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Abstract
Sparse optimization—fitting data with a low-cardinality linear model—is addressed
through the minimization of a cardinality-penalized least-squares function, for which
dedicated branch-and-bound algorithms clearly outperform generic mixed-integer-
programming solvers. Three acceleration techniques are proposed for such algo-
rithms. Convex relaxation problems at each node are addressed with dual ap-
proaches, which can early prune suboptimal nodes. Screening methods are imple-
mented, which fix variables to their optimal value during the node evaluation, re-
ducing the subproblem size. Numerical experiments show that the efficiency of such
techniques depends on the node cardinality and on the structure of the problem
matrix. Last, different exploration strategies are proposed to schedule the nodes.
Best-first search is shown to outperform the standard depth-first search used in the
related literature. A new strategy is proposed which first explores the nodes with
the lowest least-squares value, which is shown to be the best at finding the optimal
solution—without proving its optimality. A C++ solver with compiling and usage
instructions is made available.

1. Introduction

Adjusting a linear model with low cardinality to a data set has found many ap-
plications, for example in statistics [6], finance [14] and signal processing [11]. The
corresponding sparse optimization problem is often formulated as the minimization
of the least-squares misfit function between the data vector y ∈ RN and the model
Ax, with known matrix A ∈ MN×Q(R) and unknown vector x ∈ RQ. Sparsity is
then enforced on x, that is, the number of nonzero values, the so-called `0 “norm”
‖x‖0 := Card({i|xi 6= 0}), is limited. In this paper, we focus on the penalized for-
mulation [4, 5, 11, 26, 27, 42, 43, 45]:

min
x∈RQ

1
2‖y −Ax‖

2
2 + µ‖x‖0, (P)

which balances between the two contradictory objectives through the value of pa-
rameter µ > 0.

Due to the discrete `0-norm term, this problem is essentially combinatorial and
NP-hard [33]. Many heuristic local search methods have been proposed [2, 46, 47],
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as well as algorithms that solve continuous relaxations of (P). In particular, many
algorithms were designed for solving the convex, non-smooth, `1-norm-penalized
problem (see [2] for a review). Locally solving continuous, non-convex, relaxations
of the `0-norm problem is also a recent trend (see the discussion in [42] about
different such relaxations and their properties).

All such methods are fast, they can scale to high-dimensional problems, and
they do find sparse solutions. However, conditions that guarantee their optimality
according to (P), mostly requiring that the matrix A is nearly orthogonal and that
the solution is highly sparse, are very restrictive [47]. In practice, their performance
decreases as the problem complexity increases (highly correlated columns in A, high
level of noise), even in small dimension [11].

On the other hand, exact optimization techniques of (P) were considered, which
guarantee the global optimality of the solution. In [6, 11, 45], (P) was reformulated
as a mixed integer program (MIP) and solved by a generic solver. In [5, 7, 8, 16, 24,
26], dedicated optimization algorithms based on the branch-and-bound framework
were proposed, which outperform generic MIP resolution, by exploiting the specific
structure of the problem (note that earlier ideas in this direction appeared in [9]).

This paper studies different techniques aiming to accelerate exact sparse opti-
mization by such dedicated branch-and-bound algorithms. The two first contribu-
tions focus on reducing the computational burden associated to the relaxation prob-
lems evaluated at each explored node, based on exploiting convex duality. First, we
leverage weak duality in order to prune suboptimal nodes without resorting to the
exact computation of the relaxed subproblems. Then, convex screening methods [34,
38] are studied in order to discard optimization variables prior to (or during) such
computations, which reduce the size of the relaxation problems. Last, we consider
different possible strategies for node exploration (depth-first or best-first searches
based on the different terms of the cost function, and mixed strategies) and we study
their impact on the number of explored nodes. These techniques are general to any
branch-and-bound solver seeking to tackle sparse optimization as in problem P. In
particular, they could be applied to other branch-and-bound implementations such
as [5, 7, 8, 16, 24, 26].

Section 2 introduces the notations and definitions, and defines the global branch-
and-bound architecture dedicated to sparse optimization. Exploiting weak duality
is addressed in Section 3. Section 4 is devoted to the implementation of screening
tests in our context, and exploration strategies are studied in Section 5. The perfor-
mance of all such techniques is evaluated through numerical experiments exposed
in Section 6. Finally, Section 7 provides installation and usage instructions for the
corresponding solver. Concluding remarks and a discussion for future research close
the paper.

2. Dedicated Branch-and-Bound for sparse optimization

2.1. Problem formulation
The sparse approximation problem (P) is essentially combinatorial, due to the
discrete-valued `0-norm counting function. Dedicated resolution approaches in the
literature [5, 7, 8, 9, 16, 24, 26] rely on branch-and-bound algorithms, which require
the computation of relaxations of (P). In particular, in order to compute lower
bounds of (P) (or of subproblems of (P)), a standard approach computes convex
relaxations of such problems. However, due to the non-coercivity of the `0-norm
term (since ∀λ 6= 0, ‖λx‖0 = ‖x‖0), no convex relaxation of the `0 norm can be
obtained. One solution then consists in incorporating additional constraints to (P)
that will bound the values of x, see Figure 1 for such convex relaxations in a bounded
domain.
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Figure 1.: The `0 counting function in 1D (f0(x) = 1 if x 6= 0 and 0 otherwise), and
some of its continuous convex relaxations, only possible in a bounded domain—here,
−M ≤ x ≤M .

For example, in [26, 40], the `2-norm penalty term ‖x‖22 is added to the cost
function, meaning that amplitudes are enforced to lie in an `2 ball—also see
much earlier works that motivate such a ridge regression term based on a statis-
tical Bernoulli-Gaussian models on vector x [27]. In this paper, we follow another
standard approach, constraining the amplitudes of x to lie in a symmetric box:
‖x‖∞ := maxi∈{1,...,Q} |xi| ≤ M . In the rest of this paper, we therefore consider
the following optimization problem:

x̂ := arg min
x∈RQ

1
2‖y −Ax‖

2
2 + µ‖x‖0, subject to (s.t.) ‖x‖∞ ≤M. (P2+0)

Note that such a choice was also used e.g. in [5, 6, 9], where problem (P2+0) was refor-
mulated as a Mixed Integer Program (MIP) with binary variables bi, i ∈ {1, . . . , Q},
encoding the nullity/non-nullity of xi by the linear constraints: −Mbi ≤xi ≤ Mbi,
such that ‖x‖0 =

∑
i
bi.

Let S denote the support of a given vector x, that is, the index set of non-zero
components: S := {i|xi 6= 0}. Finding the corresponding non-zero values amounts
to solving:

min
x

1
2‖y −Ax‖

2
2 + µ|S| s.t.

{
‖x‖∞ ≤M,
xj = 0, ∀j /∈ S

⇔ min
xS

1
2‖y −ASxS‖

2
2 s.t. ‖xS‖∞ ≤M,

where AS denotes the submatrix formed by the columns of A with indices in S, and
xS denotes the corresponding subvector of non-zero variables which contribute to
the solution. For a given support S, this is a box-constrained least-squares problem.
Consequently, the main challenge to solve (P2+0) is the search for the optimal sup-
port. Therefore, we build a branch-and-bound algorithm to this end, whose search
space is the space of supports.

2.2. Support space structuring and branch-and-bound architecture
Within the branch-and-bound procedure, a given node is divided by choosing a
component and make it belong to, or reject from, the support of the solution. At
each node, the support space is partitioned into three subsets:

• S1: the set of components which contribute to the solution,
• S0: the set of components which are forced to 0,
• S̄: the set of free/undetermined components.

We denote a node by N(S1, S0, S̄), or simply N when there is no ambiguity. Dividing
a node then means taking a component j ∈ S̄ and putting it into S1 for the left
child and into S0 for the right child. An example is shown in Figure 2.
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N

L

2 ∈ S1

R

2 ∈ S0

S1 = {4}
S0 = {5, 6}
S̄ = {1, 2, 3, 7}

S1 = {2, 4}
S0 = {5, 6}
S̄ = {1, 3, 7}

S1 = {4}
S0 = {2, 5, 6}
S̄ = {1, 3, 7}

Figure 2.: A branching example with x ∈ R7, which operates on the variable x2. The
sets S1, S0, S̄ are correspondingly updated on the children nodes L and R.

Algorithm 1 Branch & Bound algorithm for optimization of (P2+0).
1: procedure BranchAndBound(L)
2: lb← −∞, ub← +∞ and x̂← Null
3: while L is not empty or another stopping condition is not met do
4: Pop a node N from L. . Exploration strategy
5: Divide N into two sub-nodes L and R. . Branching strategy
6: for all sub-node Ni in {L, R} do
7: Compute a lower bound lbNi of Ni with solution xNi

lb . . Bounding
8: if lbNi < ub then
9: Compute an upper bound ubNi of Ni with solution xNi

ub . . Bounding
10: if ubNi < ub then
11: Update the best solution found: x̂← xNi

ub and ub← ubNi .
12: end if
13: Push Ni in L. . Exploration strategy
14: end if
15: end for
16: end while
17: Compute the lowest lower bound: lb = min

N∈L
lbN

18: return (lb, ub, x̂)
19: end procedure

Algorithm 1 describes the main steps of the branch-and-bound procedure. It
returns the global minimizer x̂ of (P2+0) if the algorithm is run until the node list
L is empty. If another stopping condition is used (step 3), such as ε precision, a
maximum number of iteration or a time limit, then x̂ is the best solution found, and
a certified enclosure of the global minimum of (P2+0), denoted [lb, ub], is obtained.
The basic components of such branch-and-bound algorithm are the following.

• The exploration strategy selects which node N should be divided first among the remaining
search domain L: it defines the scheduling of nodes (step 4 in Algorithm 1).

• The bounding procedures consist in computing, at each node N:
i) a lower bound lbN of the corresponding subproblem (step 7);
ii) a feasible solution xN

ub and an upper bound ubN of the global minimum (step 9).
• The branching strategy defines how the node is divided into children, that is, it selects which

variable j ∈ S̄ is moved into S1 and S0 (step 5).
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Basic bounding procedures and the branching strategy used in this paper are dis-
cussed in Sections 2.3 and 2.4, respectively.

2.3. Bounding the nodes
At a given node N(S1, S0, S̄), that is, for a given configuration of the support space,
the `0-norm term reads ‖x‖0 = ‖xS0‖0+‖xS1‖0+‖xS̄‖0 where, by definition, xS0 = 0
and ‖xS1‖0 = |S1| is fixed, so that the corresponding subproblem reads:

min
x

1
2‖y −Ax‖

2
2 + µ|S1|+ µ‖xS̄‖0 s.t.

{
‖x‖∞ ≤M,
xS0 = 0. (PN

2+0)

This problem is still NP-hard due to the term ‖xS̄‖0. As usual in a branch-and-
bound setting, the node N will be evaluated by providing an upper and a lower
bound on (PN

2+0).
An upper bound and a feasible solution can be computed as in [5] by considering

xS̄ = 0. This gives the following problem:

ubN := min
x

1
2‖y −Ax‖

2
2 + µ|S1|, s.t.

{
‖x‖∞ ≤M,

xS0 = 0, xS̄ = 0. (1)

Problem (1) gives an upper bound ubN and a feasible solution xN for (PN
2+0). It

is a box-bounded least-squares problem depending only on variables xS1 . We keep
the lowest upper bound currently known in variable ub, as shown in Algorithm 1
(step 11). At any given iteration in the branch-and-bound procedure, ub is our best
candidate for the global minimum of (P2+0)—it will be the global optimum if the
support S1 in (1) is proved to be the optimal one.

For the lower bound, we use convex relaxation, substituting the `0-norm term
by an `1-norm one. Indeed, due to the `∞ box constraints, at any feasible point for
(PN

2+0), we have:

‖xS̄‖0 =
∑
i∈S̄
xi 6=0

1 ≥
∑
i∈S̄
xi 6=0

|xi|
M

= 1
M

∑
i∈S̄

|xi| =
1
M
‖xS̄‖1

and the `1 norm is indeed the tightest convex relaxation of the `0 norm. Figure 1
illustrates this property. The lower bound at a given node N is therefore computed
by solving:

lbN := min
x

1
2‖y −Ax‖

2
2 + µ|S1|+ µ

M
‖xS̄‖1 s.t.

{
‖x‖∞ ≤M,
xS0 = 0, (PN

2+1)

and we denote by xN
lb the corresponding minimizer. Problem (PN

2+1) is a box-
constrained `1-norm-penalized least-squares problem, sharing similarities with the
LASSO in statistics [25] and basis pursuit denoising in signal processing [13], for
which many dedicated efficient algorithms have been proposed over the two past
decades [2].

2.4. Branching strategy
The branching strategy used in this paper is based on the maximum of amplitudes
described in [4]. We select j ∈ S̄ with the highest absolute value in the solution of
the relaxed problem:

j ∈ arg max
i∈S̄

|xN
lb i|
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Contrary to variable selection rules proposed by generic MIP solvers, e.g. based
on maximal or minimal infeasibility, this branching strategy is particularly suited
to sparse approximation: it relies on the assumption that a component with high
amplitude in the relaxed problem (PN

2+1) is likely to belong to the support of the
original problem (PN

2+0), therefore it tries to fill S1 with the correct support in
priority.

2.5. Contributions
Based on this framework, we now present our contributions for accelerating such
branch-and-bound procedure. In Section 3, some state-of-the-art `1-norm optimiza-
tion strategies are adapted to (PN

2+1) (here, the `1 norm only operates on some
variables and box constraints are added). Then, we leverage convex duality in or-
der to speed up the pruning of suboptimal nodes by iteratively refining a lower
approximation of lbN. In Section 4, we exploit the non-differentiability of (PN

2+1) in
order to reduce the problem dimension by fixing some variables to 0 or ±M , aiming
to accelerate the resolution of (PN

2+1). Finally, non-standard exploration strategies
are designed in Section 5 and compared against state-of-the-art ones on instances
of (P2+0).

3. Convex duality for early node pruning

3.1. Principle
At a given node N, the relaxation problem (PN

2+1) is considered, whose optimal
value gives a lower bound lbN of the corresponding subproblem (PN

2+0). If this lower
bound is greater than the lowest upper bound known, ub, then this node can be
safely discarded since it cannot contain the optimal solution. We call such a node a
suboptimal node.

The standard approach for pruning a node requires to exactly solve (PN
2+1) in

order to guarantee the value of the bound lbN. We leverage convex duality to re-
duce the computational complexity required for proving such suboptimality. Indeed,
(PN

2+1) is convex and can be written as:

min
x∈RQ

P (x) := f(Ax) + g(x), (2)

with f(Ax) := 1
2‖y −Ax‖

2
2

and g(x) := µ|S1|+ µ
M
‖xS̄‖1 + I[−M,M ]Q (x) + I{0}|S0|(xS0 ),

where IC(x) is the indicator function equal to 0 if x ∈ C and +∞ otherwise. Let
φ∗(w) := supx wTx − φ(x) denote the Fenchel conjugate of any convex function φ.
We use the Fenchel-Rockafellar theorem ([39], theorem 31.2) to get the dual problem
associated with Problem (2), which reads:

max
w∈RN

D(w) := −f∗(w)− g∗(−ATw). (3)

It comes that:

f∗(w) = 1
2 (‖w + y‖22 − ‖y‖

2
2)
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and the Fenchel conjugate of g can be obtained by:

g∗(u) = sup
x

(
uTx− µ|S1| − µ

M
‖xS̄‖1 − I[−M,M ]Q (x)− I{0}|S0|(xS0 )

)︸ ︷︷ ︸
separable

,

=
∑
i∈S̄

sup
−M≤xi≤M

(uixi − µ
M
|xi|) +

∑
i∈S1

sup
−M≤xi≤M

uixi

+
∑
i∈S0

sup
−M≤xi≤M

(uixi − I{0}(xi)︸ ︷︷ ︸
=0

) − µ|S1|,

=
∑
i∈S̄

sup
0≤|xi|≤M

(|ui||xi| − µ
M
|xi|) +

∑
i∈S1

sup
0≤|xi|≤M

|ui||xi| − µ|S1|,

=
∑
i∈S̄

sup
0≤|xi|≤M

(
|xi|(|ui| − µ

M
)
)

+
∑
i∈S1

|ui|M − µ|S1|,

= M

(∑
i∈S̄

max(0, |ui| − µ
M

) +
∑
i∈S1

|ui|

)
− µ|S1|.

Note that a similar expression can be found in [26]. The duality gap is defined as:

G(x,w) = P (x)−D(w) = f(Ax) + g(x) + f∗(w) + g∗(−ATw) (4)

Let x? = arg minx∈RQ P (x) and w? = arg maxw∈RN D(w). We have the following
KKT necessary and sufficient optimality conditions:

w? ∈ ∂f(Ax?) (5a)
−ATw? ∈ ∂g(x?) (5b)

Ax? ∈ ∂f∗(w?) (5c)
x? ∈ ∂g∗(−ATw?) (5d)

where ∂f denotes the subdifferential of function f , defined as [39]:

∂f(x) := {u ∈ RN | ∀y ∈ RN , f(y) ≥ f(x) + uT (y − x)}

Weak duality states that P (x) ≥ D(w), ∀x,w. In particular, this is true at the
optimal value of the primal problem: P (x?) ≥ D(w), ∀w. Therefore we have the
following property:

Proposition 3.1. If ∃w ∈ RN such that D(w) ≥ ub, then P (x?) ≥ ub, and the addressed node can
be pruned.

We use Proposition 3.1 to early stop a given algorithm implemented for solving
Problem (PN

2+1). Let {xk}k be a sequence of iterates produced by such algorithm.
Equation (5a) means that, at optimality, we have w? = Ax? − y. Therefore, we
compute the dual objective function D(wk) at points of the form wk = Axk − y.
Then, if at iteration k, we have D(wk) ≥ ub, then the algorithm solving (PN

2+1) can
be stopped and the node can be safely pruned, as illustrated in Figure 3 (left). A
similar idea was recently proposed in [24] to prune children nodes when evaluating
the current node with an active-set procedure. In [26], duality is also invoked in
order to get a valid lower bound for pruning nodes with a truncated primal. In this
paper, we use the dual points to stop the primal algorithm as soon as possible, and
we analyze the ability of different kinds of primal algorithms to increase the dual
objective fastly.
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Figure 3.: Early pruning illustration: primal and dual iterates for the optimization
of (PN

2+1) (dashed and full lines, respectively), and the best known upper bound (dotted
horizontal line). Left: pruning of the node is achieved after convergence of the primal
descent algorithm minimizing (PN

2+1) (here in 100 iterations), but the dual value after
10 iterations informs that the node can be pruned (green circle). Right: in this case, the
lower bound lbN is too low and the node cannot be pruned.

3.2. Dual bound quality of `1-norm algorithms
Many algorithms were developed to solve `1-norm-penalized least-squares problems,
that is, instances of Problem (2) with g(x) = ‖x‖1. Indeed, such convex, non-smooth,
optimization problems, benefit from analytical properties that make dedicated ap-
proaches much more efficient than generic quadratic programming solvers. In this
section, several such methods are extended to the optimization of (PN

2+1), recast as
Problem (2). Their efficiency to obtain satisfactory dual bounds will be compared
in the experimental Section 6.3. Note that the dual problem (3) involves the non-
differentiable and non-separable term g∗(−ATw), which is hard to handle. Thus, we
resort to primal optimization and we generate the dual points using primal iterates.

3.2.1. Proximal algorithms
Proximal algorithms rely on the monotone operator theory [3] to optimize problems
of the form (2), with g non-differentiable, by iteratively performing a descent step
on f first, and then on g. If f is differentiable, which is the case for (PN

2+1), we can
perform a gradient step on f . The descent step on g is performed thanks to the
proximal operator [30]:

Prox
λg

(xk) := arg min
x

1
2‖x− x

k‖22 + λg(x). (6)

Forward-backward splitting. In the case where g(x) = ‖x‖1, the resulting
forward-backward splitting (FBS) algorithm[18] is called Iterative Soft-Thresholding
Algorithm (ISTA) [15]. Such a procedure can be extended to our optimization prob-
lem (PN

2+1). Let

v := Prox
λg

(xk) = arg min
x

1
2‖x− x

k‖22 + λ
(
µ
M
‖xS̄‖1 + I[−M,M ]Q (x)

)
.

We can show that this operator reads componentwise:

∀i ∈ S1, vi = arg min
xi

1
2 (xi − xki )2 + λI[−M,M ](xi) = C[−M,M ](xki ), (7)

8



with C[−M,M ] the capping operator : C[−M,M ](u) :=

{
u if u ∈ [−M,M ]
M if u ≥M
−M if u ≤ −M

,

and:

∀i ∈ S̄, vi = arg min
xi

1
2 (xi − xki )2 + λ µ

M
|xi|+ λI[−M,M ](xi) = CST

µ/M

[−M,M ](x
k
i ), (8)

with CSTα[−M,M ] the capped thresholding operator:

CSTα[−M,M ](u) :=
{

0 if |u− αsign(u)| ≤ α
C[−M,M ](u− αsign(u)) otherwise .

The resulting FBS procedure is given in Algorithm 2, where x0 is any intial point
and parameter L > 0 must be greater than the spectral radius of matrix ATA in
order to ensure convergence [15]. This convergence is defined as an ε precision on the
duality gap: G(xk, Axk − y) ≤ ε, with G defined in Equation (4). The computation
cost of one iteration is mainly that of the matrix-vector products involved at step 4.

Algorithm 2 Forward-Backward Splitting algorithm for evaluation of node N (lower
bound)

1: procedure FBS(y, A, µ, x0, L, N(S1, S0, S̄))
2: k ← 0
3: while not convergence do
4: xk+1/2 = xk − 1

LA
T (Axk − y) . Gradient step on f

5: xk+1 ← Proxg/L(xk+1/2) . Proximal step on g with (7)–(8)
6: k ← k + 1
7: end while
8: return xk

9: end procedure

Chambolle-Pock (primal-dual) algorithm. Primal-dual algorithms use
the primal and the dual problems to perform the optimization. The Chambolle-Pock
algorithm is acknowledged as an efficient algorithm in this family [12], which aims
to find the saddle point of:

min
x

max
w

wTAx+ g(x)− f∗(w). (9)

It does so by taking a proximal step on f∗ and then a proximal step on g. Such
primal-dual algorithm generates valid dual points during the optimization, which
can be directly used for our early pruning strategy.

In our case, the proximal step on f∗ reads:

u := Prox
λf∗

(wk) = arg min
w

1
2‖w − w

k‖22 + λ( 1
2‖w + y‖22 − 1

2‖y‖
2
2︸ ︷︷ ︸

constant

),

= wk − λy
1 + λ

. (10)

Algorithm 3 gives the pseudo-code of the Chambolle-Pock algorithm, with notations
similar to Algorithm 2, and w0 ∈ RN any feasible initial dual point. In our case
where f∗ is 1-strongly convex, acceleration steps (6–8) are included (see [12]), with
additional parameter γ = 1 (the strong convexity modulus of f∗), τ0 > 0 and
σ0 > 0 initial proximal parameters such that τ0σ0L2 ≤ 1. The computation cost
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per iteration is similar to that of FBS, mainly corresponding to the matrix-vector
products involved at steps 4 and 5 of Algorithm 3.

Algorithm 3 Chambolle-Pock algorithm for evaluation of node N (lower bound)
1: procedure Chambolle-Pock(y, A, µ, x0, L, γ, w0, τ 0, σ0, N(S1, S0, S̄))
2: k ← 0, x ← x0

3: while not convergence do
4: wk+1 ← Proxσkf∗(wk + σkAxk) . Proximal step on f∗ with (10)
5: xk+1 ← Proxτkg(xk − τkATwk+1) . Proximal step on g with (7)–(8)
6: φk ← 1√

1+2γτk

7: τk+1 ← φkτk

8: σk+1 ← σk/φk

9: xk+1 = xk+1 + φk(xk+1 − xk)
10: k ← k + 1
11: end while
12: return (xk, wk)
13: end procedure

3.2.2. Coordinate descent algorithms
Coordinate descent (CD) algorithms were also proposed for `1-norm-penalized least
squares [1]—see [48] for a convergence proof. In general, CD is a rather ineffi-
cient scheme compared to first-order methods. However, in this setting, scalar sub-
problems have an analytical solution, which can be computed very efficiently. Indeed,
let x∗i = arg minxi P (x) for i ∈ S̄ ∪ S1 (for i ∈ S0, x∗i = 0 ). Let Ai denote the i-th
column of matrix A and let ei := y −

∑
j 6=i xjAj . One can show that each scalar

update reads:

∀i ∈ S1, x
∗
i = arg min

xi

1
2‖ei − xiAi‖

2
2 + I[−M,M ](xi) = C[−M,M ]

(
ATi ei
ATi Ai

)
, (11)

and ∀i ∈ S̄, x∗i = arg min
xi

1
2‖ei − xiAi‖

2
2 + µ

M
|xi|+ I[−M,M ](xi) = CST

µ/M

[−M,M ]

(
ATi ei
ATi Ai

)
, (12)

where C and CST respectively denote the capping and the capped thresholding
operators introduced in Section 3.2.

Moreover, smart cycling rules enable strong accelerations (see [22] in the case
of standard `1-norm problems). In particular, we can rely on the sparse nature of
the solutions by introducing coordinate sweeping rules that most frequently update
nonzero values, and only periodically update all variables. The resulting algorithm is
given in Algorithm 4, where parameter J controls the period at which a full update
is performed.

The complexity for updating all variables (steps 11–13) is essentially that of two
matrix-vector products with matrix A and one with matrix AT . When cycling is
performed only on current nonzero variables, computations are restricted to the
corresponding variables and are therefore strongly reduced. However, each CD iter-
ation is usually less efficient than a gradient step to decrease the objective function.

The three methods proposed in Algorithms 2 to 4 are asymptotic ones, that
is, they converge as the number of iterates k → +∞. We now consider two exact
methods, meaning that the minimizer is found in a finite (although potentially large)
number of iterations.
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Algorithm 4 Coordinate descent algorithm for evaluation of node N (lower bound)
1: procedure ICD(y, A, µ, J , x0, N(S1, S0, S̄))
2: k ← 0
3: e← y − Ax0

4: while not convergence do
5: if k mod J = 0 then
6: CyclingIndices ← {1, ..., Q} . Full cycling
7: else
8: CyclingIndices ← {i|xki 6= 0} . Partial cycling
9: end if

10: for i in CyclingIndices do
11: e← e+ Aix

k
i . Cancel the contribution of xki

12: Compute xk+1
i = x∗i using (11)–(12)

13: e← e− Aixk+1
i . Add the contribution of xk+1

i

14: end for
15: k ← k + 1
16: end while
17: return xk

18: end procedure

3.2.3. Active sets
Active set methods [36] were initially proposed for linearly-constrained quadratic
programs. They handle the different inequality constraints of a given (quadratic)
problem by choosing a number of constraints to be active (saturated), the rest
being inactive. Given the set of constraints believed to be active, the problem of
interest is reformulated by equating the constraints in the active set and dropping
the remaining ones. After a descent step, the active set of constraints is updated
to take into account violated constraints, and the procedure is iterated until all
optimality conditions are satisfied.

Active set methods have been be proposed for problems involving the `1 norm [28,
41], and an adaptation to (PN

2+1) was proposed in [4], that will be used in this paper.

3.2.4. Homotopy continuation
The homotopy continuation method was specifically designed for `1-norm-penalized
least squares [19, 37] and is known as a very powerful procedure for finding highly
sparse solutions to moderate-size problems [2]. Indeed, the minimizer can be shown
to be a piecewise linear function of the penalty parameter, say µ. Starting from suf-
ficiently high µ0 for which the solution is identically zero, a decreasing sequence of
critical values for µ is built (breakpoints µk), at which the configuration of the sup-
port is modified. The support is then updated at each breakpoint, and the procedure
runs until the target penalty parameter is reached. In [5], an homotopy continuation
algorithm was built for solving problem (PN

2+1). The reader is referred to this paper
for full mathematical description and implementation details.

4. Leveraging convex screening

Screening methods aim to assign optimal values to some variables in a given opti-
mization problem, prior to (or during) its numerical resolution, by exploiting some
insight provided by the problem structure. Therefore, they decrease the dimension of
the problem to be solved, hoping to reduce the computational load. In this section,
we discuss the use of screening methods for the convex relaxation problem (PN

2+1),
involved at each node of the branch-and-bound Algorithm 1.
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4.1. Principle
Due to the non-differentiability of |xi| at 0, the solution to the standard `1-norm-
penalized least-squares problem contains zero values [32]. Related screening methods
therefore aim to fix some variables to zero. We can date back the first works in this
field to [20]. In our case, with (PN

2+1), particular points include zero values for xi,
i ∈ S̄, but also values at the bounds ±M for xi, i ∈ S̄ ∪ S1.

The literature distinguishes between safe screening, where the values of fixed
variables are proved to be optimal, and aggressive or strong screening, which only
benefits from a probabilistic guarantee (that is, optimality of the solution may be
lost) but, in return, it may discard more variables. In our case, we need the node
evaluation to provide a guaranteed lower bound on problem (PN

2+0) to ensure the
validity of the branch-and-bound procedure, therefore we only consider safe screen-
ing.

We consider dynamic screening, in which screening tests are performed through-
out the iterations of the optimization procedure [10]. Such tests rely on the knowl-
edge of a feasible dual point (w with notations of Section 3.1), around which a
subspace containing the optimal dual point w? is created, called the safe region. To
fix a variable, the screening test must hold for any dual point in the safe region,
whose size depends on the distance between w and w?. As w gets closer to w?, the
safe region gets smaller and screening becomes more powerful (that is, more vari-
ables can be fixed). In this paper, we resort to gap-safe screening [21, 34], which
builds safe regions based on the duality gap (4). Such a procedure is based on two
steps:

• building screening rules, based on the optimality conditions of the problem;
• defining a safe region, which contains the optimal dual point.

These two steps are now addressed in Sections 4.2 and 4.3, respectively.

4.2. Screening rules for relaxation problems
The screening rules exploit the KKT optimality conditions (5), and in particular
Equation (5b), which states that−ATw? ∈ ∂g(x?), with (x?, w?) the optimal primal-
dual pair of Problems (2) and (3), respectively.

Proposition 4.1. We have the following screening rules for Problem (PN
2+1):

∀i ∈ S̄, if |ATi w?| > µ
M
, then x?i = −M sign(ATi w?); (13a)

∀i ∈ S̄, if |ATi w?| < µ
M
, then x?i = 0; (13b)

∀i ∈ S1, if ATi w? 6= 0, then x?i = −M sign(ATi w?). (13c)

Proof. From the expression of g in Problem (2), its sub-differential reads:

ν := ∂g(x) = ∂
(
µ
M
‖xS̄‖1

)
+ ∂

(
I[−M,M ]Q (x)

)
.

As it is separable, its i-th component reads:

∀i ∈ S̄, νi = ∂
(
µ
M
|xi|
)

+ ∂
(
I[−M,M ](xi)

)
and ∀i ∈ S1, νi = ∂

(
I[−M,M ](xi)

)
,

with ∂|xi| =
{

sign(xi) if xi 6= 0
[−1, 1] if xi = 0 and ∂I[−M,M ](xi) =

{
[0,+∞[ if xi = M
0 if |xi| < M
]−∞, 0] if xi = −M

.
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Therefore, the optimality condition −ATw? ∈ ∂g(x?) can be separated into the following cases:

∀i ∈ S̄ with x?i = M, −ATi w? ∈ [ µ
M
,+∞[

∀i ∈ S̄ with x?i ∈ ]0,M [, −ATi w? = µ
M

∀i ∈ S̄ with x?i = 0, −ATi w? ∈ [− µ
M
, µ
M

]

∀i ∈ S̄ with x?i ∈ ]−M, 0[, −ATi w? = − µ
M

∀i ∈ S̄ with x?i = −M, −ATi w? ∈ ]−∞,− µ
M

]

∀i ∈ S1 with x?i = M, −ATi w? ∈ [0,+∞[

∀i ∈ S1 with x?i ∈]−M,M [, −ATi w? = 0

∀i ∈ S1 with x?i = −M, −ATi w? ∈]−∞,−0]

. (14)

From Equation (14), the rules of Proposition 4.1 follow.

These rules are illustrated in Figure 4.

Figure 4.: An example of screening possibilities (�), for components with indices
{1, . . . , 5} ∈ S1 and {6, . . . , 11} ∈ S̄. For i ∈ S1, if ATi w? 6= 0, then x?i is fixed to ±M . If
ATi w

? = 0, then x?i can have any value, including ±M . For i ∈ S̄, if |ATi w?| > µ
M , then

x?i is fixed to ±M . If |ATi w?| = µ
M , then x?i can have any value, including 0 and ±M . If

|ATi w?| <
µ
M , then x?i = 0.

4.3. From screening rules to screening tests
The screening rules of Proposition 4.1 require the knowledge of the optimal dual
point, w?, which is unknown during optimization. Given a dual point w, safe screen-
ing methods create a region R from w such that w? ∈ R, by exploiting the structure
of the problem. If one of the rules in Proposition 4.1 is valid for every point in R,
then it is valid for w?, which means that the corresponding variable xi can be fixed
according to the rule. Testing every point of a regionR is inefficient, therefore sphere
regions B(w, r), centered at w and with some radius r are usually considered [20,
34], based on a worst-case analysis: one just has to test the center of the sphere c,
and modify the thresholds of rules in Proposition 4.1 by the radius r of the sphere.
Indeed, for every dual point w, we have:

|ATi w?| ≤ |ATi w? −ATi w|+ |ATi w|.
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Without loss of generality, we can suppose that the columns of matrix A have unit
`2 norm. Then, using Cauchy-Schwarz inequality, we have:

|ATi w? −ATi w| ≤ ‖Ai‖2‖w? − w‖2 = ‖w? − w‖2,

so that |ATi w?| ≤ |ATi w| + ‖w? − w‖2. Consequently, if |ATi w| < µ
M
− r, with

‖w? − w‖2 ≤ r, then |ATi w?| < µ
M
, and according to Proposition 4.1, x?i = 0. The

same reasoning applies for the rules (13a) and (13c).
We will use gap-safe screening, which uses the duality gap G(x,w) = P (x)−D(w)

defined in Equation (4) to build such safe spheres. We have the following proposition,
adapted from [34, 38] to Problem (PN

2+1):

Proposition 4.2. For Problem (PN
2+1), using any feasible primal point x and any dual point w, we

have the following gap-safe tests:

∀i ∈ S̄, if |ATi w| > µ
M

+
√

2G(x,w), then x?i = −M sign(ATi w?) (15)

∀i ∈ S̄, if |ATi w| < µ
M
−
√

2G(x,w), then x?i = 0 (16)

∀i ∈ S1, if |ATi w| >
√

2G(x,w), then x?i = −M sign(ATi w?) (17)

Proof. Using an arbitrary dual point w, we have [38]:

G(x,w) = P (x)−D(w) ≥ P (x?)−D(w) = D(w?)−D(w) = −f∗(w?)− g∗(−ATw?) + f∗(w) + g∗(−ATw).

Since f∗ is 1-strongly convex, we have:

f∗(w) ≥ f∗(w?) +∇f∗(w?)T (w − w?) + 1
2‖w − w

?‖22.

Since g∗ is convex, we have:

g∗(−ATw) ≥ g∗(−ATw?) +
(
∂g∗(−ATw?)

)T (−ATw +ATw?).

Therefore we have:

G(x,w) ≥ −f∗(w?)− g∗(−ATw?)
+ f∗(w?) +∇f∗(w?)T (w − w?) + 1

2‖w − w
?‖22

+ g∗(−ATw?) +
(
∂g∗(−ATw?)

)T (−ATw +ATw?),

= ∇f∗(w?)T (w − w?) +
(
∂g∗(−ATw?)

)T (−ATw +ATw?) + 1
2‖w − w

?‖22.

Due to the first optimality condition, we have:

∇f∗(w?)T (w − w?) +
(
∂g∗(−ATw?)

)T (−ATw +ATw?) ≥ 0.

Thus G(x,w) ≥ 1
2‖w − w

?‖22, so ‖w − w?‖2 ≤
√

2G(x,w) which implies w? ∈ B(w,
√

2G(x,w)).
Then, using the rules of Proposition 4.1, the tests of Proposition 4.2 follow.

As the duality gap decreases, the safe region shrinks, and the screening tests get
better at fixing variables. Therefore, screening tests are expected to be more efficient
when used with algorithms that fastly increase the dual objective, as for the early
pruning rules described in Section 3.1. Their practical performance will be studied
in the numerical experiments of Section 6.4.

Both the early pruning described in Section 3 and the screening method discussed
in this section focused on the computation of the lower bound at each node: these
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are local enhancements. On the contrary, exploration rules discussed in Section 5
affect the global behavior of the branch-and-bound procedure.

5. Exploration strategies

5.1. Motivation
The exploration strategy defines which node should be divided first, that is, it gen-
erates a scheduling of the nodes in the list (see step 4 in Algorithm 1). This node
scheduling impacts the global performance of the branch-and-bound algorithm [35].
Figure 5 gives an illustrative example, where a binary tree with four depth levels
(that is, 16 leaves for a total of 31 nodes) is explored either by a depth-first search
(top) or by a best-first search (bottom) strategy. This tree follows the convention
of Figure 2 regarding the left and right childs (one variable is put in S1 and in S0,
respectively). Depth-first search seeks to fully develop a branch of the search tree
before jumping to another branch. On the contrary, best-first search picks the node
with the highest potential of improvement over the current objective value, that
is, it selects the node with the lowest (best) lower bound. Depth-first search tends
to fastly provide good feasible solutions by favoring the nodes that are considered
as “good” by the branching strategy. In this example (where the optimal objective
value is 16), a solution with objective value equal to 18 is found in only 4 iterations,
but it requires 26 nodes to prove optimality. Indeed, 3 nodes were pruned, avoiding
the creation of 6 nodes. On the other hand, best-first search proves optimality more
quickly, with the optimal solution proved in 22 nodes: 8 nodes were pruned and
the creation of 10 nodes was avoided, by first increasing the lowest lower bound in
the scheduling. However, it is not very efficient to quickly find good solutions: in 4
iterations, the best solution found has an objective value of 32.
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Figure 5.: Two different exploration strategies operating on a branch-and-bound tree.
Depth-first search (top) and best-first search (bottom). Numerical values in the upper
(respectively lower) part of each node N indicates its corresponding upper bound ubN
(respectively its lower bound lbN) . The red arrows illustrate the path followed by the
exploration strategy. A node denoted by P is a pruned node: its children are not created,
saving all the nodes marked by an X.

5.2. Analogy with the data structure
Each exploration strategy defines a scheduling of the nodes that are stored in the
variable L in Algorithm 1. Instead of considering L as a list and the exploration
strategy as a sorting function on L, we merge both concepts by defining exploration
strategies through their corresponding data structure. Indeed, the scheduling of
nodes is implemented by the Push and Pop functions in Algorithm 1 (steps 4 and 13),
defining a specific data structure representing a specific exploration strategy.

Standard exploration strategies [35] include breadth-first search, depth-first search
and best-first search. Breadth-first search gives priority to the closest node to the
root node. In our search tree, it would symmetrically explore the branches where a
variable is included in the support (left child) and branches where such variable is
removed from the support (right child, see Section 2.2). This rather seems unsuitable
to our problem, whose structure is not symmetrical since we seek for sparse solutions,
that is, the size of the support is small. On the contrary, as introduced in Section 5.1,
depth-first search first explores the deepest node in the tree, which was shown to
be an efficient strategy in the context of sparse optimization [5, 26]. It amounts to
first choosing one of the children of the node that was just divided. From a data
structure viewpoint, this corresponds to L being a stack, also known as LIFO (Last
In First Out). Best-first search (also introduced in Section 5.1) first selects the node
with the lowest lower bound of the objective function. It can be implemented with
a heap, which is a partially ordered data structure such that the first element of the
heap (the one extracted by the Pop function) always has the lowest score among all
elements. In the best-first search case, the score used in the heap is the lower bound,
and we say this is a heap sorted on the lower bound (note that a heap is always only
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partially sorted, not fully sorted).

5.3. Dedicated exploration strategies
Building on this data structure view, we propose new exploration strategies specific
to our problem. The first two ones are variations of best-first search. Indeed, best-
first search schedules nodes according to their lower bound, obtained by solving
problem (PN

2+1), which is the sum of a least-squares term and an `1-norm term. In
order to analyze if one of the two terms dominates in the exploration efficiency, we
consider the two following strategies:

• least-squares first, which is a heap sorted on the value of the least-squares term
at the solution of problem (PN

2+1), that is, 1
2‖y −Ax

N
lb‖

2
2,

• `1 first, which is a heap sorted on the `1-norm term at the solution of
problem (PN

2+1), that is, µ
M
‖xN

lb‖1.

Additionally, in order to investigate the benefits brought by both depth-first
search (that quickly finds good feasible solutions) and best-first search (that is better
for proving optimality), we designmixed strategies, which behave like a stack (depth-
first) at the beginning of the branch-and-bound algorithm, and then switch to a heap
sorted on either the lower bound, its least-squares term, or its `1-norm term.

6. Experimental results

This section is devoted to numerical experiments evaluating the different contri-
butions proposed in Sections 3 to 5. We first describe the numerical setup. Then,
Section 6.2 evaluates the performance of the different algorithms described in Sec-
tion 3.2 in their ability to increase the dual objective function. The homotopy method
is shown to outperform its competitors, and is therefore chosen as the best algorithm
for the next Sections 6.3 and 6.4 exploiting duality, where the efficiency of node prun-
ing and variable screening are respectively studied. Finally, Section 6.5 compares the
different exploration strategies.

6.1. Data description
We consider synthetic problems with random matrices as in [5, 6][7, 16, 26]: the
rows of the problem matrix A are drawn according to a multivariate centered nor-
mal distribution N (0,Σ), with covariance matrix Σ defined by Σij = ρ|i−j|. As ρ
increases, the correlation between the columns of A increases and the sparse recovery
problem becomes more difficult, both from informational and computational points
of view [5]. Columns are scaled so that ‖Ai‖2 = 1 ∀i ∈ {1, ..., Q}. The number of
unknowns varies from 100 to 100 000 and, in order to make these problems solvable
in the maximum time allowed, the correlation level is decreased as the problem size
increases. We consider the following data parameters:

Size ρ N Q K
Small {0.8, 0.92} 500 100 {3, 5, 7, 9}
Moderate 0.7 500 1 000 9
Large 0 1 000 100 000 9

where the very high correlation level of small problems makes them very hard to
solve. We build problem instances by generating a sparse vector xtruth with a ran-
dom support of K components equal to 1. 1 Unless otherwise stated, results are
averaged over 10 instances for each value of K. Synthetic data are generated as
y = Axtruth + ξ, with noise vectors ξ ∼ N (0, σ2I), σ controlling the amount of noise
in the data such that SNR := ‖Axtruth‖22/(Nσ2) = 6. The penalization parameter
µ in Problem (P2+0) is tuned empirically so that all solutions have the expected `0
pseudo-norm, K. We set M := 1.1‖AT y‖∞ for each instance [11].

1Dataset available at https://gitlab.univ-nantes.fr/samain-g/mimosa-oms-dataset
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We also consider a real dictionary taken from the Leukemia data set [23]. Sparse
instances are generated similarly from the full Leukemia matrix (N = 72 and Q =
7129 features), tuning µ so that the solution obtained after one hour has K = 9
non-zero components.

All experiments were performed with our own branch-and-bound code imple-
mented in C++ named Mimosa, running on a single thread, using a laptop computer
on Ubuntu 20.04.1 with 32Go RAM and an Intel Core i7-10610U processor clocked
at 1.8GHz. The installation procedure of Mimosa is given in Section 7.

6.2. Optimization for primal and dual objective functions
In this section, we empirically evaluate the convergence speed, for both the primal
and the dual objective functions (Problems (2) and (3) respectively), for each algo-
rithm described in Section 3.2: forward-backward splitting (FBS), Chambolle-Pock
primal-dual iterations (ChaPo), coordinate descent (CoordDesc), active set (ActSet)
and homotopy continuation (HomCont).

By construction, ChaPo generates primal and dual iterates. FBS, CoordDesc
and ActSet generate sequences of primal iterates xk, for which we consider the
corresponding sequence of dual points using the KKT condition (5a), that is, wk =
Axk − y. HomCont requires an additional rescaling step that is described hereafter.
Recall that HomCont generates iterates xk which are the solutions to problem (2)
for a decreasing sequence of values of penalization parameter µk > µ. Optimality
conditions (14) show that the corresponding dual solution scales as µk. Therefore,
we build a sequence of dual candidates for Problem (3) as wk = µ

µk (Axk − y). The
reader is referred to [50] for similar arguments for implementing screening tests.

The left part of Figure 6 shows the typical evolution of the iterates of primal
and dual objective values for the implemented algorithms, run at the root node
(that is, S0 = S1 = ∅), for one instance extracted from a small size dataset with
ρ = 0.8, Q = 100, and K = 9. The primal objective function first decreases faster
with asymptotic methods (FBS, ChaPo, CoordDesc) than with exact ones (ActSet,
HomCont), with FBS being the best and HomCont the worst. However, the exact
methods converge in fewer iterations than asymptotic ones, with both ActSet and
HomCont terminating in 31 iterations, while CoordDesc converges after 40 iterations
and proximal algorithms (FBS and ChaPo) did not terminate after 100 iterations.

Looking at the dual iterates, HomCont is by far the best at first iterations and
also converges first. CoordDesc first dual iterates are quite poor, then they quickly
become close to the optimal value, although a large number of iterations is required
for convergence. The first ActSet iterates are also very far from the optimal value,
but then they behave similarly to HomCont. Finally, proximal algorithms suffer from
slow dual convergence.
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Figure 6.: Evolution of the primal (top) and dual (bottom) objective functions of a
relaxation problem (ρ = 0.8, Q = 100) at the root node of the branch-and-bound
algorithm, for different optimization strategies, as a function of the iteration number
(left) and of the computation time (right).
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Figure 7.: Evolution of the primal (top) and dual (bottom) objective functions of a
relaxation problem (ρ = 0, Q = 100 000) at the root node of the branch-and-bound
algorithm, for different optimization strategies, as a function of the iteration number
(left) and of the computation time (right).

Let us now compare the algorithms as a function of their computation time (right
part of Figure 6). Indeed, the cost of one iteration of HomCont or ActSet is numer-
ically more complex than one iteration of FBS, ChaPo or CoordDesc. CoordDesc is
clearly slower than proximal algorithms at first, then it becomes more competitive
at the very end, both for primal and dual iterates. ActSet primal iterates decrease
finally slower than those of HomCont: if both strategies require the same number
of iterations to converge, ActSet iterations are computationally heavier. Their slow
increase of dual iterates definitely disqualifies CoordDesc and ActSet methods, and
HomCont is by far the fastest method that increases the dual objective.

Figure 7 shows similar comparisons for one instance extracted from the large size
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dataset (ρ = 0, Q = 100 000, K = 9). Remark first that, due to the high dimension,
computation times are increased by several orders of magnitude. However, due the
lower correlation level in matrix A, fewer iterations are required for convergence of
HomCont, ActSet, and CoordDesc. CoordDesc now has the best performance among
all tested algorithms, even if HomCont is still the best strategy for quickly increasing
the dual objective.

In conclusion, due to its fast convergence as well as its best performance for
improving the dual objective, we will select the homotopy continuation algorithm
for the experiments in the next sections, when working on small and moderate size
datasets. For the large size dataset, we will use the coordinate descent algorithm
instead.

6.3. Duality-based early pruning
We now evaluate the performance of the duality-based early pruning strategy de-
scribed in Section 3. For each problem instance, the branch-and-bound procedure
given in Algorithm 1 is run, and at each node N:

• we consider the number of iterations required by the primal algorithm
(HomCont for Q ∈ {100, 1 000}, CoordDesc for Q = 100 000) to compute the
corresponding lower bound, say, IpN;

• we consider the number of iterations after which the dual objective function
exceeds the best known upper bound, say, IdN;

• we define the relative saving in iterations, expressed as
IpN − I

d
N

IpN
. This ratio

is expressed as a percentage and called "% iterations" in Figures 8 and 9.

All results are averaged over 10 problem instances.
Results are reported in Table 1 and in Figure 8, where the savings are drawn as a

function of the cardinality of subset S1 (the number of non-zero components included
in the solution at a given node). We first focus on the small size instances withK = 9.
For ρ = 0.8, although very few iterations can be saved with small values of |S1|, early
pruning becomes more efficient as |S1| increases. In particular, when |S1| = K, more
than 50% iterations are saved for 50% of the evaluated nodes. Some nodes are even
pruned from the very first iteration of HomCont (100% saved iterations, see the
black dashes on the figure). A possible explanation for this behavior comes from
our branching strategy given in Equation (2.4): as we branch on variables which are
likely to be non-zero at the optimal solution, the variables in S1 are likely to belong
to the optimal support. Therefore, lower bounds are expected to be more accurate
as S1 grows. Conversely, when S1 is small, we are either at the top of the branch-
and-bound tree, where few decisions have been made, or we are in the right side of
the tree, filling S0, which means that we exclude variables with high amplitudes. In
both cases, the lower bounds are likely to be of poor quality (see the example on
the right in Figure 3), and the dual iterates are therefore of no interest. Globally,
dual pruning achieves a reduction of about 10% iterations.

For ρ = 0.92, although the same trend can be observed (more iterations are saved
as the cardinality of S1 increases), the pruning performance is much weaker and only
about 3% iterations are saved. Indeed, the quality of the lower bounds obtained by
the `1-norm relaxation of the `0 pseudo-norm worsens as the columns of matrix A
become more correlated (see [49] and references therein). Most explored nodes are
likely to correspond to the example on Figure 3 right, where computing dual values
cannot bring any improvement. Finally, we note that even in this difficult setting,
pruning could still save all iterations at some nodes with support size close to the
true cardinality.

Let us now focus on larger and less correlated instances. As the correlation level
decreases, the performance of early pruning increases a lot, with 24% iterations saved
for ρ = 0.7, Q = 1 000, and 78% for ρ = 0, Q = 100 000. In particular, more than
50% iterations are saved for 50% of the nodes with |S1| = 7 for ρ = 0.7, Q = 1 000,
and with |S1| = 5 for ρ = 0, Q = 100 000. We observe that the median lines in
the box plots switch from 0 to 100% for nodes with higher |S1|. Deeper analysis
revealed a kind of “all-or-nothing” behavior: either early pruning succeeds at the
first iterations, or it almost never succeeds.

20



Problem category # iterations # iterations % Saved
w/o early pruning with early pruning

ρ = 0 Q = 100 000 48 141 10 552 78.1 %
ρ = 0.7 Q = 1 000 182 792 138 543 24.2 %
ρ = 0.8 Q = 100 338 951 304 507 10.2 %
ρ = 0.92 Q = 100 68 585 732 66 555 082 2.97 %
Leukemia Q = 7129 13 575 922 8 514 687 37.3 %

Table 1.: Results for duality-based early pruning: number of saved iterations without /
with early pruning.
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Figure 8.: Results for duality-based early pruning: ratio of saved iterations as a function
of the number of non-zero variables at the corresponding node, for four correlation levels
in matrix A and problem sizes. The cardinality of the solution is K = 9. Each box shows
the first and third quartiles on the fraction of saved iterations, the red dash indicates
the median value, and black dashes indicate the extreme values.

Finally, Figure 9 and the last row in Table 1 report the iteration savings on the
Leukemia dataset. No node in |S1| ∈ {0, ..., 12} could be pruned, therefore no one
could be accelerated with early pruning. For the nodes with |S1| = 17, all iterations
are saved thanks to early pruning. Nodes with |S1| ∈ {13, ..., 16} also reveal some
kind of "all-or-nothing" behavior. Globally, dual pruning achieves a reduction of
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about 37% iterations.
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Figure 9.: Results for duality-based early pruning as a function of the number of non-
zero variables at the corresponding node on the Leukemia instances. The cardinality of
the solution is K = 9. Each box shows the first and third quartiles on the fraction of
saved iterations, the red dash indicates the median value, and black dashes indicate the
extreme values.

6.4. Variable screening
The efficiency of the screening method described in Section 4 is now studied, using
a similar methodology to that in former Section 6.3. At each node N of a given
branch-and-bound execution, we consider the fraction of variables that are removed
along the relaxation strategy. To this end:

• for a problem instance I, let N |S1|
I denote the number of nodes with a given

cardinality of S1 (the number of non-zero variables fixed at the node);
• let V |S1|

I denote the total number of variables that were screened in such nodes;
• we define the instance-wise average ratio of variables that could be screened

depending on the cardinality of S1: FI|S1| := V
|S1|

I
N
|S1|
I

, expressed as a percentage

and called "% variables" in Figures 10 and 11 (colored dots);
• we define the global average ratio of variables that could be screened depending

on the cardinality of S1 as FG|S1| :=
∑

I
V
|S1|

I∑
I
N
|S1|
I

, expressed as a percentage

and called "% variables" in Figures 10 and 11 (dashed line).

In our experiments, the screening method only set variables xi, i ∈ S̄, to 0.
Figure 10 shows the screening performance on synthetic instances for the different

problem categories. Here again, the performance increases as the correlation level
decreases and, contrary to early pruning, variable screening is more efficient for
nodes with less variables in S1 (that is, upper nodes in the decision tree and nodes
on the right side of the tree). For ρ = 0 and Q = 100 000, screening test eliminate
almost 100% of variables for nodes with |S1| up to 6. For ρ = 0.7 and Q = 1 000,
more than 50% of variables are screened up to |S1| = 6. For the smallest and most
correlated problems, the screening performance severely drops, removing 10 to 20%
of variables for ρ = 0.8 and only a few percent for ρ = 0.92. A similar interpretation
to that in Section 6.3 can be given: when the correlation between the columns of A
increases, it becomes harder to discriminate between the variables, and in particular
to decide that some variables are irrelevant (that is, screened to 0).
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Figure 10.: Screening performance as a function of the number of non-zero variables at
the corresponding nodes for four correlation levels in matrix A and problem sizes. The
cardinality of the solution is K = 9. For each instance, one point represents the average
ratio of screened variables FI|S1| over the nodes with cardinality |S1|. The dashed line
shows the average ratio of screened variables over all instances, FG.

Figure 11 reports the screening performance for the Leukemia dataset. We can
see that contrary to early pruning, screening is really effective on a large range of
|S1|, with more than 50% of screened variables up to |S1| = 13.
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Figure 11.: Screening performance as a function of the number of non-zero variables at
the corresponding nodes for the Leukemia instances. The cardinality of the solution is
K = 9. For each instance, one point represents the average ratio of screened variables
FI|S1| over the nodes with cardinality |S1|. The dashed line shows the average ratio of
screened variables over all instances, FG.

6.5. Exploration strategies
In this section, we finally compare the performance of the different exploration
strategies proposed in Section 5, which are implemented as data structures. The stan-
dard depth-first search and best-first search strategies are respectively implemented
as a stack and a heap, which is sorted on the lower bound lbN (denoted heaplb).
Problem-specific strategies are also implemented, namely heapLS and heap`1 , corre-
sponding to heaps sorted on the values of the lest-squares term and of the `1-norm
term in lbN, respectively. Finally, mixed strategies are implemented, that switch
from stack data structure (depth-first search) to heaps, with the three previously
described sorting options. The switch is performed after a given number of nodes, say
Nswitch, have been explored, for which three values are considered: 20, 200 and 2000.
In the following, such strategies are correspondingly named stackNswitch + heaplb,
stackNswitch + heapLS, and stackNswitch + heap`1 .

We first focus on the small and highly correlated problems, and we measure the
total number of nodes that were created by each exploration strategy to solve the
instances to optimality (in the limit of one hour), aggregating all instances with
K ∈ {3, 5, 7, 9}, which amounts to 40 instances for each value of ρ ∈ {0.8, 0.92}.
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Figure 12.: Performance profiles comparing the number of created nodes for different ex-
ploration strategies, for moderately difficult problems (ρ = 0.8, top) and highly difficult
problems (ρ = 0.92, bottom). Exploration is run until the entire search tree has been
explored (computation time limited to one hour). The black dotted line with diamonds
represents the stack implementation, and the full line with circles represents the heap
implementation, sorted on the lower bound (magenta), its least-squares term (red), or
its `1-norm term (blue). Mixed strategies stackNswitch + heap use the same color code
for the heap sorting, and are represented with full lines for Nswitch = 20, dashed lines
for Nswitch = 200, and dotted lines for Nswitch = 2000.

Figure 12 shows the corresponding performance profiles [17], for ρ = 0.8 (top)
and ρ = 0.92 (bottom). In both cases, best-first search (heaplb) achieves the best
results, that is, it always explores less nodes than its competitors. Sorting the heap
based on the least-squares part of the lower bound (heapLS) is slightly less efficient,
although still better than the stack implementation (which is yet the strategy im-
plemented in the related works [5, 24, 26]). As could be expected, mixed strategies
stackNswitch + heaplb achieve intermediate performance between heaplb and stack,
with parameter Nswitch tuning the behavior closer to heaplb (which corresponds to
Nswitch = 0) or to stack (Nswitch = +∞). Similarly, stackNswitch + heapLS behaves
between heapLS and stack. heap`1 is by far the worst strategy. Starting with some
depth-first search iterations substantially improves its performance, but still achieves
the worst results among all tested strategies. A possible explanation is that explor-
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ing first the nodes with the lowest `1-norm value favors too much the sparsity of
the solution, therefore exploring in priority the right side of the branch-and-bound
tree where S0 grows. That is, nodes are explored where high values in xN

lb are put
to zero, which is likely to generate poor solutions.

We also note that the impact of the exploration strategy highly depends on the
problem difficulty: for ρ = 0.8, all strategies tend to align and give similar results,
with the best strategy outperforming the second one for only 5% of the instances,
while for ρ = 0.92 this is the case for 26% of the instances. Here again, this may be
due to the quality of the `1 norm relaxation, which improves when ρ decreases: in
that case, the lower bounds are better, and it becomes easier, for all strategies, to
identify the nodes which should be pruned.

Finally, we study the performance of the different exploration strategies in their
ability to find the optimal solution, without proving its optimality. This may be of
interest in order to use the branch-and-bound procedure as a heuristic algorithm
with limited computation time. Figure 13 shows similar behaviors both for ρ = 0.8
(top) and ρ = 0.92 (bottom), although results are more contrasted in the second case:
the best-first search strategy heaplb is now the most inappropriate one for finding
the optimum. Interestingly, depth-first search, yet acknowledged for its ability to
quickly discover good solutions, is not the best option either, as it is outperformed
by heapLS.
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Figure 13.: Performance profiles comparing the number of created nodes required to
find the optimal solution without proving its optimality, for different explo-
ration strategies, for moderately difficult problems (ρ = 0.8, top) and highly difficult
problems (ρ = 0.92, bottom). The black dotted line with diamonds represents the stack
implementation, and the full line with circles represents the heap implementation, sorted
on the lower bound (magenta), its least-squares term (red), or its `1-norm term (blue).
Mixed strategies stackNswitch + heap use the same color code for the heap sorting, and
are represented with full lines for Nswitch = 20, dashed lines for Nswitch = 200, and dotted
lines for Nswitch = 2000.

The former analysis showed that the exploration strategy has more impact on
the number of explored nodes for highly correlated problems. Indeed, for the higher-
dimensional problems considered in this paper, where the correlation level is lower,
as well as for the Leukemia instances, all tested exploration strategies always created
the same number of nodes, and are therefore equivalent.
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7. Software installation and usage

We distribute our source code for reproducibility and further usage. Section 7.1 first
describes the installation of a pre-packaged version for Ubuntu users, which han-
dles some prescribed dependencies and solvers. Section 7.2 provides more advanced
compiling options. Then, the overall object architecture is described in Section 7.3.
Finally, Section 7.4 gives usage instructions with both executable and shell scripts.

The code, called Mimosa forMixed Integer programming Methods for Optimization
of Sparse Approximation criteria, is a C++ software licensed under the GNU Lesser
General Public License v3 terms2. Instructions are given for UNIX systems.

7.1. Ubuntu package installation
For Ubuntu users, a package named Mimosa_2.0.0_amd64.deb is already available
at https://box.ec-nantes.fr/index.php/s/Ki7xb7TxKHk4zW5.

Installing the code along with its dependencies is as simple as:

$ sudo apt install <path/to/ Mimosa_2 .0.0 _amd64 .deb >

7.2. Compiling
To compile the code, you will need the Dlib (http://dlib.net/) and Armadillo
(http://arma.sourceforge.net/) libraries installed.

First retrieve the source:

$ git clone -b oms_europt21
https :// gitlab .univ - nantes .fr/samain -g/mimosa - solver

Then, in the project folder, create a build directory:

$ mkdir cmake_build && cd cmake_build

After this comes the cmake invocation:

$ cmake -DUSE_CPLEX =<0|1> -DCPLEX_ROOT_DIR =<path >
-DDLIB_ROOT_DIR =<path > -DArmadillo_ROOT_DIR =<path >
-DLOG_PER_NODE_STAT =<0|1> -DCMAKE_INSTALL_PREFIX =<path > ..

The last .. is mandatory. These options set some CMake variables VAR with the
syntax -DVAR=value.

Set USE_CPLEX to 1 in order to enable the CPLEX solver support for com-
parison purposes (see Section 7.4). In that case, CPLEX_ROOT_DIR specifies the
path to CPLEX. If USE_CPLEX = 0, CPLEX support is disabled, which makes
CPLEX_ROOT_DIR unused. Leaving USE_CPLEX unspecified triggers a "best-effort"
build. CMake will try to find CPLEX libraries, and otherwise it will fall back to
a no-CPLEX build.

Set DLIB_ROOT_DIR (respectively Armadillo_ROOT_DIR ) to the correspond paths
for Dlib and Armadillo. If they are installed to a standard location in your system,
specifying such values is not required.

The LOG_PER_NODE_STAT variable controls whether statistics on individual node
should be printed or not. This is switched off by default because of the huge amount
of data generated. If you wish to reproduce the results in Section 6.3, you need to
set LOG_PER_NODE_STAT to 1.

Finally, the option CMAKE_INSTALL_PREFIX is used to specify the installation
path of Mimosa, otherwise Mimosa is installed in the default path of your system
(/usr/local/bin).

After this step, you should have a Makefile in the current folder. It can now be
compiled with:

$ make

This will create the Mimosa binary. Then:

2Terms available at https://opensource.org/licenses/LGPL-3.0
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$ sudo make install

will put the Mimosa binary and its companion shell scripts in
$CMAKE_INSTALL_PREFIX/bin, by default in /usr/local/bin.

7.3. Architecture
Mimosa uses an object-oriented paradigm favoring abstract interfaces, and was de-
signed to ease the integration of new variants for classic components of a branch-
and-bound algorithm.

The file interfaces.hpp gives the global overview of these interfaces. The branch-
and-bound main loop is defined in Optimizer.cpp, see Algorithm 1.

This loop manipulates nodes. The nodes interface is declared in interfaces.hpp,
the implementations are declared in NodeImplementation.hpp and defined in
NodeImplementation.cpp. The node definition defines which quantities are stored
in a node, and which ones are computed on-the-fly.

The implementations for dividing a node are declared in Split.hpp and defined
in Split.cpp. These two files contain the branching strategies available in Mimosa,
see Section 2.4.

For the implementations computing the upper bounds (see Section 2.3), UB.hpp
and UB.cpp gives the necessary declarations and definitions.

For the computations of lower bounds (see Section 3), LB.hpp and LB.cpp are the
main entry points. The organization of the source files is described in HACKING.md.

The data structures coding the different exploration strategies (see Section 5.2)
are declared in node_container.hpp and defined in node_container.cpp.

7.4. Usage
Upon compilation, one program Mimosa is generated, along with some shell scripts
to provide handy shortcuts. The Mimosa executable comes with all the options being
mandatory, while the shell scripts variants use sensible predefined settings.

Executable code. Mimosa takes instances from standard input. One instance
is a folder containing the following files:

• y.dat: the data measurements y
• A.dat: the problem matrix A
• mu.dat: the `0-norm penalty parameter µ defined in (P2+0).

It provides some kind of activity log to standard output, including the solution x̂. A
CSV file is also generated containing per-instance metrics used for the experiments
in Section 6.4 and 6.5.

Mimosa also takes some command line arguments, in this order:
$ Mimosa l2pl0 <solver > <dualmod > <scrmod > <explo > <exploarg >

<solver> The solver to use, which is one element of:
• full_cplex,
• bb_cplex,
• bb_homotopy_warm,
• bb_homotopy_cold,
• bb_activeset_warm,
• bb_activeset_cold,
• bb_icd_warm,
• bb_icd_cold

among which:
• full_cplex stands for a direct call to CPLEX solving a MIP formulation of the problem

(see [5] for more details). This is provided as a wrapper around CPLEX if you wish to
benchmark our code versus CPLEX.

• bb_cplex stands for the CPLEX quadratic programming solver used to compute the
lower bounds, and the lower bounds only. As for all solvers with names bb_$$ , the
Mimosa Branch-and-Bound framework described in Section 2 is used, the algorithm to
compute the lower bounds being specified in the $$ part.
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• bb_homotopy_$$, bb_activeset_$$, bb_icd_$$ stand for the Mimosa Branch-and-Bound
framework, with one of the three algorithms described in Section 3.2 used to compute
the lower bounds. The _warm suffix stands for warm start, where initial guesses are taken
from the output of the parent node evaluation. The _cold suffix stands for no warm start.
Experiments in this paper were done with bb_homotopy_cold and bb_icd_cold.

<dualmod> The dualmod parameter is the period at which the dual objective function is evaluated for early
pruning within the iterations computing the lower bounds (by the previously described solvers).
Setting it to 0 disables dual computations. Experiments in Sections 6.3 and 6.4 were performed
with dualmod = 1 (that is, at each iteration), while experiments in Section 6.5 were performed
with dualmod = 0.

<scrmod> The scrmod parameter is the period at which screening tests are implemented. Setting scrmod =
1 computes the screening tests every time the dual objective function is evaluated, scrmod = 2
computes them every two such evaluations, etc. scrmod = 0 disables screening. Experiments in
Section 6.4 were performed with scrmod = 1.

<explo> The exploration strategy to use, among:
• stack: depth first search,
• heap_on_lb: best first search,
• heap_on_l1: `1 first search,
• heap_on_ls: least-square first search,
• stack_then_heap_on_lb_iteration_threshold: mixed strategy, depth first search then

best first search after Nswitch iterations (see below),
• stack_then_heap_on_l1_iteration_threshold: mixed strategy, depth first search then
`1 first search after Nswitch iterations,

• stack_then_heap_on_ls_iteration_threshold: mixed strategy, depth first search then
least-square first search after Nswitch iterations,

• stack_then_lds_iteration_threshold: mixed strategy depth first search then limited
discrepancy search after Nswitch iterations.

<exploarg> The iteration threshold Nswitch for mixed strategies (set to 0 for non-mixed strategies), see
Section 5.2.

An invocation example is then:

$ echo one_instance_here | Mimosa l2pl0 bb_homotopy_cold 1 2
stack_then_heap_on_lb 20 my_results .csv

Shell scripts. The shell scripts give shorter ways to call Mimosa. All scripts use
these predefined values:

• bb_homotopy_cold solver,
• dualmod = 0,
• scrmod = 0,
• heap_on_lb exploration strategy,
• Nswitch = 0,

that can be changed by editing the script.
Three scripts are provided, with different ways to take instances.

• Mimosa_l2pl0_1inst takes one instance as an argument (and pipes it to Mimosa), as in the
following example:

$ Mimosa_l2pl0_1inst <path/to/one/ instance /folder >

• Mimosa_l2pl0_listinst takes a file containing a list of instances as an argument. With a file
inst_list.txt listing instances like this:

path/to/one/ instance / folder
path/to/ another / instance / folder

an invocation example is:

$ Mimosa_l2pl0_listinst inst_list .txt

• Finally, Mimosa_l2pl0_pipeinst takes a list of instances on standard input, as Mimosa does.
An invocation using the previous list would be:

$ cat inst_list .txt | Mimosa_l2pl0_pipeinst

A dynamically generated list can also be used with this third script, for example:
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$ find /path/to/ directory / containing / instances | grep K9 | sort |
head -n 20 | Mimosa_l2pl0_pipeinst

8. Discussion

In this paper, three acceleration techniques for branch-and-bound algorithms dedi-
cated to sparse linear regression have been explored.

The first two ones relate to the computation of lower bounds involved at each
node of the branch-and-bound tree, which are obtained by solving convex, non-
smooth, box-constrained, optimization problems mixing least-squares and `1-norm
terms. Early pruning exploits convex duality in order to reject suboptimal nodes
thanks to the computation of dual bounds. Screening methods use dual iterates to
prove the nullity of some variables at the optimal point, therefore discarding them
from the remaining computation of the lower bound. Several dedicated algorithms
were studied in such a context, among which the homotopy continuation method
appeared to be the most efficient one for increasing the dual objective function, ex-
cept for the biggest problems with 100 000 unknowns, where coordinate descent was
shown to perform slightly better. Both early pruning and screening were shown to be
more efficient for settings where the correlation between the columns of the problem
matrix is lower. Significant gains in the resulting computational complexity of node
evaluation were obtained for problems involving 1 000 variables with medium corre-
lation, and savings were even more impactful for uncorrelated problems with 100 000
variables. A detailed performance analysis revealed that the acceleration power of
such techniques also depends on the considered node inside the tree: while early
pruning has more impact for nodes including a higher number of active variables
(close to the true sparsity level of the solution), screening performs better for nodes
with fewer variables included in the support.

The third acceleration technique concerns the exploration strategy, where alter-
natives to standard methods were investigated, and implemented as specific data
structures for node scheduling. Contrary to early pruning and screening, the choice
of the exploration strategy was shown to have more impact on the most correlated
problems. In such cases, best-first search offers the lowest number of explored nodes
if the branch-and-bound procedure is run up to optimality. However, exploring in
priority the nodes with the lowest least-squares term was found to be more efficient
in order to quickly find good solutions. It is therefore a choice of interest if one ac-
cepts to trade the loss of the optimality proof against a subsequent reduction of the
computation time. To the best of our knowledge, such choices were never discussed
in the related literature, where depth-first search always seems to be chosen.

We provide a dedicated C++ implementation called Mimosa, where the different
proposals discussed in the paper can be applied or not. Other recently proposed
branch-and-bound solvers for sparse optimization [24, 26] could also benefit from
such accelerations. Conversely, specific tricks proposed in such papers (e.g., node
screening in [24] or active set construction and gradient screening refinement in [26]),
may also contribute to accelerate our solver. More generally, developing a robust
benchmarking infrastructure such as BenchOpt [31] for `0-norm sparse optimization
would be very useful for comparing methods through intensive testing and sharing
building elements of branch-and-bound algorithms cooperatively.

These works pave the way for future ones. First, the efficiency of the proposed
techniques was shown to strongly vary with the problem structure, the type of node
in the search tree, the depth of the node, etc. In order to optimize the resulting
computation time, such methods should only be applied when they are potentially
useful, that is, when the potential acceleration brought compensates for the extra
computation cost. The resulting choices may highly depend on the problem, and
strategies that would learn such decisions for a given problem class are of first in-
terest. More aggressive screening types for relaxed problems are also worth being
studied. Strong screening strategies [29, 44] increase the number of variables that
are fixed, and hence reduce the computation time, but with the risk of making the
solution found sub-optimal. In that case, the optimal value of the reduced relaxation
problem may not be a lower bound of the considered original `0 subproblem. For-
tunately, such cases could be detected by a non-zero duality gap. A valid strategy
would then consist in first applying strong screening and find a good, potentially
sub-optimal solution and, if necessary, include again the previously fixed variables
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for the last iterations of the relaxation algorithm.
Finally, the discrepancy between the performance of best-first, least-squares first

and most notably `1-norm first exploration strategies may be a hint that using the
`1 norm to relax the `0 cardinality term is too loose. This motivates the use of non
convex relaxation to improve the quality of lower bounds, e.g., based on the many
related works in the sparse approximation literature [42]. This would certainly raise
new methodological issues in order to guarantee the validity of the obtained bounds
and, subsequently, of the resulting branch-and-bound procedure.
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