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Physical characterization of fault 
rocks within the Opalinus Clay 
formation
Luis Felipe Orellana1,5,6*, Christophe Nussbaum2, Luiz Grafulha3, Pierre Henry4 & 
Marie Violay1

Near-surface disposal of radioactive waste in shales is a promising option to safeguard the population 
and environment. However, natural faults intersecting these geological formations can potentially 
affect the long-term isolation of the repositories. This paper characterizes the physical properties 
and mineralogy of the internal fault core structure intersecting the Opalinus Clay formation, a host 
rock under investigation for nuclear waste storage at the Mont Terri Laboratory (Switzerland). We 
have performed porosity, density, microstructural and mineralogical measurements in different 
sections of the fault, including intact clays, scaly clays and fault gouge. Mercury intrusion porosimetry 
analysis reveal a gouge that has a pore network dominated by nanopores of less than 10 nm, yet a 
high-porosity (21%) and low grain density (2.62 g/cm3) when compared to the intact rock (14.2%, and 
2.69 g/cm3). Thus, a more permeable internal fault core structure with respect to the surrounding rock 
is deduced. Further, we describe the OPA fault gouge as a discrete fault structure having the potential 
to act as a preferential, yet narrow, and localized channel for fluid-flow if compared to the surrounding 
rock. Since the fault gouge is limited to a millimetres-thick structure, we expect the barrier property of 
the geological formation is almost not affected.

Due to the inherent low permeability of shales1,2, they have been recognized in several countries as one of the 
most suitable candidates for the storage of nuclear waste in deep geological repositories3,4. However, it remains 
unclear how faults in shales might weaken the isolation of radioactive contamination from the environment 
and population.

Fault zones are complex, anisotropic, and heterogeneous discontinuities cutting the upper Earth’s crust5. 
Extensive research has shown that their architecture (e.g. lithology, fault zone geometry, spatial variability), 
their mechanics (e.g. fault displacement, fluid-rock interactions), and their fluid-transport properties (e.g. per-
meability, porosity) are inter-related parameters governing the fault deformation processes5–8. For instance, a 
classical yet not general model for faults in crystalline rocks usually illustrates a low-permeability (10–18–10–22 
m2) clay-rich fault gouge core surrounded by a higher-permeability damage zone6,9,10. In this configuration, fault 
cores can then act as a barrier11–13 or as mixed conduit-barrier for fluids14–16. Therefore, faults can exert a strong 
control on the pore pressures and effective stresses, but also the migration of fluids in geological formations7.

This paper investigates the internal fault structure mineralogy, physical properties, and associated fluid-flow 
regime governing faults in shales. As the capacity for fluid transport is related to the connected pore structure 
and faults, the research herein comprises a study of the pore structure of clay-bearing fault-rocks within the 
Opalinus Clay formation, a potential host rock for nuclear waste storage in Switzerland17–19. For this purpose, 
we have conducted mineralogical and microstructural analysis, and we have characterized the porosity, grain 
density and pore structure of more than 60 samples obtained from the internal fault structures of the Main Fault, 
a clay-bearing fault crosscutting the Mont Terri Laboratory. Further, we discuss the flow distribution capabilities 
within the internal fault structures using the laboratory results integrated to empirical models of permeability. 
Finally, we discussed the role of clay-rich fault gouges in the Main Fault as a localized, discontinuous, and discrete 
pathway for fluid flow.
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Geological context.  Situated near St-Ursanne in the canton of Jura, the Mont Terri Laboratory (MTL) is 
the underground research infrastructure devoted to the study of deep-nuclear waste storage repositories in the 
Opalinus Clay (OPA) formation in Switzerland17,18. A detailed description on the local geological setting of the 
Opalinus Clay formation and its surroundings can be found in Nussbaum et al. (2011). The MTL will not be the 
final location for nuclear waste, yet it provides a unique opportunity to foreseen potential hazards.

At a depth of about 300 m, the MTL is intersected by faults of different scales. The major structure is a 1.0 to 
4.2 m thick thrust fault dipping 50°–60° SSE named “Main Fault” (MF)17,18 (Fig. 1a). As part of this study, the 
borehole BFS-2 (Fig. 1b) was cored intersecting part of intact rock (Fig. 1c) and the Main Fault at a depth of 
about ~ 44 m. Within the MF, we recognize two main structural elements: a complex array of scaly clays (Fig. 1d) 
and a discrete fault gouge (Fig. 1e).

The intact OPA is a stiff and overconsolidated shale that shows visible bedding due to clay particle 
alignment20–22. The presence of bedding planes causes an anisotropic hydro-mechanical response of the rock, 
resulting in a strong transversely isotropic behaviour23,24. The intact OPA is characterized by good fracture sealing 
properties19,25,26 and low permeability, i.e., ~ 10–19 to 10–21 m2,27–31. These authors have also shown a consensus 
regarding permeability bedding dependency, where permeability parallel to the bedding ( k// ) is higher than 
perpendicular to the bedding ( k⊥ ), i.e., k// > k⊥ . Previous mineralogical analyses have revealed that intact sam-
ples of OPA have, on average, ~ 55 to 60% of phyllosilicates, ~ 15 to 20% of calcite, and ~ 13 to 17% of quartz32,33.

Depending upon the method (e.g. Mercury Intrusion Porosimeter and SEM-image analysis technique, but 
also sample preparation: oven dry, liquid nitrogen, or wet samples), the porosity of the intact OPA usually ranges 
from ~ 12 to ~ 20%21,34–38. Nanopores, intragranular pores (e.g., framboid pyrites) and clusters of micro-cracks34,39 
constitute the pore structure. The pore structure is preferentially oriented parallel to the bedding planes and can 
be considered as fully connected at the nanometer scale by pore throats smaller than 10 nm34,39,40. Following 

Figure 1.   (a) Schema of the Main Fault intersecting Gallery 08 at the Mont Terri Laboratory. Schematic 
location (not to scale) of the boreholes BFS-2 intersecting the Main Fault at a depth of ~ 44 m from the gallery 
floor. We have modified the figure after Nussbaum et al. (2011) and Kneuker et al. (2017). (b). Borehole BFS-2. 
Lithology and structures of BFS-2 are based on detailed observations of the core. Samples discussed in this study 
are from borehole BFS-2 and are indicated by a star symbol in the figure. Examples of (C) intact (D) scaly clays, 
and (E) fault gouge recovered from borehole BFS-2. The position of the samples C, D, and E are indicated in 
figure B. Figure E from Orellana et al. (2018b).
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the work of Yu et al. (2017), more than 70% of the connected porous network is constituted by pores having 
diameters between 2 and 50 nm with an average pore diameter size of 13 nm.

The scaly clays in the OPA formation are zones of high shear strain characterized by complex arrangements 
of anastomosing slickensides enclosing lentil-shape inclusions of intact rock. While some calcite veins are rec-
ognisable in the scaly clays samples41–45, previous descriptions noted that scaly clays samples presents similar 
bulk mineralogy when compared to the host rock31,43.

The fault gouge in the OPA formation corresponds to a spatially discrete mm-thick gouge (Fig. 2). Earlier 
studies on its microstructure unveil sub-horizontal interconnected shear planes, the comminution of minerals 
(e.g. quartz, calcite and pyrite framboid complexes), sub-rounded grain minerals, and a strong reduction in the 
calcite content41,43,45,46. The absence of calcite has been related to the dissolution of calcite minerals by reactive 
fluids flowing through the fault gouges during tectonic activity47.

Few studies have focused on the transport properties of the MF. Based on the statistical analysis of pore size 
distribution on SEM images, the fault gouge has been described as a very low-porosity fault-rock (< 2%)43,46 
compared to the surrounding intact material. Laboratory gas-permeability tests (argon) indicated that perme-
ability magnitudes are similar in both the Main Fault and the host rock31. Finally, recent in-situ tests have revealed 
contradictory results. Permeability values of the surrounding rock and the Main Fault have been estimated 
around ~ 1× 10−20 m2 to ~ 1× 10−21 m2 with no significant difference48,49. A second study, however, has measured 
two orders of magnitude higher permeability values around ~ 10–18 to 10–19 m2 for the Main Fault with respect 
to the surrounding host rock50. Further, discrepancies between laboratory and field permeability and hydraulic 
conductivity measurements have been reported based on the inherent rock massif heterogeneity, sampling, test-
ing procedure and fluid chemistry31. Thus, much uncertainty still exists about the transport properties of the MF 
and how they might impact the barrier condition of the Opalinus Clay formation.

Methods
At the Mont Terri Laboratory, we selected a group of samples from the borehole BFS-2 (Fig. 1B) to perform 
porosity, permeability, microstructural and mineralogical analysis to assess the pore structure of the OPA fault 
gouge. Determining transport properties in shales has been always challenging. Samples that are not well stored 
or handled can be affected by non-controlled dehydration processes or mechanical stress unloading38,51. To 
minimize uncertainties due to possible artifacts, we have carefully followed standard procedures both on-site 
and in the laboratory37,52. Thus, we have ensured (as much as it was possible) the mechanical integrity and natural 
humidity of the natural samples. On-site treatment of samples includes reducing contact times of the fresh cores 
with the atmosphere, wrapping the cores in PVC bags, and then, vacuum-packing aluminum barrier foils. Once 
drill core samples were at the laboratory, the fresh cores were stored, while vacuum-sealed, in humidity-controlled 
room and carefully unpacked just before testing. Samples were taken from the inner part of the drill cores by 
hand or by dry sawing (when necessary) to avoid desaturation and chemical contamination.

Figure 2.   (a). A fault gouge sample collected from borehole BFS-2 at the Mont Terri Laboratory. (b). OPA Fault 
gouge is characterised as a 1 cm thick and dark layer, surrounded by scale clay texture. Inset (white rectangle) 
corresponds to figure C. Figure B from Orellana et al. (2018b) (c) Thin section image assemblage of the fault 
gouge sample showing the contact between the fault gouge and the surrounding scaly clay texture. As observed 
in the figure, the fault gouge is characterized by a strong reduction in the calcite content and small grain size, 
compared to the surrounding host rock. Image is in cross-polarized light.
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Sample composition and microstructures.  To determine the bulk mineral composition (% weight) of 
our samples, we have carried out X-ray diffraction (XRD) analysis at the University of Lausanne (UNIL). The 
sample preparation has followed the procedure described by Kübler53 and Adatte et al.54. To get insights into the 
porosity microstructure, we have acquired a set of nanoscale images of the OPA fault gouge using a Zeiss Nvi-
sion 40 FIB-SEM microscopy combined with the Zeiss Atlas 555 software at the Scientific Centre of Optical and 
Electron Microscopy (ScopeM) of ETH Zürich. Before imaging, we have dried the sample using a laboratory 
glass vacuum desiccator at room temperature until a constant weight was achieved. Then, we have epoxied the 
sample, and we have cut a cross-section perpendicular to the shear direction. Before FIB-SEM nano-tomography 
imaging process initiates, we have selected a region of interest (ROI) (~ 15 × 15 µm × 15 µm) using the Zeiss Atlas 
software. Then, an initial trench was milled at an accelerating voltage of 30 kV and beam current of 10 nA in the 
front part of the ROI, creating a flat surface perpendicular to the sample surface. In other words, the observed 
surface was then parallel to shear direction and perpendicular to the shear plane. This cross section was then 
polished with the FIB operating at a same accelerating voltage but using a beam current of 1.5 nA. The nanoto-
mography was then performed by progressively sputtering thin layers of material out of the sample (~ 150 nm) 
with the FIB, followed by imaging with the SEM. For more details on the XRD and FIB-SEM methodology, 
please refer to the supporting information.

Physical properties: porosity structure and grain density.  Because of the complexity of determin-
ing porosity in shales, we have used 60 samples (seven fault gouge, eight scaly clays and 45 host rock samples) 
and two different fluid displacement methods on the same group of samples (< 2 cm3 in size): The Helium Pyc-
nometry technique and a fluid displacement method using paraffin immersion. Since the Helium Pycnometry 
technique uses helium gas, the technique allows the measurements of very small pores of less than 0.5 nm in 
diameter. We have not used an oven-dried technique to remove pore water to avoid any additional damage to 
the pore structure of the samples.

We describe here our experimental protocol. First, we have measured the weight of the saturated samples 
Wsat . After, we have measured the weight of the saturated samples immersed in paraffin Wwet . Instead of water, 
we immersed the samples into paraffin thus preventing the mechanical damage of the samples because of swell-
ing due to water absorption. The weight of the paraffin displaced is Wsub = Wsat −Wwet . Considering the value 
of the density of paraffin is equal to ρp = 0.7895 g/cm3, we have calculated the bulk volume of the samples 
Vb = Wsub/ρp.

Secondly, we have placed the samples into a glass vacuum desiccator until a constant weight was achieved. 
Once the weight was stable (~ 7 days), we have measured the dry weight Wd . The average water loss of the sam-
ples was ~ 6%. In the meantime, to obtain the HP porosity ( ∅He) , we have used a Micromeritics Accupyc II 1340 
equipment on the same group of samples to compute the skeleton volume Vskel of each sample. The HP porosity 
( ∅HP) has been calculated as ∅HP = (Vb − Vskel)/Vb.

Later, we have crushed the samples and we have measured their final weight W ′
d (to account for powder losses). 

Then, we have measured the volume of solids Vs and deduced the grain density ρg using the same Micromerit-
ics Accupyc II 1340 apparatus. Finally, we have calculated the values of FD-porosity as ∅FD = (Vb − Vs)/Vb.

We have measured pore throat sizes and the pore size distribution (PSD) by mercury intrusion porosim-
etry (MIP) at the Laboratory of Construction Materials at EPFL. The MIP is a useful technique that allows the 
description of pore throat sizes56–58. However, because it has limitations, such as the lack of direct access to the 
pore volume59, we have restricted our discussion of the MIP results mostly to a qualitative interpretation. Thus, 
we have not computed porosity from this technique. The throat size distribution might not exactly match the 
pore size distribution (PSD), but can be considered as a first-order approximation57,58.

The MIP procedure is as follows. First, we have dehydrated the sample (< 1 cm3) for about 24 h using a freeze-
drying technique60. Then, we have placed the sample in a sample-cell holder who was filled with mercury at 
low pressure (up to 400 kPa) to penetrate the largest pores in the sample. After, we have emplaced the sample 
holder in a high-pressure system where pressures of up to 440 MPa were applied. Both the isostatic pressure P 
and the intruded volume of mercury Vm were recorded continuously. We have processed the MIP data using 
the Washburn equation:

where P is pressure, γ is the surface tension of mercury, and θ the contact angle between the solid and mercury. 
We used γ = 0.486 N/m and θ = 142°60. Assuming non-intersecting cylindrical pores geometries, we were able 
to determine the diameter of the pore throat d.

As indicated before, we carefully handled the samples during collection and testing. However, some possible 
mechanical damages (e.g. clay shrinkage and so micro-cracks) might have occurred since drying processes were 
required when measuring porosity via HP, FD, and MIP techniques35,51.

While permeability testing on intact samples from the host rock and the Main Fault is possible, as shown by 
several authors, accurate permeability measurements of the OPA fault gouge and scaly clays is almost impossible. 
Because of their geometry and mechanical properties41,43, it is not possible to core a well-defined sample of scaly 
clays or fault gouge suitable for testing (Figs. 1, 2).

Results
Samples composition.  From the X-ray diffraction (XRD) measurements (for detailed information on the 
XRD procedure, please refer to the Supplementary Material), we have identified phyllosilicates, quartz, calcite, 
and pyrite as the main constituents of the samples (Table 1). The mineral composition of the Opalinus Clay host 

(1)�P = −
4γ · cos θ

d
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rock samples consists of phyllosilicates (~ 51%), quartz (~ 23%), calcite (~ 14%), and pyrite (~ 1.4%). The group 
phyllosilicates correspond to the sum of illite–smectite, mica, chlorite, and kaolinite.

We observe a higher amount of calcite content (~ 17%) in the scaly clays and the calcite-rich scaly clays near 
the fault gouge (> 17%) (Fig. 3a). Here, we refer to calcite-enriched scaly clay to the scaly clays samples that are 
5% higher in calcite content (thanks to calcite veins) than the most common scaly clay samples which are col-
lected far from the fault gouge.

Based on XRD measurements, we recognize a proportion of calcite minerals significantly smaller (~ 2%) in 
the fault gouge compared to the intact and scaly clay rocks (~ 14–20%). We also observe different phyllosilicates 
including illite–smectite, kaolinite, mica, and chlorite. Among them, kaolinite is the dominant constituent in 
all samples. Further, there is a significantly higher proportion of illite–smectite in the gouge compared with the 
other samples, and a higher compositional variability within the gouge (high standard deviations in the phyl-
losilicate fraction) compared to the other samples.

The microstructure of the fault gouge.  The fault gouge is a black layer of about 3 to 10 mm thickness 
(Figs. 2, 3a). The fault gouge contains clays minerals oriented parallel to shear direction, sub-rounded quartz, 
and isolated pyrites minerals with angular edges (Fig. 3b,c). In agreement with previous observations43, the fault 
gouge is characterized by (i) a strong reduction in the calcite content and small grain size, compared to the sur-
rounding host rock (Fig. 2c) and (ii) an inner structure defined by an S-C fabric in the gouge with dextral shear 
sense (see Supplementary Material, Fig. S3).

The fault gouge is surrounded by calcite-enriched scaly clay and calcite veins as revealed by the mineralogi-
cal composition (Fig. 3a). Here, we refer to calcite-enriched scaly clay to the group of scaly clays samples that 
present a higher calcite content thanks to calcite veins presence (5% higher in average). The top fault gouge-scaly 
boundary (blue circle in Fig. 3a) appears as a wavy or non-regular surface, and the associated calcite-enriched 
scaly clay reveals a complex pattern as suggested by the variable orientation of the calcite minerals. In contrast, 
the bottom fault gouge-scaly boundary is fairly regular or flat (green circle in Fig. 3a). The bottom scaly clays that 
appear aligned parallel to the fault gouge are dominated by a laminar (sheet-like) flow, as highlighted by the ori-
entation of calcite minerals. Such type of alignment can be also observed or enhance due to fault-perpendicular 
compression mechanisms.

Following the FIB-SEM observations, we recognize an apparent low-porosity matrix, with nano and micro-
pores with a radius of about < 100 nm and lengths < 3 µm, respectively, that appear aligned parallel to the foliation 
defined by the phyllosilicates and are connected in 3D (more images in Supplementary Material). While nanopo-
res are of rounded and sub-rounded shapes of typically < 30 nm (Fig. 3b,c), micropores show thin, elongated and 
sub-angular shapes and they are connected in 3D by pore throats that follow the foliation defined by the phyl-
losilicates (Fig. 3d,f). Also, we observe intragranular nanopores in framboid pyrites (Fig. 3e) and intergranular 
pores of sub-rounded shapes (diameter < 30 nm) forming a pore-grain bridge complex i.e., nanopores possibly 
connected by pore throats situated near a calcite grain boundary (Fig. 3g).

Porosity of intact rock and the internal structures of the OPA fault core.  The HP-porosity 
(Fig. 4a, Table 2) is 14.2 ± 1.1% (average ± standard deviation) for intact samples, 13.4 ± 1.2% for scaly clays and 
21.4 ± 1.5% for the fault gouge. Similarly, FD-porosity (Fig. 4a, Table 2) shows values of 13.9 ± 1.1% for intact, 
12.7 ± 0.7% for scaly clays, and 20.9 ± 1.2% for fault gouge samples. The grain density results (Fig. 4b, Table 3) 
indicate values of 2.69 ± 0.02 g/cm3 for the intact, 2.69 ± 0.01 g/cm3 for scaly clays, and 2.62 ± 0.05 g/cm3 for the 
fault gouge samples. For more details, please refer to the supporting information.

The MIP measurements indicate an average pore throat diameter of 15.5 ± 1.1 nm for intact samples, 
13.4 ± 0.5 nm for scaly clays and 12.6 ± 0.4 nm for fault gouge (Fig. 4c). The PSD curves show that dominant 
pore throat size ranges are between ~ 4 and ~ 20 nm for all the tested samples (Fig. 4d). However, the PSD curves 
also show that pore throats of less than ~ 10 nm exert an important control on the pore structure of fault gouges. 

Table 1.   Bulk (% weight) mineralogical composition of Opalinus Clay samples. We present results as X ± S, 
where X is the mean and S the standard deviation; “n” corresponds to the number of samples.

Mineralogy (wt%) Fault gouge (n = 4) Scaly Clays (n = 3) Ca-rich veins Scaly clays (n = 4) Intact (n = 6)

Quartz 26.5 ± 1.4 20.6 ± 0.9 22.7 ± 1.7 23.0 ± 0.9

Feldspath-K 3.3 ± 0.2 2.2 ± 0.2 2.9 ± 0.4 2.3 ± 0.4

Plagioclase-Na 3.0 ± 0.7 3.8 ± 2.5 2.5 ± 0.5 2.3 ± 0.2

Calcite 2.1 ± 0.4 17.5 ± 4.6 19.9 ± 3.0 14.2 ± 1.3

Dolomite 0.7 ± 0.4 1.4 ± 0.4 0.0 ± 0.0 1.3 ± 0.3

Pyrite 2.5 ± 0.3 1.4 ± 0.5 1.1 ± 0.3 1.4 ± 0.3

Goethite 1.4 ± 1.4 1.4 ± 1.0 1.8 ± 1.1 2.1 ± 0.3

Illite–Smectite 11.7 ± 5.5 3.0 ± 0.9 2.7 ± 0.6 4.0 ± 2.3

Mica 11.8 ± 4.9 8.8 ± 1.4 7.0 ± 1.3 10.3 ± 3.6

Chlorite 9.9 ± 4.3 9.3 ± 1.0 10.5 ± 3.3 8.5 ± 2.4

Kaolinite 23.4 ± 6.2 28.2 ± 2.1 26.9 ± 1.2 28.0 ± 2.9

Others 3.6 2.4 1.9 2.7
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Figure 3.   Microstructures of the fault gouge. (a) A cm-scale photograph of the fault gouge (black) recovered 
from borehole BFS-2. The thickness of the gouge varies from 3 to 10 mm, and it is surrounded by calcite-
enriched scaly clays. On the right, three graphs showing the different mineralogical composition of the gouge 
and its surroundings. (b) Selected FIB-SEM image of the fault gouge showing micropores. White boxes show 
the position of figures (d) and (g). The image also shows rounded quartz minerals, isolated pyrite grains 
and rare presence of calcite. (c) Selected FIB-SEM image of the fault gouge showing sub-rounded and sub-
angular nanopores aligned in the direction of shearing. Isolated rounded pores are also present (d) Thin and 
elongated micropores connected in 3D by pore throats. (e) SEM images of framboid pyrite with porosity in 
the single pyrite grains. (f) FIB-SEM image of angular or jagged micropores connected in 3D by pore throats. 
(g) Nanopores possibly connected by pore throats situated near a calcite grain boundary i.e., pore-grain bridge 
complex. Images (E) and (F) were obtained from other sections of the sample.
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Figure 4.   (a) HP and FD porosity. (b) grain density. (c) MIP pore throat average sizes, and (d) PSD 
measurements of the intact and fault-related rocks of borehole BFS2. The MF is highlighted in red in (b) and (c). 
Values in (c) correspond to pore throat average sizes measured in each MIP test.

Table 2.   Porosity results of intact, scaly clay and fault gouge Opalinus Clay samples.

Measurement
Helium pycnometer 
porosity ∅HP (%) FD—porosity ∅FD (%)

Sample Intact Gouge Scaly Intact Gouge Scaly

Mean 14.2% 21.4% 13.4% 13.9% 20.9% 12.7%

Max 15.4% 23.3% 15.5% 15.0% 22.3% 14.0%

Min 8.9% 19.2% 11.9% 9.5% 18.9% 11.9%

St. Deviation 1.1% 1.5% 1.2% 1.1% 1.2% 0.7%
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In contrast, the dominant spectrum of pore throat diameter is higher and around ~ 12 and ~ 20 nm for scaly 
clays and intact rocks, respectively.

Discussion
Comparison of results with previous studies.  Previous studies have mostly focused on the microstruc-
tural characterization, and the mechanical and transport properties of intact samples cored from the host rock 
of OPA formation21,22,61,62. Conversely, less attention has been paid to its faulted zones and the role of the internal 
fault core structure17,31,43,45,47–49,63–65. Thus, in this section, we discuss our results by comparing them with earlier 
studies of intact samples.

Sample composition.  For the intact samples, our results indicate a dominant proportion of phyllosilicates 
(~ 51%) followed by quartz (~23%) and calcite (~14%) as main constitutive minerals (Table 1). These results 
are consistent with data obtained in earlier studies32,33. Our XRD measurements show (1) an important reduc-
tion in calcite (~ 2%) in the fault gouge with respect to intact OPA (~14%), and (2) calcite-enrichment of scaly 
clays (~22–18%) due to calcite veins in the immediate surroundings of the fault gouge. Previous microstructural 
observations17,43,46 have qualitatively described a similar lack of calcite within the mineralogical composition of 
the fault gouge.

Porosity and grain density.  We have collected and tested 60 OPA samples to ensure the reproducibility of our 
porosity (Table  2) and grain density (Table  3) measurements at different positions from the borehole BFS-2 
(Fig. 1b), including 45 samples of intact OPA, 8 of scaly clays and 7 of fault gouges. Prior studies have noted 
the importance of the internal fault core in the Main Fault and their implications to nuclear waste storage and 
caprock integrity. Yet, a main disadvantage is the absence or lack of samples from the Main Fault due to their 
sampling costs. peculiarity, and elusiveness. While scaly clays and fault gouge samples of the OPA formation 
(Figs. 1, 2) in this study are not numerous compared to intact OPA samples, this work presents a unique dataset 
of their mineralogical and physical properties.

For intact samples, our porosity data agree with those of various authors who have reported values of around 
12 to 15%22,30,34–36,39,40. For scaly clays, our porosity results appear consistent with previous ones based on the 
SEM-image analysis of zones near slickensides surfaces (ϕ ~ 19%)43. For the fault gouges, values of porosity less 
than 2% were recorded from SEM-based images43,44,46. In our study, the fault gouge average porosity of ~ 21% was 
measured using fluid displacements methods. These discrepancies could be related to the high spatial variability 
of the microstructural and transport properties within the whole formation, but also to different technical capa-
bilities. Indeed Fig. 3c shows that an important portion of the pores throat sizes is below 10 nm, thus necessarily 
being out of the measurement resolution space of the SEM-image technique46,66.

Finally, small pore throat diameters of about ~ 15 nm and a grain density of 2.69 g/cm3 also characterize the 
intact Opalinus Clay samples. Similarly, earlier results have reported comparable values of ~ 13 nm and 2.74 g/
cm3 for pore throat diameter and grain density, respectively30.

Mineralogical composition of the OPA fault gouge.  A closer look at the fault gouge and the fault 
gouge—scaly clay boundary (Fig. 3a) reveals an assorted distribution of calcite content, calcite grain sizes, and 
shapes. As described before, the OPA fault gouge microstructure displays a notorious absence of calcite (Table 1 
and Fig. 3a), which is consistent with the reduction in grain density (Fig. 4b). In Fig. 3a, the bottom fault gouge-
scaly clay boundary predominantly presents elongated calcite veins and small calcite minerals mostly oriented 
parallel to the fault gouge. Further, the calcite content of the bottom fault gouge-scaly clay is lower than in the top 
fault gouge-scaly clay boundary (17.5 vs. 22.4%) but higher than in the fault gouge (~ 2%) and the intact samples 
(~ 14%). On the other hand, the top scaly-gouge boundary evidences a higher concentration of calcite grains and 
calcite veins distributed in an unclear spatial pattern (Fig. 3a).

An explanation for the absence of calcite and the inhomogeneous distribution of calcite grains and veins in the 
surroundings of the fault gouge is that carbonate-reactive fluids have played an important role at different stages 
of the tectonic activity of the Main Fault as explained by Clauer et al. (2017). As calcite minerals can deform by 
fracturing at low-grade conditions67 (i.e., increasing the area of contact), reactive fluids flowing throughout the 
fault gouge could have easily dissolved and transported the comminuted calcite outside the fault gouge limits, 
where they recrystallized. Also, the fact that calcite crystallized in the surroundings of the fault gouge can be 
evidence that, at the time of calcite precipitation, the porosity in the fault gouge surroundings was higher.

Table 3.   Grain density results of intact, scaly clay and fault gouge Opalinus Clay samples.

Measurement Grain density [g/cm3]

Sample Intact Gouge Scaly

Mean 2.69 2.62 2.69

Max 2.74 2.72 2.72

Min 2.60 2.57 2.68

St. Deviation 0.02 0.05 0.01
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This process can only occur if the fault gouge was more permeable, thus acting as a preferential path for 
fluid flow. In our study, we have shown that the fault gouge has a relatively higher porosity with respect to the 
surrounding rock mass (21% vs. 14%), thus pairing the field evidence and supporting this hypothesis. Because 
water is present, pressure solution may have also played an important deformation role67. However, it is difficult 
to differentiate its relative contribution to the total calcite dissolution process.

New insights into the Main Fault‑related fluid‑flow structure.  Porosity and permeability are related 
transport parameters that are vastly used to characterize the capacity for fluids circulation in fault zones. Unfor-
tunately, we have strong limitations to collect and directly test permeability on OPA fault gouges and scaly clays 
samples. While direct measurements are the most accurate source of information, measuring the permeability 
of the OPA fault gouge and scaly clays is almost impossible due to their geometry, mechanical properties, and 
current testing apparatus.

Following the previous discussion, in this section, we attempt to provide a conceptual model of the Main 
Fault-related fluid-flow based mainly on our porosity data, porosity topology, and different permeability models 
following the approaches of different authors. There are no obvious nor direct porosity–permeability relationships 
that can allow us to estimate the permeability of the mentioned fault rocks. Yet, their fluid permeability might 
be assessed with some models we describe below. By doing so, these models allow us to provide new insights 
into the fluid flow structure of the Main Fault at MTL, and in the role of the internal fault core structure of the 
Opalinus Clay formation. To evaluate the accuracy of these models, we first compared them with data from 
permeability tests we have performed on intact OPA samples cored parallel to bedding. These tests have shown 
permeability decreases from ~ 3 × 10–19 to ~ 4 × 10–20 m2 when the effective pressure increases from 2 to 12 MPa 
respectively (see Supplementary Material for details, Figs. S1, S2). We focus on the capacity for fluid flow paral-
lel to the direction of shearing since samples perpendicular to the shear direction have lower permeability, as 
shown by earlier works27,29,31.

The role of the internal fault core based on tube and crack permeability models.  We follow Guéguen & Dienes68 
and Guéguen & Palciauskas69 method for estimating permeability. Thus, we simplify the permeability ( k ) estima-
tion by assuming that the pore network of the OPA fault rocks is either characterized by a network of intercon-
nected crack-like pores (i.e., interconnect sheets) or interconnected tube- and sphere-like pores. These classical 
models represent two end members of possible pore structures.

If we assume that the porosity can be represented by a homogenous and isotropic distribution of tubes, then 
its permeability ktubes can be estimated as ktubes ∼= r2

8
∅ . where r is the tube radii and ∅ is the porosity. Follow-

ing the MIP and porosity results (Table 2), we use the average values of porosity and throat size to estimate the 
permeability of each group of samples. Thus, the tube model provides values of permeability of ∼ 1× 10−18 m2 
for the intact rock, ∼ 7× 10−19 m2 for the scaly clays, and ∼ 1× 10−18 m2 for the fault gouge. The measured 
permeability for intact OPA is in the order of ∼ 2.5× 10−19 m2 at 5 MPa confining stress, i.e., one order of mag-
nitude lower than the estimated value from the tube/sphere model. The latter suggests that the characteristic 
pore size for fluid transport should be smaller than 15.5 nm to match modelled and estimated values of perme-
ability. Indeed, it requires pore diameters of less than 7 nm. Further, it appears least consistent with the dominant 
spectrum of pore throat diameter of ~ 12 and ~ 20 nm (Fig. 4d) and with the earlier description of a connected 
porous network of mesoporous (13 nm mean size) within the intact OPA30. However, we have shown that the 
fault gouge contains a large portion of pore throats of less than 10 nm (Fig. 4d) and nanopores of sub-rounded 
shapes (Fig. 3) matching some of the geometrical characteristics of this pore network model.

Alternatively, if the porosity is the result of straight interconnected crack-like pores, its permeability kcracks 
can be estimated by kcracks ∼= w2

3
∅ , where 2w corresponds to the aperture of the cracks. We assume 2w to be 

equivalent to pore throat size entry. Using the average value of porosity and pore throats sizes for each type of 
rock, the crack model provides values of permeability of ∼ 3× 10−20 for the intact rock, ∼ 2× 10−20 m2 for 
the scaly clays, and ∼ 3× 10−20 m2 for the fault gouge. In this scenario, calculated permeability is one order of 
magnitude lower than measured permeability ( ∼ 1× 10−19 m2) at 5 MPa confining stress. The last point sug-
gests a control by interconnected sheet or crack-like pores70,71, which in turn is consistent with pores more or less 
oriented along clay particles interfaces in the intact rock30,34,39,40. The preferential orientation of the pore network, 
including sheet-like pores is also observed in the FIB-SEM images of fault gouge (Fig. 3). Thus, if we extrapolate 
the permeability dependence of the intact rock to the fault gouge, we might infer that the pore structure of the 
fault gouge responds to effective pressure variations in the same way as cracklike pore networks.

Obviously, none of these two end-member models can represent the complex nature of porous shales. Indeed, 
we have seen that none of these two models can explain the permeability of the intact rock by itself. Thus, when 
characterizing the pore network of the intact and the OPA fault rocks, we should expect a combination of both, 
where a heterogeneous network of crack-like and tubes/sphere like pores coexist.

Estimation of permeability based on hydraulic radius models.  We have tested the classical semi-empirical rela-
tionship of Kozeny–Cartman (KC)72,73. The KC equation is based on a geometrical approach where the pores are 
modelled as a group of capillary tubes. Permeability from the KC can be calculated as k = d

2∅3

180(1−∅2)
 where d 

corresponds to the mean pore diameter. The KC model predicts values of permeability of ∼ 4× 10−21 m2 for the 
intact rock, ∼ 2× 10−21 m2 for the scaly clays, and ∼ 9× 10−21 m2 for the fault gouge. These values are 2 orders 
of magnitudes smaller than the permeability values measured on intact OPA presented (see Supplementary 
Material for details, Figs. S1, S2).
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Estimation of permeability based on empirical models.  Finally, we have used two empirical relationships, one of 
them constructed for shales that include the clay content as a parameter, and the second specifically for intact 
OPA. Based on a large dataset of shale properties. Yang and Aplin (2010) have introduced a permeability–poros-
ity ( ∅ ) of the form ln(k[) = a(δ)+ b(δ) · ∅

1−∅
+ c(δ) ·

(

∅
1−∅

)0.5

 , where a , b , and c are constants that depend on 
the clay content (for details, see Supplementary material). The Yang and Aplin (2010) model predicts values of 
permeability of ∼ 9× 10−21 m2 for the intact rock, ∼ 8× 10−21 m2 for the scaly clays, and ∼ 3× 10−20 m2 for 
the fault gouge. To compute these values, we have used a clay content of 51% for intact rock, 49% for scaly clays, 
and 57% for fault gouge samples.

The second empirical porosity–permeability relationship is a laboratory-based model for intact OPA in the 
form k = 1.05× 10−17 · ∅3

(1−∅)2
74. The Muñoz et al. (2009) model predicts values of permeability of ∼ 3× 10−20 

m2 for the intact rock, ∼ 2× 10−20 m2 for the scaly clays, and ∼ 1× 10−19 m2 for the fault gouge. These values 
are not consistent with the permeability measured on intact OPA. Other empirical relationships might be found 
in the literature; our objective is not testing them all but rather illustrate different approaches.

Implications for fluid flow in OPA fault zones.  We have presented empirical74,75, statistical (tubes/spheres and 
cracks, from Guéguen & Palciauskas (1994)). and hydraulic72,73 permeability models to account for a hypotheti-
cal model of the Main Fault fluid flow. A summary of the results is presented in Table 4.

Obtaining an expression that establishes an accurate porosity–permeability relationship for shales is in general 
difficult. Moreover, this aim will be ambitious for fault-related clay-rich rocks. Although previous models can be 
considered simplistic and optimistic, they provide useful insights into the fluid flow distribution and locations of 
preferential pathways in the Main Fault. The tube and crack models indicate a null increase in the fluid perme-
ability of the fault gouge with respect to the intact rock. Yet they reveal that the scaly clays are the less permeable 
among the three groups of samples. The remaining models suggest an increase of up to 3 times the magnitude 
of permeability of the OPA fault gouge relative to scaly clay and intact material. This permeability increase is 
more pronounced when the porosity–permeability model is a function of either porosity74 or porosity and clay 
content75. The permeability increase is smaller in the KC equation compared to these two empirical models, as 
it depends only on the diameter of the pores72,73.

Based on experimental data, different permeability models lead to different scenarios of fluid permeabil-
ity. While some of them suggest there is no significant difference between permeabilities of the different fault 
compartments (KC equation, crack-like pores), none of these models leads to a fault gouge acting as an active 
barrier. In addition, the microstructural evidence of dissolution and transport of calcite around the fault gouge, 
as shown here and by other authors43,46,47, favours the scenario of the fault gouge being more permeable than 
the surrounding host rock. Despite the virtual permeable role of the fault gouge, both the modelled and experi-
mental permeability values (~ 10–18 to ~  × 10–20 m2) suggests the OPA formation maintain its barrier condition.

Finally, three notes of caution should be considered. The first is related to the scaly clay samples used in this 
study. The tested scaly clay samples are less than 2 cm3 in size, thus they might not represent the complexities of 
long fractures within scaly clay fabrics as observed in the Main Fault, and therefore some larger-scale features 
are possibly missing42. Also, when the content of smectite or mixed layers of illite/smectite is high enough, self-
sealing mechanisms such as clay-swelling acting on fractures can be argued as an effective mechanism against a 
more favorable conduit pathway for fluid flow19,76,77. Apparently, this is unclear in our samples. A second point 
to consider is that all conclusions concerning permeabilities in the fault compartments are mostly based on the 
estimates derived from different porosity–permeability models. Since they are not direct measurements, they 
should be considered carefully. However, it is important to notice that measuring the permeability of the OPA 
fault gouge and scaly clays is extremely complicated due to their geometry, mechanical properties, and current 
testing apparatus. Finally, water-bound porosity can be significant and can alter the relationship between poros-
ity and permeability in shales. To test this hypothesis, cation exchange capacity (CEC, i.e., to test the capacity 
to retain cations) should be performed on OPA fault gouge samples. A detailed analysis of the contribution of 
water-bound porosity to the total porosity of the samples is out of the scope of this paper. Despite some limita-
tions, this study provides new insights into the permeability structure of the Main Fault and related fault com-
partments at the Mont Terri Laboratory.

Following our results, a Main Fault fluid transport schema based on a higher-porosity higher-permeability 
fault gouge is in general agreement with previous studies of fault gouge samples collected along natural clay-
bearing faults78,79. However, our study differs from those typically reported in classical models referring to 
clay-rich low-permeability fault cores7,9,10. If this interpretation is correct, the relative higher permeability and 

Table 4.   Mean experimental porosity (%) and modeled permeability (m2) of intact, scaly clay, and fault gouge 
samples. Mean values correspond to the average of all experimental data for each sample.

Sample Mean ϕ (%)

Modeled permeability (m2)

Tubes Crack-like pores Kozeny–Cartman (1927) Muñoz et al. (2009) Yang and Aplin (2010)

Intact 14.1 1E−18 3E−20 4E−21 3E−20 9E−21

Scaly clay 13.0 7E−19 2E−20 2E−21 2E−20 8E−21

Gouge 21.2 1E−18 3E−20 9E−21 1E−19 2E−20
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porosity of the OPA fault gouge compared to its rock mass surroundings, is consistent with a localized permeable 
conduit structure6. More testing is needed to evaluate this interpretation.

Conclusions
The Opalinus Clay formation is a suitable deep geological repository as a potential host rock for nuclear waste 
storage in Switzerland. Because of the low permeability of intact shales, hydrological concerns in the context 
of nuclear waste storage have been focused on disturbances caused by mechanical and thermal effects during 
excavation and operation, respectively. As we have shown, faults, however, impose new challenges on the long-
term operation of these repositories. Through microstructural and pore network characterization, we present an 
analysis of the hydrological behavior of the clay-rich fault gouge within a major fault system (MF) intersecting 
the Opalinus Clay (OPA) formation at the Mont Terri Laboratory (MTL), a host-rock candidate for deep nuclear 
waste storage in Switzerland.

Based on laboratory evidence, we have shown (1) the absence of calcite within the fault gouge suggesting that 
calcite might have been dissolved by a reactive fluid flowing throughout the fault gouge, (2) a re-crystallization 
of calcite veins and blocky grains in the surrounding of the calcite-enriched scaly clays due to precipitation of 
the dissolved calcite in the vicinity, (3) a high porous fault gouge (~ 21%) corresponding to a low grain den-
sity(2.62 ± 0.05 g/cm3) when compared to the intact rock (~ 14% of porosity and 2.69 ± 0.02 g/cm3 of grain den-
sity). In addition, based on semiempirical porosity–permeability relationships, we suggest a non-homogenous 
distribution of fluid-flow in the Main Fault as a consequence of the architecture and the related spatial variability 
of the physical properties. Thus, we infer, in agreement with the field and laboratory observations, that the OPA 
fault gouge might act as a discrete internal fault structure having the potential to act as preferential path for fluid 
flow. However, if this occurs, it will be only limited to a narrow (millimetres-thick), discontinuous and tortuous 
fluid-channel.

Because the OPA formation is a potential host rock for nuclear waste storage, the implication of the fluid-flow 
governing behavior is of critical importance for the society and the environment. The Opalinus Clay formation 
at the MTL is not meant to be the final repository. However, if fluid-flow of radionuclides occurs within a fault 
system array in the OPA formation, it will take place following an uneven contribution, between a more perme-
able but limited in volume, narrow and spatially discrete fault gouge, versus a more extensive low permeability 
and self-sealing argillaceous host rock. Thus, we expect the favorable barrier and hydrological properties of the 
Opalinus Clay formation is not affected, and the integrity of the nuclear waste repository safeguarded.
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