.  

The three options (1), (2), and (3) share the same first stage consisting in the set-theoretical 

proof of FLT(3). Indeed, that by the Kochen-Specker theorem eventually involves set theory 

necessarily since the separable complex Hilbert space needs some continuous topology (and thus 

“actual infinity” to be justified), though that topology is not determined unambiguously. 

Consequently, it should avoid arithmetic (more precisely the axiom of induction) and thus, should 

prevent FLT to be a Gödel insoluble statement once both arithmetic and set theory have been 

utilized.  

So, one has to prove that either arithmetic (the axiom of induction) is not involved along with 

set theory for the proof of FLT(3) or, if it is involved anyway, the Gödel incompleteness is not 

relevant to the case: in other words, the latter option suggests that FLT (is) to be proved in Hilbert 

mathematics rather than in Gödel mathematics (only where it is an insoluble statement). Then, one 

can notice that the Kochen-Specker theorem (just for its statement) implies the latter case: 

Indeed,  the following rather philosophical observation can verify the above conclusion. The 

Kochen-Specker theorem states the absence of hidden variables in quantum mechanics: that is a 

rejection of the alleged “incompleteness of quantum mechanics”, advocated in Einstein, Podolsky, 

and Rosen (1935) and also in many other papers before and after that article. The concept of Hilbert 

arithmetic (available in two dual forms: Hilbert arithmetic in a narrow meaning, and the qubit 

Hilbert space inferable from the separable complex Hilbert space of quantum mechanics) allows 

for transferring the statement about the completeness of quantum mechanics into the completeness 

 
7 Consistent models of transfinite induction within a single Peano arithmetic can be also considered (e.g. 

Sommer 1995). Then the gap between the two Peano arithmetic is able to be represented by an indefinite 

finite leap within a single Peano arithmetic therefore admitting also an exact estimation of the “provability 

transfinite induction in the initial segments of arithmetic” (Mints 1973).  Another option for the implicit 

introduction of that gap is in the way of intuitionism, e.g. as Scarpellini (1972). The classical paper of 

Kuratowski and Neumann (1937) can be also relevant to the same context.  
8 Italic mine, in order to emphasize the essential unity of “nonstandard bijection”, “nonstandard 

interpretation” and “nonstandard analysis” sharing the same literal connotation of nonstandard. 



of mathematics therefore avoiding or preventing any Gödel incompleteness at all, and for FLT to 

be an insoluble statement in particular. 

Further, one can research the explicit way for the separable complex Hilbert space to be 

complete (as the Kochen-Specker theorem can be interpreted), but now: in parallel with Hilbert 

arithmetic (in its narrow meaning). The reason is that its dual Hilbert space is anti-isometric and 

thus, it is isomorphic to the class able to equate isometry and anti-isometry. Properly, this is the 

sense of rejecting the conjecture of “hidden variables” (granted to be true by Einstein and many 

other physicists even nowadays). 

As von Neumann (1932) explained it, its essence consists in the “mysterious disappearance” 

of the half variables in quantum mechanics in comparison with the description of a physical system 

in classical mechanics. Then, the natural hypothesis might be that the description of quantum 

mechanics is incomplete and a future physical theory which will replace quantum mechanics will 

be able to include that vanishing half of variables missing in today’s quantum mechanics. 

However, that special property of the separable complex Hilbert space (namely, to be isomorphic 

to the class able to equate isometry and anti-isometry of both dual spaces of it) allows for the half 

of variables to vanish, nonetheless remaining complete.  

The pathway of Kochen and Speaker to prove their fundamental theorem is not less important 

to be traced and followed for deducing FLT(3). They demonstrated the incommensurability of 

those two dual spaces as they commute to each other (that is the case of entanglement) as they do 

not (the latter case was proved by von Neumann yet, in 1932). 

 The expression of “commuting or non-commuting dual spaces” means more precisely the 

following: the Hermitean operators defined on them commute or not correspondingly. The same 

incommensurability translated in terms of Fermat’s equation (to which FLT refers) means just 

FLT(3): the relation of any solution of Fermat’s equation for the case 𝑛 = 3 cannot be a rational 

number, but an irrational number implied by that kind of incommensurability, relative to that 

utilized by Kochen and Specker for inferring their theorem. 

Furthermore, one can link immediately the Kochen-Specker (1967) and Gleason (1957) 

theorems as two counterparts9, at least as to FLT(3). Indeed, Gleason’s theorem states that a unique 

probabilistic measure exists for Hilbert space of dimension 𝑛 ≥ 3. Properly, Kochen and Specker’s 

way to prove their theorem demonstrates the same unique probabilistic measure as an equivalent 

of the absence of hidden variables in quantum mechanics since that single measure means the 

incommensurability of quantum quantities also even in the case where their underlying Hermitian 

operators commute: after von Neuman (1932: 167-173) has proved the absence of hidden variables 

only about noncommuting operators.  

On the contrary, the eventual availability of hidden variables would correspond to the 

commensurability, on the one hand, of natural numbers (what any rational number represents in 

fact), and on the other hand, many (i.e. more than one) probabilistic measures: just this is the case 

 
9 For example, both theorems admit more or less direct experimental confirmations (e.g. Peres 1992; 

Campos, Gerry 2002; @) 



for Hilbert space (whether real or complex) for dimensions 𝑛 = 1,2, but false for dimensions 𝑛 ≥

3 according to Gleason’s theorem. 

One is to emphasize that an “empty” qubit represented according to  its standard and initial 

definition means two dimensions in the separable complex Hilbert space of Hilbert space and thus 

admitting many probabilistic measures according to Gleason’s theorem. However, still one 

additional necessary condition for a qubit to be defined is that ∣ 𝛼 ∣2  +∣ 𝛽 ∣2= 1 after 1 𝑞𝑢𝑏𝑖𝑡 ≡

 𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩ where ∣ 0⟩, ∣ 1⟩ are two orthogonal subspaces of the separable complex Hilbert 

space (as this will be repeated in detail in Section X). In fact, that additional equality restricts 

relevant probabilistic measures to single one unlike an “empty” qubit just obeying the case of two 

complex dimensions of Gleason’s theorem and thus admitting any 𝛼, 𝛽 satisfying that condition.  

The same opposition of an empty qubit (uncertain) versus a certain value chosen (or 

“recorded”) on it is conserved after the equivalent transformation of a qubit (defined as above) into 

a unit usual ball in Euclidean space; an empty qubit is represent by an empty ball (thus admitting 

many probabilistic measures); the establishment of a single value in it or that of a unique 

probabilistic measure are equivalent.   

Hilbert arithmetic introducing an arithmetical unit of Peano arithmetic as the class of 

equivalence of all possible values restricts itself to the case of an empty qubit (respectively, an 

empty ball) consequently meaning the case “𝑛 = 2” of Gleason’s theorem and many admissible 

probabilistic measures correspondingly. However, FLT(3) needs the case of incommensurability 

or a unique probabilistic measure respectively if it has been defined in Hilbert arithmetic where all 

units are classes of equivalence of qubits.  

Fortunately, just that is the case of FLT(3) relating at least the two arithmetic variables “𝑦3” 

and “𝑧3” in Fermat’s equation for “𝑛 = 3: 𝑥3 = 𝑦3 + 𝑧3”. Thus, the two qubits corresponding to 

the arithmetical units of the arithmetic variables “𝑦3” and “𝑧3” constitute a four-dimensional 

complex Hilbert space though satisfying still one condition, namely: Fermat’s equation itself, 

therefore equivalently reducing the degrees of freedom to a three dimensional complex Hilbert 

space, anyway absolutely sufficient to be immediately inferred the availability of a unique 

probabilistic measure according to Gleason’s theorem.  

That will be the proper subject of the next, Part III of the paper , which is only a horizon of 

the present Part II being concentrated exceptionally on the Kochen-Specker theorem as a relevant 

tool for proving FLT(3) (and even FLT in general). The last four paragraphs only vaguely marked 

the conceptual and logical pathway from the Kochen - Specker theorem to Gleason’s theorem in 

the context of FLT, and especially FLT(3): it will be clarified in detail in the next part and will not 

be discussed any more now.   

So, one has to trace rigorously and mathematically the “translation” (or more precisely, 

syllogism) from the incommensurability of Kochen-Specker theorem to that meant by FLT(3). The 

idea of that logical “translation” will be described in the next section.   

  



X AN IDEA FOR THE PROOF OF FLT FOR “N=3” BY THE KOCHEN-SPECKER 

THEOREM 

One can utilize the conception of “natural number” as the class of equivalence of all sets 

consisting of the same numbers of elements. For example, the natural number “𝑥” means the class 

of the equivalence of all sets consisting of “𝑥” elements such as “𝑥” pears, “𝑥” apples, or better 

“𝑥” qubits. Obviously, only the interpretation by qubits is relevant if one intends to use the Kochen-

Specker theorem, and Fermat’s equation can be interpreted particularly as: 𝑥𝑛 𝑞𝑢𝑏𝑖𝑡𝑠 =

 𝑦𝑛 𝑞𝑢𝑏𝑖𝑡𝑠 + 𝑧𝑛 𝑞𝑢𝑏𝑖𝑡𝑠. Then, any solution of the general Fermat equation is a solution of it 

written as to qubits. Then, if one proves FLT(3) in qubits, this immediately implies FLT in virtue 

of modus tollens.  

Thus, the new objective is that “𝑥3 𝑞𝑢𝑏𝑖𝑡𝑠 =  𝑦3 𝑞𝑢𝑏𝑖𝑡𝑠 + 𝑧3 𝑞𝑢𝑏𝑖𝑡𝑠” does not have any 

solution in natural numbers (and consequently, in rational numbers). Properly, FLT does not claim 

any statement about solutions in irrational numbers, however if the Kochen-Specker theorem has 

been already utilized for proving FLT(3), it implies the necessary existence of solutions in 

irrational numbers, which will be discussed in the next section: and just that is the case.  

The standard definition of “qubit” in quantum mechanics is: 

1 𝑞𝑢𝑏𝑖𝑡 ≡  𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩ where ∣ 0⟩, ∣ 1⟩ are two orthogonal subspaces of the separable 

complex Hilbert space (usually disjunctive to each other in default, but this is not necessary), and 

𝛼, 𝛽 are two complex numbers such that: ∣ 𝛼 ∣2  +∣ 𝛽 ∣2= 1. That definition is isomorphic to an 

usual unit ball, within which two points on two orthogonal great circles are chosen to correspond 

unambiguously to those 𝛼, 𝛽.  

Then, one can introduce the usual units of Peano arithmetic as “empty qubits”, i.e. as the classes 

of equivalence to all possible values 𝛼, 𝛽 which a qubit can accept (or which can be recorded on a 

cell of the quantum computer tape if “quantum computer” is granted to be a relevant generalization 

of “Turing machine: Penchev 2020 August 5). Just this definition is utilized as the definition of 

“unit” in Hilbert arithmetic10. Then, FLT(3) can be additionally converted in the form:   

𝑥3 𝑒𝑚𝑝𝑡𝑦 𝑞𝑢𝑏𝑖𝑡𝑠 =  𝑦3 𝑒𝑚𝑝𝑡𝑦 𝑞𝑢𝑏𝑖𝑡𝑠 + 𝑧3 𝑒𝑚𝑝𝑡𝑦 𝑞𝑢𝑏𝑖𝑡𝑠 

One is to notice that the set consisting of empty qubits is unique in the following sense. On the 

one hand, its elements are specific such as “apples”, “pears”, etc. However on the other hand and 

simultaneously, they are “arithmetic units at all” in Hilbert arithmetic, and can be transferred 

identically as such in Peano arithmetic. Meaning the latter circumstance, one can state also that if 

“unit radius” is to notate “qubit radius” (as an three-dimensional unit ball isomorphic to a qubit):  

(𝑥3 𝑢𝑛𝑖𝑡 𝑟𝑎𝑑𝑖𝑢𝑠𝑒𝑠 =  𝑦3 𝑢𝑛𝑖𝑡 𝑟𝑎𝑑𝑖𝑢𝑠𝑒𝑠 +  𝑧3 𝑢𝑛𝑖𝑡 𝑟𝑎𝑑𝑖𝑢𝑠𝑒𝑠) ≡ (𝑥3 =  𝑦3  + 𝑧3) 

In other words, FLT(3) in the general case and it in the particular case of “empty qubits” are 

isomorphic after the mediation of Hilbert arithmetic. This property is not necessary right now, but 

it can be utilized where need be.  

The following important observation is that the conceptions of “empty qubit” and “natural 

volume”, the latter allegeable to be possible in Fermat’s age, are relative. Indeed, any empty qubit 

 
10 One can notice a fruitful ambiguity consisting in the uncertainty whether the “empty qubit” admits any 

internal structure or not: the concept of “unit” means rather the latter alternative of inseparable whonesess. 



being a unit ball possesses an unambiguously determined three-dimensional geometrical volume: 

“
4

3
𝜋” since its radius is a unit. Or said otherwise, Fermat’s equation is identical to its interpretation 

by natural numbers, at that: the latter and the former are equally general statements though the last 

circumstance is also not necessary right now.   

The identification of the triple of “natural number”, “empty qubits”, and “natural volumes” 

allows for the Kochen-Specker theorem, once it has been reformulated to “empty qubits” as a 

relevant corollary, to be directly transferred to both “natural numbers” and “natural volumes” (thus 

getting intuitively accessible even in Fermat’s age). So, the next stage is to be that inference from 

the Kochen-Specker theorem just to “empty qubits”: 

Since “empty qubit” is defined as the class of equivalence (rather than as the set) of all possible 

values, its properties are shared by all values of a qubit. Any value is an additive member of a qubit 

wave function (respectively, being a component of qubit state vector) and thus: it can be considered 

in turn as an elementary wave function, in virtue of which the Kochen-Specker theorem can refer 

as to the single qubit of the arithmetical variable “𝑥” on the left side of Fermat’s equation, on the 

hand, as the sum of the two qubits “𝑦” and “𝑧” on the right side, on the other hand, as well as to 

the algebraic sum of all three qubits: thus rejecting any hidden variables in relation to them. 

A problem is how to reinterpret the absence of hidden variables passing from qubits to usual 

arithmetic units. First, one can notice which meaning of them fits to prove FLT(3), and then, the 

same meaning is to be inferred rigorously and logically from the Kochen-Specker theorem, 

optionally utilizing relevant ideas of their proof as well.  

The following meaning of the absence of hidden variables as to natural numbers in Hilbert 

arithmetic (rather than to qubits or wave functions in the separable complex Hilbert space which 

are literally meant by theorem) would verify FLT(3): the absence of any solution in rational 

numbers. Indeed, if one dicovers a solution of that kind, it can be transformed into another solution 

in natural numbers. So, proving that any solution of FLT(3) is necessarily an irrational number, 

this is also a proof of FLT(3) immediately. 

If that is the “useful” meaning of the absence of hidden variable for FLT(3) and what is to be 

proved, one can already define “hidden variable” in a proper arithmetic sense as the 

commensurability of two natural numbers since each of both consists of a finite number of that 

shared and thus common measure greater or equal to one arithmetical unit (i.e “1”); and vice versa, 

the absence of hidden variables right means their incommensurability: i.e. any finite measure of 

the one natural number is infinite to the other one, their ratio is an irrational number (rather than a 

rational number as in the former case). 

If one has revealed that useful meaning of “hidden variable” in an arithmetic sense, it has to 

be then linked to Theorem 1 (Kochen-Specker 1967: 70) stating that there does not exist any 

homomorphism of finite partial Boolean algebra (relevant to empty qubits as units) into “Z2”
11 

Hilbert space (relevant to bits). First, a few elements of the pathway to Theorem 1 can be 

“paraphrased” about irrational and rational numbers as follows:  

 
11 This is the notation of Kochen and Specker for the field (in an algebraic sense) consisting of two elements. 



The ‘Z2’ Hilbert space of rational numbers is identical to all positive rational numbers however 

represented not as an enumerable well-ordered set, but as the Cartesian product of all natural 

numbers with themselves12: thus being finite again in virtue of the axiom of induction since the 

Cartesian product of any two finite sets is finite as well.  

On the contrary, the finite partial Boolean algebra of irrational numbers is an infinite Cartesian 

product of the set of all natural numbers with itself, therefore again touching the Gödel 

incompleteness after no homomorphism of any infinite (i.e. proper set-theoretical) Cartesian 

product into any finite (i.e. proper arithmetic) Cartesian product. Anyway, the substitution of 

“finite partial Boolean algebra of irrational numbers” by the “infinite Carteseian product of the set 

of all natural numbers with itself” needs an additional justification not being obvious, after one 

defines rigorously the former concept following relevant ideas applied in the proof of the Kochen-

Specker theorem by themselves. Furthermore, a few preliminary notices are necessary: 

The Cartesian product of the two sets of all natural numbers can generate only algebraic 

irrational numbers being also a countable set just as the initial set of all natural numbers. So, all 

transcendental irrational numbers are not meant13. Nonetheless, the incommensurability of 

algebraic irrational numbers to natural or rational numbers is sufficient for forcing the set of all 

natural numbers (or more precisely, a relevant infinite subset of it for any certain algebraic rational 

number) to be involved necessarily. In other words, the incommensurability of algebraic irrational 

numbers allows for the set of all natural numbers to used for proving FLT only in set theory without 

any reference to arithmetic (though its use is granted in advance for FLT to be able to be formulated 

at all).    

A more general or philosophical reflection relates to the link of numerical incommensurability 

and Pythagoreanism. As this is commonly granted to be true, the discovery of (algebraic) irrational 

numbers by the ancient Pythagoreans generated a crisis in their doctrine since natural numbers 

turned out not to be enough for all mathematical (also geometrical or ontological) entities to be 

described as Pythagoreanism suggested and postulated: there existed entities which are not 

numbers (if they were restricted to natural and irrational numbers) and this can be inferred 

rigorously and deductively from the existence of numbers.  

On the contrary (and thus, as if contradictory at first glance), the contemporary “quantum” neo-

Pythagoreanism utilizes an analogical kind of incommensurability by the mediation of the Kochen 

- Specker theorem14 to establish quantum information merging the mathematical and physical (and 

 
12 Indeed, any positive rational number is a ratio of two natural numbers though  the operation “division” 

is not commutative. Then, the pairs of the Cartesian product have to be granted to be non-commutative 

conventionally, i.e. being ordered: for example declaring the ordinate for the axis of all numerators and the 

abscissa, for that of all denominators.  
13 For example, following the classical paper of Gelfond (1960). 
14 The literature on the Kochen - Specker theorem is huge. Even the restriction for its relevance to the 

present context is not sufficient to be representative enough; an example list could include: Nagata, 

Nakamura, Farouk, Diep 2019; Nagata, Patro. Nakamura 2019; Nagata, Nakamura 2016; de Ronde, 

Freytes, Domenech 2014; Abbott,  Calude, Conder, Svozil 2012; Waegell, Aravind 2012; Garola 2009; 

Dowker, Ghazi-Tabatabai 2008; Brunet 2007; Cabello, Estebaranz; García-Alcaine 2005; Döring 2005; 

Nagata 2005; Barrett, Kent 2004; Hrushovski, Pitowsky 2004; Huang, Li, Zhang, Pan, Guo 2003; Campos, 



even ontological) bases as the ultimate substance of the world. So, one may be curious about how 

the same tenet of incommensurability can be utilized in both “pro” and “contra” Pythagoreanism: 

the ancient Pythagoreanism proved that there exist entities which cannot be described only by 

arithmetic (understanding in default that arithmetic is available in a single and unique copy); the 

contemporary quantum neo-Pythagoreanism utilizing Hilbert arithmetic does not need any other 

entity than those describable by two copies of arithmetic. Even more, one can use the mapping of 

the nonstandard bijection of both copies into a single one therefore being able to reduce today’s 

Pythagoreanism to the original one as this is demonstrated as to FLT in particular in Part I of the 

present paper.    

The intended proof of FLT(3) is based on a reformulation of its sense in terms of 

incommensurability, since only irrational numbers can be solutions of Fermat’s equation for the 

case of “𝑛 = 3” (the absence of solutions which are natural numbers implies for them not to be 

rational numbers). Then, if one proves that the arithmetical variables 𝑦, 𝑧 (those inin Fermat’s 

equation “𝑥𝑛 = 𝑦𝑛 + 𝑧𝑛” or any other pair among all the three arithmetic variables 𝑥, 𝑦, 𝑧) are 

incommensurable to each other, or in other words, that their ratio is necessarily an irrational 

number, Fermat’s equation does not have any solution for the corresponding exponent “𝑛”.    

Then, incommensurability as to FLT(3) is intended to be inferred following a corollary from 

the Kochen - Specker theorem establishing the inseparability of a qubit into halves in virtue of 

quantum contextuality, on the one hand, or the equivalent incommensurability of two qubits, on 

the other hand. The objective requires for the original proofs of the two authors to be mulled in 

order to be reinterpreted into relevant terms of the incommensurability of irrational numbers (as 

to to the proved statement about the absence of hidden variables in quantum mechanics) versus 

the commensurability of rational numbers (as to the rejected negation about hidden variables in 

quantum mechanics). The following statement is quite relevant as a “hint”: 

“A necessary condition for the existence of hidden variables for quantum mechanics is the 

existence of an imbedding of the partial algebra Q of quantum mechanical observables into a 

commutative algebra” (Kochen, Specker 1967: 66).  

If one passes from qubits to arithmetical units, following the main idea of Hilbert arithmetic, 

the commutative algebra meant in the cited sentence is the field of rational numbers, which is a 

stronger structure (i.e. satisfying additional axioms) than a commutative algebra. Then, Theorem 

0 (ibid.: 67) states that a necessary and sufficient condition that a partial Boolean algebra is 

imbeddable in a Boolean algebra is that every pair of distinct elements of the partial Boolean 

algebra can be unambiguously interpreted by a homomorphism as the field of two values, which 

any variable in a Boolean algebra can possess . 

The pairs (namely ratios) of natural numbers (what rational numbers are, therefore satisfying 

the property of idempotency) constitute a partial Boolean algebra. “What makes a partial Boolean 

algebra important for our purposes is that the set of idempotent elements of a partial algebra forms 

a partial Boolean algebra” (ibid.: 65). So, FLT(3) allows for restricting only to partial Boolean 

 
Gerry 2002; Cabello 2000; Hamilton, Isham, Butterfield 2000; Isham, Butterfield 1998; 1999; 2002; Gill, 

Keane 1996; Peres 1996; Cereceda 1995;  Mermin 1995; Lenard 1974.  



algebra meaning that the Kochen - Specker theorem is intended to be utilized in order to prove the 

unrepresentability of the partial Boolean  algebra of (quantum) hidden variables onto “Z2”.  

 One is to demonstrate furthermore that the condition at issue is not only necessary, but also a 

sufficient condition for the existence of hidden variables for quantum mechanics at least as to the 

case where those hidden variables constitute a partial Boolean algebra rather than a partial algebra 

at all. In other words, one needs the concept of hidden variables and that of the “partial algebra Q 

of quantum mechanical observables” after translating from the language of qubits into that of 

arithmetical units if one admits that the translation will reduce the general case of partial algebra 

to that of partial Boolean algebra: since just the Boolean case is sufficient for the need of FLT(3) 

to be proved15. The scheme of reinterpreting Kochen and Specker’s proof in order to be relevant 

to FLT(3) is to be discussed in detail: 

 The idea of their proof is to infer a statement from the suggestion that the observables in 

quantum mechanics are commensurable and then, to demonstrate that the statement at issue is false 

and consequently, the suggestion that the observables in quantum mechanics are commensurable 

is not valid. Thus, the availability of hidden variables, which “is satisfied in the statistical 

mechanical description of thermodynamics” (Kochen, Specker 1967: 64), is reduced to 

commensurability. Then, the relation of commensurability is formally reduced, being notated by 

the authors as “♀”, and utilized for the definition of a “partial algebra over field K” (ibid.) with 

two cases of interest: “The first is the field R of real numbers and the second is the the field  Z2 of 

two elements” (ibid.: 65).   

For proving FLT(3), one needs a relevant degenerative realization (and reinterpretation) of  all 

“the values of the polynomials in 𝑎1, 𝑎2, 𝑎3 form a commutative algebra over the field K” (ibid.: 

64) if the elements of set “A”, on the Cartesian product of which with itself the “binary relation ♀ 

(commeasurability) on A (i.e. ♀ ⊆ 𝐴 × 𝐴)” (ibid.) are defined, are transponed from the qubit 

Hilbert space (“A”) into Hilbert arithmetic in a narrow sense as the class of equivalence of all 

possible values.  

In other words, if the Kochen - Specker theorem means the qubit Hilbert space, which is to be 

denoted as “A”, and  “♀” refer to physical quantities, being Hermitian operators, and thus defined 

just on “𝐴 × 𝐴”, one is to transfer the same description into its dual counterpart of Hilbert 

arithmetic in a narrow sense in the shared framework of Hilbert arithmetic in a wide sense.  

The result of transporting can be immediately deduced meaning only that the set A (which is 

the qubit Hilbert space initially since it makes sense to be related to quantum mechanics and to the 

problem of hidden variables) degenerates now to the set A of all natural numbers, and the 

“commutative algebra over field K” has in turn degenerated to the field of all rational numbers if 

 
15 That is: the pair of two natural numbers, to which any rational number can be reduced in the final analysis, 

constitutes a member of a partial finite Boolean algebra. For example if both natural numbers are 

represented equivalently in the binary notation system (i.e. only by “0” and “1” as their digits): the set of 

all rational numbers and the set of all members of partial finite Boolean algebras is the same. As a corollary, 

if any structure cannot be homomorphic to any partial finite Boolean algebra, it cannot be homomorphic to 

any structure of rational numbers needing necessarily finiteness, and thus, excludes necessarily any solution 

of FLT(3) meaning just that finiteness.  



the interesting case of the field K is only Z2: the necessary axioms of that commutative algebra are 

satisfied of the field of all rational numbers along with a few others, specific for a field, but not 

necessary for a commutative algebra though consistent with those necessary for it.  

Then, as far as a unit in Hilbert arithmetic in a narrow sense originates from a qubit, the Kochen 

- Specker theorem, now interpreted in the defined above case of the degeneration of qubits into 

arithmetic units, implies that commutative algebra as to the pair of arithmetic variables 𝑦3, 𝑧3 (in 

Fermat’s equation) that it does not exist: or FLT(3) is true. In other words, the solutions 𝑥, 𝑦, 𝑧 of 

Fermat’s equation for 𝑛 = 3 can be only irrational numbers after they cannot constitute the 

commutative algebra in question.   

What remains to be discussed is the meaning of hidden variables if they result into a partial 

Boolean algebra (rather than to a partial algebra) in order to be proved that the special case is not 

only a necessary, but also sufficient condition of hidden variables (which can be alleged to be 

“hidden Boolean variables” if they induce right a partial Boolean algebra): then, one can utilize 

theorem being given (unlike Kochen and Specker, who should deduce it) as to that special case to 

infer the necessary unrepresentability onto Z2.  

Still one facialiation can be the consideration of the particular case of an arbitrary pair of qubits, 

belonging to the same qubit Hilbert space, for sharing hidden variables if they constitute a partial 

Boolean algebra according to the exact meaning of Kochen and Specker (1967: 64). All values of 

both qubits are naturally idempotent to each other, in virtue of which their partial algebra should 

be Boolean (ibid.: 65). Then, one grants that they generate a partial Boolean algebra in order to 

infer for them to share hidden variables therefore satisfying the condition, enumerated as “(4)” in 

their paper, just as “in the statistical mechanical description of thermodynamics” (ibid.)  

After closely mulling why statistical thermodynamics fulfills it, one understands that it is due 

to the fact that any hidden variables are to specify or determine additionally a finite description 

complementing it to a wider, but again and necessarily finite description. So, if the description is 

infinite in definition, it might not be complemented in any way since the new description alleged 

to be wider is again the same as initially in fact. In other words, any infinite description does not 

admit any hidden variables since they have already meant in advance according to the definition 

of what an infinite description is. 

Therefore, the way for the condition “(4)” not to be satisfied in quantum mechanics (and unlike 

thermodynamics) is rather extraordinary just as the general case of an identity which is idempotent 

trivially and thus it is not able to be idempotent properly, i.e. nontrivially. Said otherwise, 

idempotency in a proper sense needs two discernable distinguishable states (e.g. as the two 

alternatives of a bit of information after choice and eventually notable as “0” and “1”); on the 

contrary, if the relation of them is an identity (e.g. as the “coherent state” of those two alternatives 

before choice), one is not able to define idempotency in that proper sense (but it is trivially valid 

in virtue of the reflexivity of identity, applied twice).   

Returning to the particular case meant in the condition “(4)”, the extraordinarily of the way for 

quantum mechanics not to satisfy it consists in the indistinguishability (which can be also and not 

worse interpreted as a kind of “functional identity”) of the Borel function of the “A” observable, 



denoted by the authors Kochen and Specker as “𝑔 = 𝑔(𝐴)" from “𝑓𝐴 ≡  𝛺 → 𝑅”, (i.e. the real-

valued function of all pure states “𝛺” of the investigated system). In other words, the same mapping 

is only represented in two (ostensibly different) ways: by the observable “𝐴” as an argument of 

the function “𝑔 = 𝑔(𝐴)” in the former case, but as the parameter “𝐴” distinguishing among a 

family of mappings  “𝑓𝐴 ≡  𝛺 → 𝑅”16. 

On the contrary, if statistical thermodynamics is the case where both operators “𝑔, 𝑓” are usual 

functions quite non-identifiable with each other because they offer two finite descriptions (unlike 

the case of quantum mechanics where both mean infinite descriptions therefore inherently 

identifiable with each other), and the condition “(4)” makes clear sense, namely analogical to that 

of idempotency. 

Now, one is already weaponed enough to trace how the relation of commensurability  “♀” 

implies idempotency and therefore hidden variables at least in the case of a partial Boolean algebra 

initiated by the qubit Hilbert space. Though the property “1” postulated in the definition of the 

relation (ibid.) yet admits for it to be a relation of equality (such as that of “identity”), the next 

property “2” absolutely excludes that forcing “∀𝑎, 𝑏: 𝑎♀𝑏” for “𝑎, 𝑏” to be distinguishable from 

each other and also idempotent in virtue of the definitive property “1”.  

So, one sees that the initial quantum (or rather, arithmetic, or “quantum and arithmetic”) system 

to which the Kochen - Specker theorem is to be related is sufficient to be much simpler if the 

objective is defined by the imferability of hidden variables from any granted partial Boolean 

algebra. The distinguishable states of that system can be generalized to so wider classes that they 

would be different pairs of natural numbers: i.e. excluding any infinite set of natural numbers and 

thus all irrational numbers. 

Then, the proof that the partial Boolean algebra is also a sufficient condition (along with being 

necessary as Kochen and Specker’s proof demonstrates literally in its text) for hidden variables as 

to the discussed extremely simplified case turns out to be almost obvious: of course, if set “A”17, 

on which the definitive relation of “commensurability” is defined, is arithmetically reduced to all 

natural numbers (please notice: but not to the “set of all natural numbers”), it is necessarily finite18.  

In other words, the partial Boolean algebra defined on variables within Peano arithmetic is also 

finite according to the closeness of its operations (in the case, in relation to finiteness). Just the last 

circumstance necessarily forces the necessity of hidden variables in any initial quantum and 

arithmetic system under the condition for it to generate the partial Boolean algebra at issue.   

Why the violation of the equation  “(4)” (being valid in statistical thermodynamics, but not in 

quantum mechanics), meaning right “hidden variables” implies an “infinite description” of each 

 
16 One can immediately notice the close and unambiguous link of that family of mappings with a 

corresponding functional defined on the set of all “fA”, which is the standard way for the dual Hilbert space 

to be introduced. 
17 One can suggest that the exact kind of the field “K” necessary to define the concept of “partial algebra” 

is not essential. 
18 That is in virtue of the axiom of induction: (a) “1” is finite; (b) if any natural number “n” is finite, the 

next natural number by the function successor “n+1” is finite; (c) then, the axiom of induction implies that 

all natural numbers are finite. 



state in general, is explained in detail above. Thus, if that description is finite (as in the case of a 

partial Boolean algebra over natural numbers), the condition “(4)” is fulfilled, and hidden variables 

exist. This means that the partial Boolean algebra in the particular case in question is also sufficient 

for hidden variables. 

The introduction of an infinite description rejecting hidden variables in а way maybe 

extraordinary for common sense therefore breaking and merging both separate mappings “𝑔, 𝑓” 

simultaneously destroys the fundamental organization of any admissible cognition in Modernity 

after Descrates. Indeed, the interpretation of “𝑔” as belonging to “mind” (and suitable only within 

it) unlike and opposed to “𝑓” referring to the objective states of the system, i.e. to “body” seems 

to be obvious and natural, at least as to contemporary people.  

Thus, involving “infinite description” to be a necessary condition in the case of quantum 

mechanics, this concept serves right for overcoming the opposition of “subject” and “object” being 

dominating the episteme of Modernity: the cognition of quantum mechanics cannot fit within it. 

So, a very sophisticated theory is invented to get rid of the modern episteme at least as to quantum 

mechanics since the kind of its cognition is irrelevant to those frameworks.  

The proof of FLT needs an analogical release from the “shackles” of the same restrictions: then 

the simplest approach is to utilize the “key for those shackles” already created by quantum 

mechanics and perfected by quantum information: namely Hilbert arithmetic in a wide sense 

including the qubit Hilbert space.  

Still a few notices can make clearer the following statements referring to the application of the 

Kochen - Specker theorem after degenerating it to Hilbert arithmetic. The problem of hidden 

variables is to be related even to a single quantum quantity (respectively a single Hermitian 

operator: this means, to the Cartesian product “𝐴 × 𝐴” if  “A” is the qubit Hilbert space). One may 

test that by the case of statistical thermodynamics justifying hidden variables. Indeed, if one 

considers any single phenomenological thermodynamic variable (such as pressure, temperature, 

volume, etc.), it admits the existence of relevant hidden variables (e.g. such as masses, positions, 

velocities, accelerations of Boltzmann’s “atoms”) and their probability (density) distributions 

resulting into thermodynamic phenomenological observables by means of the average quantities 

(integrals) of those probability (density) distributions. 

If one researches the formal and mathematical reason for the disappearance of any option of 

hidden variables passing from a phenomenological quantity in statistical thermodynamics to that 

in quantum mechanics (rather or too loosely speaking, because this is far from the subject of the 

present article), it consists  in involving  the Cartesian product  “𝐴 × 𝐴” for a Hermitian operator 

as any quantum quantity is defined.  

A phenomenological thermodynamic quantity means a set “A” therefore allowing for some 

“hidden variable(s) B” such that the relevant Cartesian product can  be “𝐴 × 𝐵” in a consistent 

way. This means that statistical thermodynamics implies for both tuples of variables, though those 

in the former list “A” are alleged to be explicit unlike all physical quantities in “B”, which are 

framed to be “hidden”, are finite.  



On the contrary, quantum mechanics is so “cunning” to postulate for “A” to be infinite and 

then, also for “𝐴 × 𝐴” to be a sufficient condition for whatever claims to be a “physical quantity” 

(excluding maybe that of time). Then, any finite tuple “B” of Einstein’s “hidden variables” can be 

interpreted to have been in advance written in “A” once it had been granted to be an infinite 

description.  

Somebody might call the solution of quantum mechanics in relation to the absence of hidden 

variables “fraudulent” (at least to common sense). Independently of its “moral” estimation, all 

experiments about the phenomena of entanglement confirm it again and again: thus and 

particularly, being consistent with the Kochen - Specker theorem. 

One might say that the intention of utilizing the theorem for proving FLT(3) borrows the same 

kind of “trickery” from quantum mechanics in order to apply it in arithmetic, for such a “doubtful” 

purpose generalized to Hilbert arithmetic before that. Without the irrelevant ethic evaluation, that 

is the case in fact. Just the Kochen - Specker theorem as well as the logical pathway to be proved 

are the tool able to merge both contexts: that of FLT, though initially for FLT(3), with the absence 

of hidden variables in quantum mechanics interpreting the latter as that incommensurability 

embodied in the concept of irrational number and thus, relatable to FLT.   

One can conclude that both conjecture of hidden variables and FLT to be proved during 

Modernity share the same kind of misunderstanding or said more exactly, “misframing”. The 

irrelevant cognitive reference frame pays attention only to the misleading distinction of explicit 

versus hidden variables rather than to the essential one: infinity versus finiteness. Analogically, 

FLT tried to be either proved or rejected: that is again a misleading opposition as Yablo’s paradox 

interpreting FLT demonstrates immediately. The correct framework of its solution turns out to be 

similar to that in the former case: infinity versus finiteness.  

All physicists (in the former case) as well as all mathematicians (in the latter case) “shut up 

and calculate”. However, what they should do for resolving both problems is just the opposite: 

“stop calculating: to think”. The episteme of Modernity suggests a quite irrelevant reference 

mental frame for both granting for it to be imperative (or said philosophically, the condition of 

possibility of any thought in Modernity) for whoever, calculating and not wishing to think. On the 

contrary, the solution of both problems need re-Gestalting, i.e. thinking rather than calculating.     

Summarizing, the tool for utilizing the Kochen - Specker theorem in order to prove FLT(3) is 

absolutely ready: the absence of hidden variables in quantum mechanics implies that the 

corresponding partial Boolean algebra is not able to be embedded in “Z2” under the meant 

particular additional conditions. Мost fragments are literally available in their paper; what is 

necessary to be added is only that the partial Boolean algebra is also sufficient for the availability 

of  hidden variables if one means Hilbert arithmetic in a narrow sense.   

One can repeat quite concisely the idea of the proof of FLT(3) by the Kochen - Specker 

theorem (suggested above) once the necessary tool is already elaborated thoroughly. One writes 

Fermat’s equation for the case 𝑛 = 1 possessing an unambiguous solution “𝑥” for any pair of 

natural numbers “𝑦, 𝑧”, now in Hilbert arithmetic, where all units are defined as “empty qubits”, 

and thus as three-dimensional unit balls. Then, it can be interpreted as a sum of three-dimensional 



volumes in relation to those unit radiuses by an exponent of “3” corresponding to the volume of a 

three-dimensional unit ball in turn relative to an “empty qubit”, to which FLT(3) is right to be 

proved.  

In other words, if FLT(1) stating solutions of Fermat’s equation (sometimes notated as “FE’ 

further) in natural numbers and unlike FLT(3) rejecting those solutions is reinterpreted in qubits 

and thus, as FLT(3), just the reinterpretation can be investigated as the reason causing the opposite 

meaning of the two propositions to each other, namely the Kochen - Specker theorem is relevant 

to FLT(3) rather than to FLT(1) in virtue of that “tool” being a corollary from it.  

Speaking quite precisely, FE(1) where all units are empty qubits is what does no solution if 

one means radiuses of the corresponding unit balls (rewritable as FLT(3) in relation to the 

radiuses), but nonetheless the same FE(1) possesses solution if each qubit is considered “globally” 

(rather than “locally” as in the former case), i.e. as an inseparable wholeness, that is as if observed 

“outside” (rather than “inside” as in the former case).  

Thus reflecting philosophically, what can be also proved formally and logically on the basis of 

the Kochen - Specker (therefore interpreting it indirectly as well), FLT(3) demonstrates that the 

transition from external, i.e. meant by FLT(1), and internal viewpoint, by FLT(3) is necessarily 

discrete or the corresponding units (just as a radius of a ball and the volume of the ball itself for 

the coefficient “𝜋”) cannot satisfy the relation of commensurability “♀”, and thus in particular, to 

constitute a partial algebra or to share any hidden variables.  

This means that they are inherently incommensurable to each other, which is already meant if 

the coefficient “𝜋” is imperative to be involved. Properly,  the tenet in the present paragraph is 

philosophically sufficient to justify FLT(3) as a corollary from the Kochen - Specker theorem. 

Anyway, one can added a few more formal and logical steps for who (if any) need “shut up and 

calculate” rather than reflect: 

The “tool” elaborated above by means of the Kochen - Specker theorem states in the final 

analysis that the description of any system by Hilbert arithmetic in a narrow sense (i.e. where each 

empty qubit is interpreted as an inseparable wholeness or as a usual arithmetic unit) is 

incommensurable with the description of the same system in the qubit Hilbert space, i.e. 

constituting Hilbert arithmetic in a wide sense together with Hilbert arithmetic in a narrow sense 

(where each empty qubit is supplied with the internal structure of an “empty” unit three-

dimensional ball).  

Then, an analogical incommensurability can be also inferred from the former, meant in the 

above sentence, now in relation to any pair “𝑦3, 𝑧3” of variables of FE(3) since they both can be 

considered as “Z2” and thus satisfying literally the statement of the “tool” that the absence of 

hidden variables also in the particular case of Hilbert arithmetic in a narrow sense implies not to 

be embeddable in “Z2” and particularly in any pair of “𝑦3, 𝑧3” 

What deserves to be noted instead of a conclusion of the present section is the two opposite 

interpretations of an empty qubit, namely external and internal as well as the transition between 

them, furthermore necessary for realizing the FLT(3) by the Kochen - Specker theorem as above, 

clarifies the kind of incommensurability relating the arithmetic world, as in FLT(1), with the 



geometrical or physical world, as in FLT(3), in the shared quantum neo-Pythagorean framework. 

This can clarify the philosophical significance of proving FLT(3) by involving a relevant 

correspondence of the physical and mathematical worlds, therefore transcending the gap being 

fundamental in our organization of cognition, or Foucalt’s “episteme” (1966).  

Furthermore, the two-directional transition “external - internal” implemented in the description 

of a system whether mathematical or physical or philosophical (discussed e.g. in Penchev 2021 

June 8 ) underlies transcendentalism both as philosophical and as scientific (Penchev 2020 October 

20 ). The Kochen - Specker can be directly related to that transition once it has been in advance 

utilized in the context of FLT (as in the present paper). The introduction of the separable complex 

Hilbert space of quantum mechanics and especially, that of the qubit Hilbert space of quantum 

information supplies the researcher with a general tool for investigating it since the main problem 

of quantumness at all belongs to the same class.                 

XI FLT(3) BY THE IMPOSSIBLE DISJUNCTIVE DIVISION OF A QUBIT INTO TWO 

ABSOLUTELY INDEPENDENT PARTS  

The Kochen - Specker theorem proves the absence of hidden variables in both cases of non-

commuting (also proved yet by von Neumann in 1932, though in another way) and commuting 

Hermitian operators (respectively quantities in quantum mechanics). Just the latter (being the 

proper contribution of the authors in 196719) is the case of entanglement, and particularly, the 

violation of Bell’s inequalities (1964) is a sufficient condition for it.  

As yet Einstein, Podolsky, and Rosen (1935) or Schrödinger (193520) paid attention, even 

complementary quantities (linked by entanglement and corresponding non-commuting Hermitian 

operators21) can be simultaneously measured for a unique physical action (called by Einstein a 

“spooky action at a distance”), corroborated experimentally many, many times by contemporary 

physics and named “entanglement”.  

Its essence consists in the absence of space-time localization within any quantum system if the 

exact momentum-energy localization is granted, e.g. by virtue of the conservation laws of energy 

or momentum. Then, arbitrarily remote physical entities can be considered as a single physical 

system, the probability distributions of their namesake quantities can influence each other, that 

influence can be predicted exactly, e.g as the violation of Bell’s inequalities (a sufficient, but not 

 
19 The relation of statements and proofs of the two theorems are not investigated enough though Kochen 

and Specker commented Neumann’s paper in theirs; maybe undeservedly neglecting Neumman’s proof 

(one of a few recent articles dedicated to it is: Dmitriev 2005). 
20 This is the paper of “Schrödinger’s cat”, the famous metaphor, became the emblem of quantum 

mechanics. Unlike the negative attitude of Einstein, Podolsky, and Rosen to that “spooky action at a 

distance”, Schrödinger referred to those “verschränkten Zustände” as he called them, as to a still one 

corollary challenging common sense, but quite reasonable. Anyway almost all authors citing Einstein, 

Podolsky, and Rosen’s paper, with its polemical and even militant tone towards quantum mechanics, 

neglect the absolutely independent contribution of the Austrian physicist.  
21 The thought experiment suggested by Einstein, Podolsky, and Rosen (1935) can immediately illustrate 

how two complementary quantities mediated by entanglement and a relevant conservation law can share a 

certain part of their probability distribution: then the eventual change of that share probability distribution 

being the same in both cases is described by the same operator commuting with itself necessarily. 



necessary condition for entanglement), and then confirmed experimentally. It is due to the 

overlapping (respectively sharing) of the same possible and thus measurable values of some 

namesake quantity independently of any spatial distance between the physical entities, to which it 

refers: indeed a “spooky action at a distance” in Einstein’s words and contradicting common sense, 

classical physics or special and general relativity prohibiting any interaction claiming to be 

physical to propagate with a speed exceeding that of light in a vacuum. 

Einstein, Podolsky, and Rosen (1935), after inferring that “spooky action” action from the 

mathematical formalism of quantum mechanics (also deducible even only from the separable 

complex Hilbert space underlying quantum mechanics), used it to prove the alleged (by them) 

incompleteness of quantum mechanics. Niels Bohr (1935) immediately answered to them that, on 

the contrary, quantum mechanics is complete nonetheless22.    

However, the precise proof of Bohr’s statement is only the Kochen - Specker theorem 

justifying the absence of hidden variables also in relation to quantities, which are not 

complementary to each other, and accordingly, their corresponding Hermitian operators 

commute23. That circumstance refers directly to the proof of FLT(3) by the Kochen - Specker 

theorem, discussed in the previous Section X, in the following way:  

The proof meant only the case of incommensurability, and thus, that of non-commuting 

Hermitian operators. Consequently, one can consider also the application to FLT(3) after 

“entanglement”, i.e. if the corresponding operators commute: then the case is used to be notated 

as “quantum contextuality” consisting in the fundamental inseparability of any quantum system 

into non-interacting (in general substems). Particularly, a qubit cannot be cut into two not-linked 

parts, or respectively qubits, as a corollary from the Kochen - Specker theorem. The same 

observation can be visualized directly and rather elementarily by the definition of a qubit as  

1 𝑞𝑢𝑏𝑖𝑡 ≡  𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩ where 𝛼, 𝛽 are two complex numbers obeying the condition:  

∣ 𝛼 ∣2  +∣ 𝛽 ∣2= 1.  

Then a qubit can be constituted by the normalization of any two subspaces  of Hilbert space 

and particularly (as an example sufficient for visualizing), that of two successive “axes” of the 

separable complex Hilbert space, to which a certain wave function establish arbitrary complex 

coefficients 𝐶𝑛, 𝐶𝑛+1.  Indeed: 

𝛼 =
𝐶𝑛

√|𝐶𝑛|2+|𝐶𝑛+1|2
;  𝛽 =

𝐶𝑛+1

√|𝐶𝑛|2+|𝐶𝑛+1|2
 

Then, the qubit cannot be divided into two absolutely separated “parts” such as 𝐶𝑛 ∣ 0⟩, on the 

one hand, and 𝐶𝑛+1 ∣ 1⟩, on the other hand, otherwise than as two unambiguously determined 

additive members of a qubit (i.e.   𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩) therefore correlating necessarily just in virtue 

 
22 Plotnitsky (2010) discusses the quantum-theoretical shift of Bohr, Geisenberg, and Schrödinger’s 

thinking involving probability in epistemology. Longair (2013) considers the probabilistic and 

indeterminist Gestalt change forced by quantum mechanics as the only alternative to be established as both 

objective and experimental science in the first decades of its existence. 
23 Maybe, the term of “partial commutability” would be more precious in a sense since commutativity relates only to 

the shared sub-operator due to entanglement (that sub-operator refers only to the correlating values). 



of the mutual normalization involving the counterpart coefficient (i.e. 𝐶𝑛 for 𝐶𝑛+1 or 𝐶𝑛+1 for 𝐶𝑛. 

The lesson is: 

The introduction of probabilities as ∣ 𝛼 ∣2 or  ∣ 𝛽 ∣2 can be interpreted under the condition 

∣ 𝛼 ∣2  +∣ 𝛽 ∣2= 1, which needs the normalization and thus unambiguous mutual correlation of any 

two “parts” of a qubit such as two qubits particularly. In other words, quantum contextuality 

(rigorously established by the Kochen - Specker theorem) can be visualized well enough by the 

necessary correlation of any two qubits, into which another one given in advance is suggested to 

be divided.  

By the help of that visualization, one can further trace the sense in which Kochen and Specker’s 

absence of hidden variables also means quantum contextuality in comparison to the alternative 

case of incommensurability: rather counterintuitively, they turn out to be equivalent. The 

difference consists only in the opposite interpretations of the same fact observed from the 

following two viewpoints: either external (resulting into incommensurability) or internal 

(resulting into quantum contextuality)24. The visualization can be still perfected as follows: 

The division of a qubit into two parts, particularly, into two qubits, can be considered as a bit 

of information as whole, where the “two parts” are two alternative states of a “bit” meaning the 

initial qubit, which is to be halved. Then, the impossibility of that (which quantum contextuality 

implies) suggests only the statement  “no qubit is a bit”, a rather trivial and obvious since a qubit 

is a choice among an infinite set of alternatives, and a bit, anong two ones, which are a finite set. 

In other words, quantum contextuality visualized by the relation of “qubit” and “bit” as the 

statement “no qubit is a bit” can be reduced to be a corollary from the statement “no infinite set is 

a finite set”25.  

The general case meant by that visualization can be described also in terms of the nonstandard 

bijection as it is applied to Peano arithmetic:  (𝑃− ⊗ 𝑃+ → 𝑃0) → 𝑃 above. Indeed, if it is granted 

to be a bijection, the converse statement is to be also valid, i.e. 𝑃 → (𝑃0 → 𝑃+ ⊗ 𝑃−)26. Meaning 

also the visualization by a bit, the two directions of the nonstandard bijection can be interpreted as 

two direction of a bit of information (e.g. recording either “0” or “1” in a binary sell versus erasing 

either “0” or “1” in the same sell) or to be dual to each other. The last observation can serve as a 

formal non-contradictory definition of “nonstandard bijection” therefore rigorously distinguishing 

it from the usual “standard bijection”: its two directions are dual to each other unlike those of 

“standard bijection” being simultaneously valid.  

 
24 So, the relation of externality and internality, fundamental for scientific transcendentalism, is involved 

to verify the unity of quantum incommensurability and quantum contextuality, as the proper philosophical 

contribution of the Kochen - Specker theorem can be also interpreted. 
25 In fact, Skolem’s “relativity of set” (1922) considers as relative also finite and infinite sets, which can be 

granted to be representable as dual in the context of Hilbert arithmetic: so the statement “No infinite set can 

be finite” can be complemented further by ”but both can be dual to each other”. Just this precisement allows 

for the Schrödinger equation not to be contradictory if it is interpreted to equate classical information (after 

measurement) to quantum information (before measurement) in the final analysis. The  “duality of 

finiteness and infinity” will be also introduced in the present context a little below.  
26 One can pay attention to the “reverse” Cartesian product, which formally represents the duality of both 

directions of the bijection. 



Once those perfections have been involved, both incommensurability and contextuality in 

virtue of the Kochen - Specker theorem can be unambiguously assigned to the two dual directions 

of the nonstandard bijections therefore suggesting for them to be dual to each other in turn. This 

means that incommensurability (for conjugate quantities or non-commuting Hermitian operators) 

and contextuality (for entanglement or commuting Hermitian operators) are to be considered as 

dual to each other in the virtue of the Kochen - Specker theorem. Then, the unambiguous 

correspondences at issue are: 

“Incommensurability”: “({𝑃}− ⊗ {𝑃}+ → {𝑃}0) → {𝑃}” refers to the one direction of the 

nonstandard bijection “(𝑃− ⊗ 𝑃+ → 𝑃0) → 𝑃”. 

“Contextuality”:  {𝑃} → ({𝑃}0 → {𝑃}+ ⊗ {𝑃−}) refers to the other direction of the 

nonstandard bijection     𝑃 → (𝑃0 → 𝑃+ ⊗ 𝑃−) 

The bracketing by “{}” notates that corresponding Peano arithmetics and natural numbers 

meant by them are interpreted as sets by the corresponding natural numbers therefore necessarily 

involving the Gödel incompleteness of set theory to arithmetic, in turn implying both 

incommensurability and contextuality, otherwise proved in the framework of th Kochen - Specker 

theorem.  

An amazing symmetry appears after proving FLT by the Kochen - Specker theorem involving: 

one needs FLT(3) by virtue of whether incommensurability or contextuality since both follow from 

the Kochen - Specker theorem, on the one hand, and after that, by induction in a relevant form of 

induction for the general case of FLT(𝑛 ≥ 3), on the other hand. That circumstance has been 

already discussed in Part I, coining the term of the “paradox of proving FLT”, meaning that the 

proof should involve both P and {P} and thus Yablo’s paradox or the Gödel incompleteness by 

virtue of which FLT turns out to be an insoluble statement in Gödel mathematics therefore forcing 

necessarily reflection e.g. by Hilbert arithmetic or by Fermat arithmetic if one wishes a rigorous 

proof of FLT, in the framework of either of which (or other relevant framework) it is possible.  

Discussing the proof of FLT in Fermat arithmetic by both MMT and MFD in Part I, an 

exchange of the order of  “P and {P}” into “{P} and P” was discussed as necessary for the proof. 

The same exchange can be observed also now: after proving it by means of the Kochen - Specker 

theorem. Both P and {P} are necessary for the proof but only the order “first {P}, then P” is 

relevant, though being counterintuitive, rather than the alternative “first P, then {P} right 

generating the aforementioned “paradox of proving FLT”.   

Both (external and internal) viewpoints to the same fact, namely the two “parts” of the a single 

qubit, observed correspondingly either as incommensurable or as contextual hints at a new 

invariancy linking the externality and internality of a system in a philosophical sense or their 

quantitative descriptions mathematically including those relevant to the most fundamental theory 

of contemporary physics: quantum mechanics and general relativity. 

A previous paper (Penchev 2021 June 8) exploits just that new kind of invariance to explain 

and infer corollaries from it about the relation of quantum mechanics (and quantum information) 

and general relativity, partly contradicting each other, e.g. as to exceeding / non-exceeding the 

fundamental constant of light speed in a vacuum. Its thesis is that quantum mechanics and general 



relativity describe the same, but each of them, from the correspondingly external and internal 

viewpoints at issue to the same system being investigated.  

Particularly, their descriptions are complementary to each other (respectively, dual in a 

rigorous mathematical meaning): so, that conjecture allow for all troubles about “quantum gravity” 

to be explained since its subject consists of two complementary essences describing absolutely 

different only seemingly because both mean the same, but from those two viewpoints ostensibly 

inconsistent to each other. 

The concept and theory of quantum information allows for their unification, starting from the 

viewpoint of quantum mechanics. Then, entanglement is linked to gravitation as its quantum, but 

necessarily complementary (respectively, mathematically dual) counterpart. On the contrary, a 

new generalization of “reference frame” is necessary if one shares initially the viewpoint of general 

relativity: “external reference frame” (or “discrete reference frame”) is coined for it meaning 

accordingly a new “still more general principle of relativity” ruling the transition between any two 

reference frames being external (or discrete) to each other.        

Indeed, the only “general principle of relativity” underlying general relativity (unlike the still 

the more general principle of relativity necessary for establishing the new invariance of both 

externality and internality of a mechanical system) allows for uniformly describing only reference 

frames moving smoothly to each other. This means that the still more general principle relativity 

needs the uniform description to any two discrete (external) reference frames including, therefore 

allowing for any quantum entities to be described equally well in terms of general relativity if it 

has been generalized in advance as to external “reference frames”. Once this has been done, the 

result is a description coinciding with that by utilizing entanglement, quantum information: or 

starting from the “other end” of quantum mechanics.   

If hypothesis that quantum mechanics and general relativity have been granted to be two 

complementary theories of the same, both quantum information as a theory of entanglement and 

that “still more general relativity” as a theory able to include external reference frame can be 

identified both to each other and to the eventual theory of quantum gravity (however particularly 

excluding the pattern of “secondary quantization” inherent for the rest three fundamental 

interactions: weak, strong and electromagnetic27). 

Then the unity of both externality and internality of a system suggest that one may construct a 

bridge able to link quantum information and the proof of FLT by the mediation of the Kochen - 

Specker theorem relevant to both. One might transfer concepts from the one area into the other: 

for example, the Gödel dichotomy of the relation of arithmetic to set theory, “either incompleteness 

or contradiction” (already proved to be relevant to FLT by means of Yablo’s paradox in Part I) to 

be interpreted also to the pair of general relativity and quantum mechanics: 

 
27 One can notice that electromagnetic interaction allows for a description following the model of “still 

more general relativity” (by virtue of the fact that Minkowski space is a particular case of pseudo-

Riemannian space) along with that of the Standard model as a “quantum force”. However, that approach is 

inapplicable to weak or strong interactions (at least, immediately and literally). 



Oppositely to Einstein’s suggestion about the alleged incompleteness of quantum mechanics, 

general relativity turns out to be either incomplete or contradictory to quantum mechanics. Only if 

one complements it by a dual counterpart able to describe mechanical motions even to “external 

reference frames” uniformly, it is able to become complete and complementary to quantum 

mechanics, being also necessarily accompanied by quantum information to be complete. 

The discussed relation after division into two parts of a qubit in virtue of the Kochen - Specker 

theorem (also demonstrated to be relevant to the proof of FLT above) can serve for the relation of 

quantum mechanics to general relativity to be visualized. The corollary at issue will be related 

only to the area of “quantum gravitation”28 studied by external (discrete) reference frames, on the 

one hand, and by quantum information as entanglement, on other hand. Both viewpoints can be 

unified by halving a qubit: then, the viewpoint of the two parts as incommensurability will 

correspond to the conceptual construction of general relativity relevant generalized, and the 

alternative viewpoint of contextuality, to quantum mechanics (respectively, quantum information). 

XII ABOUT THE IDEA OF “ARITHMETIC MECHANICS” AFTER PROVING FLT IN 

HILBERT ARITHMETIC 

Common sense’s prejudice to infinity is that: to be “more” than finiteness, therefore the former 

is to be ordered as “second”, i.e. after the latter as “first”. Anyway, just that sequence of them 

generates the Gödel incompleteness if arithmetic and set theory are correspondingly attached29. 

Their opposite ordering (as well as their ordering in parallel), on the contrary, forces to be 

discussed as complementary to each other suggesting rather the dual structure of Hilbert arithmetic 

even where it is “naively” or in an inexperienced way reduced to Fermat arithmetic. Just this is the 

approach for proving FLT by induction, discussed in Part I, for preventing it to be a Gödel 

insoluble statement. 

Thus, “quantum gravitation” investigated after the eventual complementarity of general 

relativity and quantum mechanics shares the same “reverse” sequence of finiteness and infinity, 

resulting furthermore into the complementarity at issue. The syncretic consideration of 

mathematics and physics in their foundations (naturally inherent for “quantum neo-

Pythagoreanism” advocated here) can be continued, for example, to an arithmetic or set-theoretical 

justification of fundamental physical constants such as the Planck, “light”, and gravitational 

constants. Though it is to be a subject of a future study, its outlines might be also mentioned in the 

present context: 

What can be researched is their mathematical origin or necessity to exist rather than their 

certain values well-known to us as an empirical fact. In other words, the reason why their values 

 
28  The term is within quotation marks since it is meant only in the present context, after which quantum 

mechanics and general relativity are complementary to each other, on the one hand, and the area as a whole 

is considered to be dual to the complement of arithmetic to set theory, where all structures relevant to the 

Gödel dichotomy are to be situated, on the other hand.   
29 Anyway the Gödel incompleteness can be overcome also in the framework of the same “prejudice” by 

involving transfinite induction as, for example, Caporaso, Pani (1980) demonstrate. 



are just those30 cannot be revealed by the sketched approach. Only the class of equivalence of all 

possible values for each of them can be discussed. Furthermore, they are able to generate basic 

physical dimensions of the world by means of the unambiguously determined Planck length, mass, 

and time interval. Analogically, their certain, “Panck” values do not admit any relevant discussion 

in that framework, however the mathematical origin of the corresponding mathematical 

dimensions may be in turn traced: 

Then, the relation of arithmetic needs just the following three mathematical constants able to 

be attached unambiguously to the three fundamental physical ones. Those can be called: the unit 

of actual infinity; the unit of arithmetical induction (or that of function successor31); their relation 

(being uncertain in virtue of the inconsistency of the axioms of induction and infinity):  it can be 

also likened to be the “ratio” of a qubit (usually defined) to a measured qubit (thus restricted only 

to rational values, and to natural numbers in the final analysis).  

Indeed, arithmetic grants for its least element and the constant of the function successor 

(utilized in the axiom of induction) to be the same  (”1”), and the third one can be defined only in 

Hilbert arithmetic rather than in Peano arithmetic since it represents the relation of the 

corresponding units in the two dual counterparts of Peano arithmetic distinguishable from each 

other only in Hilbert arithmetic.  

On the contrary, the concept of actual infinity implicitly establishes the class of all possible 

units and even determines a series of them such as that of enumerability, continuum, etc. as well 

as the famous “continuum hypothesis” (proved to be an independent axiom of set theory by Gödel 

1940, consistency, and by Cohen 1963; 1964, independence) in terms of them. However, the axiom 

of choice implies their “relativity in a Skolemian manner” (Skolem 1922) thus generalizing their 

“units” to a single one, that of actual infinity.  

The discussed exchange in the order of finiteness and infinity implies for that unit of actual 

unit to be identified as the least unit which is to be a unit, “1”, again and then identified to the 

aforementioned (coinciding) units of induction and function accessor. So, one tends to generalize 

arithmetic if it is considered as the particular case where the three “fundamental mathematical 

constants”, namely the unit of the least element, the unit of induction (function successor), and the 

unit of their relation (or the ratio of the units of the two dual arithmetics) coincide with each other: 

all being conventionally notable as “1”.  

On the contrary, if one admits for them to be different from each other, each of them can be 

further identified with just one fundamental physical constant in turn implying the three basic 

 
30 A hypothesis to be just “ours” suggested Dirac (1937; 1038), and it is exploited (maybe too widely and 

closely) in “anthropic principle” mentioned for the first time by Dicke (1957), a rather philosophical or 

metaphysical conception.  
31 The addition of an unit, i.e. “n+1” for any natural number “n” is postulated in the axiom of function 

successor, and then used as a condition in the axiom of induction. The natural admission for them is to be 

identical; and just that is the case which will be researched as to the correspondence with the fundamental 

physical constants. However, one can allow for two different “additions of a unit” therefore noy coinciding 

with each other not less consistently. If that were the case, which is relevant to the fundamental mechanical 

constants, still one had to exist  besides those three ones (Planck, “light”, and gravitational). Anyway, the 

hypothetical admission that it exists, but is yet unknown for us cannot be rejected a priori.  



physical dimensions of mass, distance, and time: they are enough for classical mechanics. Then, 

the unit of the least element is the Planck constant; the unit of induction (function successor) is 

that of the light speed in a vacuum, and their relation corresponds to the gravitational constant32. 

The last statement seems to be rather unobvious and it might be loosely and briefly justified as 

follows though its rigorous proof in detail is to be the subject of a future study:    

A necessary preliminary notice is to clarify why and how the fundamental physical constants 

are units of continuous physical quantities, but the arithmetical unit(s) even granted to be three 

different refer(s) to discrete quantities, what all arithmetic variables are. Their unification or 

identification is only from the viewpoint of quantum mechanics (and articulated especially 

discernibly by quantum information) since it is forced to describe uniformly the macroscopic 

apparatus, as it is in terms of the continuous motion of classical mechanics, and the microscopic 

quantum entities obeying discrete laws due to the Planck constant and its magnitude 

commensurable with their physical actions. Then, quantum mechanics introduces the separable 

complex Hilbert space as its basic mathematical structure, then evolving into the qubit Hilber space 

of quantum information and into Hilbert arithmetic in a wide sense.  

The concepts of general relativity need a parallel development, e.g. the “still more general 

principle of relativity” valid also to discrete (external) reference frames advocated in the cited 

previous paper (Penchev 2021 June 8) to be analogically applicable to both continuous and discrete 

physical variables. So, all those preliminary considerations are granted in advance to the idea of 

“arithmetic mechanics” investigating the roots of the three fundamental physical constants in a 

Pythagorean manner, but rigorously and mathematically. After that, one can justify the 

identifications of all three pairs of constants as follows: 

The least element of arithmetic (due to its well-ordering) as the Planck constant: indeed it must 

be a constant not admitting any values of physical action less than it in virtue to be the least element 

of arithmetic.  

The unit of induction (function successor) as the constant of  light speed in a vacuum: the ratio 
𝑛+1

𝑛
 as a constant can be interpreted to be a paraphrase of the necessary condition for the validity 

of induction and translated in a continuous quantity such as velocity. As the axiom of induction 

implies for any natural number to be finite, as the “light” constant implies for any physical distance 

to be finite. As the axiom of induction contradicts the axiom of infinity in set theory, as the non-

exceeding of the “light” constant contradicts all phenomena of entanglement  happening 

“instantaneously” (i.e. exceeding the “light” constant) in definition. 

The relation of the former two constants, i.e. that of the least element of arithmetic and the unit 

of induction corresponds to the gravitational constant. That statement is the most sophisticated 

and thus most difficult for justifying. It is again a unit, as the ratio of two units, in Peano arithmetic. 

However, those last two units are different from each other in the generalization of Peano 

arithmetic relevant to arithmetic mechanics, on the one hand, and much more important, the 

 
32 A very interesting observation is that three fundamental physical constants originate even from arithmetic 

alone, but only after the identification of the set-theoretical constant of actual infinity as the arithmetic 

instance of the unit of the least element.  



contradiction of the axiom of induction to the axiom of infinity (if the latter is “pre-ordered” and 

involved indirectly by the Planck constant) implies for their ratio to be uncertain and needing an 

additional own specification as an absolutely independent, third fundamental physical constant, on 

the other hand.  

It may be also recognized as the “Planck length” (𝑙0 = √
ħ𝐺

𝑐3
) depending on the gravitational 

constant after the other two constants (the Planck and “light” constants) participating in its 

definition have been already verified in advance as above: the Planck length can serve just for 

elucidating the sense and meaning of the gravitational constant.  

Three circumstances need relevant clarification as to the cited formula of the Planck length, 

namely: “√ ”; the exponent of “3” for the “light constant”; and finally, whether the Planck length 

can be identified as a new constant corresponding to that of the function successor and thus 

absolutely independent of the other arithmetical constant of induction (with the physical 

counterpart of the “light” constant); only in a few words about each of those circumstances:  

A shared preliminary notice may be that all the three circumstances need also Hilbert arithmetic 

in a wide sense to be made clear. Anyway, it can be abandoned similarly to a “Wittgenstein ladder” 

if one grants to distinguish the constants of induction and function successor as different from each 

other after elucidating the last, third problem:  

About “√ ”: the formulas of all Planck units, and particularly that of length, share the same 

peculiarity, to be determined by “√ ”, and consequently mean two values: “±√ ”. Each of them 

can be associated with the one of the two dual Peano arithmetic if they are connoted in a wide 

sense in virtue of their idempotent anti-isometry. So for example, +𝑙0 can be conventionally related 

to 𝑃+, and −𝑙0, to 𝑃+ accordingly.  

About the exponent of “3” for the “light constant”: if the reduced Plank constant, “ħ” has been 

already associated with the least arithmetic element, it is meant as a qubit, i.e. as a unit ball in the 

usual three-dimensional Euclidean space. Then, it should correspond to an also three-dimensional 

unit of induction, i.e. “𝑐3” (for “𝑐” in each of all the three dimensions). If the axiom of induction 

(to which the “unit of induction” refers) and the axiom of infinity (to which a qubit or respectively, 

the least arithmetic element refers) were consistent to each other (i.e. if the Gödel dichotomy were 

not inferable), the relation of a qubit to its measurable counterpart, and particularly, the ratio “
ħ

𝑐3
” 

would be unambiguously determined without needing an additional constant (which is the 

gravitational constant) for being absolutely defined. In other words, just the Gödel incompleteness 

in fine, if one means it in arithmetic mechanics, implies the gravitational constant (but not its 

certain value in our universe) to overcome that incompleteness.    

The ratio “
ħ

𝑐3
” interpreted once as the ratio of two arithmetic units, the least element to the unit 

of induction (both granted to be “1” in Peano arithmetic), can be further interpreted also as 

corresponding to the relation of a qubit to its measurable value. Indeed, while the value of a qubit 

is a pair of irrational numbers in general, its measured value is always reduced to a rational number 

(which is a ratio of natural numbers). Then, “𝑐3” corresponding to the “three-dimensional unit of 



induction” refers just to the class of equivalence of all measurable values, i.e. to an “empty qubit 

being already measured”.   

If the Gödel incompleteness were not valid, the uncertainty of quantum measurement would 

not exist. It is overcome in any measurement by a fundamentally random choice corresponding to 

the axiom of choice which is able to consistently regulate the relation of set theory to arithmetic. 

Analogically. the gravitational constant (and consequently, gravitation as the interaction obeying 

it) determines additionally and unambiguously quantum uncertainty, transforming it into an 

absolutely certain values which is measured, by a certain state of entanglement of the measured 

quantum entity with all the universe as far as entanglement is the dual counterpart of gravitation. 

So. the physical “picture of the world” becomes perfectly consistent only in arithmetic mechanics.     

About whether the Planck length can be identified as a new constant corresponding to that of 

the function successor and thus absolutely independent of the other arithmetical constant of 

induction (with the physical counterpart of the “light” constant): indeed, it can if one wish to avoid 

the mediation of Hilbert arithmetic to Peano arithmetic though generalized by arbitrary values of 

the “arithmetic constants” (all granted to be “1” in Peano arithmetic).  

In other words, one can introduce the Planck length as the unit of the function successor and 

therefore postulating for it to be distinguishable from the unit of induction since their 

corresponding axioms are independent of each other in the framework of the axiomatics of Peano 

arithmetic. Anyway, this is rather a formal permission or option, but the motivation is due to the 

Gödel incompleteness properly implying an additional “degree of freedom” right realizable or 

embodible into the independence of the units of function successor and induction of each other. 

Nonetheless, that motivation can remain hidden or only “hinted”, and Hilbert arithmetic, from 

which it originates, to be abandoned as a “Wittgenstein ladder”.  

All the three meant theorems, namely: FLT, the Kochen - Specker theorem, and Gleason’s 

theorem, would be fundamental to the intended arithmetic mechanics because they make clear why 

a qubit is a natural unit of arithmetic mechanics after it has been rather conventionally postulated 

to be that in the basis of Hilbert arithmetic in a wide sense by defining of an arithmetic unit as an 

“empty qubit”. As far as the concept of “qubit” is irrelevant to the traditional or standard context 

of FLT, one can speak of the uniqueness of the case of three dimensions, articulated differently in 

each theorem as follows: 

FLT means the uniqueness of the exponent “3” in Fermat’s equation, which is the least one for 

which it is not soluble. Gleason’s theorem determines the dimension “3” of Hilbert space as the 

least one for which the probabilistic measure is unique. As to the Kochen-Specker theorem, the 

considered corollary about “halving a qubit” demonstrates directly the qubit as the structure of 

least dimensions. One can speak of the absence of hidden variables in the sense of the theorem. 

A more philosophical justification of the special case “3” is suggested in the introduction of 

the paper in Part I. If one relates “idempotency” and “hierarchy”, “3” is the least element able to 

distinguish them for belongs to the latter, but does not to the former. The same observation can be 

interpreted even ontologically and transcendentally as far as transcendentality means implicitly 

idempotency by the identification of the externality and internality of the totality. Then, the case 



of “3” meant fundamentally what the least, which does not refer to idempotency, is, however partly 

paradoxically: it is able to feature and distinguish the totality.  

Furthemore, one can speak of “idempotency” and “hierarchy” abstractly and philosophically 

as the two properties (or relations), which are necessary and sufficient to represent the meta-

relation of “completeness” meant by “the totality”, on the one hand, and the transcendental method, 

on the other hand. The approach of “scientific transcendentalism” (e.g. as in: Penchev 2020 

October 20) tends to represent the traditional philosophical transcendentalism in a rigorous, 

mathematical and logical, falsifiable and non-metaphysical way, after which to interpret the 

completeness of quantum mechanics in virtue of the theorems about the absence of hidden 

variables as an example of that scientific transcendentalism, on the one hand, and then, to 

extrapolate it in relation to the problem of completeness already as to the foundations of 

mathematics, on the other hand. 

Following the same impetus originating from scientific transcendentalism, Hilbert arithmetic 

in a narrow sense as well as in a wide sense is introduced in order to unify the problem of 

completeness and its solution in both quantum mechanics and mathematics forcing a kind of 

quantum neo-Pythagoreanism, to which Husserl’s phenomenology can be considered to the 

“closest relative” within the philosophical tradition.    

The idea of arithmetic mechanics (though only loosely sketched here) is a next step for 

implementing scientific transcendentalism as a fruitful methodology able to unify the foundations 

of mathematics (in the case: arithmetic and set theory) and physics (the origin of the fundamental 

physical constants). Common sense’s prejudice enumerates the former to the area of “mind”, or 

the mental, and the latter to that of “body”, or the physical: following the general organization of 

cognition in Modernity (and which is able to be traced at least to Descartes).  

Thus, the idea of arithmetic mechanics contradicts that contemporary “episteme” (utilizing the 

term coined by Michel Foucault), which determines what is allowed to be studied and what is not 

in its framework. The eventual links between “body” and “mind”, able to occur independently of 

the “figure of human being” (again by Michel Foucault’s expression or metaphor) “on the sand of 

the ocean” of cognition, are prohibited in Modernity (at least as to science), in the scope of which 

“arithmetic mechanics” should be situated. On the contrary, FLT, and first of all: its proof, 

generates a philosophical context and attitude for that area of prohibited cognition to be 

investigated in not less detail than its traditional counterpart of allowed cognition.               

XIII INAPPLICABILITY OF THAT PROOF IN THE FRAMEWORK OF GÖDEL 

MATHEMATICS COMPARED WITH ITS REASONABILITY IN HILBERT MATHEMATICS 

The inapplicability of that proof of FLT(3) by means of incommensurability due to the Kochen 

- Specker theorem in Gödel mathematics can be demonstrated quite simply. The axiom of 

induction implies for all numbers to be rational and thus the inexistence of both irrational numbers 

and incommensurability. Indeed, any natural number is finite, as a corollary from it, and then, the 

ratio of any two finite natural numbers is a certain rational number: so neither irrational numbers 

nor incommensurability can exist. 



On the contrary, set theory (just for the axiom of infinity) implies for both to exist and 

consequently, the incommensurability necessary for FLT(3) to be proved, is a Gödel insoluble 

statement. The way out is traced in Hilbert mathematics by Hilbert arithmetics and projectable into 

Gödel mathematics based on both (Peano) and (ZFC) set theory either as an only arithmetical proof 

of FLT (in Part I) or as only set-theoretical proof of FLT(3) and then, that of FLT in general (in 

the present Part II).  

A rather philosophical reflection on incommensurability is relevant since it both refuted the 

ancient Pythagoreanism, but confirms the contemporary quantum neo-Pythagoreanism by means 

of the Kochen - Specker: as this was made clear already in Section X. The transition from the 

former, rejecting incommensurability to the latter, corroborating incommensurability consisting in 

the complementation by a second and dual Peano arithmetic following the approach by which 

quantum mechanics is able to justify its own completeness. Thus, the incommensurability is 

embodied in that counterpart, therefore its homomorphism (or “almost” homomorphism due to its 

anti-isometry) to the other “twin” or copy of Peano arithmetic being provable. 

The pair of two dual, but homomorphic Peano arithmetics changes the concept of natural 

number as an implicit or self-obvious concept indirectly defined by Peano axioms. However, the 

result of that change is well known for a long time ago, but as an absolutely independent entity in 

a science with a subject quite different from arithmetic in first glance or tradition: theory of 

information or the concept of information accordingly. 

Indeed, the pair of two namesake (or better, “numbersake”) numbers in the two dual Peano 

arithmetics constitutes a bit of information, and both Peano arithmetics constitute a well-ordered 

series, respectively “string” of binary information. It can be also considered as a language, the 

symbols of which are digits, and any subseries, respectively substring, can be a word, sentence, or 

text of that language: a text whether meaningless or meaningful in a certain context. A bit can be 

introduced furthermore as a unit, i.e. as an elementary bijection of  the nonstandard bijection  (as 

this is already demonstrated in detail in Section IX): “(𝑃− ⊗ 𝑃+ → 𝑃0) → 𝑃”. 

So the new viewpoint to “natural number” imposed by Hilbert arithmetic understands it as a 

certain bit of information of a well-ordered sequence of bits being able to represent a message of 

information and thus interpretable not less or worse in terms of the theory of communication: 

speaking loosely all natural numbers constitutes the languages, by which all entities can be linked 

to each other. If one adds the concept of quantum information, those entities themselves can be 

considered as informational, and thus numerical in the final analysis.   

Properly, the incommensurability at issue and in the same context is interpretable as the 

relation of binary information and quantum information: that of all entities in relation to their 

communication. This is obviously a worldview quite relevant to a kind of Pythagoreanism: and 

the provability of FLT needing the completeness of mathematics and the world for its proof (as in 

Hibert mathematics) can serve as a symbol for that transition to Pythagoreanism.   

Whatever way (e.g., each of those three options enumerated in Section IX) for avoiding the 

Gödel incompleteness, whether in the framework of only set theory or that of Hilbert arithmetic 

can be relevant and consistent to the proof of FLT(3) by the Kochen - Specker theorem. 



Furthermore, one can reflect even the exact reason for that proof to be applicable to Hilbert 

mathematics (arithmetic) rather than to Gödel mathematics. This is the explicit reference to the 

dual qubit Hilbert space, thus to both dual ones (respectively, both dual Peano arithmetics) in the 

former one unlike the only single one Peano arithmetics in the latter case. The Kochen-Specker 

theorem suggesting the separable complex Hilbert space as its necessary condition (for being 

inferable) is consistent only with Hilbert mathematics, but not with Gödel mathematics directly 

and in the final analysis. 

The same statement is not literally valid as to FLT in general as Part I has already 

demonstrated. Hilbert arithmetic can serve also as an only heuristic “Wittgenstein ladder” to find 

an only arithmetic proof localizable thoroughly and absolutely in Peano arithmetic alone in fine. 

Anyway, one may mull the conjecture whether statements provable only in Hilbert arithmetic 

(mathematics), but fundamentally irreducible to Peano arithmetic (Gödel mathematics) can exist 

in principle. 

Two corollaries from that hypothesis seem to reject it immediately in virtue of modus tollens 

being absurd, but maybe only at first glance and only in relation to common sense (which science 

has been often forced to ignore).  

The first one is that there exist statements (namely those valid only in Hilbert arithmetic or 

mathematics) able to change reality directly i.e. without the mediation of human activity. Of 

course, the contemporary Cartesian episteme excludes them as even mystic and anti-scientific. 

However, once a relevant paradigmatic change, i.e. the transition to quantum neo-Pythagoreanism 

has been postulated, their eventual existence, though not necessary, anyway is not more 

inconsistent. Furthermore, the mediation of human mind-brain seems to imply somewhere on their 

boundary of the separated mind and brain their real availability as extraordinary “Centaur-like”33 

inseparable thought-actions irreducible as to only thoughts as to only actions.  

Quantum mechanics and especially the theory of quantum information introduce the physical  

phenomena of entanglement as a subject right studied by them. The Kochen-Specker theorem is 

fundamental for those particularly implying “contextuality” as to a mental statement about any 

quantum fact and the fact at issue (otherwise interpreted in classical physics or epistemology as a 

fact “by itself” and independent of any statement about it), consequently inseparable in two “texts” 

with a zero intersection. Nonetheless, the same inseparable contextual unity as a whole can be 

considered consistently and equally well as an only mental statement or as a state of only external 

reality.  

Thus, the concept of entanglement is consistent with the discussed conjecture, but does not 

imply it necessarily. If one is to paraphrase the hypothesis in terms of quantum information and 

contextuality established by it, this would sound like that: there exists contextuality fundamentally 

irreducible to two more absolutely separable “texts”. The same can be expressed in a still one 

 
33 The term was coined by the Georgean (Soviet) philosopher Merab Mamamrdashvili. Vladiv-Glover 

(2010) suggests a study of Mamardashvili’s concept and idea. Furthermore, they are frequently encountered 

in Marxist philosophy due to the idea of “objective contradiction”, borrowed from Hegel’s or Hegelian 

“dialectics”.   



essential way: there exists entities which cannot be fundamentally any system or wholeness, since 

the latter divides disjunctively into its internality belonging to the system and its externality not 

belonging to it.  

In fact, the last observation is justified by “scientific transcendentalism” (coined e.g. in: 

Penchev 2020 October 20) as a falsifiable version of philosophical transcendentalism by and after 

Kant (especially in Husserl’s phenomenology: Penchev 2020 June 29 or Penchev 2021 November 

18). So, as far as the totality of scientific transcendentalism as an ultimate premise implies any 

wholeness or system in its framework, those entities, which cannot be fundamentally a system or 

wholeness to be granted, suggest logically (in virtue of modus tollens) rejection of the totality itself 

(at least that of scientific transcendentalism).  

Then, one can trace the ambiguous or dual role of transcendentalism to Cartesian (i.e. 

contemporary episteme): on the hand, it generalizes the inherent “mind - body” (respectively, 

“subject - object”) opposition right by transcendentality; however on the other hand, it guarantees 

for the same opposition to be universally possible after reducing transcendentality either to mind 

or to body; or said otherwise, the binarity of the totality in the final analysis (e.g. as the dichotomy 

of “God and the devil” or that of “good and evil”, etc.)   

The second seemingly ridiculous corollary is that there exist elements of Peano arithmetic, i.e. 

natural numbers, to which the nonstandard bijection “(𝑃− ⊗ 𝑃+ → 𝑃0) → 𝑃” is not applicable, or 

otherwise said: there exists natural numbers which cannot be represented by bits fundamentally. If 

one utilizes the axiom of choice34 and thus set theory, this means that there exists sets, not to all 

elements of which the axiom is valid. As far as the restricted validity of the axiom of choice is 

painlessly grantable to (ZF) set theory, this demonstrates after tracking back, that those natural 

numbers irrepresentable as bits of information are also a matter of convention just as the limited 

applicability of the axiom of choice.  

If one passes to quantum information, that second corollary from the considered conjecture 

implies that there exist qubits which cannot be represented by bits. If the interpretation of the 

Schrödinger equation as a universal equivalence of bits and qubits is granted (e.g. as in: Penchev 

2020 July 16), the hypothesis implies the existence of quantum entities not obeying that equation35.  

Thus, one can conclude that physical objects in the scope of the conjecture are not confirmed 

by any experiments and even that nobody has searched for them though relevant axiomatic systems 

(e.g., restricting the applicability of the axiom of choice as above) might be consistently suggested.    

Nonetheless, the concept, theoretical model, and partial implementation of “quantum 

computer” can be developed in both alternative frameworks: either postulating the totality (as 

scientific transcendentalism does) or rejecting it. The former viewpoint is rather that by default. 

According to it, any quantum computer cannot resolve any problem which a Turing machine 

cannot. Anyway, it may do it eventually faster and even much faster than a Turing machine for 

 
34  For example, as in the formulation of Russell (1906) by the corresponding Cartesian product not to be 

empty. 
35 For example, as in: Sokolovski 2007. 



certain classes of problems, for which quantum algorithms36 have been elaborated already. 

Furthermore, it is able to simulate a Turing machine as Feynman (1982; 1986) has yet 

demonstrated. 

Meaning that the universe itself or any subarea of physical reality can be considered as a 

quantum computer (e.g. Penchev 2020 July 24), the interpretation of it even in the former 

framework is also possible though very rarely met (e.g. Penchev 2020 July 20). If that is the case, 

a quantum computer can resolve, not worse, problems being fundamentally insoluble for any 

Turing machine; in other words, that kind of algorithm is not only faster, but inherently better and 

irreducible to any algorithm of any finite length and applicable to a Turing machine.  

A quantum computer interpreted in this way is able to manage that by embodying an attitude 

to reality absolutely or oppositely different from that of “Turing machine”, which is strictly 

restricted to “mind” in Cartesian episteme and this means: no calculation accomplishable by any 

Turing machine computer can influence on reality besides in a neglectable and exactly predictable 

degree due to the corresponding physical carrier of information, which the computer at issue uses. 

Accordingly, any Turing machine processing any algorithm (both being theoretical models) cannot 

influence reality at all.   

On the contrary, a quantum computer (being simultaneously a “fabric of reality” by Deutsch’s 

metaphor coined in 1997) can resolve problems inaccessible to any Turing machine, because it 

involves all the universe in the calculation in question, as Lloyd (1997) explains for example, 

however, therefore, changing reality as a “side effect” of its work. A quantum computer postulated 

to be beyond the framework of scientific transcendentalism can be figuratively likened to “God’s 

Intellect” (“GI”) rather than to AI (presumably comparable with human intellect).  

GI should not be interpreted only as loose metaphor, but as a scientific idea in the following 

sense. Quantum computers interpreted so may change reality by the quite physical mechanism of 

entanglement, due to which they might change the probabilities of certain processes in their 

environment to happen or not. In other words, their environment would be  involved in their 

calculations therefore adding unlimited resources for them to be accomplished, but not with 

impunity. Reality turns out to be changed as a result, too. That is: if one distinguishes discernibly 

that quantum computer and its environment as the Cartesian dogma needs, the former calculates a 

result, but its environment does a new reality so that the result is valid in it. It sounds fantastical, 

but any natural law prohibiting that is not yet known.  

 
36 The literature about quantum algorithms is huge. Only a non-representative sample can be the following, 

for example:  Dowling 2021; Kommadi 2021;  Kurgalin, Borzunov 2021; Lipton, Regan 2021; Grumbling,  

Horowitz 2019; Johnston, Harrigan, Gimeno-Segovia 2019; Dowling 2013; Portugal 2013; Ykhlef 2011; 

Young, Knysh, Smelyanskiy 2011; Liu, Koehler 2010; Cheng. Tao 2007; León, Pozo 2007; Romanelli, 

Auyuanet, Donangelo 2007; Chen, Hsueh 2006; Love, Boghosian 2006; Kreinovich, Longpré 2004; Wei, 

Yang, Luo, Sun, Zeng 2004; Karafyllidis 2003; Steane 2003; Mahler, Gemmer, Stollsteimer 2002; Ortiz, 

Knill, Gubernatis 2002; Yu 2002; Ettinger, Høyer 2000; de Raedt, Hams, Michielsen, de Raedt 2000; 

Pittenger  2000; Chau, Lo 1998; Cleve, Ekert, Henderson, Macchiavello, Mosca 1998; Lloyd 1997;  

Liberman, Minina 1995; Vieira, Sacramento 1994. 



Anyway, the interpretation of the proof of FLT either only arithmetically as in the previous 

Part I or only set-theoretically as in the present Part II is thoroughly in the framework of scientific 

transcendentalism problematized by Wiles’s proof being out of Gödel mathematics as this 

demonstrated by mediation of Yablo’s paradox in Section IV (of Part I). Once the question whether 

FLT does not belong to that hypothetical class of problems, the solution of which is able to change 

reality, is actual after Wiles’s kind of proof, this paper answers negatively. The proof of FLT 

(though FLT is a Gödel insoluble statement) is reducible to Gödel mathematics whether in the 

framework only of arithmetic or in that of only set theory. Its proof does not change reality as the 

conjecture of “quantum computer as GI” admits.  

XIV A SHORT PROOF PROOF OF FLT FOR ANY EXPONENT “n” BASED ON ITS  

“KOCHEN - SPECKER” PROOF FOR “n=3” 

Once FLT(3) has been proved by the Kochen - Specker theorem, one can use a relevant form 

of induction in an admissible way consistent with the context of set theory, and more especially, 

with the axiom of infinity. The enumerated above approaches are: (1) the proof of FLT to a special 

set of all natural numbers, only within which one can use the axiom of induction consistently and 

only to which FLT refers or can be proved; (2) a proper set-theoretical proof of FLT (that is to all 

sets rather than to a special one, that of all natural numbers after doubling the axiom of induction 

by its dual counterpart accordingly valid in the dual counterpart of Peano arithmetic in the 

framework of Hilbert arithmetic). Furthermore, still one approach can be added: (3) utilizing the 

axiom of choice rather than the axiom of induction: it can be considered in detail in the next Section 

XV.  

The option (1) is a direct repetition of the proof of FLT by induction according to that in Part 

I. The differences are only two and external to the proof of induction itself. The one relates to the 

way of FLT(3) to be proved: citing the Kummer (1847) proof or following the pathway based on 

the Kochen - Specker theorem and traced in the previous Section XII. The other peculiarity restricts 

the proof only to a special set, that of all natural numbers in the present case. So, both are not 

essential and do not need any additional attention.  

The option (2) involving two “dual” inductions is much more interesting due to its immediate 

relation to the proof of FLT(3) by the Kochen - Specker theorem, on the one hand, and to the 

nonstandard bijection “(𝑃− ⊗ 𝑃+ → 𝑃0) → 𝑃” which can be now limited only to corresponding 

inductions, symbolically “(𝐼− ⊗ 𝐼+ → 𝐼0) → 𝐼”, on the other hand. Then, “𝐼− ⊗ 𝐼+” can be 

interpreted as transfinite induction “decomposed” into two absolutely independent standard, 

“finite” inductions (according to the Peano axiom of induction) in a rather “Hamiltonian” manner.  

Particularly or as an illustration, “diagonalization” associable weather with  “𝑃− ⊗ 𝑃+” or 

respectively with  “𝐼− ⊗ 𝐼+” would correspond to transfinite induction therefore 

incommensurable with each of both finite inductions participating in the Cartesian product at issue. 

So, the incommensurability involved by virtue of the Kochen - Specker theorem for FLT(3) is 

repeated once again for the general case of FLT by means of induction. One can even trace that 

the repetition of incommensurability in both cases may be interpreted to be literal or 

“complementary” in a sense: 



Indeed, since 𝑦3 and 𝑧3 are incommensurable, Fermat’s equation does not possess any 

solution.Then, their incommensurability can be embedded in “(𝑃− ⊗ 𝑃+ → 𝑃0) → 𝑃” so that they 

satisfy: “(𝑦 ∈ 𝑃− ⊗ 𝑧 ∈ 𝑃+ → 𝑥 ∈ 𝑃0) → 𝑥, 𝑦, 𝑧 ∈ 𝑃”, and thus, into the complementarity of “ 

𝑦 ∈ 𝑃− ⊗ 𝑧 ∈ 𝑃+” whether for the mutual anti-isometry or as the two “axes” of the Cartesian 

product. Consequently, both cases of proving FLT(3) by incommensurability (mediated by the 

Kochen - Specker theorem), on the one hand, and then proving FLT for any exponent greater or 

equal than 3 by two gapped inductions (able to model transfinite induction), each of which is 

attached to one of both gapped dual Peano arithmetics, on the other hand, are unified. That 

observation about option (2 ) is already suitable to be further developed in detail as the option (3) 

in the next Section XV.    

One can notice, that the unity of incommensurability and quantum contextuality revealed by 

the Kochen - Specker theorem after generalizing the absence of hidden variables from the non-

commutativity of two quantum quantities or their Hermitian operators, proved yet by von 

Neumann (1932) and relevant to incommensurability, also to the commutativity of them, therefore 

including the violation of Bell’s inequalities (1964) or the phenomena of entanglement at all and 

corresponding to contextuality, is now repeated in Hilbert arithmetic in relation to its two dual 

Peano arithmetic, but only “in half”: to incommensurability alone. 

However, that logical pathway, by means of Hilbert arithmetic in a wide sense, implies also 

the “other half” just in virtue of the Kochen - Specker theorem: namely, quantum consistently 

applicable not worse to the dual Peano arithmetic but rather indirect, or “complementary” in the 

following sense. Each “normal”, i.e. finite Peano arithmetic of both can be continued “over the 

gap”, i.e. “transfinitely”, and the identified with the there found other finite Peano arithmetic. Thus, 

the pair of two gapped finite Peano arithmetics can be equivalently exchanged by their tranfinite 

continuation yet also gapped. 

Then, both dual transfinite Peano arithmetic can be identified as both dual qubit Hilbert spaces 

(Penchev 2021 August 24), to which mutual quantum contextuality as entanglement can be already 

defined painlessly. Incommensurability and quantum contextuality may be distributed 

correspondingly to the pair of two dual finite Peano arithmetics and to the pair of two dual 

transfinite Peano arithmetics, therefore the two pairs dual to each other embodying the analogical 

kind of duality: incommensurability and quantum contextuality.  

The same observation suggests that Kochen - Specker theorem supplying the completeness of 

quantum mechanics is also inferable from the completeness of Hilbert arithmetic if the latter is 

proved or postulated in advance. In other words, the completeness of quantum mechanics and that 

of Hilbert arithmetic are equivalent, which is not surprising after just this serves as the motivation 

for Hilbert arithmetic to be introduced.  

A much more extended perspective is open so that the binary relations of incommensurability 

(particularly embedded in the concept of irrational number) and quantum contextuality (involving 

complex as a necessary condition for it) can be complementary to each rather than those of pairs 

of Peano arithmetics whether finite or transfinite. Then, they can be linked also to the properties 

or relations of hierarchy, idempotency and completeness discussed in more detail in Part I.   



XV THE OPTION OF AN ONLY SET-THEORETICAL PROOF OF FLT   

That option can be defined by excluding the axiom of induction in any form since it is not 

available in the  list of axioms of set theory. This a stronger requirement than only overcoming the 

Gödel incompleteness, implicit in FLT after Yablo’s paradox since also any perfections or 

modifications of the axiom of induction consistent with the axiom of infinity (or relative to it) in 

set theory are not allowed, too. Reflecting philosophically, one can question whether hierarchy can 

be removed, absolutely, on the one hand, or partially, on the other hand, i.e. restricting it only in 

the framework of what is not total: a whole or a system (which is the equivalent of conserving the 

function successor of Peano arithmetic simultaneously rejecting the axiom of induction).  

The function successor seems to be definable even only within set theory and the axiom of 

infinity, which can be also formulated explicitly by the function successor: now, from an element 

to the same element as a set. Then, all axioms of Peano arithmetic excluding only the contradictory 

axiom of induction are admitted, and FLT can be also formulated thoroughly in set theory. Finally, 

the problem is: can FLT be proved in that framework alone? 

Anyway, the proof of FLT(3) by the Kochen-Specker theorem according to the subject of the 

present part of the study will be included conventionally among the conditions. All ways 

enumerated in Section XIII do not belong to the class of only set-theoretical proofs as it is defined 

above since they need the axiom of induction or its modifications substantially. On the contrary, 

the present section is concentrated on the option FLT to be proved without them, after the axioms 

literally necessary for the formulation of the theorem have been included or deduced in the 

framework of set theory.  

That approach can be interpreted to be symmetric or “antisymmetric” to that exploited in Part 

I by “Fermat arithmetic” defined by a Husserlian kind of “epoché” but to infinity rather than to 

reality. Of course, set theory by and after Cantor has appeared as a counterpart of arithmetic since 

its fundamental concept of actual infinity contradicts any arithmetic recursive process remaining 

always finite as actual though continuable unlimitedly or as if “potentially infinite”37. 

However logically, one may disregard that impetus of actual infinity pushed off finiteness 

inherent to arithmetic therefore defining a set theory (conventionally further notable as 

“phenomenological set theory”) sharing with Fermat arithmetic the same epoché to infinity 

(though one can now articulate it rather stylistically as an “epoché to finiteness” conserving the 

same Fregean “Bedeutung” as  the “epoché to infinity”). Indeed that new sense of 

phenomenological set theory would not allow for the Cantorian hierarchies of infinities to be 

established or Fraenkel’s scheme of axioms (1921; 1922; 1922a; 1922b; 1922c; 1924; 1925) to be 

introduced, being irrelevant to FLT and its eventual only set-theoretical proof. Then, the way for 

 
37 The concept of “potential infinity” attached to arithmetic and opposed to the “actual infinity” of set theory 

is not correct or at least misleading once “potential infinity” is finite in fact and rigorous speaking by virtue 

of the axiom of induction. It rather hides and obscures the direct contradiction of arithmetic and set theory, 

and thus prevents mulling the Gödel incompleteness in a fruitful way. Nonetheless, it can be met in many 

scientific papers. For example, Linnebo and Shapiro (2019) discuss the problem: “Particular attention is 

paid to the question of whether potential infinity is compatible with classical logic or requires a weaker 

logic, perhaps intuitionistic” (p. 160). 



the Gödel incompleteness to be overcome is also shared with Fermat arithmetic: the Gödel 

incompleteness can appear only between areas of finiteness and infinity38. Once both areas are not 

distinguished from each other, no incompleteness is generable.  

The main tool able to substitute the axiom of induction successfully and remaining 

exceptionally in the framework of set theory is the axiom of choice. Indeed, it can create a 

corresponding well-ordering homomorphic to all natural numbers as an equivalent of any infinite 

set in virtue of the well-ordering “theorem”. The “relativity of the concept of set” inferred by 

Skolem (1922) can be immediately related to phenomenological set theory and its epoché to 

infinity / finiteness. It suspends the entire Cantorian hierarchy of infinities reducing all of them to 

a single enumerable infinity, but not only: the boundary between infinity and finiteness is also 

erased, e.g. in virtue of the Dedekind set-theoretical finiteness defined by the absence of any 

bijection between an infinite set and another set at issue, which turns out to be finite in that sense39. 

This implies that the area of all Gödel insoluble statements between the arithmetic finiteness 

and the set-theoretical infinity also vanishes after the axiom of choice and just because of Skolem’s 

tenet (often called Skolem’s paradox). One may pay attention that Gödel’s incompleteness and 

Skolem’s relativity of “set” mean the same, but from two opposite viewpoints: correspondingly, 

from that of Peano arithmetic versus from  that of set theory in relation to the transfinite area 

between them. Then, the former generates right the Gödel dichotomy (either incompleteness or 

contradiction between them), but the latter by means of the axiom of choice avoids it, therefore 

implicitly involving the epoché to infinity / finiteness shared with Fermat arithmetic.  

Thus, the introduction of the axiom of choice in set theory (granted to be commonly accepted) 

is sufficient for FLT to be a soluble statement in set theory and an only set-theoretical proof of 

FLT to be possible in principle. Anyway, the constructive mechanism of how the axiom of choice 

(together with the well-ordering “theorem”) is able to substitute the successive, and “unit by unit” 

series of induction is to be discussed in detail: 

The axiom of induction starts from the least element of a well-ordering (said in terms of the 

axiom of choice and well ordering “theorem”) and advances forwards uniformly. That uniformity 

absolutely necessary for applying induction is concentrated into the condition as to the statement 

“S” at issue: “∀𝑛: 𝑆(𝑛) → 𝑆(𝑛 + 1)”, The same requirement translated in terms of the axiom of 

choice would be rather the corresponding equivalence than only that implication at issue, namely: 

 
38 That area between finiteness and infinity can be described, for example, by the following scheme starting 

from the countable cardinal number (usually notated as “a”) “backwards”: a1 is the cardinal number of a set 

such that the cardinal number of the set of all subsets of it is countable. Then, one can construct a recursive 

series a, a1, a2, a3, … an, … of cardinal numbers such that any set of that cardinal number possesses a number 

of elements more but not equal to any set with a finite cardinal number, and simultaneously, rigorously less 

from that of any enumerable set. That sequence of cardinal numbers is a mirror or reciprocal image of the 

Cantorian hierarchy of infinities introducible by virtue of the axiom that the class of all subsets of any set 

is a set. However, this does not imply that a set such that the set of all subsets is equally powerful to any 

given set exists necessarily. Anyway, this can be postulated therefore initially avoiding the problem of how 

the new axiom relates to the rest of (ZFC e.g.) of set theory only to investigate “what would be up”. The 

idea was suggested for the first time in Penchev 2005. 
39 The idea is demonstrated in more detail in: Penchev 2020 August 5. 



“∀𝑛: 𝑆(𝑛) ↔ 𝑆(𝑛 + 1)”. Obviously, what is added in the latter case is the converse implication: 

“∀𝑛: 𝑆(𝑛 + 1) → 𝑆(𝑛)”: it can be immediately recognized as the dual condition as to the dual 

counterpart of Peano arithmetic in the framework of Hilbert arithmetic and what is able to supply 

completeness furthermore necessary for FLT to be proved set-theoretically.   

The interpretation of the condition “∀𝑛: 𝑆(𝑛) ↔ 𝑆(𝑛 + 1)” as to FLT means that FLT(3), 

FLT(4), … FLT(n), … are to be considered uniformly as a single statement just by virtue of the 

axiom of choice. Meaning the way for FLT(3) to be proved by the incommensurability of two 

qubits (in turn inferable from the Kochen-Specker theorem) interpreted as two usual three-

dimensional unit balls, those balls are to be generalized as four-dimensional, five-dimensional, …, 

“𝑛”-dimensional, …, etc.: because all of them are the same in virtue of the axiom of choice. The 

last statement may be traced in detail as follows:  

One may constitute a series of geometrical units, all of which to be discussed as the same 

arithmetical unit (usually denoted as “1”) after that: those are: a 1-dimensional unit (a unit 

segment); a 2-dimensional unit (a unit circle); a 3-dimensional unit (a unit ball); a 4-dimensional 

unit; a 5-dimensional unit, a generalized 𝑛-dimensional unit (all those units for dimensions more 

than three are beyond our sensual experience, but nonetheless accessible mathematically). All of 

them (1, 2, 3, 4, 5, 𝑛-dimensional, etc.) are constituted uniformly as in relation to the immediately 

previous dimension, i.e. “𝑛 − 1”, as in relation to the immediately next dimension, i.e. “𝑛 + 1”. 

Only the latter is meant by the mechanism of induction, but both former and latter, if one involves 

the axiom of choice in order to substitute the axiom of induction in a certain proof (which is that 

of FLT in the case). Those are accordingly: 

  “𝑛 + 1” (shared by both approaches: by the axiom of induction and by the axiom of choice): 

an infinite set of elements which are identical in the first “𝑛” dimensions, but different as to the 

“𝑛 + 1” dimension at issue. This construction generates the next, “𝑛 + 1” geometrical unit. For 

example (in the scope of our sensual experience), a 1-dimensional unit segment is varied 

(“rotated”) arbitrarily in the next dimension, “2”, therefore constituting a unit circle (i.e. two-

dimensional); a 2-dimensional unit circle is varied (“rotated”) in the next dimension, “3”, therefore 

constituting a unit ball (i.e. three-dimensional).  

The same construction can be continued uniformly out of the scope of our experience to four, 

five, “𝑛” dimensions, etc., constituting new and new geometrical units. Furthermore, they cannot 

be interpreted as identical without the necessary condition “∀𝑛: 𝑆(𝑛) → 𝑆(𝑛 + 1)” involved by the 

axiom of induction. So, one is to interpret the sense of that condition as the verification of the 

identity of all members of the successive series in relation to the property “𝑆” at issue. If the axiom 

of choice is used for the same, it confirms the equivalence which implies immediately:  

“∀𝑛: 𝑆(𝑛) → 𝑆(𝑛 + 1)” (as well as  both “∀𝑛: 𝑆(𝑛 + 1) → 𝑆(𝑛)”, for the axiom of induction, and  

“∀𝑛: 𝑆(𝑛) ↔ 𝑆(𝑛 + 1)”, for the axiom of choice). 

 “𝑛 − 1” (being specific only for utilizing the axiom of choice): one considers the class of 

equivalence of the set of all elements of “𝑛 − 1” elements in relation to the dimension “n”, 

therefore reducing the latter one. For example (in the scope of our sensual experience), one may 

reduce all great circles of a single unit ball to as a single unit great circle as a class of equivalence; 



then, all unit diameters of a single unit circle to the class of equivalence of a single unit segment 

(repeated uniformly in any diameter of that circle). The operations can be continued “before that” 

beyond the scope of our sensual experience successively to four, five, “𝑛” dimensions, etc. The 

axiom of choice means the equivalence and thus both cases,  “𝑛 + 1” and   “𝑛 − 1” unlike induction 

needing to validate expressively the direction  “𝑛 + 1” to be able to involve the equivalence at 

issue.  

On the one hand, the axiom of induction can be discussed to be more general than the axiom 

of choice since it admits it not to be valid in the reverse direction of “𝑛 − 1”. On the other nand, it 

can be considered to be incomplete to the more general case including the direction “𝑛 + 1” as the 

direction “𝑛 − 1”. 

Returning to the only-set theoretical proof of FLT by the axiom of choice (rather than by the 

axiom of induction), one is to investigate the unique event happening between the cases “𝑛 = 2" 

and “𝑛 = 3" simultaneously in both directions: from  “𝑛 = 2" to “𝑛 = 3", on the one hand, and  

from  “𝑛 = 3" to “𝑛 = 2”, on the other hand; that is: why the corollary from the Kochen-Specker 

theorem is valid for two qubits, respectively for the case  “𝑛 = 3" but not for the previous case 

“𝑛 = 2" (in other words, two unit circles just as two unit segments can be commensurable rather 

than two unit balls or units of any higher dimension, which is the proper sense rather of Gleason’s 

theorem).    

The Kochen - Specker theorem can imply the case only for two qubits (i.e. for 𝑛 = 3), but not 

for two unit circles or two unit segments (accordingly, the cases 𝑛 = 2 and 𝑛 = 1), just by virtue 

of which FLT(3) is true, and the same statement as to  𝑛 = 2 and 𝑛 = 1 is not, as it is demonstrated 

in Section 10. The axiom of choice allows for FLT(3) to be generalized for any exponent greater 

than two since two unit balls generalized to any of those dimensions are incommensurable just 

those of three dimensions.  

The same observation grounded rigorously only to the Kochen - Specjer theorem or Gleason’s 

theorem (as this will be demonstrated in detail in the next Part III of the paper) can be at least 

visualized anyway as follows. The axiom of choice establishes for any choice of a point among a 

unit ball of dimension 3, 4, 5, …, n, …, and what any qubit is, to be the same: and more precisely, 

the choice of a single element among a countable set (after the axiom of choice), to which all those 

unit balls of different dimensions can be equated. Furthermore, any pair of two choices from those 

is incommensurable under the meaning of being absolutely independent of each other, therefore 

allowing for FLT to be proved right by virtue of the axiom of choice rather than by the axiom of 

induction.  

On the contrary, the cases of two unit segments or two unit circles are commensurable or 

dependent on each other in the framework of a single qubit and thus relevant to FLT(1) and FLT(2). 

Obviously the suggested visualization is based on the privileged position of a qubit rather than of 

any other unit “ball” of any dimension. However, that privilege is not justifiable by the axiom of 

choice, but rather by the separable complex Hilbert as the mathematical and formal ground of 

quantum mechanics, from where it enters Hilbert arithmetic for being postulated. Anyway, the 

privilege of a qubit (rather than other ball of any dimension) is proved in quantum mechanics: on 



the one hand, by Gleason’s theorem, after which just the pair of two qubits is the “atom”, or the 

least unit of a unique probabilistic measure; on the other hand, by the Kochen - Specker theorem, 

after which the same pair is also (and due to similar reasons) the “atom”, or the least unit of 

incommensurability or respectively, the absence of hidden variables.            

One can question why just the separable complex Hilbert space among many other similar 

vector spaces is chosen to be the fundamental mathematical formalism of quantum mechanics. The 

aforementioned two theorems justifying the qubit as the relevant unit of Hilbert arithmetic to be 

postulated can be one relevant answer. Another answer clarifies any wave function as the 

characteristic function of a corresponding probability (eventually, density) distribution, after all 

quantum quantities (unlike all in classical physics) are probabilistic and supplied by probability 

(density) distributions. Then if one dare link both answers to each other, what is observed is the 

following: 

The “natural unit” embodied in the unit of a qubit (and then in the unit of Hilbert arithmetic) 

is the relation of the changes of two probabilities. The sense of just that to be the natural unit 

consists of the identification of a qubit of entanglement with a qubit of a single quantum quantity 

represented in the qubit Hilbert space. In other words, a qubit is the universal unit being the natural 

unity of the totality in the following sense: the unit of a qubit can be related equally well (and thus, 

indistinguishably) to both cases: a single quantity (quality) and two quantities (qualities). 

Consequently, “anything is connected to any other thing” just as the concept of the totality needs 

after all is expressed in qubits: which is the fact in turn able to verify the qubit as the universal unit 

being the least amount, “atom” of that omnipresent unity embodied in the totality. 

Interpreted in that way, FLT is a corollary from the totality and its universal unity of a qubit, 

therefore able to symbolize that fundamental statement from which originates: and both theorems 

(Kochen and Specker’s and Gleason’s) can serve for that “noble” origin to be certified.    

 In fact, the axiom of choice involved for the only set-theoretical proof of FLT is only 

consistent with the above consideration, but its immediate objective is different compared with the 

analogical tool of the axiom of induction. First of all, the axiom of choice is able to remove the 

Gödel incompleteness as the main obstacle for FLT to be proved set-theoretically (or in other 

words, to avoid Yablo’s paradox inherent for it). The Gödel incompleteness appears between the 

finiteness of arithmetic for the axiom of induction and the actual infinity of set theory for the axiom 

of infinity:  

Hibert arithmetic resolves that problem fundamentally by complementing with a second and 

dual Peano arithmetic, within which the Gödel numbers of all insoluble statements can be situated 

in a consistent way. The same dual Peano arithmetic featured by its anti-isometry (just as the dual 

separable complex Hilbert space of quantum mechanics) is represented relevantly enough by 

condition for the “reverse induction” “∀𝑛: 𝑆(𝑛 + 1) → 𝑆(𝑛)” along with the “normal” 

“∀𝑛: 𝑆(𝑛) → 𝑆(𝑛 + 1)” and resulting into the ultimate circumstance establishing that “∀𝑛: 𝑆(𝑛) →

𝑆(𝑛 + 1)” being inherent to the axiom of choice properly (as this is explained above).  

Thus, the two areas, that of Peano arithmetic and its complement to the actual infinity of set 

theory being successive, i.e. “the one after the other” (as in the case transfinite induction “after” 



finite induction), are re-organized to be “in parallel” in virtue of the anti-isometry at issue. And 

resulting into the equivalency featuring the axiom of choice (unlike the axiom of induction) in the 

final analysis. For example considering FLT in terms of Yablo’s paradox, any insoluble statement 

is doubled by a soluble statement, furthermore dual or complement to the former, and thus its 

solubility is the logical disjunction of both, and consequently it is always valid: insolubility does 

not exist just as in Hilbert mathematics based on Hilbert arithmetic.  

One can notice that all mathematical proofs in the paper are rather unusual or “extraordinary” 

and quite different in comparison with those in a mathematical journal. Common sense’s idea 

about a mathematical proof consists in a very extended syllogism, too artificial and technically 

sophisticated, accessible in detail only to a close circle of very professional mathematicians, 

furthermore specialized in a few quite narrow mathematical areas (and often even only a single 

one). Wiles’s proof of FLT is a typical example of that kind of proof. 

On the contrary, the proofs in the present paper are absolutely different as this is obvious even 

according to the use of natural language rather than the artificial specialized mathematical and 

logical symbolism (which can be called “language’ only metaphorically). So, the proofs here seem 

to  be “proofs” (in quotation marks): i.e. unserious, intuitive, unrigorous, illustrative, doubtful, 

false, etc. compared  with an extended syllogism consisting presumably of thousand elementary 

links (traceable theoretically by anyone).  

However that impression is wrong, The idea itself of mathematical proof is changed in the 

present paper fundamentally, for the merging of philosophy and mathematics (as well as physics, 

but this is not so important according to the subject of the present paper) in the advocated 

framework of quantum neo-Pythagoreanism. What is elaborated is a much wider context, in which 

FLT is to be situated in order to discover the shortest pathway for its proof. 

Building that context (or any relevant context) is the philosophical approach for any problem 

to be resolved since the crucial change for it consists in the appropriate Gestalt switch, so that the 

solution is almost obvious from the newly introduced viewpoint. A top mathematician dare not 

swap the Gestalt because he or she does not even suspect whether it is possible or the mathematical 

education learns how to do this, or the relevant proficiency or background are available. Common 

sense “knows” that FLT is a (very difficult) mathematical problem so it is to be resolved or not by 

mathematicians sharing the above prejudice rather than by philosophers (which as even only an 

intention seems to be “nonsense” and “ridiculous”, in fact). 

However, if one interrogates why FLT should be qualified as a mathematical problem (rather 

than a philosophical one), the answer is only wordless bewilderment at how such a childish 

question can be asked. The admission that it has not been proved so long just because it is a rather 

philosophical (than mathematical) problem: as if it is harder to break through than to break through 

the wall with a growing syllogism. Anyway, the difficulty of Gestalt change (by the way, featuring 

usually the deficit of enough intellect) can be overcome as the present paper demonstrates:  

So, the main effort consists in making clear the Cartesian episteme of Modernity and the 

position of mathematics within it. Further, this reflects on the foundations of mathematics, on the 

relation of arithmetic and set theory, on the realization of the Gödel incompleteness theorems. 



Once that opening has been accomplished, the idea of Hilbert mathematics based on Hilbert 

arithmetic can be suggested by the verified completeness of quantum mechanics by the theorems 

of the absence of hidden variables. Then, FLT can be reframed in Hilbert mathematics, and its 

solution to be astonishingly simple just for a philosophical problem (what FLT is) has been 

researched wrongly in virtue of its appearance to be only mathematical. 

So, even that exceptionally complicated and sophisticated solution revealed by Wiles more 

than four centuries later obeys the same proper philosophical issues, and this can be demonstrated 

elementarily even in mathematical language by Yablo’s paradox. In other words, the approach of 

the present paper originates from FLT itself and this is unavoidable in the proper framework of 

any attempt for proving only mathematically.  

Thus, that aforementioned impression about a doubtful approach is wrong and it is due to the 

very deep prejudice that FLT is a mathematical problem (even rather a many centuries old curio), 

but quite not a fundamental philosophical problem implying changes of our understanding of what 

cognition is.          

XVI  THE “TRANSLATION” OF THE PROOF FROM HILBERT ARITHMETIC INTO 

PEANO ARITHMETIC  

The previous Part I shows that the relevant proof created in Hilbert arithmetic rather 

heuristically can be translated in Peano arithmetic painlessly and even its origin may be absolutely 

hidden as a “Wittgenstein ladder” at the cost only of some artificiality. The same question can be 

also asked about that set-theoretical proof exploited in the present Part II and based on the Kochen-

Specker theorem.   

One may notice that the representation of the proof of FLT from Hilbert arithmetic into Peano 

arithmetic in Part I and consisting of two discernible elements called “MFD” (modified Fermat 

descent) and “MMT” (modified modus tollens) can be also related as to the interpretation of the 

only set-theoretical proof of FLT suggested in the previous Section XV. Then, the correspondence 

is: the axiom of choice is depicted as MFD, and the Kochen - Specker theorem applied to be proved 

FLT(3), as MMT, accordingly. 

This is not a loose interpretation, but rather a homomorphism grounded on the mapping of the 

qubit Hilbert space in Hilbert arithmetic in a narrow sense (after the two ones together can be 

meant as “Hilbert arithmetic in a wide sense”). Then the axiom of choice applied to the former 

(i.e. to a certain wave function for example) remains the same after the homomorphism; this means 

to be applied to the latter and furthermore corresponds to the description of how it is to relate to 

the axiom of induction in the previous section: namely, as a doubling by adding the “reverse” 

direction “∀𝑛: 𝑆(𝑛 + 1) → 𝑆(𝑛)” to the “straight” direction “∀𝑛: 𝑆(𝑛) → 𝑆(𝑛 + 1)”. Both 

“reverse” and  “straight” are in quotation marks because they are chosen conventionally, being 

idempotent to each other. The two directions of induction are conserved in the pair of isometry 

and anti-isometry featuring as the two dual qubit Hilbert spaces as the two dual Peano arithmetics. 

Those two directions of induction (being absolutely necessary for the proof of FLT by 

induction for preventing of the Gödel incompleteness relevant in a single direction of induction) 

are represent also in MFD in the left and right part linked by the logical equivalence:  



 [(𝑥𝑛+1 = 𝑦𝑛+1 + 𝑧𝑛+1) → (𝑥𝑛 = 𝑦𝑛 + 𝑧𝑛)] ⇔ [¬(𝑥𝑛 = 𝑦𝑛 + 𝑧𝑛) → ¬(𝑥𝑛+1 = 𝑦𝑛+1 +

𝑧𝑛+1)]  

This means that the one direction of induction is represented in the axiom of choice, discussed 

only in relation or in terms of the axiom of induction as “𝑆(𝑛 + 1) → 𝑆(𝑛)”, and in MFD, as 

"(𝑥𝑛+1 = 𝑦𝑛+1 + 𝑧𝑛+1) → (𝑥𝑛 = 𝑦𝑛 + 𝑧𝑛)”; accordingly, the other direction, both:  

“ 𝑆(𝑛) → 𝑆(𝑛 + 1)”  and  “¬(𝑥𝑛 = 𝑦𝑛 + 𝑧𝑛) → ¬(𝑥𝑛+1 = 𝑦𝑛+1 + 𝑧𝑛+1)”. 

Both directions of induction originate from the duality of two dual structures (whether qubit 

Hilbert spaces or Peano arithmetics) providing the property of completeness necessary for proving 

FLT in the approach advocated in the present paper. 

The other homomorphism for discussing is that resulting in MMT as to Peano arithmetic. 

Indeed, if its initiale element belongs to the qubit Hilbert space, the corresponding argument is just 

the equality of a single qubit to two ones: a statement inferable from the Kochen - Specker theorem 

and implying as its necessary condition for the absence of hidden variables as to the qubit Hilbert 

space, on the one nand, and the mutual incommensurability of 𝑦3 and 𝑧3 as to Hilbert arithmetic 

or Peano arithmetic, on the other hand.  

However, the way of mapping of the relevant corollary of the Kochen - Specker theorem into 

MMT can be likened to be rather “anti-homomorphic” in the following sense. MMT means the 

statement that 𝑥3 can substitute 𝑦3 + 𝑧3 where 𝑥, 𝑦, 𝑧 are defined to be arithmetical variables on 

all natural numbers. This implies that FLT(3) is false being a direct negation of FLT(3) proved by 

the Kochen - Specker theorem. Even more: the same direct negation links the general case of MMT 

and the idea of an only set-theoretical proof of FLT based thoroughly on the Kochen - Specker 

theorem and suggested in the previous Section XV.    

One can reflect on the deep reason of that “anti-homomorphism”. The Kochen - Specker 

theorem as well as its eventual utilization for proving FLT(3) or FLT at all is rooted in set theory 

and in actual infinity in the final analysis. On the contrary, MMT is an arithmetical statement (i.e. 

in the framework of the first-order logic of arithmetic), thus obeying the axiom of induction 

implying in turn the finiteness of all natural numbers. In terms of the Gödel dichotomy, that kind 

of anti-homomorphism embodies its alternative of contradiction (rather than that of 

incompleteness) of arithmetic to set theory. Indeed, the alternative of incompleteness is to be 

rejected since FLT needs completeness to be proved (as Yablo’s paradox makes obvious). 

Nonetheless, MFD is just homomorphic rather than anti-holomorphic similar to MMT because 

each of both represents different (or properly, dual aspects) of the nonstandard (2:1) bijection, that 

is: “(𝑃− ⊗ 𝑃+ → 𝑃0) → 𝑃” as follows: 

The “anti-homomorphism” of the relevant (for FLT) corollary of the Kochen-Specker theorem, 

on the one hand, onto the MMT means rather the partial resultative mapping “𝑃− → 𝑃”, and its 

dual counterpart  “𝑃+ → 𝑃” featuring the straight homomorphism of the axiom of choice into the 

axiom of induction though both kinds of homomorphism are forced to involve the same Carstesian 

product “𝑃− ⊗ 𝑃+”. One might say that MMT interprets that Cartesian product from the viewpoint 

of its “ordinate” (e.g. “𝑃−”), and MFD by its “abscisa” (respectively, e.g. “𝑃+”), being 

conventionally chosen as idempotent to each other.  



One can notice an asymmetry after attempting to map the set-theoretical into the arithmetical 

proof. The proof of FLT(3) by the Kochen - Specker theorem does not correspond in any way to 

FLT(3) proved arithmetically, e.g. by Kummer (1847) as cited in Part 1. Even more, the set-

theoretical proof of FLT(3) is absolutely absorbed in the mechanism of induction fitted to be 

applicable to FLT. 

In fact, both theorems, as Kochen and Specker’s as Gleason's, distinguish the dimensions “1” 

and “2” from those greater than “2”: being explicit in the formulation of the latter, but implicit in 

the proof of the former. The same observation as to Peano arithmetic (rather than to the qubit 

Hilbert space or Hilbert arithmetic) is embedded in FLT itself. The opposition of “𝑛 = 1,2” versus 

“𝑛 ≥ 3” valid as to the former two theorems as to FLT can be reflected by the relation of 

idempotency (for  “𝑛 = 1,2”) to hierarchy (for “𝑛 = 1,2, 3, 4, …”), and FLT to be restricted to the 

complement of idempotency to hierarchy (that “hierarchy which is not idempotent”, or the values 

of an “arithmetical variable which is not a Boolean variable”; i.e speaking even more loosely: to 

“arithmetic which is not logic”).  

This can explain why just the relation of idempotency and hierarchy is the subject of the 

itroductionary Section I in Part I of the paper.  It is able to unite FLT (and its proof by induction 

justified in Part I) with the Kochen - Specker theorem (and its utilization for FLT(3) and FLT in 

Part II) and with Gleason’s theorem (analogically used in Part III). Hilbert arithmetic (as dual to 

the qubit Hilbert space) is the relevant tool for the intended unification. 

Meaning the above consideration, one can interpret the necessity of FLT(3) to be proved 

absolutely separately and independently as a problem of two alternatives. The one suggests that 

the concept of actual infinity utilized implicitly by the Kochen - Specker theorem as 

incommensurability (as far as commensurability means the availability of hidden variables) cannot 

be at all and fundamentally translated into (Peano) arithmetic language being inherently finite. 

Anyway, that proof should possess some relevant dual counterpart in Hilbert arithmetic in virtue 

of its duality to the qubit Hilbet space, to which the Kochen - specker theorem can be immediately 

related. Obviously, Kummer’s proof is properly arithmetical and cannot be interpreted in this way. 

The one suggests alternatively that the counterpart at issue exists, but it is not discovered yet. 

If that is the case, Peano arithmetic seems that it should somehow involve irrational numbers (in 

the framework of the finite Peano arithmetic): that is an obvious paradox. Indeed, one can refer to 

the ancient Pythagorean discovery of geometric incommensurability right by two geometrically 

orthogonal segments, but arithmetically commensurable to each other. Thus, the yet ancient 

Pythagorean incommensurability hints at two orthogonal Peano arithmetics (for the two orthogonal 

segments) to be inferred, and Hilbert arithmetic has only said over the same, but already explicitly 

and linked to the absence of hidden variables40, which is that form of incommensurability relevant 

and important for contemporary physics and science.   

In other words, one touches again the “extraordinary” bijection  “(𝑃− ⊗ 𝑃+ → 𝑃0) → 𝑃”  as 

the only possible way to prove FLT(3) by an exact arithmetical copy of the utilization of the the 

Kochen - Specker theorem for the same objective since “𝑃− ⊗ 𝑃+” (or “diagonalization”) is the 

 
40 This idea is developed in detail in another paper (Penchev 2020 August 5). 



only site within that kind of bijection where whether incommensurability or irrational numbers can 

be revealed. Anyway, that “clever” tool able to concentrate that property just for FLT(3) is not yet 

known (at least to me41).          

XVII INTERIM CONCLUSION: FROM THE KOCHEN-SPECKER THEOREM TO 

GLEASON’S THEOREM BY MEANS OF THE CONTEXT OF FLT 

The next Part III intends to clear up all links between the formulations and proofs of FLT and 

Gleason’s theorem following the pathway between FLT and the Kochen - Specker theorem 

established in Part II. So, one relevant interim conclusion is to describe the shared context of all 

three theorems, which is some relevant substructure of Hilbert arithmetic in a wide sense (i.e, 

including the qubit Hilbert space as a dual structure to Hilbert arithmetic in a narrow sense), since 

the former theorem refers to a statement valid in Peano arithmetic, and the latter two theorems can 

be easily “retold” in the qubit Hilbert space though originally “written” for the separable complex 

Hilbert space of quantum mechanics.  

In fact, that context has been already reflected but rather only philosophically as the relation 

of hierarchy and idempotency: thus one has to reveal that link both sufficient and necessary to 

embody the relation at issue, but already as a proper mathematical substructure of Hilbert 

arithmetic in a wide sense. One would straightforwardly suspect just “qubit”  whether “empty” or 

specified by a certain, e.g. “recorded” value to be that: or speaking loosely, the atom of 

incommensurability, and thus, the relevant “inseparable” (just as an “atom”) substructure of the 

absence of hidden variables meant literally by the Kochen - Specker theorem, on the one hand, 

and rather mediatelly by Gleason’s theorem, on the other nand: as that unique mathematical entity 

admitting many probabilistic measures granted to be two-dimensional complex (i.e. an “empty 

qubit”), but only a single one granted to be three-dimensional real (i.e. a qubit within which a 

unique value has been chosen).  

Then one can consistently conclude that the record of a value in a qubit means in the final 

analysis that a unique measure has been unambiguously determined. Indeed, the condition 

∣ 𝛼 ∣2  +∣ 𝛽 ∣2= 1 allows for both coefficients to be interpreted as the counterparts of two certain 

probabilities already mapped in the characteristic function, what the natural interpretation of “wave 

function” (particularly, that of “qubit”) is. Then, a pair of probabilities obviously determine a 

single probabilistic measure (e.g. by their ratio or any other unambiguous relation of them)42. 

 
41Though one might mention that the Schrödinger equation links classical information (in its left side) and 

quantum information (in the right side) therefore being a possible applicant able to link FLT(3) proved in 

each of both “languages” dual to each other in the framework of Hilbert arithmetic in a wide sense. 
42 “Probabilistic measure” is defined by the mapping of an “event space” into the real (or empirically and 

experimentally: rational) numerical interval [0, 1]. The statement of a single probabilistic measure in 

Gleason’s theorem means for that mapping to be single as well. Then, if the case refers to two probabilities 

they have to be linked as an ambiguous quantitative relation, e.g. such as that in a qubit. Furthermore, the 

concept of probabilistic measure is fundamental for quantum neo-Pythagoreanism since it links the world 

at all (where any event space is to be situated) with that of numbers: if the latter is additionally supplied by 

that of “infinity”, it may consistently claim to be isomorphic to the former, and thus the same in a sense (at 

least mathematical). 



Accordingly and on the contrary, any true substructure of an “recorded”  qubit (e.g. that of an 

“empty” qubit) admits more than a single probabilistic measure in virtue of the incomplete 

certainty of the pair of two probabilities (therefore implicitly suggesting some class of 

equivalence).  

Thus, the context of the unity of all three theorems is the mapping of a qubit into an arithmetic 

unit after their complementarity in Hilbert arithmetic in a wide sense. It is worth to notice the 

complementarity of Hilbert arithmetic in a narrow sense and the qubit Hilbert space is different 

from that of two dual Hilbert spaces, which is due to the complementarity of “function” and 

“functional”. A qubit and an arithmetic unit in Hilbert arithmetic are complementary by virtue of 

the correspondence of an element of a certain class of equivalence and that class at issue. In other 

words, the case of a unit and a qubit is the generalization of the case of two dual Hilbert spaces.   

Then, the approach already established in the present Part II as the correspondence of a qubit 

and a bit by means of the relation of the Kochen - Specker theorem to FLT should be modified 

after substituting the Kochen - Specker theorem by Gleason’s theorem as to the forthcoming Part 

III. The core of that relevant reinterpretation consists in the replacement of proving the 

incommensurability of two qubits (featuring the corollary from the Kochen - Specker theorem, 

necessary as to FLT) with specifying a certain unique probabilistic measure after recording a given 

value in an empty qubit (in turn featuring the corollary from Gleason’s theorem as to FLT).  
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