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1. Introduction
The Amazon rainforest is currently suffering two major impacts: climate change and deforestation, with land use 
change (LUC) in Brazil both driving climate change at local and regional scales and being susceptible to global 
climate changes (Lapola et  al.,  2014). LUC extended massively from 1990 to 2011 pushed by governmental 
infrastructure investment programs, such as road expansion (D. S. Alves, 2002). Deforestation near roads is a 
recurring pattern, and D. S. Alves (2002) estimated that around 90% of deforestation from 1991 to 1997 was 
at a distance of up to 100 km from main roads built in the framework of government development programs. 
Additional factors stimulated agricultural expansion, such as energy supply facilities and low land prices (Lapola 
et al., 2014; Leite et al., 2011; Leite-Filho et al., 2019). Pastures and cropland areas increased from 26,115 km 2 in 
1998 to 56,138 km 2 in 2012 (Dias et al., 2016; Leite-Filho et al., 2019). Most of the deforested area (60%–80%) is 
used for pastures for livestock (Lapola et al., 2014), although the sequence of land uses following deforestation is 
spatially heterogeneous (Muller-Hansen et al., 2017). Concerted action of new law enforcement aimed at combat-
ing illegal deforestation, reducing the use of fire in the deforestation process, and increasing the size of protected 
areas, with the contribution of soybean and cattle moratoria have greatly reduced annual deforestation between 
2011 and 2015 (INPE-Prodes, 2020; Nepstad et al., 2014). Moreover, it led to the policy incentive to achieve 
zero deforestation by 2020 (Aguiar et al., 2016; Azevedo et al., 2017). Beyond the use of fire for deforestation, 
the analysis of anthropogenic forest disturbances including selective logging, reveals an urgent need for policy 
interventions that go beyond maintaining the forest cover (Barlow et al., 2016).

Abstract Recent publications indicate that the Amazon may be acting more as a carbon source than a 
sink in some regions. Moreover, the Amazon is a source of moisture for other regions in the continent, and 
deforestation over the years may be reducing this function. In this work, we analyze the impacts of elevated 
CO2 (eCO2) and land use change (LUC) on gross primary productivity (GPP) and evaporation in the southern 
Amazon (7°S 14°S, 66°W 51°W), which suffered strong anthropogenic influence in the period of 1981‒2010. 
We ran four dynamic global vegetation models (DGVMs), isolating historical CO2, constant CO2, LUC, 
and potential natural vegetation scenarios with three climate variable data sets: precipitation, temperature, 
and shortwave radiation. We compared the outputs to five “observational” data sets obtained through eddy 
covariance, remote sensing, meteorological measurements, and machine learning. The results indicate that 
eCO2 may have offset deforestation, with GPP increasing by ∼13.5% and 9.3% (dry and rainy seasons, 
respectively). After isolating the LUC effect, a reduction in evaporation of ∼4% and ∼1.2% (dry and rainy 
seasons, respectively) was observed. The analysis of forcings in subregions under strong anthropogenic impact 
revealed a reduction in precipitation of ∼15 and 30 mm, and a temperature rise of 1°C and 0.6°C (dry and rainy 
seasons, respectively). Differences in the implementation of plant physiology and leaf area index in the DGVMs 
introduced some uncertainties in the interpretation of the results. Nevertheless, we consider that it was an 
important exercise given the relevance.
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•  Uncertainties were found in the 
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Deforestation and its impacts on climate have been studied for some time and in general, researchers agree that 
temperature is rising and evaporation is decreasing (Llopart et al., 2018; Nobre et al., 1991; Sampaio et al., 2007). 
In this manuscript, we use the term evaporation with the commonly accepted meaning of evapotranspiration, 
following Miralles et al. (2020) who argue that it is more appropriate to describe evaporation as the sum of three 
processes: transpiration which is the evaporation of water from vegetation that occurs through stomata, loss by 
interception which is the evaporation of rainwater intercepted by the canopy, and evaporation of soil water.

Evaporation in the Amazon has strong climate implications with moisture contributing 25%–70% of the precipi-
tation in southeastern South America (Dirmeyer et al., 2009; Sörensson & Ruscica, 2018; van der Ent et al., 2010; 
Zemp et al., 2014). Still, evaporation over the Amazon region at the end of the dry season contributes to trig-
gering the onset of the South American Monsoon System, which suggests the existence of intrinsic interactions 
between tropical forest phenology and climate (Li & Fu, 2004; Sörensson & Ruscia, 2018; Wu et al., 2016). 
Changes in the land surface may also affect the cycles of energy, water, carbon, trace gases, and nutrients in the 
region (Avissar et al., 2002; Barlow et al., 2007; Cardille & Foley, 2003; Silva Dias et al., 2002; C. Von Randow 
et al., 2004; R. C. S. Von Randow et al., 2020). That interaction was a key research theme of the Large-Scale 
Amazon Biosphere-Atmosphere Experiment (LBA). Other LUC aspects, such as logging and small-scale distur-
bances are also responsible for biodiversity loss in the Amazon region, as they contribute to further degrade 
tropical forests (Barlow et al., 2016, 2018; Intergovernmental Panel on Climate Change, 2019).

Furthermore, the Amazon rainforest is an important sink and reservoir for carbon (Brienen et  al., 2015; Pan 
et al., 2011). Estimates based on forest inventories in the Amazon basin showed that undisturbed tropical forests 
act as a strong carbon sink with an estimated annual uptake of 0.42–0.65 PgCyr −1 for 1990–2007, around 25% of 
the residual terrestrial carbon sink (Brienen et al., 2015). This sink is probably driven by increasing atmospheric 
CO2 via the downstream effects of increased photosynthesis (fertilization) and intrinsic water use efficiency 
(WUE; Fleischer et al., 2019; Ueyama et al., 2020; Walker et al., 2020). The sink is particularly pronounced in 
the simulations of the response of tropical forests in dynamic vegetation models (Fleischer et al., 2019) and has 
substantial uncertainties because there is no empirical evidence for the CO2 response in the tropics (e.g., Norby 
et al., 2015). On the other hand, using various satellite and ground-based data sets for the period 1982–2015, 
Wang et al. (2020) showed that global carbon sequestration decreased in most land regions of the globe. This 
decrease was well correlated with changes in nutrient concentrations in vegetation (N and P) and the availability 
of water in the soil. Gatti et al. (2021) observed that regions under greater anthropogenic influence, such as the 
southeast of the Amazon, have acted more as a carbon source than a sink. Another contribution to uncertainty is 
that models have weaknesses in representing the relationships between net productivity and biomass (Dolman & 
Janssen, 2018). In addition, carbon inventory observational data point toward a decline in carbon uptake in the 
Amazon, which might reach zero by 2035 (Hubau et al., 2020). The drivers for this decline might be increased 
mortality of biomass due to rising temperatures and drought stress, but also due to a faster turnover of biomass 
driven by increased CO2 concentration (Hubau et al., 2020). Losing the Amazon carbon sink by deforestation 
and climate change would significantly intensify the climate crisis, as mature forests across the entire Amazon 
region have contributed significantly to mitigating climate change in the past decades (Phillips & Roel, 2017) 
photosynthetic process.

In our study, we compare and assess gross primary productivity (GPP) and evaporation modeled with four Dynamic 
Global Vegetation Models (INLAND, LPJ-GUESS, LPJmL4, and ORCHIDEE) using FLUXCOM data obtained 
from flux towers, remote sensing, and meteorological observations (Baldocchi et al., 2001; Jung et al., 2020), 
light use efficiency (LUE; Madani & Parazoo, 2020), Global Land Evaporation Amsterdam Model1,2 (GLEAM; 
Czikowsky & Fitzjarrald, 2009; Miralles et al., 2010), and TerraClimate—a data set of climate and water balance 
variables for global land surfaces. To examine the uncertainty in historical climate forcing data sets, we used three 
data sets as climate forcings (GLDAS 2.0, GSWP3, and WATCH + WFDEI) in the DGVMs. We also used these 
climate forcing sets as “observed data” to analyze changes in temperature and precipitation in the study region.

We seek here to understand and evaluate the impacts of LUC and increasing atmospheric CO2 concentration on 
evaporation and carbon assimilation in the forests of the Amazon biome during 1981‒2010. A specific objective 
is to evaluate which factor, LUC or eCO2 affects (negatively or positively) the productivity (GPP) of the Amazon 
forests the most. In summary, we seek to study the impacts of increased atmospheric CO2 and deforestation on 
GPP and evaporation in the Amazon knowing that this biome plays an important role in the climate of the region 
and the planet.
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2. Data and Methods
2.1. Study Region and Definition of Seasons

Although the simulations were done for the whole of South America, we 
delimited our study area in the southern Amazon between 7°S and 14°S of 
latitude and 66°W and 51°W of longitude (Figure 1), as this region has been 
one of the most affected by deforestation and LUC in the past 30 yr (Kala-
mandeen et  al.,  2018; Leite-Filho et  al.,  2019). The region comprises the 
states of Rondônia, southern Amazonia, northern Mato Grosso, and southern 
Pará in Brazil; and the northern part of Bolivia.

Much of the Bolivian territory included in our study consists of wetlands. 
However, significant land cover change has taken place in the north of that 
country near the border with Brazil (Tejada et al., 2016). Indeed, extensive 
areas were deforested for soybean cultivation and cattle ranching in the 
Bolivian Amazon in the mid-1980s (Kileen et al., 2007; Tejada et al., 2016).

Because of its large area, the Amazon basin has different climate regimes. 
Thus, we adopted the methodology applied by Alves et  al. (2013) for the 
south of our study region. We defined the rainy season to include the months 
with the greatest precipitation (January, February, March, and April—JFMA) 
and the dry season, the months of lower precipitation (June, July, August, and 
September—JJAS).

2.2. Models, Data Set, and Conditions of Simulations

We used four models that are classified as dynamic global vegetation 
models (DGVMs; Prentice et  al.,  2007; Rezende et  al.,  2015): INLAND 

(Tourigny, 2014); LPJmL4 (Schaphoff et al., 2018), LPJ-GUESS (Hickler et al., 2012; B. Smith et al., 2001), 
and ORCHIDEE (Krinner et al., 2005). DGVMs are powerful tools to project past, present, and future vegetation 
patterns and associated biogeochemical cycles in global scale studies (Quillet et al., 2009; Scheiter et al., 2013). 
DGVMs simulate surface processes such as the transfer of energy, water, and momentum between the land 
surface and the atmosphere, as well as biogeochemical cycles, carbon assimilation by vegetation, phenology, and 
vegetation growth and mortality. This type of model is becoming increasingly able to simulate land use changes 
(Prentice et al., 2007; Rezende et al., 2015).

2.2.1. Climate Forcing Data Sets and Simulation Conditions

Forcing data from the following sources were used: GLDAS 2.0—Global Land Data Assimilation System 
(GLDAS; https://ldas.gsfc.nasa.gov/gldas; Rodel et al., 2004); GSWP3—Global Soil Wetness Project Phase 3 
(GSWP3; http://hydro.iis.u-tokyo.ac.jp/GSWP3/; Kim, 2017); and WATCH + WFDEI (https://www.isimip.org/
gettingstarted/details/5/; Weedon et  al.,  2014,  2011). All data sets have daily temporal resolution and spatial 
resolution of 0.5° × 0.5°.

We conducted two sets of simulation experiments with different values of CO2: (a) increasing CO2 from the 
pre-industrial period to 2010 named historical CO2 (hist CO2); (b) constant concentration of 278 ppm of (pre-in-
dustrial) atmospheric CO2 named constant CO2 (const CO2). We ran both CO2 experiments under LUC and 
potential natural vegetation (PNV) conditions, respectively (Chiarucci et al., 2010; Leipprand & Gerten, 2006). 
In the PNV experiments, vegetation dynamics are the result of climate and soil conditions without anthropogenic 
influence. All combinations of CO2 and land cover change resulted in four sets of simulation experiments per 
climate input: 1. LUC historical CO2; 2. LUC constant CO2; 3. PNV historical CO2; 4. PNV constant CO2. For 
each set of simulation experiments, all three climate input data sets were applied; therefore, we obtained twelve 
(3 × 4) simulations per model (Figure 2). Before conducting the described set of simulations, the DGVMs were 
first run with spin-ups ranging from 1,000 to 2,000 yr to achieve equilibrium between climate and the respective 
vegetation and soil carbon pools following the same simulation protocol. After the spin-up, the DGVMs were run 
from 1950, although the period under study was 1981‒2010. The simulations were performed throughout South 
America, although our study area is restricted to the southern Amazon, as described in Section 2.1.

Figure 1. Vegetation cover (%), study region (rectangle red line): North of 
Bolivia (a); Brazil, states: northern Mato Grosso (b), Rondonia (c), southern 
Amazonas (d) and southern Pará (e).

https://ldas.gsfc.nasa.gov/gldas
http://hydro.iis.u-tokyo.ac.jp/GSWP3/
https://www.isimip.org/gettingstarted/details/5/
https://www.isimip.org/gettingstarted/details/5/
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2.2.2. LUC Data Set and PNV

LUC data were based on a composition of PRODES Amazônia (http://www.obt.inpe.br/OBT/assuntos/progra-
mas/amazonia/prodes) for the Brazilian Amazon and LUH2 (Land Use Harmonization, http://luh.umd.edu/) for 
the other South American countries (Hurtt et  al.,  2020). PRODES is a project developed at INPE (National 
Institute for Spatial Research; INPE-PRODES, 2020) to monitor vegetation clear-cutting using satellite data. The 
LUH2 is a set of data that connects a historical reconstruction of land use (based on HYDE—History Database 
of the Global Environment) to future projections. Because PRODES data is only available from 2002, LUH2 data 
were interpolated from 1980 to 2002, to fit the PRODES data period. In the INLAND model, land-cover change 
is represented by a tiling approach where each grid cell is divided into two tiles, one representing the fraction of 
natural vegetation and the other one representing the fraction of anthropogenic (deforested or managed) land at 
each grid cell, from land use maps. The first tile simulates dynamic natural vegetation that is altered according to 
the yearly carbon inflow and outflow, and the second one simulates a prescribed grassland that is used to repre-
sent anthropogenic land. The final fluxes and stocks of each grid cell are calculated by the average of the two tiles, 
weighted by the fraction of each tile.

We adopted here the term PNV, but we are aware that this approach has been criticized for its unrealism in 
dealing with ecosystem dynamics, as biological processes such as senescence, growth, and mortality are treated 
without considering anthropogenic interference (Chiarucci et al., 2010). It is also important to note that each of 
the DGVMs we used in this experiment has its own way of dealing with these and other issues related to plant 
physiology, as we discuss in more detail in Section 4.1. In addition, we assume that the PNV is correct from 1950, 
the year when our simulations started (after the spin-up), although the period analyzed was from 1981 to 2010. 
We also warn that LUC may be slightly overestimated by this procedure.

2.2.3. Data Sets for Validation

We used the following data sets for validation:

1.  GPP and evaporation from FLUXCOM (Jung et al., 2020; Figure 1) were used to evaluate DGVM results 
(Figure 2). Part of the FLUXCOM data were obtained by the FLUXNET initiative which provides estimates 
of carbon flows between the biosphere and atmosphere based on globally distributed eddy covariance flux 
towers (Baldocchi et al., 2001; Jung et al., 2020). As flux towers have a small footprint and are distributed 

Figure 2. Diagram and scheme of the experiment: atmospheric data set used (forcings), dynamic global vegetation models 
(DGVMs), DGVM results, data sets for validation, conditions of simulations, and effect-isolating equations.

http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes
http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes
http://luh.umd.edu/
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unevenly across the world, the upscaling approach is based on machine learning methods (artificial neural 
networks) that integrate FLUXNET site-level observations (eddy covariance measurements), remotely sensed 
data (fluxes estimated from mean seasonal cycles of Moderate Resolution Imaging Spectroradiometer—with 
techniques of Sun-Induced Fluorescence and atmospheric inversion results), and meteorological data (daily 
meteorological information; Jung et al., 2020). We used the following versions of FLUXCOM data sets: GPP 
ANN CRUNCEP version 6 (for GPP), and LE.METEO.EBC.MLM.CRUNCEP version 8 (for evaporation); 
both provided at monthly resolution. Information about FLUXCOM and downloading instructions can be 
found at http://www.fluxcom.org/ (accessed on 20 November 2020)

2.  Derived GPP by upscaling observations from the current global network of eddy covariance towers (Jung 
et al., 2020). Eddy covariance measurements are processed half-hourly using standardized procedures of gap 
filling and quality control (Moffat et al., 2007; Papale et al., 2006). Data are subsequently aggregated into 
monthly means, which reduces random errors. Monthly means having over 20% data based on low-confidence 
gap filling are excluded from the analysis to minimize uncertainties (Reichstein et al., 2005). For this data set, 
flux partitioning was based on Reichstein et al. (2005). All FLUXNET information and downloading instruc-
tions are at https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=9 (accessed on 26 March 2021)

3.  Global monthly average GPP (g carbon m −2 d −1) modeled at 8 km spatial resolution for each of the 35 yr 
from 1982 to 2016. GPP is based on the well-known Monteith LUE. LUE was extrapolated to a consistent 
8 km resolution global grid using multiple explanatory variables representing climate, landscape, and vege-
tation factors influencing LUE and GPP. Global gridded long-term daily GPP was derived using the canopy 
fraction of photosynthetically active radiation from the Global Inventory Modeling and Mapping Studies 
(GIMMS3g), and meteorological information from Modern-Era Retrospective analysis for Research and 
Applications, Version 2, (MERRA-2; Madani & Parazoo, 2020), available at https://daac.ornl.gov/cgi-bin/
dsviewer.pl?ds_id=1789, accessed on 25 March 2021

4.  Global Land Evaporation Amsterdam Model 1, 2 (GLEAM) is a set of algorithms that estimate the different 
components of land evaporation (i.e., evapotranspiration) separately based on satellite observations: transpira-
tion, interception loss, and other evaporation terms. This characteristic allowed us to observe the interception 
of rainfall by the forest canopy separate from subsequent evaporation into the atmosphere, which constitutes 
an important part of the hydrological balance in forest regions (Cuartas et al., 2007; Czikowsky & Fitzjar-
rald, 2009; Miralles et al., 2010). GLEAM v3.5a is a global data set spanning the 41 yr period from 1980 (1 
January) to 2020 (31 December). It is available at https://www.gleam.eu/ and was accessed on 24 March 2021, 
for this study. The data set is based on satellite and reanalysis data (ERA5 net radiation and air temperature; 
Martens et al., 2016, 2017; Miralles, de Jeu, Gash, Holmes, & Dolman, 2011; Miralles et al., 2010; Miralles, 
Holmes, et al., 2011)

5.  TerraClimate is a high-spatial-resolution data set (1/24°, ∼4 km) of monthly climate and water balance for 
global land surfaces in the period 1958–2015. TerraClimate interpolates high-spatial-resolution climatologi-
cal data from the WorldClim data set to produce a monthly data set of precipitation, temperature, wind speed, 
vapor pressure, and solar radiation. It can be accessed at http://www.climatologylab.org/terraclimate.html. 
TerraClimate produces monthly surface water balance data sets using a water balance model that incorporates 
evapotranspiration, precipitation, and temperature as reference. The spatio-temporal aspects of TerraClimate 
are validated using annual temperature, precipitation, and reference evapotranspiration calculated from station 
data, as well as observed annual runoff from streamflow gauges (Abatzoglou et al., 2018)

2.3. Analysis of the Influence of LUC and Atmospheric CO2 on GPP

We used the following equation to infer the influence of land use changes and eCO2 on a variable (VAR) that can 
be GPP or evaporation:

VAR = VARLUChist CO2
− VARPNVconst CO2 (1)

To see the influence of LUC on evaporation and GPP, we used the following equation:

VAR = VARLUChist CO2
− VARPNVhist CO2 (2)

Finally, Equation 3 was used to analyze the exclusive effect of CO2 fertilization under LUC:

VAR = VARLUChist CO2
− VARLUCconst CO2 (3)

http://www.fluxcom.org/
https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=9
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1789
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1789
https://www.gleam.eu/
http://www.climatologylab.org/terraclimate.html
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WUE, which is the amount of carbon gained per unit of water loss at the ecosystem level is calculated as follows:

WUE = GPP∕Tr (4)

Where Tr is vegetation transpiration. WUE (kg m −2 mm −1 month −1) was calculated for all the conditions of CO2, 
LUC, and PNV defined in the scheme of Figure 2.

2.4. Analysis of Probable Climate Changes

In order to verify climate changes that could have occurred in the southern Amazon in the period 1981–2010, we 
analyzed precipitation, air temperature, shortwave downward radiation, and specific humidity values in GLDAS, 
GSWP3, and WATCH + WFDEI that were used as input to the DGVMs. Ensemble means were estimated with 
these data and then divided into two periods: 1981‒1995 (P1) and 1996‒2010 (P2). Seasonal averages (dry and 
rainy seasons) were calculated for each period. To visualize differences we subtracted P1 from P2.

3. Results
3.1. Statistical Distribution of GPP, Evaporation (E), Transpiration, Interception, and WUE

In this section, we show the distribution of data in DGVM simulations for GPP, evaporation, transpiration, inter-
ception, and WUE in the dry and rainy seasons, under the LUC hist CO2 condition. These results are compared 
with data sets of “observed data” (Section 2.2.3).

The highest GPP in the dry season (JJAS) was estimated through the LUE and had its median above 0.25 kg 
m −2 month −1 (Figure 3a). With the eddy covariance method, GPP distribution showed a low error and concen-
trated around 0.21 kg m −2 month −1. Similarly, the GPP estimated by FLUXCOM (RS + meteo + ANN) also had 
concentrated distribution and little variation; however, it was lower in the dry season, around 0.1.5 kg m −2 month −1 
(Figure  3a). As to modeled GPP, INLAND, and ORCHIDEE had higher GPP values than LPJ-GUESS and 
LPJmL4, with medians ranging between ∼0.21 and ∼0.15 kg m −2 month −1, depending on the climatic forcings 
GLDAS, GSWP3, and WATCH + WFDEI. The variation range in LPJ GUESS and LPJmL4 was 0.05 and 0.1 kg 
m −2 month −1 respectively in the dry season (Figure 3a). In the rainy season (JFMA), the LUE-estimated GPP 
was close to 0.28 kg m −2 month −1, which is the highest value of GPP estimates, higher than all the DGVMs 
and other observed data. INLAND and ORCHIDEE also had high GPP values, with medians ranging between 
0.25 and 0.29 kg m −2 month −1 respectively. In LPJ-GUESS LPJmL4, the medians ranged from 0.15 to 0.19 kg 
m −2 month −1 for climatic forcings (Figure 3b).

Evaporation values from FLUXCOM (RS + meteo + ANN) and GLEAM were close to the medians (∼93 and 
∼96 mm month −1) for the dry season, while TerraClimate was close to 75 mm month −1. Among the DGVMs, 
INLAND had the highest values (∼110 and ∼116 mm month −1) of all DGVMs. In the other models (LPJ-GUESS, 
LPJmL4, and ORCHIDEE), medians were between ∼40 and ∼65  mm month −1; except for GLDAS-forced 
LPJ-GUESS (in blue) which reached ∼100 mm month −1 (Figure 3c). The high evaporation values from INLAND 
in the dry season might be explained by INLAND's sensitivity to radiation. In the rainy season, FLUXCOM 
(RS + meteo + ANN) and GLEAM had near-median values (121–125 mm month −1), while TerraClimate was 
close to 85 mm month −1. Of all the DGVMs, LPJ-GUESS reached the highest median values ranging from ∼100 
to ∼120 mm month −1 (Figure 3d).

Regarding transpiration, GLEAM estimated high median values (∼80 mm month −1) for the dry season compared 
to the other DGVMs whose results were between ∼40 and 59 mm month −1, except for INLAND, which had values 
between 90 and 98 mm month −1 (Figure 3e). For the rainy season, GLEAM estimated transpiration at around 
84 mm month −1, contrary to INLAND which showed very low values ∼39 and 42 mm month −1 (Figure 3f).

The median interception was estimated at less than 20  mm month −1 in the dry season, with the exceptions 
of LPJ-GUESS with GLDAS forcing and INLAND with WATCH + WFDEI forcing (Figure 3g). In the rainy 
season, INLAND simulations reached very high interception, between ∼58 and 74  mm month −1; GLEAM, 
40 mm month −1; while in the other DGVMs, the median interception was below 40 mm month −1 (Figure 3h). We 
are aware that INLAND overestimates the leaf area index (LAI), which justifies the high interception values we 
present in Figure 3h.
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WUE was higher in ORCHIDEE than in the other models in both seasons. Since WUE = GPP/Transpiration is 
related to precipitation, INLAND also estimated high values for WUE in the rainy season. In fact, INLAND-sim-
ulated WUE was the highest of all DGVMs, because it had both high GPP and the lowest transpiration (Figures 3i 
and 3j).

Figure 3. Statistical distribution of GPP, evaporation, transpiration, interception, and WUE for LUC historical CO2, observables (OBSERV) (FLUX: FLUXCOM, 
EDDY: network of eddy covariance towers, LUE: Light Use Efficiency, GLEAM, and Terra: TerraClimate) and DGVM outputs with forcings GLDAS (blue), GSWP3 
(red), and WATCH + WFDEI (gray), for the dry season (JJAS) on the left and the rainy season (JFMA) on the right panels.
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3.2. Results From Applying Section 2.3 Equations on the DGVM Ensemble

3.2.1. GPP

The result of applying equation LUC hist CO2 minus PNV const CO2 (a) on the ensemble of DGVMs to infer the 
influence of land use changes and eCO2 revealed a clear increase in GPP (positive values) over the entire study 
region (Figures 4a and 4b), with the highest values in the rainy season (Figure 4b). As a result of equation LUC 
hist CO2 minus PNV hist CO2 (b) (LUC effect), a very slight increase was observed in GPP, whose values were 
close to zero in general, and even below zero in the dry season (Lon: 61°–64°W, Lat: 11°–13°S). In the rainy 
season, precipitation seems to have contributed to a slight increase in GPP (Figures 4e and 4f). When applying 
equation LUC hist CO2 minus LUC const CO2 (c) for the eCO2 effect, we obtained positive GPP values over the 
entire study area in both seasons (Figures 4i and 4j).

3.2.2. Evaporation

The joint effect of LUC and eCO2 (Equation 1) in the dry season, resulted in a positive balance of up to 2 mm 
month −1, however, deficits were greater, up to 6 mm month −1 (Figure 4c). In the rainy season, evaporation deficit 
was observed over almost the entire study region (Figure 4d). Equation 2, LUC hist CO2 minus PNV hist CO2 
showed that evaporation in the dry season was more negative and expanded over a larger area than in the other 
simulations (Figure 4g). In the rainy season, evaporation was also negative over the entire study region, although 
it was less intense than in the dry season (Figures 4g and 4h). For the eCO2 effect, applying the equation LUC 
hist CO2 minus LUC const CO2 (Equation 3), the balance was positive over almost the entire region in the dry 
season. Contrarily, in the rainy season, the balance was negative over almost the entire region and did not exceed 
1.5 mm month −1.

Figure 4. Ensemble of DGVM results for GPP and evaporation in the dry (JJAS) and rainy (JFMA) seasons—application of equations of Section 2.3 to identify LUC 
and eCO2 joint and individual effects.
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The comparison of LUC hist CO2 with LUC const CO2 revealed that the effect of CO2 fertilizer was determinant 
for GPP. Mean values were 0.1269 kg m −2 month −1 for LUC hist CO2 and 0.1073 kg m −2 month −1 for LUC const 
CO2 in the dry season. The means differed by 15.4% (0.0196 kg m −2 month −1; Table 1). In the rainy season, the 
mean value of LUC hist CO2 was ∼0.2123 kg m −2 month −1 and ∼0.1926 kg m −2 month −1 for LUC const CO2, 
with a difference of 0.0197 kg m −2 month −1, which corresponds to 9.27% (Table 1).

The effects of LUC on evaporation had some significance in the comparison of LUC hist CO2 with PNV hist CO2, 
with evaporation decreasing by about 3.8% (Table 1). Average values over the region were attenuated due to the 
dense forest cover in the sub-regions located in the northwest, where evaporation remained the same. Comparing 
Figure 4g with the data in Table 1, we can see that for the LUC effect (LUC hist CO2 minus PNV hist CO2) the 
regions with the greatest evaporation deficit (−6.5 mm month −1; 61°–63°W, 10°–13°S; 51°–52° W, 10°–14°S) 
were the ones with the most intense deforestation. The deficit represents a decrease of 9.98% in evaporation in the 
dry season. The effects of condition LUC hist CO2 minus PNV hist CO2 on evaporation had some significance 
when the decrease was about 3.98% (Table 1) in the dry season.

When we look at the distribution of DGVM ensemble data, GPP and evaporation present greater dispersion in the 
dry season than in the rainy season (Figure 5). Under conditions PNV hist CO2 and PNV const CO2, there was 
no significant decrease in mean GPP, contrary to what was noted for LUC const CO2. The greater forest cover 
compensates for the absence of the CO2 fertilization effect as in PNV const CO2 in which the distribution of data 
is slightly higher than in LUC hist CO2 (Figure 5a). Evaporation was also slightly higher in PNV (hist CO2 and 
const CO2), mainly in the dry season than in both seasons under LUC (hist CO2 and const CO2; Figure 5b).

3.3. DGVM Forcings and Results

For the analysis of precipitation, Figure  6 shows the standard deviation (std) of the seasonal (dry and rainy 
season) ensemble (Figures 6a and 6b), the seasonal ensemble mean (Figures 6c and 6d); and the seasonal mean 
for each data set (GLDAS, GSWP3, and WATCH + WFDEI) in Figures 6e–6j). A precipitation pattern can be 
observed in GSWP3 and WATCH + WFDEI. The standard deviation of the DGVM ensemble in the dry season 
was around 15 mm month −1 and occurred sparsely in some sub-regions (Figure 6a). In the rainy season, the 
standard deviation of the DGVM ensemble reached higher values, around 30 mm month −1 in the west of our 
study region (Figure 6b). The greatest uncertainties (highest std) in both seasons were around 53°–55°W and 
7°–9°S; 63°–65°W and 9°–12°S (Figures 6a and 6b). The highest rainfall averages (up to ∼350 mm month −1) 
were observed in the north of our study region between 52°–64°W and 7.5°–9.5°S, mainly for GSWP3 and 
WATCH  +  WFDEI. On the other hand, the region with the lowest average rainfall (∼20  mm month −1) was 
between 53°–57°W and 11°–14°S; 62°–64°W and 12°–14°S. The region with the highest average rainfall suffered 
less deforestation than the southern part of our study region, where the anthropogenic impact was most intense 
(D. S. Alves, 2002; Cardille & Foley, 2003). Moreover, for precipitation, we observed that there was a greater 
agreement for GSWP3 and WATCH + WFDEI in both seasons (Figure 6). However, GLDAS strongly disagrees 
with these two data sets. Ahlström et al. (2017) argue that the greatest uncertainties of Earth system models to 
estimate future climate and vegetation for the Amazon are in the precipitation forcing data.

We analyzed the influence of precipitation (P) and shortwave radiation (SW) on simulated GPP and evapora-
tion. INLAND and ORCHIDEE showed high P x GPP correlation in a range of 0.71–0.82 in the dry season 

LUC 
hist CO2 
(mean)

LUC const 
CO2 (mean)

PNV 
hist CO2 
(mean)

PNV const 
CO2 (mean)

LUC hist 
CO2-PNV 
const CO2

LUC hist 
CO2-PNV const 

CO2 (%)

LUC hist 
CO2-LUC 
const CO2

LUC hist 
CO2-LUC const 

CO2 (%)

LUC hist 
CO2-PNV 
hist CO2

LUC hist 
CO2-PNV 

hist CO2 (%)

GPP (dry) 0.1269 0.1073 0.1310 0.1098 0.0171 13.47 0.0196 15.4 −0.0041 −3.23

GPP (rainy) 0.2123 0.1926 0.2117 0.1901 0.0222 9.27 0.0197 9.27 −0.0004 −0.18

Evap. (dry) 65.07 63.36 67.66 65.59 −0.52 −0.79 1.71 2.62 2.59 −3.98

Evap (rainy) 99.91 100.87 101.14 101.74 −1.83 −1.83 −0.96 −0.96 −1.23 −1.23

Table 1 
Variation of GPP (kg m −2 month −1) and Evaporation (mm month −1) in the Dry (JJAS) and Rainy (JFMA) Seasons Under Different LUC and CO2 Concentration 
Conditions
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(Figures 7a, 7e, 7i and 7d, 7h, 7l, respectively); in LPJ-GUESS and LPJmL4 correlation was negative with values 
reaching −0.56 and there was no correlation in other cases (Figures 7b, 7f, 7j and 7c, 7g, 7k, respectively).

In the rainy season, INLAND showed a moderate negative P X GPP correlation of between −0.31 and −053; 
LPJ-GUESS showed weaker (0.20) or no correlation and most of the sample was between 0.15 and 0.25 kg 
m −2 month −1. In another part of the sample (fewer cases), GPP values were close to 0.1 kg m −2 month −1 and can 
be considered as outliers or spurious data; LPJmL4 had a moderate correlation (from 0.39 to 0.67) as well as 
ORCHIDEE with values between 0.37 and 0.43 (Figures S10b, S10f, S10j—Supporting Information).

In the dispersion plots, shortwave (SW) was between ∼185 and 240 W m −2 day −1 and evaporation ranged from 
30 to 140 mm month −1 in the dry season (Figure S11—Supporting Information). A negative SW x E correlation 
between −0.22 and −0.75 predominated, with only one case of positive correlation of 0.29 in INLAND with the 

Figure 5. Distribution of gross primary productivity (GPP) and evaporation data in the dynamic global vegetation models (DGVM) ensemble in the dry (JJAS) and 
rainy (JFMA) seasons.
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Figure 6. Seasonal ensemble of precipitation in the dry (JJAS) and rainy (JFMA) seasons: standard deviation (a, b); seasonal 
ensemble means (c, d); and seasonal means of data sets GLDAS, GSWP3, and WATCH + WFDEI (e–j).
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GLDAS data set (Figure 8a). Only LPJmL4 with WATCH + WFDEI presented no correlation (Figure S11—
Supporting Information).

SW was between 50 and 215 W m −2 day −1 and E varied between 80 and 130 mm day −1 in the rainy season. Still, 
for the rainy season, most cases of SW x E correlation were negative between −0.22 and −0.64. INLAND was 
the exception, as it had a positive SW x E correlation between 0.12 and 0.45. No correlation was seen in the 
remaining cases. (Figure S12—Supporting Information).

3.4. Analysis of Climate Forcings in the Region

We analyzed the forcings used as input in the simulations to look for some evidence of regional climate change. 
We observed an increase in air temperature over almost the entire study region in the dry season. The warming 
was as much as 1°C (51°–53°W, 7.5°–11.5°S; Figure 8a). In the rainy season, the temperature rise was also 
observed in almost the entire region, but it did not exceed 0.6°C (Figure 8b). We only observed a slight decrease 
in air temperature (0.1°C) over the Bolivian part of the study region (65°–66°W, 12.5°–13.5°S).

For the shortwave variable, we observed an increase up to 5.5 W m −2 month −1 in the dry season in the entire study 
region (52°–53°W, 8°–9°S; Figure 8c). The regions of increased SW are partially coincident or close to those 
where warmer temperatures were observed in the dry season. In the rainy season, the observed increase was up 
to 4 W m −2 month −1. We also observed a decrease to 3 W m −2 month −1 over Bolivia.

As for specific humidity, the greatest decrease occurred in the dry season reaching 0.003 (multiplied by 1,000; 
51°–53°W, 7.5°–10.5°S). In the region of Bolivia (63°–66° W, 11°–14°S) there was an increase in humidity of 
around 0.0005. In the rainy season, specific humidity rose throughout the study region.

Precipitation decreased to 15  mm month −1 in almost the entire region (56°–58°W, 10.5°–12.5°S) during the 
dry season. In the rainy season, the drop reached 30 mm month −1 (55°–57°W, 9°–13°S). We also observed an 
increase in precipitation, up to 20 mm month −1, over Bolivia (65°–66°W, 12°–13°S).

The analysis of the distribution of mean air temperature and precipitation in the dry and rainy seasons in each 
of the periods P1 (1981‒1995) and P2 (1996‒2010) revealed an increase in temperature in both seasons of P2 
(Figure 9). Precipitation showed a decline in both seasons of P2. The variation in the rainy season was greater in 
P2 than in P1.

Figure 7. Dry season (JJAS): Precipitation (P) x GPP—all DGVMS and data sets.
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Figure 8. Climate forcings—difference between Period 2 (P2) (1996‒2010) and Period 1 (P1) (1981‒1995).
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4. Discussion
4.1. Gross Primary Productivity (GPP)

FLUXCOM data estimate GPP based on the fraction of absorbed photosynthetically active radiation (fAPAR). It 
applies LUE functions and LAI satellite measurements (Baldocchi et al., 2001; Jung et al., 2020). These FLUX-
COM data were useful as a reference for an approach other than that of DGVMs. FLUXCOM data involve remote 
sensor monitoring and flux tower measurements, so we consider them “observed data”.

We recognize that FLUXCOM data have uncertainties that are tied to the methodology, such as the thickness 
of clouds, which makes remote sensing measurements difficult in tropical regions (Ryu et al., 2019; Valentini 
et  al.,  2014), low density of flux towers to cover large areas (Ometto, Aguiar, Assis et  al.,  2014; Schimel 
et al., 2015), and errors inherent to the eddy covariance estimation process (Restrepo-Coupea et al., 2013; C. Von 
Randow et al., 2008; Yi et al., 2010). However, we used these FLUXCOM data as a reference to compare the 
influence of LUC on GPP DGVM simulations.

The results showed that LPJ-GUESS and LPJmL4 had GPP values significantly lower than INLAND and 
ORCHIDEE. The disagreement among DGVMs and Earth System Models (ESMs) concerning vegetation was 
discussed by Ahlström et al. (2017), who attribute a large part of the differences to the way models deal with 
mortality and disturbance. INLAND and ORCHIDEE do not explicitly simulate detailed tree mortality but 
instead, they use a defined carbon residence time. In INLAND, the residence time has a temporal resolution 
of years for native vegetation and days for crops (Kucharik et al., 2000). In ORCHIDEE, the residence time 
is considered only for the removal of woody PFTs, while mortality of plantations and pastures is driven by 
seasonality (and leaf longevity) and deciduous PFTs. Only one supplementary term corresponds to seasonal 
mortality (i.e., leaves and fine roots) which is based on two terms: one related to leaf longevity (i.e., when 
leaves reach longevity, the turnover increases rapidly); the other one is related to climate (Krinner et al., 2005). 
In the process of phenology, it is a trigger for trees: when temperature or soil water in tropical regions falls 
below a threshold, senescence is triggered and leaves fall within a predefined period (Krinner et al., 2005). 
Tree mortality in LPJ-GUESS can result from stress, background factors such as senescence and small-scale 
disturbance, and large-scale disturbances. Mortality results in a reduced population or cohort density and the 
biomass of dead individuals is transferred to the litter pool, except in the case of fire mortality, where the 
affected biomass is lost in the form of a CO2 flux to the atmosphere (B. Smith, 2001). In LPJmL4, tree mortal-
ity results from low productivity, background mortality, and post-fire mortality (Schaphoff et al., 2018). As 

Figure 9. Data distribution for the ensemble mean of air temperature and precipitation (forcings)—dry (JJAS) and rainy (JFMA) seasons—Period 1 (P1) (1981‒1995) 
and Period 2 (P2) (1996‒2010).
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can be seen, the DGVMs used in this experiment deal with fire differently. While the other DGVMs have their 
own modules, INLAND uses the sub-module of the Canadian Terrestrial Ecosystem Model (CTEM; Arora & 
Boer, 2005). However, DGVMs consider some aspects for fire ignition to occur, such as low soil moisture/
litter, and high temperatures and low precipitation, among others (Schaphoff et al., 2018). The burned area 
is assumed nonlinearly and the vegetation that will burn depends on the specific resistance parameter of PFT 
for woody plants, while all litter and living grasses are consumed by fire. Yet, fire spreading also depends on 
litter moisture. This is the usual way fire is implemented in DGVMs and how it contributes to changes in land 
cover (Schaphoff et al., 2018).

However, the major issue with GPP concentrates around photosynthesis, that is, the process of carbon assim-
ilation by vegetation. All the models used in this work (INLAND, LPJ-GUESS, LPJmL4, and ORCHIDEE) 
basically adopt the photosynthesis model proposed by Farquhar, von Caemmerer, and Berry (FvCB; Farquhar 
et al., 1980), with some differences and additions. For example, in addition to what was proposed by Farquhar 
et  al.  (1980), photosynthesis parameters in LPJ-GUESS, LPJmL4, and ORCHIDEE are based on Collatz 
et  al.  (1991,  1992). There are also differences in stomatal conductance among models. INLAND, which is 
derived from the IBIS model (Foley et al., 1996), is based on Collatz et al. (1991, 1992), and Leuning (1995); 
LPJ-GUESS and LPJmL4 are based on Haxeltine and Prentice (1996); and ORCHIDEE is based on Ball 
et al. (1987). Although these approaches do not differ much from each other, small differences in the imple-
mentation can contribute to larger differences among model results. In addition, several other physiological 
variables are not similarly parameterized.

Although we have not analyzed the values inferred by the DGVMs in this work, we know that the calculation 
of the maximum carboxylation velocity (Vcmax), that is, the process velocity by which Rubisco (the most abun-
dant enzyme in plants) catalyzes ribulose-1,5 biphosphate (RuBP) molecules with CO2 to produce the carbon 
compounds, has different ways of approach and treatment in the models (Rogers, 2014). The values of Vcmax used 
in the models vary markedly with identical Plant Functional Types (PFTs; Rogers, 2014). Thus, several uncertain-
ties have been observed in DGVM simulations which tend to underestimate maximum GPP (Bonan et al., 2012; 
Dietze, 2014). This variation among models can be attributed to the lack of data used for proper Vcmax calibration 
and to the use of canopy level Vcmax values, which are lower than those observed at the leaf level (Dietze, 2014; 
Rezende et al., 2015). For this reason, it is important that Vcmax be well-calibrated or that the estimation of this 
parameter be as realistic as possible because it has a direct impact on GPP models (Bonan et al., 2012; De Kauwe 
et al., 2015; Dietze, 2014; LeBauer et al., 2013; Rogers, 2014; N. G. Smith & Dukes, 2012).

Another important physiological issue is the limitation of nutrients (nitrogen and phosphorus) needed in the 
carbon acquisition process, which consequently affects GPP. In our experiment, only INLAND does not deal 
with nitrogen in this photosynthetic process (Rezende et al., 2015). The other DGVMs: LPJ-GUESS, LPJmL4, 
and ORCHIDEE assume photosynthetic capacity as conditioned by leaf nitrogen content (Hickler, 2012; Krinner 
et al., 2005; Schaphoff et al., 2018; Sitch et al., 2003). This may partly explain the significantly higher GPP values 
of INLAND compared to the other DGVMs.

However, regarding the experiment we conducted specifically, the decisive factor in the calculation of GPP was 
the LAI estimated in the DGVMs. In the case of INLAND, the LAI is overestimated (1–11 m 2 m −2; Table 2), even 
though in our study region with tropical evergreen vegetation, LAI values in INLAND are always the highest, in 
the range of 8–11 m 2 m −2 (Kucharik et al., 2000). The reason of INLAND is calculating higher LAI values, it may 
be that they are also overestimating the carbon allocation in the leaves which is a variable that will influence in 
this calculation (Equation S3 in Supporting Information S1). The calculation of LAI can also be influenced by the 
variable specific leaf area that in INLAND is parameterized for each PFT as shown in the Equation S3 in Support-
ing Information S1. A high LAI will lead to high GPP rates and we demonstrate this dependency for INLAND 
(Equation S4 and Figure S2 in Supporting Information S1) and for ORCHIDEE (Figure S3 in Supporting Infor-
mation S1). In both DGVMs, the correlation was 0.73. LAI values in LPJ-GUESS and LPJmL4 are lower (1–6 m 2 
m −2). Consequently, LPJ-GUESS and LPJmL4 had lower GPP values compared to INLAND, ORCHIDEE as 
well as to the FLUXCOM, eddy covariance and LUE approaches, mainly in the rainy season (Figure 3). Thus, we 
can see that DGVMs whose highest LAI values are around 10–11 m 2 m −2, had higher GPP rates like INLAND. 
On the other hand, for those with the highest LAI values around 6 m 2 m −2, such as LPJ-GUESS and LPJmL, the 
estimated GPP was around 50% lower than INLAND and ORCHIDEE.
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Plant growth is modeled by the variation of the LAI and biomass of each PFT. A grid cell can contain one or more 
types of functional plants (PFT), which together form a type of vegetation. All PFTs can grow anywhere within 
their bioclimatic limits, that is, the model considers that changes in the composition and structure of vegetation 
occur in response to environmental conditions. This explains the compensation in GPP: when switching from 
PNV constant CO2 to LUC historical CO2, the part of native vegetation that is deforested within a grid cell is 
occupied by grasses that continue to sequester carbon at higher rates of fertilization.

In addition to physiological issues, divergence in results can be generated by the fact that models use different 
processing strategies, sometimes even to avoid numerical errors and anomalous situations. For example, when 
INLAND calculates intercellular CO2 concentration, it weighs the results obtained at previous stages by iteration 
to prevent the occurrence of anomalous values. Intercellular concentration has a direct effect on increasing GPP. 
The models discussed here demonstrated this sensitivity to CO2 (Figure 4 and Table 1)

4.2. Evaporation (E)

The results for the dry season (Figure 4g) showed that LUC was decisive in reducing evaporation in the balance 
LUC hist CO2 minus PNV hist CO2. C. Von Randow et  al.  (2004) observed that in regions of intense LUC 
(conversion of forests to pastures), the evaporative rate in the dry season could be 20%–41% lower than in forests. 
Even in the rainy season, evaporation on pastures can be 17% lower than in the forest. Another reason may be the 
increase in net radiation, often observed in the Amazon during the dry season (Harper et al., 2014). INLAND has 
also been observed to be very sensitive to radiation and we can see in Figure S2 in Supporting Information S1 
(a, e, i) that evaporation for INLAND reached values close to 150 mm month −1 in the dry season, while in the 
other DGVMs it was below 100 mm month −1. Still, in the dry season, we can see that shortwave that had an effect 
on evaporation was in the range of ∼175 to ∼240 (w m −2 day −1) for all DGVMs having GLDAS and GSWP3 
forcings (Figures S2a–S2h in Supporting Information S1). On the other hand, for the WATCH + WFDEI forc-
ing, shortwave in all DGVMs had intermediate values ∼185–115 (w m −2 day −1; Figures S2i– S2l in Supporting 
Information S1). The reason for the high values observed in INLAND with respect to the other DGVMs in the 
dry season (Figures S4a, S4e, S4i in Supporting Information S1) is that higher LAI along with higher stem area 
index (SAI) cause greater absorption of radiation which contributes to the evaporation from the wet surfaces of 
these leaves and stems (Equation S5 in Supporting Information S1). In addition, higher LAI means higher tran-
spiration rates and higher rainfall interception, with consequent greater water availability (Figure 3). In the rainy 
season, all DGVMs have similar patterns for GLDAS and GSWP3 forcings, and shortwave was between 170 and 
215 w m −2 day −1; on the other hand, for the WATCH + WFDEI forcing, shortwave was between 150 and 200 w 
m −2 day −1.

These results showed large differences among models. Sörensson and Ruscica (2018) argue that the mecha-
nisms driving evaporation, mainly during the dry season and in more seasonal climates such as that of southern 
Amazonia, are still poorly understood, which would explain the differences in model results. While evaporation 
seems to be overestimated by INLAND compared to FLUXCOM and GLEAM, it seems to be underestimated 
by LPJ-GUESS and LPJmL4. One probable explanation for this underestimation may lay in plant rooting strat-
egies, because they have developed a wide variety of rooting strategies to have access to water, and DGVMs 
often condense this variety of rooting strategies into averages on a biome scale (Sakschewski et al., 2020). This 
type of biome-scale averaging procedure has led to unrealistic evaporation values. Sakschewski et al. (2020) 
used the DGVM LPJmL4.0-VR (derived from LPJmL4) in which simulations begin with an even distribution 
of tree rooting strategies for each PFT (tropical and deciduous evergreen) at each location, and this distri-
bution is driven by environmental and competition conditions. In simulations on the Amazon, Sakschewski 
et al. (2020) reported that they obtained more realistic evaporation values. Their results showed values close to 

INLAND LPJ-GUESS LPJmL4 ORCHIDEE

LAI (range) 1–11(m 2 m −2) 1–6 (m 2 m −2) 1–6 (m 2 m −2) 1–10 (m 2 m −2)

Table 2 
Range of DGVM-Estimated Leaf Area Index (LAI; Maximum Value for Tropical Evergreen Vegetation; Krinner 
et al., 2005; Kucharik et al., 2000; Schaphoff et al., 2018)
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the FLUXNET reference data, while LPJmL4 results (the model version that does not include the root strategy) 
showed underestimated values.

Using the same DGVMs and simulations that we used here, but applied in southern South America, Ruscica 
et al. (2021) also found a significant trend of decreasing evaporation in the upper La Plata Basin in the summer 
season. Their results suggest that the trend was due to LUC, as this region has undergone an intense conversion 
of forests to grasslands.

WUE values were higher in the rainy season. In principle, WUE does not seem to be relevant, given the abun-
dance of water in the Amazon biome. However, several studies have pointed out that there is already a reduction 
in precipitation, water recycling, and moisture transport as well as an increase in vapor pressure deficit which 
can aggravate in a scenario of strong anthropogenic impact (Barkhordarian et al., 2019; Davidson et al., 2012; 
Langenbrunner et  al.,  2019; Sampaio et  al.,  2021; Zeng et  al.,  2008). The difference in WUE values among 
DGVMs is nothing more than the reflection of differences in GPP and E, which are overestimated in some 
DGVMs and underestimated in others. Since WUE is a rate: WUE = GPP/E, its results are not very consistent. 
Some of the discrepancies among DGVMs related to the estimation of GPP, evaporation, and WUE, are summed 
up in Table 3.

4.3. Climate Changes in the Southern Amazon

We believe that the observed climate changes (increased air temperature, increased radiation, decreased humid-
ity, and precipitation) may be associated with LUC, because the subregion that comprises the south of the state 
of Pará and part of the northern state of Mato Grosso, Brazil (51°–56°W, 7.5°–12°S), is the one that suffered 
the greatest deforestation and impacts in the last 30 yr (Aguiar et  al.,  2007; Lapola et  al.,  2014; Leite-Filho 
et al., 2019; Marengo et al., 2018). The changes were more expressive in the dry season, and we observed a good 
correlation between the increase in temperature, the increase in radiation, and the decrease in specific humid-
ity for this sub-region (Figures 10a, 10c, 10g) which is precisely the region that suffered the longest period of 
deforestation (Aguiar et al., 2007; Leite-Filho et al., 2019; Ometto, Aguiar, & Martinelli et al., 2014).

In the ensemble of the forcing data, we found an increase in air temperature of up to 1°C in the dry season and 
0.6°C in the rainy season in the regions of greatest deforestation. These results are relatively compatible with 
other observational studies that showed an average temperature increase of 0.6°C for the Amazon from 1973 to 
2013 (Almeida et al., 2017; Marengo et al., 2018). Furthermore, L. M. Alves (2016) detected a statistically signif-
icant negative rainfall trend in southern Amazonia during the pre-rainy season and the peak of the rainy season 
during 1979–2014. In addition, Espinoza et al. (2013) showed that while southern Amazonia exhibits negative 
trends in total rainfall and extremes, the opposite is observed in northern Amazonia.

Issue Explanation

Differences in GPP among DGVMs INLAND does not deal with nutrient (nitrogen) limitation (Rezende et al., 2015). Differences in the parameterization 
and in the processes of inferring physiological variables (Bonan et al., 2012; De Kauwe et al., 2015; 
Dietze, 2014; LeBauer et al., 2013; Rogers, 2014; Smith & Dukes, 2012). LAI overestimated in INLAND will 
run into high GPP rates (Figure S2 and Equation S4in Supporting Information S1). High LAI values may result 
in overestimation of the carbon allocation calculation in the leaves and the parameterization of the specific leaf 
area (Equation S3in Supporting Information S1). On the other hand, in models with peak LAI values, around 
6 m 2 m −2, such as LPJ-GUESS and LPJmL, the estimated GPP was around 50% lower than in the other ones.

Differences in evaporation among DGVMs INLAND is very sensitive to radiation (Figure S4 in Supporting Information S1). Because of overestimated LAI and 
SAI, INLAND absorbs high rates of radiation which also contributes to increased evaporation. Moreover, larger 
LAI means higher transpiration rates, greater rainfall interception, with consequent greater water availability. 
Transpiration is dependent on LAI (Equation S4 in Supporting Information S1). Another contributing factor 
is the low root evaporation rates estimated by the LPJmL4 version used in this experiment (Sakschewski 
et al., 2020). Yet, mechanisms that drive evaporation mainly during the dry season and in more seasonal climates 
are still poorly understood (Sörensson & Ruscica, 2018).

Differences in WUE among DGVMs WUE results are not very consistent because WUE is a rate: WUE = GPP/ET. So, WUE is nothing more than the 
reflection of GPP and ET which are overestimated in some DGVMs and underestimated in others.

Table 3 
Summary of Questions on GPP, Evaporation, and WUE Results
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The decrease in precipitation can be due to natural climate variability. A warming of approximately 0.5°C was 
observed in the Tropical North Atlantic (L. M. Alves et  al.,  2012; Trenberth & Shea,  2006), and may have 
contributed to the occurrence of droughts in the Amazon. Zeng et al. (2008) attribute the origin of decreased 
precipitation in the Amazon to the Tropical North Atlantic, where precipitation above normal occurs over the 
ocean, as a typical response of atmospheric convection to the increase in sea surface temperature. This occurs in a 
Hadley cell, the upward movement of circulation in the north generates subsidence in the south over the Amazon 
and in the South Atlantic Ocean, which could partly explain the decrease in precipitation that was observed. The 
results obtained for the sub-region comprising part of Bolivia were different from the rest. In addition to forests, 
this sub-region comprises chacos, cerrado, wetlands, and savannas (Tejada et al., 2016).

5. Conclusions
The results show that, in general, the influence of CO2 fertilization on GPP was greater by an order of magnitude 
than LUC. In other words, this work shows that the increase of GPP due to CO2 fertilization was much higher 
than the losses due to LUC. LUC also had a negative effect on evaporation. The analysis of DGVM results and 
the forcings showed that the most intense evidence of climate change such as decreased evaporation, temperature 
increase, and decreased precipitation were seen in the regions that suffered greater deforestation. DGVM results 
also showed significant divergences among validation data sets. Divergences occur in climate forcings and model 
internal processes to estimate GPP and evaporation (as discussed in the manuscript), so we think that the results 
may have been affected in the accuracy of the representation of what actually happens in our study focus biome. 
This reinforces the need to improve DGVMs and climate data acquisition methods so that more robust simula-
tions can be made on important issues such as the resilience of the Amazon rainforest concerning vegetation GPP, 
carbon sink, and evaporation in a climate change scenario.

Data Availability Statement
Data from these simulations is available from Zenodo provider—doi.10.5281/zenodo.6374202 and link: https://
doi.org/10.5281/zenodo.6374203.
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