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We would like to thank the authors of the comments [1]-[5] for their interesting and stimulating ideas,
as well as for discussing some issues that remained outside the scope of our review [6]. We agree with these

comments and we will return to some of them in the discussion below.

1. Different modelling approaches

1.1. Model simplification

We share the opinion of Tomasso Lorenzo in his comment [5] about different modeling approaches. We
advocate that the models to be used in improving cancer therapeutics, are minimal ODE- or PDE-based
models, which seem to us preferable if one wants to propose optimization and optimal control methods.
This comment has also been rightly underlined that continuous models based on structured PDEs are more
soundly established when they have been derived from agent-based models (ABMs), which we mentioned,
writing that passage to the limit in number and size of cells is hard to justify, and that they should rely on
mean-field representations of cellular dynamics, which we did not mention as such.

As it is stressed in the comment by Jack A. Tuszynski [1], modeling research is more often computational
than analytical. Even though theorems in mathematical oncology are rare (but not absent), they are just
the same the grail, and computational models - experimental mathematics, in some sense - are often what we
must humbly content ourselves with, offering mathematical conjectures that may guide us towards proving

theorems, and this is sometimes the case in studying asymptotic behavior of the systems at stake.
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1.2. Model extension

The discussion of reduced and more complete models is continued in the comments by Heiko Enderling
[2], Angelique Stephanou [3] and Haralampos Hatzikirou [4]. Indeed, we chose minimal models for the above
mentioned reasons, rather than models based on systems biology meant as relying on extended systems of
equations representing intracellular gene regulatory networks (GRNs) and the main connections between
them, represented by known excitatory or inhibitory molecular influences between the main genes at stake.
This is another way of approaching the reality of intracellular dynamics, which we did not choose, as it
needs a tremendous harvest of data to identify the numerous parameters of such models, which may pos-
sibly be helped by artificial intelligence (AI) and deep machine learning (ML), as advocated by so many
biologists today. One of the comments suggests an integrated combination of Bayesian techniques applied
to mechanistic models with ML in multiscale models [4]. Such descriptive methods, that require masses of
data - that for sure biologists are eager to provide because most often they have them in stock and do not
know how to deal with them - can indeed aid, e.g., in estimating parameter values and identifying crucial
factors that need to be accounted for in reduced dynamical models. However, we contend that, a biological
phenomenon being given with possible disruptive dynamics, such as tissue differentiation and proliferation
perturbed in cancer, one should focus on a limited set of pathophysiological tracks that are likely to be at
work in disease and amenable to theoretical therapeutic correction by action on precise terms in equations,
representing physiological targets. Only by having such simple phenomenological systems at hand, that rep-
resent a given therapeutic action on a given disrupted biological system such as a cancerous cell population,
can one propose improving, if not optimizing, therapeutic control.

It is not surprising, in this perspective, that comments advocating describing proliferation in health and
in disease using big GRN systems [2] may consider our focus on optimization and optimal control in cancer
therapeutics as too big a hurdle to provide the success stories that we are all awaiting to be able to convince
oncologists of the utility of physically based mathematical models in therapeutics. Of course, such focus
makes us introduce simplifications - which we always demand to be based on physiological bases - to represent
the evolution of the systems at stake, in health and in disease, that many biologists will not accept, as too
simplifying. However, reduction of physical reality by such simplifications is at the base of all physics, and it
is on the other hand mandatory to have access to an improved understanding of the dynamics of the system
at stake and of its possible correction. This goal, therapeutic optimization, determines our focus on minimal

models, that is commended in one of the comments [1].

2. Interdisciplinarity and cancer theories

An important feature of our paper, stressed by one of the comments [3] as its main added value, is the

importance of making precise, as much as possible, the underlying theories (“philosophy of cancer”) that



are most often only implicit in the works of cancer biologists. Here we have indeed mentioned SMT, TOFT
and the atavistic theory of cancer as scientific attitudes that determine choices of biological observations
and experimentations in oncology, be the observers/experimenters conscious of it or not. We agree with this
point of view emphasized by the comments.

Discussion of the interaction between modellers and clinicians was continued in the comment [2]. One
can contend that it is not true that the lack of a common language limits the direct interactions between
mathematicians - and physicists alike - and physicians, as double training programs are more and more
proposed in various universities and institutions worldwide. Nevertheless, the reader should be attentive to
the last paragraph of Section 5.1. A common language may exist, however if the oncologist just considers the
mathematician as a math provider to solve the problems he has in mind, and if conversely the mathematician
considers these problems as just food for thought, then such common language does not lead to shared
understanding.

One of the comments stress the fact that modelers may often fail to adequately communicate model
assumptions and model uncertainties [2]. True. But do oncologists actually ask about such model limitations?
In the collaborative experience of at least one of us, the goal of collaboration with mathematicians was
presented as “allowing us [clinicians] to think cancer therapeutics differently”. A minimal step for sure,
however not sufficient to take a maximal advantage of such interdisciplinary collaboration. To this goal,
oncologists actually trained in maths at a high level, and mathematicians actually trained in clinical oncology
are needed for both to be able to share a common spirit, and not only language, in conceiving new therapeutic
tracks. And here the so-called “philosophy of cancer” can help both towards acquiring such spirit. By the
word “spirit”, that may seem ostentatious to many, we mean not some spiritual common conception of life,
but just a constant, insatiable, need to understand the ways of thinking of the other in such collaborative

couples. A hard task indeed.

3. Methods of cancer treatment

3.1. Tumor treatment fields by alternating current

One of the important questions, which remained beyond the scope of our review [6], was brought to the
discussion by J.A.Tuszynski in his comment [1]. It concerns tumor treatment by alternating electric current
with specifically chosen frequency and voltage. The method of tumor treating fields (TTfields) was suggested
by Kirson et al. in 2004 [7] and then further developed in later works [8, 9]. It was shown that alternating
current with intermediate frequencies 100-300 kHz can delay or stop completely cell proliferation and lead
to cell death. This effect is based on a subtle interaction between electric field and electrically charged
biological molecules and organelles inside the cell. Remarkably, it acts on microtubule formation preventing

normal functioning of mitotic spindle. The biophysical background of this complex phenomenon is minutely



described in the review [10]. Besides, alternating current can destroy dividing cells before complete cell
separation. Due to the interaction of nonuniform electric field near cleavage furrow and alternating current,
dipole particles inside the cell move to the separation point and damage cell membrane. Animal studies and
clinical trials show that TTfields slow down tumor growth and formation of metastases [9, 11]. Tt is also
important that the frequencies of TTfields depend on cell lines and can differ for normal and tumor cells,
therefore, decreasing side effect of proliferating cell death. Combination of chemotherapy and TTfields is a
promising avenue in cancer treatment.

We also agree with the comment in [1] that mathematical modelling and numerical simulations can be
useful in the understanding of these biophysical phenomena and their quantitative assessments. The effect
of alternating current on cell membrane and subcellular structures, including mictotubules [10], provides
an interesting example of complex phenomena where theoretical modelling can lead to important practical

results related to cancer treatment.

3.2. Radiotherapy

Heiko Enderling in his comment [2] indicated two ongoing clinical trials founded on the results of math-
ematical optimization tasks. Another example of ongoing integration of theoretical results into practice is
related to the work by Leder et al. [12], also mentioned in his comment — a protocol based on the one
suggested in that work has recently been tested for safety in a clinical trial.

Therefore, the influence of mathematical optimization in radiotherapy becomes quite notable. The inte-
gration of mathematical modeling in radiobiology is dictated not only by a long history of using mathematics
to quantify tumor control and adverse effect probabilities, as rightly pointed out by Heiko Enderling. An-
other factor is the potential outcome of such collaboration. Radiotherapy is administered to approximately
half of the patients diagnosed with cancer, and given its wide use it was suggested by radiobiologists that
optimization of radiotherapy should even be a more efficient way than exploiting newly developed drugs to
achieve a comparable notable increase in the overall cure rate of cancer [13].

The now being tested in clinics concept of temporally feathered radiation therapy deals with a type of
optimization that we have not accentuated in our review, namely, the spatial optimization of irradiation.
Along with temporal fractionation, it is an option to increase the treatment efficacy and/or to reduce side-
effects associated with the damage to the normal tissues. Spatiotemporal optimization of irradiation is
therefore a significant problem, which solution can benefit from mathematical modeling. It is especially
relevant, e.g., for intensity modulated radiotherapy and proton therapy that allow flexible adjustment of the
spatial distribution of irradiation. Generally, in practice the main goal is to reduce the dose of radiation
administered to the normal tissue, while the tumor volume is generally uniformly irradiated. However, as
was noticed in our review, the growing tumor has non-uniform radiosensitivity of its cells and this fact can

be taken advantage of for treatment optimization. Notably, based on this fact, as early as in 2000 it was



suggested that a non-uniform dose distribution or so-called dose staining based on information obtained by
imaging methods could increase radiotherapy efficacy [14]. However, only a rather small number of related

experiments have been performed and yet only a few theoretical works exist that consider such tasks.

Summarizing this discussion, we express our hope that new generations of researchers with interdisci-
plinary training and profound understanding of cancer theories and practice will contribute to the optimiza-
tion of cancer treatment and to the development of new methods of treatment. Some possible directions of

this important work are discussed above.
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