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In this paper, we present a number-between-events (NBE) control chart for monitoring the fraction nonconforming in nite horizon production (FHP) processes and related specic performance measures. When monitoring fractions nonconforming in FHP processes, the common binomial p-chart has two crucial limitations: the underlying distributional assumptions are violated when dealing with low-volume production and a scarce eciency in the case of processes characterized by a low fraction nonconforming. Thus, an ecient monitoring of FHP processes requires the selection of the correct underlying statistical model: in this case, a distribution from the hypergeometric family of discrete statistical distributions. An ecient statistical monitoring of processes with low fractions nonconforming can be achieved by means of discrete time-between-events (TBE) control charts, which count the number of units up to the appearance of a xed number of nonconforming units in the sample. Here, we present a discrete TBE-chart, denoted as NBE-chart, based on the negative hypergeometric distribution that meets numerous requirements of ecient monitoring of FHP processes. The proposed control chart can be conveniently used for both low-volume and mass production in processes with frequent changeovers.

Introduction

Control charts are widely used in statistical process monitoring (SPM) for checking the stability of the fraction nonconforming or the counts of defects/nonconformities per unit vs. time. When implementing a control chart for monitoring the fraction nonconforming, it is worth remembering that an ecient online monitoring of processes characterized by low fractions nonconforming is a challenging task in many elds, such as modern manufacturing, service operations management, health care monitoring, public health surveillance, and education. In fact, the process yield is an important discriminating factor when a control chart should be selected to start process monitoring.

As the common binomial p control charts provide unsatisfactory results in monitoring processes with low fractions nonconforming p, several authors have presented and discussed control charts that take into account the time-between-events (TBE) to monitor the process. The TBE has been assumed by some authors as a continuous random variable corresponding to the time until the appearance of the r-th nonconforming unit in the sample (a so called event), with r ∈ N. In this case, the exponential (case r = 1) or the Gamma distribution (case r > 1) is used for modeling the TBE (see, e.g., Xie et al. ), and the time T r to the event is the variable plotted on the control chart. Conversely, other authors have considered the TBE as a discrete random variable by counting the number of units until the r-th nonconforming unit occurs in the sample: in this case, the geometric (case r = 1) or the negative binomial distribution (case r > 1) is utilized to model the TBE, and attribute control charts for nonconformities, generally known as cumulative count of conforming (CCC) charts, are proposed. There are some other common terms for these charts and their variants, such as CRL, RL1, CCC r or SCRL, and moreover, there are related charts such as CCS charts that are implemented to monitor the number of cumulative samples until a specied number of nonconforming products is detected (see Zhang et al. [START_REF] Zhang | On Cumulative Conforming Type of Control Charts for High Quality Processes Under Sampling Inspection[END_REF] ).

For a comprehensive systematic review on TBE-charts, we refer to Ali et al. [START_REF] Ali | An Overview of Control Charts for High-quality Processes[END_REF] . For TBE-charts based on the geometric distribution see, e.g., Calvin 12 , Goh 13 , Xie & Goh 14 , Nelson 15 , Chan et al. [START_REF] Chan | Cumulative Probability Control Charts for Geometric and Exponential Process Characteristics[END_REF] , Kuralmani et al. [START_REF] Kuralmani | A Conditional Decision Procedure for High Yield Processes[END_REF] , Ranjan et al. [START_REF] Ranjan | Optimal control limits for CCC charts in the presence of inspection errors[END_REF] , Zhang et al. [START_REF] Zhang | On the Statistical Design of Geometric Control Charts[END_REF] , Noorossana et al. [START_REF] Noorossana | On the Conditional Decision Procedure for High Yield Processes[END_REF] , Acosta-Mejia 21 , Chiu & Tsai [START_REF] Chiu | Properties and performance of one-sided cumulative count of conforming chart with parameter estimation in high-quality processes[END_REF] , Zhang et al. [START_REF] Zhang | Geometric charts with estimated control limits[END_REF] , [START_REF] Zhang | Performance of cumulative count of conforming chart of variable sampling intervals with estimated control limits[END_REF] , Golbafian et al. [START_REF] Golbafian | A new Economic Scheme for CCC Charts with Run Rules based on average Number of inspected Items[END_REF] , Morais 26 , while TBE-charts based on the negative binomial distribution can be found, e.g., in Ohta et al. [START_REF] Ohta | A CCC-r Chart for High-Yield Processes[END_REF] , Chan et al. [START_REF] Chan | A Two-Stage Decision Procedure for Monitoring Processes with Low Fraction Nonconforming[END_REF] , Das 29 , Di Bucchianico et al. [START_REF] Di Bucchianico | Monitoring Infrequent Failures of High-Volume Production Processes[END_REF] , Chen 31 , [START_REF] Chen | Design of Cumulative Count of Conforming Charts for High Yield Processes Based on Average Number of Items inspected[END_REF] , Albers 33 , Zhang et al. [START_REF] Zhang | CCC-r Charts' Performance with estimated Parameter for High-Quality Process[END_REF] .

The use of the geometric or the negative binomial distribution in attribute TBE-charts for nonconformities may be justied for monitoring continuous processes (e.g., mass production, comparable to innitely large lot sizes), but they are inappropriate for constructing control charts to monitor nite lot sizes, like low-volume production of small batches of customized units.

In fact, in many real situations practitioners should cope with nite horizon production (FHP) processes, where the number of scheduled inspections m for quality control is set equal to a few tens and the lot size L is nite. FHP processes include the following production scenarios:

• high-volume production of L units (very large lot size) with frequent line changeovers and a slow inspection rate generating a small number m of inspections before the production ends: in this case, random sampling corresponds to a model of sampling with replacement;

• low-volume production of L customized units (small lot size) in a exible manufacturing system releasing small batches of units and allowing for a small number m of scheduled inspections: in this case, random sampling corresponds to a model of sampling without replacement.

Whichever is the lot size L, monitoring of FHP processes is a challenging issue for quality engineers for the following reasons (see also Celano & Castagliola 35 ):

• When a process with FHP is run, the number of scheduled inspections is small, being it often xed to a few tens. Process monitoring should be immediately started after the machine set-up and with no time to carry out a retrospective Phase I study on a preliminary set of samples. For this reason, a deviation-from-nominal value approach (also called a standard-given approach) should be considered to run the control chart when a target value can be specied by the practitioner. With standards given, the goal of FHP process monitoring is to check if it runs close to the nominal (target) value from the beginning to the end of the production run. Thus, to perform statistical process monitoring in a FHP process by means of an attribute control chart based on nonconformities, the denition of a target value p 0 for the fraction nonconforming is required to practitioners. Next, the control chart should be used to decide if the process is shifting from the target value p 0 . That is, by running the control chart in a FHP process, the quality practitioner is interested in checking if the fraction nonconforming remains "on-target" or is "out-of-target" during the production run.

• The inspection lot size N = L m can be so small that a nite population eect should be considered for the denition of a sound statistical model at the basis of the implementation of a control chart for monitoring the fraction nonconforming.

• The control chart's performance should be measured by metrics accounting for the small number of scheduled inspections during the production run. In fact, long run metrics of performance like the average run length (ARL) are unsuitable for a FHP process.

Since the development of control charts for monitoring FHP processes, the attention of researchers has mainly been focused on variable control charts. For instance, Nenes et al. [START_REF] Nenes | The variable sampling interval control chart for nite-horizon processes[END_REF] and Nenes et al. [START_REF] Nenes | Economic and statistical design of Vp control charts for nite-horizon processes[END_REF] presented a Markov chain approach for the exact computation of the statistical performance of the variable sampling interval control chart and of any fully adaptive Shewhart control chart in processes with an unknown but nite number of inspections, respectively. Celano et al. [START_REF] Celano | The performance of the Shewhart sign control chart for nite horizon processes[END_REF] , [START_REF] Celano | On the implementation of the Shewhart sign control chart for low-volume production[END_REF] In this scenario, a correct investigation of attribute control charts for monitoring the fraction nonconforming in a FHP process calls for the denition of a sound statistical theory allowing for the exibility of monitoring both low-volume and high-volume production. Recently, p and np charts based on the hypergeometric distribution have been proposed to account for the lot size eect in periodical processes, but without taking into account the characteristics of FHP processes, see Chukhrova & Johannssen [START_REF] Chukhrova | Improved control charts for fraction non-conforming based on hypergeometric distribution[END_REF] , [START_REF] Chukhrova | Hypergeometric p-chart with dynamic probability control limits for monitoring processes with variable sample and population sizes[END_REF] and Johannssen et al. [START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF] . However, ecient monitoring of FHP processes requires an adequate embedding of their characteristics in the modeling and thus a specic control chart design and dierent performance measures than for monitoring processes that do not have a nite horizon. As a matter of fact, the negative hypergeometric distribution turns out to be a promising statistical model to run an attribute control chart in a FHP process, when the value of p is too small to have an ecient implementation of the p control chart.

Therefore, we present in this paper a negative hypergeometric control chart that has the best prerequisites for an ecient monitoring of nite horizon processes. This chart belongs to the family of discrete TBE control charts. However, to avoid confusion with the term "time", we denote it as a "number-betweenevents" (NBE) control chart, following a similar notation as introduced by Benneyan 47 . For this reason, we also refer to geometric and negative binomial charts as NBE-charts.

The paper is structured as follows. Section 2 briey introduces the properties of the negative hypergeometric distribution and its limiting case for a very large population size. In Section 3, we present the negative hypergeometric NBE-chart for monitoring FHP processes and analyze its properties analytically. Afterward, in Section 4 we discuss performance measures and design of the negative hypergeometric NBE-chart in a FHP process. In Section 5, we perform a comprehensive on-target and out-of-target performance study. Section 6 illustrates a practical application of the proposed NBE-chart. Conclusions and future research directions in Section 7 complete the paper.

2

The negative hypergeometric distribution and its properties

The negative hypergeometric distribution

Let us consider a nite population of size N containing M objects classied as successes. The number y of draws without replacement from the population until r successes are counted is a random variable Y which has a negative hypergeometric distribution, i.e., Y ∼ NH(N, M, r) where y, N, M, r ∈ N * , r ≤ M ≤ N , r ≤ y ≤ N . By denition, Y is dened on {r, r + 1, . . . , N -M + r} and its probability mass function (p.m.f.) is given by:

P NH (Y = y) = y-1 r-1 N -y M -r N M (2.1)
The mean and variance of Y are dened as

E NH [Y ] = r(N + 1) M + 1 and Var NH (Y ) = r(N + 1)(N -M )(M + 1 -r) (M + 1) 2 (M + 2) , (2.2) 
respectively. The cumulative distribution function (c.d.f.) of Y is given by:

F NH (y) = P NH (Y ≤ y) = y k=r k-1 r-1 N -k M -r N M (2.3)
For N → ∞, (2.1) converges to the p.m.f. of a negative binomial-distributed random variable Y ∼ NB(r, p):

P NB (Y = y) = y -1 r -1 p r (1 -p) y-r , (2.4) 
where Y is dened on {r, r + 1, . . .} and p = M N ∈ (0, 1]. Note that there are other denitions of the negative binomial distribution, see, e.g., Johnson et al. [START_REF] Johnson | Univariate Discrete Distributions[END_REF] . Due to the result (2.4), the moments E NH [Y ] and Var NH (Y ) converge to

E NB [Y ] = r p and Var NB (Y ) = r(1 -p) p 2 ,
and the c.d.f. of Y is given by Since the c.d.f. of the negative hypergeometric distribution is rarely included in common software, such as MATLAB and MS Excel, we provide a simple relationship between the c.d.f. shown in (2.3) and the c.d.f. of a hypergeometric-distributed random variable X ∼ H(N, M, y) (see, e.g., Johnson et al. [START_REF] Johnson | Univariate Discrete Distributions[END_REF] ):

F NB (y) = P NB (Y ≤ y) = y k=r k -1 r -1 p r (1 -p) k-r . ( 2 
E NH [Y ] = r(N + 1) M + 1 < rN M = r p = E NB [Y ] for M < N.
Var NH (Y ) = r(N + 1) M + 1 < r p • N -M M + 1 < N -M M • M + 1 -r M + 2 <1 < r p • 1 -p p = N -M M = Var NB (Y ) for M < N.
F NH (y) = 1 -P H (X ≤ r -1) = 1 - r-1 x=0 M x N -M y-x N y (2.6)
Considering the negative binomial distribution, there is an analogous relationship between (2.5) and the c.d.f. of a binomial-distributed random variable X ∼ B(y, p) (see, e.g., Chen 31 ):

F NB (y) = 1 -P B (X ≤ r -1) = 1 - r-1 x=0 y x p x (1 -p) y-x (2.7)
3 Statistical process monitoring of fraction nonconforming in a FHP process

We consider a lot production of L ∈ N * units during a nite production horizon H. Quality monitoring should be performed by scheduling a nite number m ∈ N * of inspections during the production. At each inspection a set of N = L m ∈ N * units, from now on denoted as the inspection lot, is available for monitoring: these are the N units of the production lot released by the manufacturing system before the rst inspection (m ≥ 1) and, if applicable, between two consecutive inspections (m ≥ 2). The quality practitioner is interested in checking the occurrence of shifts in the fraction nonconforming p during the production run by monitoring each inspection lot. A target value p 0 is xed by the quality practitioner according to the order requirements agreed with the customer or the quality characteristics' specications settled by the organization.

3.1

The negative hypergeometric NBE-chart for lot production If a small lot of L units is produced, quality monitoring should be performed by a control chart suitable to cope with nite lot sizes. Here, we consider the negative hypergeometric NBE-chart to monitor the fraction nonconforming. Let Y j , j = 1, . . . , m, be the number of units sampled without replacement at the j-th inspection from the j-th inspection lot of size N j until the r-th nonconforming unit occurs. If the count of nonconforming units within the inspection lot j is less than r, then Y j = N j , for j = 1, . . . , m.

Being the inspections scheduled at xed sampling intervals, under the assumption of a xed production rate it holds N 1 = N 2 = . . . = N m = N . Thus, we denote N as the xed inspection lot size. At each inspection j, j = 1, . . . , m, the minimum and maximum number of units to be inspected is equal to r and N , respectively, i.e., r ≤ Y j ≤ N . Hence, Y 1 , . . . , Y m are i.i.d. outcomes of a negative hypergeometricdistributed random variable Y ∼ NH(N, M, r) with p.m.f. (2.1), c.d.f. (2.3) and rst moments given by (2.2). The fraction nonconforming p = M N is dened with respect to the inspection lot size N ; M is the expected number of nonconforming units within each inspection lot, given p. Therefore, if the process runs on-target (out-of-target), then p = p 0 (p = p 1 ) and M = N p 0 (M = N p 1 ). The target value of

E NH [Y ] is equal to: Y 0 = r(N + 1) 1 + N p 0 (3.1)
Given the target value Y 0 , the Shewhart-type negative hypergeometric NBE-chart has center line CL NH , upper and lower control limit UCL NH and LCL NH dened as:

UCL NH = Y 0 + d u Y 0 Y 0 r -1 rN 1 -Y 0 rN 1 + Y 0 CL NH = Y 0 (3.2) LCL NH = max 0, Y 0 -d l Y 0 Y 0 r -1 rN 1 -Y 0 rN 1 + Y 0
where N 1 = N +1, and the parameters d u ∈ R + and d l ∈ R + represent multiples of the standard deviation

Y 0 Y0 r -1 rN1-Y0
rN1+Y0 obtained to compute the width of control limits UCL NH and LCL NH , respectively. See Appendix A for a proof of (3.2).

The negative hypergeometric NBE-chart can be implemented for on-line monitoring on a lot of size L with inspection plan (m, r, N )

only if p 0 ≥ r N = r•m L , with N = L m . Therefore, the feasible number of scheduled inspections m is dened as m ∈ {1, . . . , p0•L r } with m ∈ N * .
When the lot size L is very large (high-volume production in a FHP process) and m is specied such that N is large, the negative hypergeometric converges to the negative binomial statistical model. In this case, the control limits (LCL NH , UCL NH ) and the center line CL NH of the negative hypergeometric NBE control chart can be well approximated by the following formulas which are known as negative binomial NBE-chart:

UCL NB = Y 0 + d u Y 0 Y 0 r - 1 
CL NB = Y 0 (3.3) LCL NB = max 0, Y 0 -d l Y 0 Y 0 r - 1 
where

Y 0 = lim N →∞ r(N + 1) 1 + N p 0 = r p 0 , (3.4) 
and the parameters d u ∈ R + and d l ∈ R + represent multiples of the standard deviation Y 0 Y0 r -1 obtained to compute the width of control limits UCL NB and LCL NB , respectively.

3.2

Statistical properties of the negative hypergeometric NBE-chart

The control limit interval [LCL NH , UCL NH ] of the negative hypergeometric NBE-chart is smaller than the control limit interval [LCL NB , UCL NB ] of the negative binomial NBE-chart when the population size is nite and p < 1. This follows directly from the fact that the control limits of the negative hypergeometric Thus, for a given false alarm rate FAR 0 , the negative hypergeometric NBE-chart is more sensitive than the negative binomial NBE-chart to the same shift in the process quality level resulting in an increase of the process fraction nonconforming. This eect is due to sampling without replacement from a nite population having size N , since the number of units decreases with each inspection unit test.

Moreover, following the results discussed in Section 2.1, the center line and the control limits of both charts coincide as N gets larger values. In the case of a nite population size CL NH < CL NB holds.

In the following we investigate analytically the impact of r, N , p 0 on the center line and the control limits of the negative binomial and negative hypergeometric NBE-chart, using (3.2) and (3.3) under consideration of (3.1) and (3.4), respectively.

• Impact of r: The larger is r (with r ≤ M , M, r ∈ N * ), the larger is the center line and the wider is the in-control interval of both charts.

• Impact of N : While the center line and the control limits of the negative binomial NBE-chart are not aected by N , conversely the center line increases and the in-control interval widens as N increases in the negative hypergeometric case. As shown above, for N → ∞ the center line and the in-control interval of the negative hypergeometric NBE-chart converge to the center line and the in-control interval of the corresponding negative binomial NBE-chart, respectively.

• Impact of p 0 : Fixing a smaller value for p 0 increases the center line and the width of the in-control interval for both NBE-charts.

4

Performance measures and design of the NBE-chart in a FHP process

Power function of NBE-charts

The power function (PF) of an NBE-chart represents the probability function of rejecting the null hypothesis of statistical control (H 0 : p = p 0 ) depending on p. Thus, PF stands for the probability of a signal at each test inspection, given by

PF = P(Y j > UCL) + P(Y j < LCL) = 1 -P(Y j ≤ U ) + P(Y j ≤ L) (4.1)
with discretized control limits U = max{U ∈ N * |U ≤ UCL}, L = max{L ∈ N|L < LCL}. For p = p 0 , PF stands for incorrect rejection of H 0 , i.e., the probability of the type I error α * = PF p=p0 , while for p = p 1 , with p 1 = p 0 , PF implies correct rejection of H 0 . The probability of the type II error is given by β * = 1 -PF p=p1 . Note that these errors are indirect costs that characterize a control chart (see, e.g.,

(2.5)), respectively, (4.1) becomes:

PF NH = 1 -   U k=r k-1 r-1 N -k M -r N M - L k=r k-1 r-1 N -k M -r N M   (4.2) PF NB = 1 -   U k=r k -1 r -1 p r (1 -p) k-r - L k=r k -1 r -1 p r (1 -p) k-r   (4.3)
By considering equations (2.6) and (2.7), we can simplify (4.2) and (4.3) as follows:

PF NH = 1 - r-1 x=0 M x N -M L-x N L - r-1 x=0 M x N -M U -x N U (4.4) PF NB = 1 - r-1 x=0 L x p x (1 -p) L-x - r-1 x=0 U x p x (1 -p) U -x (4.5) 4.2
Performance measures of the negative hypergeometric NBE-chart in a FHP process Since long run measures of performance like the ARL are unsuitable for a FHP process with a nite number m of inspections (j = 1, . . . , m), the performance of the negative hypergeometric NBE-chart should be measured by metrics accounting for the small number of scheduled inspections during the production run.

The on-target performance should be estimated by means of the false alarm rate (FAR) at each inspection j = 1, . . . , m and the false alarm probability (FAP) during the production run (the overall probability of the type I error, i.e., the probability for at least one false alarm from m samples). To start online monitoring of FHP processes, the quality practitioner is interested to x the nominal false alarm rate FAR 0 at a small value (i.e., p r 0 ≤ FAR 0 ≤ 0.1 due to a reasonable restriction of LCL given by LCL min = r + 1), if necessary and possible under the constraint of a reasonable xation or minimization of the resulting FAP (see also Section 5.1). While FAR (α * = PF p=p0 ) is given by (4.4), FAP is dened as follows:

FAP = 1 -(1 -PF p=p0 ) m = 1 -(1 -α * ) m
The out-of-target performance of the proposed chart can be measured by the probability of a signal at each scheduled inspection after the occurrence of an assignable cause (SP) and the probability of a signal by the end of the production run (RSP) (see Celano & Castagliola 35 , [START_REF] Celano | An EWMA sign control chart with varying control limits for nite horizon processes[END_REF] ). In particular, a signal triggered by the control chart warns practitioners about looking for the presence of an assignable cause and segregating the production lot, if needed. Both the out-of-target performance measures, SP and RSP, depend on the shift size δ of the process location, dened via p 1 = p 0 + δ, and the position of the process change-point τ with respect to the scheduled end of the production horizon. In fact, for a given shift size δ, the closer is the change-point to the end of the production run, the lower is the probability of detecting the process shift (a true alarm) by the end of the run (see Celano & Chakraborti [START_REF] Celano | A distribution-free Shewhart-type MannWhitney control chart for monitoring nite horizon productions[END_REF] ). While SP at the j-th inspection, j = s, s + 1, . . . , m, is dependent on the probability of the type II error,

SP j = (1 -PF p=p1 ) j-s PF p=p1 = (β * ) j-s (1 -β * ),
RSP also depends on the number m of scheduled inspections:

RSP = 1 -(1 -PF p=p1 ) m-s+1 = 1 -(β * ) m-s+1 , where s = τ •m H
is the index identifying the rst inspection scheduled immediately after the process change-point τ (hours), given a production horizon H (hours). The ceiling function x maps x to the least integer greater than or equal to x. For example, if the process change-point occurs after τ = 3.5 hours in a production run having a horizon of H = 10 hours and m = 10 scheduled inspections, then the rst inspection with the shifted process is s = 3.5 = 4. Commonly, the parameters d l and d u for the construction of Shewhart-type control limits are determined by using normal quantiles. That is, under the assumption of an appropriate normal approximation to the underlying distribution, e.g., the binomial distribution in the framework of p-and np-charts. Moreover, it is sometimes common practice to use normal quantiles also for NBE-charts based on geometric or negative binomial distribution (see, e.g., Benneyan 47 ,[START_REF] Benneyan | Performance of Number-Between g-Type Statistical Control Charts for Monitoring Adverse Events[END_REF] ). The motivation behind this approach for computing the control limits is providing practitioners with a procedure as easy to implement as the traditional Shewhart-type dσ control limits.

However, the normal approximation can lead to a too large error in the computation of the statistical measures for the NBE control chart (especially for small values of p 0 in combination with a small value of N ). Therefore, in this paper we suggest to determine the parameters d l and d u via the c.d.f. of the exact underlying distribution. In addition, considering one-sided NBE-charts with only LCL is reasonable when practitioners are primarily interested in detecting increases of the process fraction nonconforming (p 1 > p 0 ). Then, UCL should not be considered as threshold for an alarm but rather as a criterion to stop sampling, if Y j > UCL.

In general, the parameters d l and d u can only be calculated numerically. Thus, there is the need for a numerical solution regarding d l and d u . This solution can be obtained by running an iterative procedure using the cumulative (negative) hypergeometric distribution (see (2.6)). There is only one case where a closed formula exists for the computation of d l , d u : let us consider r = 1, N → ∞ and a one-sided chart with LCL (that is, U → ∞). Setting (4.5) lower-equal to FAR 0 then gives us:

1 -((1 -p 0 ) L -(1 -p) U →0 ) ≤ FAR 0 (4.6) Using L = LCL NB -1 with LCL NB = CL NB -d l √
Var NB and rearranging (4.6) for d l , we obtain an inequality regarding d l as follows:

- ln((1 -FAR 0 )(1 -p 0 )) -CL NB ln(1 -p 0 ) ln(1 -p 0 ) √ Var NB ≤ d l ≤ - ln(1 -FAR 0 ) -CL NB ln(1 -p 0 ) ln(1 -p 0 ) √ Var NB (4.7)
Since a larger value of d l leads to a lower value of FAR NB , and thus to the fulllment of the constraint regarding FAR 0 , the right-hand side of (4.7) should be used to calculate d l . In an analogous way, a closed formula for d u can be derived, for instance when it is also important to detect examples for a good practice (that is, Y j > UCL). ). In this case, the couple (m, r) = (1, Lp 0 ) would lead in general to the maximum RSP due to the steepest curve of the power function and thus the smallest possible type II error. However, the expected inspection eort is quite high for this (m, r)-combination and a shift in the process quality level can only be detected at the end of the production run. To account for this problem, we consider the average number ANU of released units after the occurrence of the assignable cause. In particular, based on a truncated geometric distribution, ANU is dened as

ANU =   m-s+1 j=1 L • j m • PF p=p1 (1 -PF p=p1 ) j-1   + L • m -s + 1 m • (1 -PF p=p1 ) m-s+1 , (4.8) 
where the second term on the right side of (4.8) accounts for PF p=p1 < 1 (and thus RSP < 1) and considers the contribution related to the probability of no signal by the end of the production run.

Specifying m = 1 and s = 1, we obtain ANU = L for all PF p=p1 ∈ [0, 1], i.e., the maximum value of ANU. Since a practitioner desires the ANU to be as small as possible, the couples of design parameters (m, r) should be selected as to minimize ANU by considering m > 1 and nding the corresponding optimal value for r. Following this approach, the input parameters are (L, p 0 , p 1 , FAR 0 , s), the decision variables are (m, r), the output values are (N, M, d l , FAR NH , RSP) and the objective function is ANU. Summarizing, the following design procedure has to be run:

1. Given the input parameters (L, p 0 , p 1 , FAR 0 , s)

2. Select: (m * , r * ) = arg min (m,r) (ANU) s.t. m ∈ 1, . . . , p0•L r r ∈ 1, . . . , p0•L m
To determine the optimal values for m and r, we propose to apply a brute-force search as we deal in general with small values of p 0 , L on the one hand and natural numbers m, r on the other hand. Thus, the set of all possible candidate solutions is limited by the number of combinations

p0•L i=1 p 0 • L i with p 0 • L i ∈ N,
i.e., it is of a manageable size (very low computational eort). For example, given L = 10000, p 0 = 0.005 (i.e., p 0 • L = 50), the respective number of all possible candidates (m, r) with m ∈ {1, To sum up, the proposed brute-force search aims to systematically enumerate all possible candidates (m, r) and to select the one which minimizes the ANU. For each investigated scenario, Tables 14 can be summarized as follows:

• The parameter d l generally decreases with an increase in N , FAR 0 , and p 0 . Additionally, the values of d l are increasing with r.

• In general (for r > 1), we observe a decreasing value of LCL NH for increasing values of N (converging to LCL NB for N → ∞). This eect is more evident for large values of r and small values of p 0 . Thus, the negative hypergeometric NBE-chart is more sensitive than its negative binomial counterpart, in particular for small values of N in combination with small values of p 0 . Additionally, there is a decrease in LCL NH when p 0 increases and/or FAR 0 decreases and/or r decreases.

• The obtained values of FAR NH are very close to the nominal value FAR 0 in many cases; in particular, FAR NH varies within the intervals: [0.008, 0.01] for FAR 0 = 0.01, [0.0414, 0.05] for FAR 0 = 0.05 and [0.0845, 0.1] for FAR 0 = 0.1.

As mentioned in Section 4.2, FAR is inferiorly bounded by FAR min = p r 0 . Therefore, FAP is in turn inferiorly bounded by FAP min = 1 -(1 -p r 0 ) m . Table 5 shows the values of the lower bound FAP min for dierent values of p 0 , m, r.

It is worth noting that couples (FAR 0 , m) with larger values of FAR 0 and/or m can lead to comparatively high values of FAP 0 . For example, if (FAR 0 , m) = (0.05, 20), we obtain FAP 0 = 0.6415. Although this might seem a high false alarm probability FAP, nevertheless nding a right trade-o between this measure and the detection probability RSP of an assignable cause is a dicult task in SPM of nite horizon processes. If a practitioner xes a too small nominal value for FAR 0 , for example FAR 0 = 0.01, then the detection probability of the control chart by the end of the production run would be too small due to a lower LCL and, consequently, a poor power (i.e., worse out-of-target performance). For this reason, larger values of FAR should be accounted for by practitioners. To avoid a too bad on-target performance, we suggest to x the nominal FAR 0 = 0.05 for the design of the NBE-chart since this value seems to meet a good trade-o between the on-target and the out-of-target performance. Of course, choosing dierent values of m can aect FAP. In this Section, we discuss the out-of-target performance study, see Tables 69. Investigating:

• lot size L ∈ {1000, 2000, 5000, 10000, 100000};

• target fraction nonconforming p 0 ∈ {0.001, 0.005, 0.01, 0.05};

• shift size δ ∈ {0.001, 0.002, 0.01, 0.02};

• scheduled inspection after the process change-point s ∈ {1, m 2 + 1 }.

We design a sampling plan (m, r, LCL NH ) (rst row of each cell in Tables 69) for each scenario using FAR 0 = 0.05 and give, in addition, the couples (FAR NH , β * NH ) (second row of each cell in Tables 69) and the values of out-of-target performance measures (RSP, ANU) (third row of each cell in Tables 69).

As in Section 5.1, we focus on the one-sided NBE control chart by considering only LCL NH .

The ndings of Tables 69 can be summarized as follows:

• The optimal design couples (m, r) that minimize ANU are in general intermediate solutions mostly close to the condition (m, r) = (Lp 0 , 1) for small target values of p 0 (0.001, 0.005), and converging to small values of m and large values of r for large target values of p 0 (0.01, 0.05) in combination with small shifts δ (0.001, 0.002).

• Given p 0 and δ, the value of LCL NH mostly remains the same (e.g., LCL NH = 51 for p 0 = 0.001, δ = 0.001) for various lot sizes L.

• RSP is, in general, increasing with p 0 , δ, L or remains unchanged (e.g., RSP = 0.2651 for p 0 = 0.001, δ = 0.002, L = 2000 and RSP = 1 for p 0 = 0.005, δ = 0.01, L = 5000).

• ANU is, in general, decreasing with p 0 , δ or remains unchanged. In contrast, the values of ANU are mostly increasing with increasing L, apart from some exceptions (e.g., p 0 = 0.001, δ = 0.01, L = 10000) due to the discreteness of the underlying distribution.

• Sampling plans (m, r, LCL NH ) show a tendency to be the same for s = 1 and s = m 2 + 1 , with lower values of RSP and ANU for s = m 2 + 1 . Considering the high production volume scenario L = 100000, sampling plans with corresponding values of FAR NH , β * NH , RSP, and ANU are the same for s = 1 and s = m 2 + 1 .

• The inspection lot size N can increase with L, in particular for p 0 ≤ 0.005 and δ ≤ 0.002. Considering larger values of p 0 , there are less changes in N for an increasing value of L.

Summarizing, it should be noted that the selection of the optimal sampling plans given in Tables 69 strongly depends on the production lot size L: on the one hand, sampling plans based on larger values of L are not feasible for low-volume production of small batches of customized units. On the other hand, sampling plans based on lower values of L are not optimal for high-volume production with frequent changeovers.

To carry out a quantitative comparison in terms of ANU with the negative binomial NBE-chart, the sampling plans based on the negative binomial distribution are shown in Tables 1013 for the same scenarios as in Tables 69. These sampling plans are obtained via approximation of LCL NH by LCL NB and PF NH by PF NB . The ndings of Tables 1013 can be classied into two categories:

1. For L ≤ 5000 in combination with δ ≥ 0.01 as well as for L ≥ 10000, couples (m, r) generally dier from the respective negative hypergeometric case and the values of ANU are larger for the negative binomial NBE-chart.

2. Otherwise, couples (m, r) are the same as in the respective negative hypergeometric case with

• LCL NB > LCL NH for r = 1, which can lead to slightly lower, equal or higher values of ANU

• LCL NB < LCL NH for r ≥ 2, which mostly leads to larger values of ANU for the negative binomial NBE-chart Summarizing, the negative binomial NBE-chart has a worse out-of-target performance than the negative hypergeometric NBE-chart because the values of ANU are generally larger. 

L = 10000 L = 100000 δ s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } 0.001
L = 10000 L = 100000 δ s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 }
L = 100000 δ s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m
L = 100000 δ s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 }
L = 100000 δ s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } (1,1,52) (1,1,52) (2,
L = 100000 δ s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 }
L = 100000 δ s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m
L = 100000 δ s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } s = 1 s ∈ {1, m 2 +1 } 6 Illustrative example
In this Section, we illustrate a practical application of the negative hypergeometric NBE-chart using a data set taken from Chan et al. [START_REF] Chan | A Two-Stage Decision Procedure for Monitoring Processes with Low Fraction Nonconforming[END_REF] , which consists of a total of 8160 inspected units, where 48 units are nonconforming. The positions of the nonconforming units within the data set can be seen in Table 14. We are interested to investigate by means of the negative hypergeometric NBE-chart if the fraction nonconforming p 0 = 48 8160 ≈ 0.0059 is stable versus time or if there are potential change-points. Thus, we assume the units as a lot of L = 8160 units to be produced during a period of H hours. A nite number m of inspections with m ∈ {1, 2, 3, 4, 6, 8, 12, 16, 24, 48}, where L • p 0 = 48, can be scheduled during the production run. Between two consecutive inspections, N = L m units with N ∈ {170, . . . , 8160} are produced. At each scheduled inspection j, the samples y j , j = 1, . . . , m, are collected every h = H m hours from the N units produced between the (j -1)-th and j-th inspection. Given the set of feasible m values, we can dene the following inspection plans with maximum feasible r values:

(m, r max , N ) = {(1, 48, 8160), (2, 24, 4080), (3, 16, 2720), (4, 12, 2040), (6, 8, 1360), (8, 6, 1020), (12, 4, 680), (16, 3, 510), (24, 2, 340), (48, 1, 170)} Here, r max denotes the maximum feasible number of nonconforming units to trigger a signal from the NBE control chart for a selected value of m in the inspection plan, i.e., r ∈ {1, . . . , r max }. For example, if we choose (6, 8, 1360), then we obtain eight inspection plans, where m = 6 and r ∈ {1, . . . , 8} can be varied by minimizing the ANU with an inspection lot size N = L m = 1360. It is worth noting that the two extreme inspection plans (1, 48, 8160) and (48, 1, 170) provide the worst out-of-target and the worst on-target performance, respectively.

If we would like to design an inspection plan by minimizing the value of ANU under a constraint on FAR 0 , we should decide a priori the change-point position, e.g., the value of s, and the shift size δ in the fraction nonconforming. Thus, we assume s ∈ {1, m 2 + 1 } and δ = {0.001, 0.002, 0.01, 0.02}, and look for the couple (m, r) minimizing the value of ANU. We consider the one-sided case to determine LCL NH for the target false alarm rate FAR 0 = 0.05. The results of this optimization procedure are given in Table 15. In particular, the inspection eort decreases with δ and s, FAR NH meets the constraint on the given FAR 0 , and RSP increases with δ and m. Further, ANU is decreasing with δ and m. If the practitioner is interested in the detection of small shifts like δ = 0.001, then s/he should implement the inspection plan (4, 12, 2040) for s = 1 and (8, 6, 1020) for s = m 2 + 1 = 5, respectively, depending on her/his opinion about when the change-point can occur (e.g., based on prior knowledge, experience, economic aspects). These inspection plans lead to the minimum of ANU, i.e., ANU = 4622 and ANU = 3162, respectively, among further reasonable inspection plans. In addition, Figures 12 show how ANU (y-axis) depends on selecting a particular inspection plan (m, r), where m is the parameter identifying each curve (m = 1, 2, 3, 4, 6, 8, from top to bottom) and r corresponds to the x-axis. The respective optimal inspection plan is circled in Figures 12. Note that numerical results are displayed by a line plot instead of a scatter plot for better output illustration. for the optimal inspection plan (8, 6, 1020). The samples y j , j = 1, . . . , 8, are either given by the number of inspected units in the j-th sample until the sixth nonconforming unit occurs or y j = N = 1020 when the inspection of a single inspection lot is nished without nding r = 6 nonconforming units. In particular, the sample statistics are y 1 = 792, y 2 = 788, y 3 = 1020, y 4 = 749, y 5 = 1020, y 6 = 1020, y 7 = 1020, y 8 = 739 (see Table 16, third column block). We obtain r = 6 nonconforming units by sampling the 792th unit in the rst inspection (6th position in Table 14), the 788th unit in the second inspection (13th position in Table 14), while the third inspection is nished without nding r = 6 nonconforming units, and so on. In addition, Table 16 shows negative hypergeometric NBE-charts for further optimal inspection plans (m, r, N ) = (4, 12, 2040), (6, 8, 1360), (12, 4, 680), (16, 3, 510), which are given in Table 15. A single potential process change-point, where the negative hypergeometric NBE-chart with inspection plan (16, 3, 510) detects sample y 15 as out of LCL NH (that is, a signicant increase in the process fraction nonconforming is declared), is highlighted using a frame-box in Table 16. Analyzing this chart, the process engineer would search for the assignable cause and adjust the process to decrease the fraction nonconforming. In this paper, we have proposed an NBE-chart for monitoring the fraction nonconforming in FHP processes based on the negative hypergeometric distribution. This control chart addresses two crucial limitations of the commonly used binomial p-chart: it allows FHP processes and lot sizes to be monitored and it is quite ecient in monitoring processes with low fractions nonconforming. In the framework of an analytical comparison we have shown that the in-control interval of the negative hypergeometric NBE-chart is smaller than the in-control interval of the negative binomial NBE-chart when the process horizon is nite. That is, this chart is more sensitive to changes in the process fraction nonconforming, and relatively mild deteriorations of the process quality level can be detected in an eective way.

To appropriately consider the trade-o between on-target and out-of-target performance, we have proposed a conditional minimization procedure regarding the average number ANU of released units after the occurrence of the assignable cause, which allows the quality practitioner to know:

1. if the design of a desired sampling plan is operable,

2. what is the optimal sampling plan, and

3. what are respective out-of-target unit losses, dened as a penalty constant multiplying ANU.

Moreover, the performance study has conrmed that the negative hypergeometric NBE-chart is superior to its negative binomial counterpart and to the common binomial p chart especially for lower values of p in combination with lower values of N . These ndings are in line with several simulations and numerical evidence given, e.g., in Chukhrova & Johannssen [START_REF] Chukhrova | Improved control charts for fraction non-conforming based on hypergeometric distribution[END_REF] , [START_REF] Chukhrova | Hypergeometric p-chart with dynamic probability control limits for monitoring processes with variable sample and population sizes[END_REF] , [START_REF] Chukhrova | Improved Binomial and Poisson Approximations to the Type-A Operating Characteristic Function[END_REF] and are caused by the fact that the binomial approximation to the hypergeometric considerably worsens for lower values of p and/or N .

Summarizing the results obtained in this paper, the investigated negative hypergeometric NBE-chart 1. is able to incorporate the process horizon by employing the negative hypergeometric distribution, that:

• accounts for the nite population eect on the probability of having nonconforming units within a lot (sampling without replacement scenario),

• does not assume the independence of successively sampled units,

• can not only be established for monitoring continuous processes (such as high-volume production) but also for monitoring FHP processes (such as batch and job/contract low-volume production), 2. is suitable for monitoring processes with low fractions nonconforming, and 3. is able to detect relatively mild deteriorations of the process quality level.

In addition, the negative hypergeometric NBE-chart is very exible in implementing eects arising from varying lot size L, number of scheduled inspections m, inspection lot size N , and number of nonconforming unit(s) r (as often found in practice). Since the proposed negative hypergeometric NBE-chart is easy to implement in practical applications, it can directly be used to improve process monitoring in various elds, such as industrial quality control, service operations management, health care monitoring, public health surveillance, and in the pharmaceutical industry, where satisfaction of the above named requirements is of prior importance. Potential directions for promising future research are exemplary given by time weighted EWMA and/or CUSUM charts as well as a multivariate version of the proposed NBE-chart. 

= E NH [Y ] E NH [Y ] r -

  Thus, we have E NH [Y ] < E NB [Y ] and E NH [Y ] = E NB [Y ] = r only holds when M = N . With regard to Var(Y ) it holds:

  Thus, we have Var NH (Y ) < Var NB (Y ) and Var NH (Y ) = Var NB (Y ) = 0 only holds when M = N .

  and the negative binomial NBE-charts dier by the variance term and it holds Var NH (Y ) < Var NB (Y ) for M < N as well as Var NH (Y ) = Var NB (Y ) = 0 for M = N (see Section 2.2).
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 43 Design of NBE-charts 4.3.1 Computation of d l and d u

4. 3 . 2

 32 Selection of m and r Given the target proportion p 0 of nonconforming units as well as the total lot size L, the selection of the couple (m, r) with m ∈ 1, . . . , p 0 • L r and r ∈ 1, . . . , p 0 • L m could be done under the constraint FAR NH ≤ FAR 0 , by maximizing the out-of-target performance measure RSP, as proposed for other control charts monitoring FHP processes (see, for example, Celano & Chakraborti 43

  , we perform the on-target performance study by considering various values of p 0 , N , m for r = 1, 2, 4, 8 and FAR 0 = 0.01, 0.05, 0.1. We focus on the one-sided NBE control chart by considering only the design of the lower control limit LCL NH . The obtained results are shown in Tables 14.

Table 1 :

 1 On-target performance with r = 1 and FAR 0 = 0.01, 0.05, 0.1 p 0 N = 100 N = 200 N = 500 N = 1000 N = 2000 N = 5000 N = 10000 N = 100000 N → ∞ FAR 0 = 0.01 d l 0

  ) given r = 1, 2, 4, 8 and FAR 0 = FAR min = p r 0 m = 20 m = 50 m = 10 m = 20 m = 50 m = 10 m = 20 m = 50 m = 10 m = 20 m = 50

  ) and respective (RSP, ANU) for p

Table 7 :

 7 Sampling plans (m, r, LCL NH ) with (FAR NH , β * NH ) and respective (RSP, ANU) for p

Table 8 :

 8 Sampling plans (m, r, LCL NH ) with (FAR NH , β * NH ) and respective (RSP, ANU) for p

Table 9 :

 9 Sampling plans (m, r, LCL NH ) with (FAR NH , β * NH ) and respective (RSP, ANU) for p

Table 10 :

 10 Sampling plans (m, r, LCL NB ) with (FAR NB , β * NB ) and respective (RSP, ANU) for p

  NB , β * NB ) and respective (RSP, ANU) for p

  NB , β * NB ) and respective (RSP, ANU) for p

Table 13 :

 13 Sampling plans (m, r, LCL NB ) with (FAR NB , β * NB ) and respective (RSP, ANU) for p
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 11213 Figure 1: Data set example. Inspection plans (m, r) with respective ANU for p 0 = 0.0059, FAR 0 = 0.05, δ = 0.001, s = 1

Figure 3 :

 3 Figure 3: Data set example. Negative hypergeometric NBE-chart for inspection plan (m, r, N ) = (8, 6, 1020)

1 ,

 1 Cheng et al. 2 , Kumar et al. 3 , Sanusi & Mukherjee 4 , Alevizakos & Koukouvinos 5 , 6 , Sanusi et al. 7 , Hu et al. 8 , 9

  and Celano & Castagliola40 proposed the implementation of the Shewhart and EWMA sign control chart for both mass and low-volume production, respectively. Celano et al.[START_REF] Celano | Joint Shewhart control charts for location and scale monitoring in nite horizon processes[END_REF] compared the performance of several control charts jointly monitoring both location and scale for observations with a location-scale distribution for a FHP process. Celano & Castagliola 42 discussed the implementation of a control chart for on-line monitoring of extreme values of geometric proles in FHP processes. Additionally, Celano & Chakraborti 43 investigated the issues related to the implementation of Mann-Whitney control charts for monitoring the location in FHP processes.

Table 2 :

 2 On-target performance with r = 2 and FAR 0 = 0.01, 0.05, 0.1

	.001				1.6991	1.3919	1.1683	1.0828	0.9992	0.9895
	0.005		1.6888	1.3930	1.1654	1.0804	1.0257	1.0068	0.9894	0.9875
	0.010	1.6802	1.3824	1.1761	1.0894	1.0322	1.0041	0.9946	0.9859	0.9950
	0.050									
	LCL NH 0.001				10	11	11	11	11	11
	0.005		3	3	3	3	3	3	3	3
	0.010	2	2	2	2	2	2	2	2	2
	0.050									
	FAR NH 0.001				0.0090	0.0100	0.0100	0.0100	0.0100	0.0100
	0.005		0.0100	0.0080	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
	0.010	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
	0.050									
					FAR 0 = 0.05				
	d l 0.001				1.5571	1.3071	1.1101	1.0334	0.9574	0.9485
	0.005		1.5675	1.3080	1.1085	1.0320	0.9824	0.9651	0.9492	0.9474
	0.010	1.5416	1.2973	1.1048	1.0289	0.9880	0.9623	0.9536	0.9456	0.9447
	0.050	1.0751	1.0034	0.9565	0.9402	0.9318	0.9268	0.9251	0.9236	0.9234
	LCL NH 0.001				51	51	52	52	52	52
	0.005		10	13	11	11	11	11	11	11
	0.010	6	6	6	6	6	6	6	6	6
	0.050	2	2	2	2	2	2	2	2	2
	FAR NH 0.001				0.0500	0.0494	0.0500	0.0499	0.0498	0.0497
	0.005		0.0450	0.0475	0.0491	0.0490	0.0489	0.0489	0.0489	0.0489
	0.010	0.0500	0.0495	0.0492	0.0491	0.0491	0.0490	0.0490	0.0490	0.0490
	0.050	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500
					FAR 0 = 0.1				
	d l 0.001				1.3874	1.1967	1.0348	0.9695	0.9023	0.8944
	0.005		1.3943	1.1976	1.0374	0.9717	0.9282	0.9129	0.8938	0.8922
	0.010	1.4030	1.1910	1.0336	0.9684	0.9326	0.9101	0.9023	0.8953	0.8945
	0.050	1.0026	0.9417	0.9011	0.8868	0.8795	0.8751	0.8736	0.8722	0.8721
	LCL NH 0.001				100	103	105	105	106	106
	0.005		20	26	21	21	21	21	22	22
	0.010	10	11	11	11	11	11	11	11	11
	0.050	3	3	3	3	3	3	3	3	3
	FAR NH 0.001				0.0990	0.0994	0.0998	0.0993	0.0998	0.0997
	0.005		0.0950	0.0976	0.0963	0.0958	0.0956	0.0955	0.0999	0.0999
	0.010	0.0900	0.0977	0.0965	0.0960	0.0958	0.0957	0.0957	0.0956	0.0956
	0.050	0.0980	0.0977	0.0976	0.0975	0.0975	0.0975	0.0975	0.0975	0.0975

Table 3 :

 3 On-target performance with r = 4 and FAR 0 = 0.01, 0.05, 0.1 p 0 N = 100 N = 200 N = 500 N = 1000 N = 2000 N = 5000 N = 10000 N = 100000 N → ∞

	FAR 0 = 0.01

Table 4 :

 4 On-target performance with r = 8 and FAR 0 = 0.01, 0.05, 0.1 p 0 N = 100 N = 200 N = 500 N = 1000 N = 2000 N = 5000 N = 10000 N = 100000 N → ∞

	FAR 0 = 0.01

Table 5 :

 5 Minimum values of FAP (FAP min

Table 6 :

 6 Sampling plans (m, r,

	with (FAR
	LCL NH )

NH , β * NH

Table 11 :

 11 Sampling plans (m, r,

Table 12 :

 12 Sampling plans (m, r,

Table 14 :

 14 Positions of nonconforming units within the data set

	113	218	282	505	664	792	963 1110 1184 1341 1547 1733
	1808 1861 2030 2186 2337 2569 2704 2889 3063 3263 3373 3433
	3559 3809 4021 4206 4472 4517 4833 5032 5325 5375 5553 5729
	5988 6338 6424 6692 6996 7201 7227 7314 7578 7703 7879 7963

Table 15 :

 15 Data set example. Inspection plans (m, r, N ) for various values of δ with s = 1 or s = m 2 + 1 , p 0 = 0.0059, FAR 0 = 0.05

	δ	s	(m, r, N )	LCL NH	FAR	β *	RSP	ANU
	0.001	1 (4, 12, 2040) 5 (8, 6, 1020)	1591 621	0.0498 0.6267 0.8458 4622 0.0500 0.8318 0.5213 3162
	0.002	1 (4, 12, 2040) 5 (8, 6, 1020)	1591 621	0.0498 0.2666 0.9949 2768 0.0500 0.6688 0.7999 2464
	0.003	1 (6, 8, 1360) 4 (6, 8, 1360)	937 937	0.0499 0.3074 0.9992 1963 0.0499 0.3074 0.9709 1907
	0.005	1 (8, 6, 1020) 5 (8, 6, 1020)	621 621	0.0500 0.2283 1.0000 1322 0.0500 0.2283 0.9973 1319
	0.008	1 (12, 4, 680) 7 (12, 4, 680)	323 323	0.0498 0.3074 1.0000 0.0498 0.3074 0.9992	982 981
	0.010	1 (16, 3, 510) 9 (16, 3, 510)	189 189	0.0496 0.3829 1.0000 0.0496 0.3829 0.9995	827 827
	0.015	1 (16, 3, 510) 9 (16, 3, 510)	189 189	0.0496 0.2207 1.0000 0.0496 0.2207 1.0000	655 655
	0.020	1 (16, 3, 510) 9 (16, 3, 510)	189 189	0.0496 0.0863 1.0000 0.0496 0.0863 1.0000	559 559

Table 16 :

 16 Negative hypergeometric NBE-charts for optimal inspection plans (m, r, N ), given L = 8160, p 0 = 0.0059, FAR 0 = 0.05

			(4, 12, 2040)	(6, 8, 1360)		(8, 6, 1020)		(12, 4, 680)		(16, 3, 510)
		LCL NH = 1591	LCL NH = 937	LCL NH = 621	LCL NH = 323	LCL NH = 189
			CL NH = 1884	CL NH = 1210	CL NH = 876		CL NH = 545	CL NH = 384
		j	y j	N j j	y j	N j j	y j	N j	j	y j	N j	j	y j	N j
		1 1733 2040 1 1110 1360 1 792	1020	1 505	680	1	282	510
		2 1981 4080 2 1209 2720 2 788	2040	2 504 1360	2	453 1020
		3 2040 6120 3 1301 4080 3 1020 3060	3 501 2040	3	321 1530
		4 2040 8160 4 1360 5440 4 749	4080	4 664 2720	4	278 2040
				5 1360 6800 5 1020 5100	5 653 3400	5	510 2550
				6 1163 8160 6 1020 6120	6 621 4080	6	339 3060
						7 1020 7140	7 680 4760	7	313 3570
						8 739	8160	8 615 5440	8	510 4080
									9 680 6120	9	437 4590
									10 680 6800	10	510 5100
									11 514 7480	11	453 5610
									12 483 8160	12	510 6120
												13	510 6630
												14	510 7140
												15	174 7650
												16	313 8160
	7	Conclusions										

  1 rN 1 -E NH [Y ] rN 1 + E NH [Y ] (A.2) Replacing E NH [Y ] in (A.1) and (A.2) by the target value Y 0 and substituting Var NH (Y ) in (A.1) by (A.2) directly leads to (3.2).

Panagiotidou & Tagaras[START_REF] Panagiotidou | Statistical process control and condition-based maintenance: A meaningful relationship through data sharing[END_REF] ).Considering the negative hypergeometric and the negative binomial NBE-chart (that is, taking (2.3) and
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2 +1 } 0.001 (1,10,743) (0.0498,0.8204) (0.1796,1000) (1,10,743) (0.0498,0.8204) (0.1796,1000) (2,10,743) (0.0498,0.8204) (0.3269,1821) (2,10,743) (0.0498,0.8204) (0.1796,1000) (5,10,743) (0.0498,0.8204) (0.6283,3499) (5,10,743) (0.0498,0.8204) (0.4478,2494) (5,20,1724) (0.0499,0.6057) (0.9185,4660) (10,10,743) (0.0498,0.8204) (0.6283,3499) (25,40,3713) (0.0496,0.2071) (1,5045) (25,40,3713) (0.0496,0.2071) (1,5045) 0.002 (2,5,276) (0.0495,0.8380) (0.2978,919) (2,5,276) (0.0495,0.8380) (0.162,500) (4,5,276) (0.0495,0.8380) (0.5069,1565) (4,5,276) (0.0495,0.8380) (0.2978,919) (5,10,743) (0.0498,0.6350) (0.8968,2457) (10,5,276) (0.0495,0.8380) (0.5868,1811) (5,20,1724) (0.0499,0.2309) (0.9993,2599) (10,10,743) (0.0498,0.6350) (0.8968,2457) (50,20,1724) (0.0499,0.2309) (1,2601) (50,20,1724) (0.0499,0.2309) (1,2601) 0.01 (2,5,276) (0.0495,0.2595) (0.9327,630) (10,1,6) (0.0500,0.9020) (0.4029,412) (4,5,276) (0.0495,0.2595) (0.9955,673) (4,5,276) (0.0495,0.2595) (0.9327,630) (10,5,276) (0.0495,0.2595) (1,676) (10,5,276) (0.0495,0.2595) (0.9988,675) (20,5,276) (0.0495,0.2595) (1,676) (20,5,276) (0.0495,0.2595) (1,676) (200,5,276) (0.0495,0.2595) (1,676) (200,5,276) (0.0495,0.2595) (1,676) (0.0971,1000) (0.0971,1000) (0.1847,1903) (0.0971,1000) (0.3998,4120) (0.2638,2719) (0.6398,6592) (0.3998,4120) (1,10302) (1,10240) (1,1,52) (1,1,52) (2,1,52) (2,1,52) (5,1,52) (5,1,52) (10,1,52) (10,1,52) (25,4,1368) (25,4,1368) 0.002 (0.0497,0.8579) (0.0497,0.8579) (0.0497,0.8579) (0.0497,0.8579) (0.0497,0.8579) (0.0497,0.8579) (0.0497,0.8579) (0.0497,0.8579) (0.05,0.4137) (0.05,0.4137) (0.1421,1000) (0.1421,1000) (0.2640,1858) (0.1421,1000) (0.5352,3768) (0.3685,2594) (0.7840,5519) (0.5352,3768) (1,6822) (1,6822) (1,1,52) (1,1,52) (2,1,52) (2,1,52) (5,1,52) (5,1,52) (5,2,356) (10,1,52) (50,2,356) (50,2,356) 0.01 (0.0497,0.5689) (0.0497,0.5689) (0.0497,0.5689) (0.0497,0.5689) (0.0497,0.5689) (0.0497,0.5689) (0.0498,0.0975) (0.0497,0.5689) (0.0498,0.0975) (0.0498,0.0975) (0.4311,1000) (0.4311,1000) (0.6764,1569) (0.4311,1000) (0.9404,2182) (0.8159,1893) (1,2217) (0.9404,2182) (1,2216) (1,2216) (1,1,52) (1,1,52) (2,1,52) (2,1,52) (5,1,52) (5,1,52) (10,1,52) (10,1,52) (100,1,52) (100,1,52) 0.02 (0.0497,0.3388) (0.0497,0.3388) (0.0497,0.3388) (0.0497,0.3388) (0.0497,0.3388) (0.0497,0.3388) (0.0497,0.3388) (0.0497,0.3388) (0.0497,0.3388) (0.0497,0.3388) (0.6612,1000) (0.6612,1000) (0.8852,1339) (0.6612,1000) (0.9955,1506) (0.9611,1454) (1,1513) (0.9955,1506) (1,1512) (1,1512) 2 +1 } (1,10,545) (1,10,545) (2,10,545) (2,10,545) (5,10,545) (2,25,1742) (10,10,545) (10,10,545) (100,10,545) (100,10,545) 0.001 (0.0498,0.9183) (0.0498,0.9183) (0.0498,0.9183) (0.0498,0.9183) (0.0498,0.9183) (0.0499,0.8877) (0.0498,0.9183) (0.0498,0.9183) (0.0498,0.9183) (0.0498,0.9183) (0.0817,1000) (0.0817,1000) (0.1567,1919) (0.0817,1000) (0.3469,4248) (0.1123,2500) (0.5735,7021) (0.3469,4248) (0.9998,12239) (0.9998,12239) (

(200,5,199) 0.002 (0.05,0.9083) (0.05,0.9083) (0.05,0.9083) (0.05,0.9083) (0.05,0.9083) (0.05,0.9083) (0.05,0.9083) (0.05,0.9083) (0.05,0.9083) (0.05,0.9083) (0.1749,955) (0.0917,500) (0.3193,1742) (0.1749,955) (0.6177,3369) (0.3817,2082) (0.8538,4658) (0.6177,3369) (1,5454) (0.9999,5454) (10,1,6) (10,1,6) (20,1,6) (20,1,6) (50,1,6) (50,1,6) (100,1,6) (100,1,6) (250,4,138) (250,4,138) 0.01 (0.0490,0.9039) (0.0490,0.9039) (0.0490,0.9039) (0.0490,0.9039) (0.0490,0.9039) (0.0490,0.9039) (0.0490,0.9039) (0.0490,0.9039) (0.0495,0.7058) (0.0495,0.7058) (0.6358,662) (0.3965,413) (0.8674,903) (0.6358,662) (0.9936,1035) (0.9200,958) (1,1041) (0.9936,1035) (1,1360) (1,1360) (10,1,6) (10,1,6) (5,4,138) (20,1,6) (10,5,199) (50,1,6) (25,4,138) (25,4,138) (250,4,138) (250,4,138) 0.02 (0.0490,0.8587) (0.0490,0.8587) (0.0495,0.4091) (0.0490,0.8587) (0.5000,0.2891) (0.0490,0.8587) (0.0495,0.4091) (0.0495,0.4091) (0.0495,0.4091) (0.0495,0.4091) (0.7819,554) (0.5330,378) (0.9885,670) (0.7819,554) (1,704) (0.9778,693) (1,677) (1,677) (1,677) (1,677)

Proof of (3.2): Based on the general structure of a control chart with Shewhart-type control limits,

and by considering the random variable Y with µ = E NH [Y ] and σ = Var NH (Y ), we get:

The variance term Var NH (Y ) in (A.1) (given by (2.2)) can be simplied by using