N
N

N

HAL

open science

Techniques for accelerating Branch-and-Bound
algorithms dedicated to sparse optimization

Gwenaél Samain, Sébastien Bourguignon, Jordan Ninin

» To cite this version:

Gwenaél Samain, Sébastien Bourguignon, Jordan Ninin. Techniques for accelerating Branch-and-
Bound algorithms dedicated to sparse optimization. 2022. hal-03661177v1

HAL Id: hal-03661177
https://hal.science/hal-03661177v1

Preprint submitted on 6 May 2022 (v1), last revised 31 May 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03661177v1
https://hal.archives-ouvertes.fr

Techniques for accelerating Branch-and-Bound algorithms
dedicated to sparse optimization

Gwenaél SAMAIN?, Sébastien BOURGUIGNON? and Jordan NININP

aNantes Université, Ecole Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000;
PLab-STICC, CNRS UMR 6285, ENSTA Bretagne, Brest Cedex, France

ARTICLE HISTORY
Compiled April 14, 2022

KEYWORDS

branch-and-bound, cardinality, convex relaxation, duality, exploration strategy.
Abstract

Sparse optimization—fitting data with a low-cardinality linear model—is addressed
through the minimization of a cardinality-penalized least-squares function, for which
dedicated branch-and-bound algorithms clearly outperform generic mixed-integer-
programming solvers. Three acceleration techniques are proposed for such algo-
rithms. Convex relaxation problems at each node are addressed with dual ap-
proaches, which can early prune suboptimal nodes. Screening methods are imple-
mented, which fix variables to their optimal value during the node evaluation, re-
ducing the subproblem size. Numerical experiments show that the efficiency of such
techniques depends on the node cardinality and on the structure of the problem
matrix. Last, different exploration strategies are proposed to schedule the nodes.
Best-first search is shown to outperform the standard depth-first search used in the
related literature. A new strategy is proposed which first explores the nodes with
the lowest least-squares value, which is shown to be the best at finding the optimal
solution—without proving its optimality. A C++ solver with compiling and usage
instructions is made available.

Introduction

Adjusting a linear model with low cardinality to a data set has found many ap-
plications, for example in statistics |6, finance [13] and signal processing [10]. The
corresponding sparse optimization problem is often formulated as the minimization
of the least-squares misfit function between the data vector y € RY and the model
Az, with known matrix A € Myxo(R) and unknown vector = € R?. Sparsity is
then enforced on x, that is, the number of nonzero values, the so-called ¢y “norm”
||z|lo := Card({i|z; # 0}), is limited. In this paper, we focus on the penalized for-
mulation [4] |5, [10} [23] |24} |38} (39} 41]:

: 1 2
min 5|y — A
min 5lly — Azl + pllzl,,

which balances between the two contradictory objectives through the value of pa-
rameter p > 0.

Due to the discrete £p-norm term, this problem is essentially combinatorial and
NP-hard [29]. Many heuristic local search methods have been proposed |2} |42} |43,

CONTACT G. SAMAIN. Author. Email: gwenael.samain@Is2n.fr

as well as algorithms that solve continuous relaxations of . In particular, many
algorithms were designed for solving the convex, non-smooth, ¢;-norm-penalized
problem (see [2] for a review). Locally solving continuous, non-convex, relaxations
of the fp-norm problem is also a recent trend (see the discussion in [38] about
different such relaxations and their properties).

All such methods are fast, they can scale to high-dimensional problems, and
they do find sparse solutions. However, conditions that guarantee their optimality
according to , mostly requiring that the matrix A is nearly orthogonal and that
the solution is highly sparse, are very restrictive [43]. In practice, their performance
decreases as the problem complexity increases (highly correlated columns in A, high
level of noise), even in small dimension[10].

On the other hand, exact optimization techniques of were considered, which
guarantee the global optimality of the solution. In [6,10}[41], was reformulated as
a mixed integer program (MIP) and solved by a generic solver. In [5} 7, 23], dedicated
optimization algorithms based on the branch-and-bound framework were proposed,
which outperform generic MIP resolution, by exploiting the specific structure of the
problem (note that earlier ideas in this direction appeared in [8]).

This papers studies different techniques aiming to accelerate exact sparse opti-
mization by such dedicated branch-and-bound algorithms. The two first contribu-
tions focus on reducing the computational burden associated to the relaxation prob-
lems evaluated at each explored node, based on exploiting convex duality. First, we
leverage weak duality in order to prune suboptimal nodes without resorting to the
exact computation of the relaxed subproblems. Then, convex screening methods [30}
34] are studied in order to discard optimization variables prior to (or during) such
computations, which reduce the size of the relaxation problems. Last, we consider
different possible strategies for node exploration (depth-first of best-first searches
based on the different terms of the cost function, and mixed strategies) and we
study their impact on the number of explored nodes.

Section [I] introduces the notations and definitions, and defines the global branch-
and-bound architecture dedicated to sparse optimization. Exploiting weak duality
is addressed in Section [2] Section [3]is devoted to the implementation of screening
tests in our context, and exploration strategies are studied in Section [d] The perfor-
mance of all such techniques is evaluated through numerical experiments exposed
in Section [5] Finally, Section [f] provides installation and usage instructions for the
corresponding solver. Concluding remarks and a discussion for future research close
the paper.

1. Dedicated Branch-and-Bound for sparse optimization

1.1. Problem formulation

The sparse approximation problem is essentially combinatorial, due to the
discrete-valued fp-norm counting function. Dedicated resolution approaches in the
literature [5} |7, [8] rely on branch-and-bound algorithms, which require the com-
putation of relaxations of . In particular, in order to compute lower bounds
of (or of subproblems of), a standard approach computes convex relax-
ations of such problems. However, due to the non-coercivity of the ¢p-norm term
(since VA # 0, ||Az||, = [|z]|,), no convex relaxation of the £y norm can be obtained.
One solution then consists in incorporating additional constraints to that will
bound the values of z, see Figure [I]for such convex relaxations in a bounded domain.

— fo(z) = Lozo(z)
— fi(z) = |z|

foz) =

0 I I
-M 0 M

Figure 1.: The /; counting function in 1D (fo(z) = 1 if # 0 and 0 otherwise), and
some of its continuous convex relaxations, only possible in a bounded domain—here,
—-M<z<M.

For example, in [23| [36], the £2-norm penalty term ||x||§ is added to the cost
function, meaning that amplitudes are enforced to lie in an ¢2 ball—also see
much earlier works that motivate such a ridge regression term based on a statis-
tical Bernoulli-Gaussian models on vector = [24]. In this paper, we follow another
standard approach, constraining the amplitudes of z to lie in a symmetric box:
|z]|oo := max;eq1,... 0} |2i| < M. In the rest of this paper, we therefore consider
the following optimization problem:

% := arg négin Uy — Az||3 + pllz[y, subject to (s.t.) [lz]lsc < M. (P240)
zeR

Note that such a choice was also used e.g. in |5} 6, [8], where problem was refor-
mulated as a Mixed Integer Program (MIP) with binary variables b;, ¢ € {1,...,Q},
encoding the nullity /non-nullity of x; by the linear constraints: x; < Mb;, such that
zllo = Zz bi.

Let S denote the support of a given vector z, that is, the index set of non-zero
components: S := {i|z; # 0}. Finding the corresponding non-zero values amounts
to solving:

] Tlloo < M7
iy = asll sl s { Bl

& n;isn%”y —Aszsly st asll, <M,

where Ag denotes the submatrix formed by the columns of A with indices in S, and
zs denotes the corresponding subvector of non-zero variables which contribute to
the solution. For a given support .S, this is a box-constrained least-squares problem.
Consequently, the main challenge to solve is the search for the optimal sup-
port. Therefore, we build a branch-and-bound algorithm to this end, whose search
space is the space of supports.

1.2. Support space structuring and branch-and-bound architecture

Within the branch-and-bound procedure, a given node is divided by choosing a
component and make it belong to, or reject from, the support of the solution. At
each node, the support space is partitioned into three subsets:

e Sp: the set of components which contribute to the solution,
e So: the set of components which are forced to 0,
e S: the set of free/undetermined components.

We denote a node by N(S1, So, S), or simply N when there is no ambiguity. Dividing
a node then means taking a component j € S and putting it into S; for the left
child and into Sp for the right child. An example is shown in Figure

S1 = {4}

So = {5,6}
S={1,2,3,7}
2¢€S 2 €5
S = (2,4} Sy = {4}
*?0 = {576} 50 - {27576}
S={1,37} S=1{1,3,7}

Figure 2.: A branching example with z € R, which operates on the variable x5. The
sets S1, Sp, S are correspondingly updated on the children nodes L and R.

Algorithm 1 Branch & Bound algorithm for optimization of ([Pa.).

1: procedure BRANCHANDBOUND(L)

2 Ib + —00, ub ¢ 400 and & + Null

3 while £ is not empty or another stopping condition is not met do

4 Pop a node N from L. > Exploration strategy
5: Divide N into two sub-nodes L and R. > Branching strategy
6 for all sub-node N; in {L, R} do

7 Compute a lower bound lby, of N; with solution zg > Bounding
8 if Ibn, < ub then

9: Compute an upper bound uby;, of N; with solution xuNb > Bounding
10: if ubn, < ub then

11: Update the best solution found: & muNg and ub « uby,.

12: end if

13: Push N; in L. > Exploration strategy
14: end if

15: end for

16: end while

17: Compute the lowest lower bound: Ib = %el% Ibn

18: return (Ib,ub, %)

19: end procedure

Algorithm [I] describes the main steps of the branch-and-bound procedure. It
returns the global minimizer & of if the algorithm is run until the node list
L is empty. If another stopping condition is used (step [3)), such as e precision, a
maximum number of iteration or a time limit, then & is the best solution found, and
a certified enclosure of the global minimum of , denoted [lb, ub], is obtained.
The basic components of such branch-and-bound algorithm are the following.

e The exploration strategy selects which node N should be divided first among the remaining
search domain L£: it defines the scheduling of nodes (step [4f in Algorithm .
e The bounding procedures consist in computing, at each node N:
i) a lower bound lbn of the corresponding subproblem (step |7));
ii) a feasible solution 2}, and an upper bound ubn of the global minimum (step E[)
o The branching strategy defines how the node is divided into children, that is, it selects which
variable j € S is moved into S1 and Sy (step .

Basic bounding procedures and the branching strategy used in this paper are dis-
cussed in Sections [[.3] and [[4] respectively.

1.3. Bounding the nodes

At a given node N(S1, So, S), that is, for a given configuration of the support space,
the fo-norm term reads ||z||, = ||zs, ||o+]|Zs: ||+ |lz5]l, where, by definition, x5, = 0
and ||zs, ||, = |S1| is fixed, so that the corresponding subproblem reads:

o < M,
ol = G

min 5lly — Az|[3 + p|Si| + pllesly, st { -
x So

This problem is still NP-hard due to the term ||zz||,. As usual in a branch-and-
bound setting, the node N will be evaluated by providing an upper and a lower
bound on

An upper bound and a feasible solution can be computed as in [5| by considering
xg = 0. This gives the following problem:

]

0o <
Ts, =0,

ubn = min%“y—Aﬂﬁ||§-|-u|5'1|7 s.t. { < :’0. (1)

Problem gives an upper bound ubyn and a feasible solution z™ for 732;! o) It
is a box-bounded least-squares problem depending only on variables zs,. We keep
the lowest upper bound currently known in variable ub, as shown in 1 Algorithm
(step . At any given iteration in the branch-and-bound procedure, ub is our best
candidate for the global minimum of —it will be the global optimum if the
support S in is proved to be the optimal one.

For the lower bound, we use convex relaxation, substituting the {p-norm term
by an ¢1-norm one. Indeed, due to the £o, box constraints, at any feasible point for

(P2o), we have:

X; 1 1
lesly= 3012 3 o LS o= Ljagy

i€S i€S i€S
z;7#0 z;#0

Figure [T illustrates this property. The lower bound at a given node N is therefore
computed by solving:

N
x5, =0, (P2+1)

Ibn ::mjn%”y—Am”g—FMSﬂ+ﬁ”x§”1 s.t. {

and we denote by zl} the corresponding minimizer. Problem is a box-
constrained ¢;-norm-penalized least-squares problem, sharing similarities with the
LASSO in statistics [22] and basis pursuit denoising in signal processing [12], for
which many dedicated efficient algorithms have been proposed over the two past
decades |2].

1.4. Branching strategy

The branching strategy used in this paper is based on the maximum of amplitudes
described in [4]. We select j € S with the highest absolute value in the solution of
the relaxed problem:

j € argmax |1y ;|
ies

Contrary to variable selection rules proposed by generic MIP solvers, e.g. based
on maximal or minimal infeasibility, this branching strategy is particularly suited
to sparse approximation: it relies on the assumption that a component with high
amplitude in the relaxed problem is likely to belong to the support of the
original problem , therefore it tries to fill S; with the correct support in
priority.

1.5. Contributions

Based on this framework, we now present our contributions for accelerating such
branch-and-bound procedure. In Section [2] some state-of-the-art £1-norm optimiza-
tion strategies are adapted to (Pz1i|) (here, the ¢1 norm only operates on some
variables and box constraints are added). Then, we leverage convex duality in or-
der to speed up the pruning of suboptimal nodes by iteratively refining_a lower
approximation of Iby. In Section |3} we exploit the non-differentiability of (P2, in
order to reduce the problem dimension by fixing some variables to 0 or =M, aiming
to accelerate the resolution of . Finally, non-standard exploration strategies
are designed in Section [d] and compared against state-of-the-art ones on instances

of (Pa+o)).

2. Convex duality for early node pruning

2.1. Principle

At a given node N, the relaxation problem is considered, whose optimal
value gives a lower bound lbn of the corresponding subproblem . If this lower
bound is greater than the lowest upper bound known, ub, then this node can be
safely discarded since it cannot contain the optimal solution. We call such a node a
suboptimal node.

The standard approach for pruning a node requires to exactly solve 7323 1) in
order to guarantee the value of the bound lbn. We leverage convex duality to re-
duce the computational complexity required for proving such suboptimality. Indeed,
is convex and can be written as:

min P(@) = f(Av) + g(a),

with f(Az) == 1|y — Az}
and g(z) := p|S1] + 7 llwslly + I-ar e (®) + Loyisol (@s0),
where I¢(z) is the indicator function equal to 0 if z € C and +oo otherwise. Let
¢*(w) := sup, w 'z — ¢(x) denote the Fenchel conjugate of any convex function ¢.

We use the Fenchel-Rockafellar theorem (|35], theorem 31.2) to get the dual problem
associated with Problem , which reads:

max D(w) = —f*(w) — g*(—A"w).

weRN

It comes that:

F(w) = 5(|lw +ylI2 = 1yll3)

and the Fenchel conjugate of g can be obtained by:

g"(u) = sup ("2 — ulS1] = {7 llesll, — I arane (@) = Loyisel (250)),

separable
= E sup (uiws — 47 |xi]) + g sup ui%;
—M<az;<M S~ _M<z;<M
icS i€S1

—M<z; <M
i€So =0

+Z sup (wizi — Ioy(@i)) — plSil,
—_———

—Z sup (uilloil = frloi) + > sup fuillai] — plSal,

< 0<|zl|<M €5, 0<z;|<
—Z sup (Jzal(jul = 4)) + Y [wi M — p|Si],
2 0<|wi|<M ies,
=M (Zmaxm, sl = 49) + > uz-|> ~ ulSil.
i€S i€51
The duality gap is defined as:
G(z,w) = P(z) — D(w) = f(Az) + g(z) + " (w) + g" (-A" w) (4)

Let 2* = argmin,ge P(z) and w* = argmax,,zv D(w). We have the following
KKT necessary and sufficient optimality conditions:

w” € Of (Azx™) (5a)
—ATw* € dg(z*) (5b)
Ax* € of" (w™) (5¢)

¥ € dg*(—ATw") (5d)

where Of denotes the subdifferential of function f, defined as [35]:

df(x) = {u e RN|vy e RY, f(y) > f(z) +u" (y — 2)}

Weak duality states that P(x) > D(w), Vz,w. In particular, this is true at the
optimal value of the primal problem: P(z*) > D(w), Vw. Therefore we have the
following property:

Proposition 2.1. If 3w € RY such that D(w) > ub, then P(z*) > ub, therefore the addressed node
can be pruned.

We use_Proposition @ to early stop a given algorithm implemented for solving
Problem (P3%1). Let {z"}1 be a sequence of iterates produced by such algorithm.

Equation (5a) means that, at optimality, we have w* = Az* — y. Therefore, we
compute the dual objective function D(w") at points of the form w* = Az* — y.

Then, if at an iteration k, we have D(w"*) > ub, then the algorithm solving (P21)
can be stopped and the node can be safely pruned, as illustrated in Figure |3| (left).

30 30
20 20 -
10
[[o
= =
_g 0F 8 0r
o o
O.ot O.0}
-20 - Primal 207 - Primal
~Dual ~Dual
30 30
20 40 60 80 100 0 20 40 60 80 100
lterations Iterations
node 1 node 2

Figure 3.: Early pruning illustration: primal and dual iterates for the optimization
of (dashed and full lines, respectively), and the best known upper bound (dotted
horizontal line). Left: pruning of the node is achieved after convergence of the primal
descent algorithm minimizing (here in 100 iterations), but the dual value after
10 iterations informs that the node can be pruned (green circle). Right: in this case, the
lower bound Iby is too low and the node cannot be pruned.

2.2. Dual bound quality of £1-norm algorithms

Many algorithms were developed to solve £1-norm-penalized least-squares problems,
that is, instances of Problem ({2)) with g(x) = ||z||,. Indeed, such convex, non-smooth,
optimization problems, benefit from analytical properties that make dedicated ap-
proaches much more efficient than generic quadratic programming solvers. In this
section, several such methods are extended to the optimization of 1) recast as
Problem . Their efficiency to obtain satisfactory dual bounds will be compared
in the experimental Section [5.3

2.2.1. Proximal algorithms

Proximal algorithms rely on the monotone operator theory [3| to optimize problems
of the form , with g non-differentiable, by iteratively performing a descent step
on f first, and then on g. If f is differentiable, which is the case for PQE! 1)), we can
perform a gradient step on f. The descent step on g is performed thanks to the
proximal operator [27]:

P{ox(a:k) := argmin ||z — 2|13 4+ Ag(). (6)
g x

Forward-backward splitting. In the case where g(z) = ||z||,, the resulting
forward-backward splitting (FBS) algorithm[16] is called Iterative Soft-Thresholding
Algorithm (ISTA) [14]. Such a procedure can be extended to our optimization prob-

lem (P3.4)). Let

V= Pigx(xk) = argmin 1|z —)3+ A (ﬁ“mgﬂl + I[_M,M]Q(CL')) .

We can show that this operator reads componentwise:

Vi (S 5171)1‘ = arg min %(:CZ — xf)2 +)\I[—M,M] (LE»L) = C[_MJ\/[] (.Tf), (7)

T

u if we [-M,M]
with C[_as,n the capping operator : Ci_na(u) = M if u>M ,
-M if u<-M

and:
Vie S, v = arg min Lai — af)? + M\ + M arany () = CST[*L/AJZM] (z}), (8)
with CST[OL) the capped thresholding operator:
o ,7 0 if Ju — asign(u)] < a
CST{ i,y (u) = { Cr—m,an(u — asign(u)) otherwise

The resulting FBS procedure is given in Algorithm [2] where 2° is any intial point
and parameter L > 0 must be greater than the spectral radius of matrix A7 A in
order to ensure convergence [14]. This convergence is defined as an e precision on the
duality gap: G(xk, Az — y) < ¢, with G defined in Equation . The computation
cost of one iteration is mainly that of the matrix-vector products involved at step [

Algorithm 2 Forward-Backward Splitting algorithm for evaluation of node N (lower
bound)

1: procedure FBS(y, A, pu, 2°, L, N(S1, S, S))

2 k+0

3 while not convergence do

4 gk /2 = gk — LAT(Axk —y) > Gradient step on f
5: oh 1 Proxg/L(ka/Q) > Proximal step on g with (7)—(8)
6

7

8

9:

k+—k+1
end while
return z*

end procedure

Chambolle-Pock (primal-dual) algorithm. Primal-dual algorithms use
the primal and the dual problems to perform the optimization. The Chambolle-Pock
algorithm is acknowledged as an efficient algorithm in this family [11], which aims
to find the saddle point of:

minmax w” Az + g(x) — f*(w). (9)

xT w

It does so by taking a proximal step on f* and then a proximal step on g. Such
primal-dual algorithm generates valid dual points during the optimization, which
can be directly used for our early pruning strategy.

In our case, the proximal step on f* reads:

U= PAerX(wk) = argmin § [|w — w*|3 + A lw + yll3 — FlylI3).
Y
b constant

wh — Ay
=— 1
14+ A (10)

Algorithm [3] gives the pseudo-code of the Chambolle-Pock algorithm, with notations
similar to Algorithm and w® € RY any feasible initial dual point. In our case
where f* is 1-strongly convex, acceleration steps are included (see |11]), with
additional parameter v = 1 (the strong convexity modulus of f*), 7° > 0 and
0% > 0 initial proximal parameters such that 7°¢"L? < 1. The computation cost

per iteration is similar to that of FBS, mainly corresponding to the matrix-vector
products involved at steps [d] and [5] of Algorithm [3]

Algorithm 3 Chambolle-Pock algorithm for evaluation of node N (lower bound)

1: procedure CHAMBOLLE-POCK(y, A, pu, 2°, L, v, w°, 7°, 0%, N(S1, Sp, S))

2 k0,7 < a°

3 while not convergence do

4: whtl Prox s s« (w* + ok AZ") > Proximal step on f* with ([10])
5 oM« Prox,uy (a% — 78 ATwH) > Proximal step on g with (7)-(3)
6

k 1
<_ - =
¢ \ 14+2y7*
7! TRl plrk
s Ok/¢k
. flﬁl —_ xk+1 + ¢k(xk+1 . xk)
10: k+—k+1

11: end while
122 return (z*, w")

13: end procedure

2.2.2. Coordinate descent algorithms

Coordinate descent (CD) algorithms were also proposed for ¢;-norm-penalized least
squares |l|—see [44] for a convergence proof. In general, CD is a rather ineffi-
cient scheme compared to first-order methods. However, in this setting, scalar sub-
problems have an analytical solution, which can be computed very efficiently. Indeed,
let zj = argmin,, P(z) for i € SU Sy (for i € Sp, zj =0). Let A; denote the i-th
column of matrix A and let e; := y — > . z;A;. One can show that each scalar
update reads:

J#i

. * . A;‘Fez
Vie S,z = argrr;m%“ei — ﬂvazHg + I_ (i) = Clon, v <ATA>) (11)

. Q * . A;T i
and Vi € S,x; = argn;;n%“ei — i Ail|3 + L lw] + I aran (z) = CST[*L/AJZM] <ATZ'> , (12)

where C' and CST respectively denote the capping and the capped thresholding
operators introduced in Section

Moreover, smart cycling rules enable strong accelerations (see [20] for standard
£1-norm problems). In particular, we can rely on the sparse nature of the solutions
by introducing coordinate sweeping rules that most frequently update nonzero val-
ues, and only periodically update all variables. The resulting algorithm is given
in Algorithm [4] where parameter J controls the period at which a full update is
performed.

The complexity for updating all variables (steps is essentially that of two
matrix-vector products with matrix A and one with matrix AT. When cycling is
performed only on current nonzero variables, computations are restricted to the
corresponding variables and are therefore strongly reduced. However, each CD iter-
ation is usually less efficient than a gradient step to decrease the objective function.

The three methods proposed in Algorithms [2] to [4] are asymptotic ones, that
is, they converge as the number of iterates k — +o00. We now consider two ezact
methods, meaning that the minimizer is found in a finite (although potentially large)
number of iterations.

10

Algorithm 4 Coordinate descent algorithm for evaluation of node N (lower bound)

1: procedure ICD(y, A, u, J, 2°, N(S1, S, S))

2 k+0

3 e+ y— Az’

4: while not convergence do

5: if £ mod J =0 then

6 CyclingIndices « {1, ...,Q} > Full cycling
7 else

8 CyclingIndices < {i|z¥ # 0} > Partial cycling
9: end if

10: for i in Cyclinglndices do

11: e+ e+ Ak > Cancel the contribution of ¥
12: Compute ¥ = z¥ using (1)-(12)

13: e+ e— Aphtt > Add the contribution of 2
14: end for

15: k+Fk+1

16: end while

17: return z*

18: end procedure

2.2.3. Active sets

Active set methods [32] were initially proposed for linearly-constrained quadratic
programs. They handle the different inequality constraints of a given (quadratic)
problem by choosing a number of constraints to be active (saturated), the rest
being inactive. Given the set of constraints believed to be active, the problem of
interest is reformulated by equating the constraints in the active set and dropping
the remaining ones. After a descent step, the active set of constraints is updated
to take into account violated constraints, and the procedure is iterated until all
optimality conditions are satisfied.

Active set methods have been be proposed for problems involving the ¢1 norm |25,
37], and an adaptation to was proposed in [4], that will be used in this paper.

2.2.4. Homotopy continuation

The homotopy continuation method was specifically designed for ¢;-norm-penalized
least squares [17] [33]. Indeed, the minimizer can be shown to be a piecewise linear
function of the penalty parameter, say p. Starting from sufficiently high p° for
which the solution is identically zero, a decreasing sequence of critical values for u
is built (breakpoints "), at which the configuration of the support is modified. The
support is then updated at each breakpoint, and the procedure runs until the target
penalty parameter is reached. In [5], an homotopy continuation algorithm was built
for solving problem . The reader is referred to this paper for implementation
details.

3. Leveraging convex screening

Screening methods aim to assign optimal values to some variables in a given op-
timization problem, prior to (or during) its numerical resolution, thanks to some
insight provided by the problem structure. Therefore, it reduces the dimension of
the problem to be solved, hoping to reduce the computational load. In this section,
we discuss the use of screening methods for the convex relaxation problem 1}
involved at each node of the branch-and-bound Algorithm [}

11

3.1. Principle

Due to the non-differentiability of |z;| at 0, the solution to the standard ¢;-norm-
penalized least-squares problem contains zero values [28]. Related screening methods
therefore aim to fix some varlables to zero. We can date back the first works in this
field to [18]. In our case, with , particular points include zero values for x;,
i € S, but also values at the bounds +M for z;, i € SU S.

The literature distinguishes between safe screening, where the values of fixed
variables are proved to be optimal, and aggressive or strong screening, which only
benefits from a probabilistic guarantee (that is, optimality of the resulting solution
may be lost) but, in return, it may discard more variables. In our case, we need
the node evaluation to provide a guaranteed lower bound on problem to
ensure the validity of the branch-and-bound procedure, therefore we only consider
safe screening.

We consider dynamic screening, in which screening tests are performed through-
out the iterations of the optimization procedure [9]. Such tests rely on the knowledge
of a feasible dual point (w with notations of Section , around which a subspace
containing the optimal dual point w* is created, called the safe region. To fix a
variable, the screening test must hold for any dual point in the safe region, whose
size depends on the distance between w and w*. As w gets closer to w*, the safe
region gets smaller and screening becomes more powerful (that is, more variables
can be fixed). In this paper, we resort to gap-safe screening |19} [30], which builds
safe regions based on the duality gap . Such a procedure is based on two steps:

e building screening rules, based on the optimality conditions of the problem:;
e defining a safe region, which contains the optimal dual point.

These two steps are now addressed in Sections [3.2] and respectively.

3.2. Screening rules for relaxation problems

The screening rules exploit the KKT optimality conditions , and in particular
Equation (5b]), which states that —ATw* € dg(x*), with (z*, w*) the optimal primal-
dual pair of Problems) and (. respectively.

Proposition 3.1. We have the following screening rules for Problem (Payi)):

Vie S, if |[Af w*| > L, then] = —M sign(A] w*); (13a)
VieS,if |[Afw'| < £, then x} = 0; (13b)
Vi e Sy, if ATw* #0, then x} = —M sign(A7 w*). (13¢)

Proof. From the expression of g in Problem , its sub-differential reads:

vi=0g(x) = 0 (fllzsll,) +0 (Iarane (@)

As it is separable, its i-th component reads:

Vie S, Vi:3(ﬁ|ll»‘z) (I i ()
and Vi € 51, 1/1—8([[(i)),

. _ .) [0,4+c0] if x;=M
Witham:{ P L B 7 Y and 01 s () = 0 g I lsd<a
’ T —00,0] if @mi=-M

12

Therefore, the optimality condition —ATw* € dg(x*) can be separated into the following cases:

Vie S with zf =M, —ATw* € [£, +o0]
Vie S with oz €]o,M[, -—Alw' =L
Vie S with xf =0, —ATw* e [- &, £]
Vie S with azf€]- M0, -Alw' =-£ . 14)
Vie S with x; =—M, —ATw* €] — oo, — 4]
Vie S, with zf =M, —ATw* € [0, +00]
Vie Sy with af€]—M,M[, —ATw*=0
Vi€ Sy with zf = —M, —ATw* €] — 00, —0]
From Equation , the rules of Proposition follow. -

These rules are illustrated in Figure @

= No ‘rulé a;;pliés = F‘rée
-One rule applies -OFixed by screening
¢ o O :
7 A ! D i
= 9 =
0 1} . 0 0 00
12345678910M 1234567891M0M
51588585 558585858 51588585558 8588

Figure 4.: An example of screening possibilities (¢), for components with indices
{1,...,5} € Syand {6,...,11} € S. For i € Sy, if ATw* # 0, then 7 is fixed to £M. If
ATw* =0, then 7} can have any value, including M. For i € S, if |ATw*| > 17> then
a7 is fixed to M. If [Afw*| = £, then z} can have any value, including 0 and +M. If
|ATw*| < £, then z} = 0.

3.3. From screening rules to screening tests

The screening rules of Proposition [3.1] require the knowledge of w* the optimal
dual point, which is unknown during the optimization. Given a dual point w, safe
screening methods create a region R from w such that w* € R, by exploiting the
structure of the problem. If one of the rules in Proposition [3.1] is valid for every
point in R, then it is valid for w*, which means that the corresponding variable z;
can be fixed according to the rule. Testing every point of a region R is inefficient,
therefore sphere regions B(w,), centered at w and with some radius r are usually
considered , based on a worst-case analysis: one just has to test the center of
the sphere ¢, and modify the thresholds of rules in Proposition [3.I] by the radius r
of the sphere. Indeed, for every dual point w, we have:

|AT w*| < |ATw* — AT w| + |AT w)

13

Without loss of generality, we can suppose that the columns of matrix A have unit
£5 norm. Then, using Cauchy-Schwarz inequality, we have:

AT w" = Afw| < Aill2|w* — w2 = [lw* —wll2,

so that [A]w*| < |Afw| + |w* — wl|2. Consequently, if |[A]w| < £ —r, with
lw* — w2 < r, then |Af w*| < 4, and according to Proposition zy = 0. The
same reasoning applies for the rules and (13d).

We will use gap-safe screening, which uses the duality gap G(z,w) = P(z)—D(w)
defined in Equation (|4)) to build such safe spheres. We have the following proposition,

adapted from to Problem :

Proposition 3.2. For Problem 1} using any feasible primal point x and any dual point w, we
have the following gap-safe tests:

Vi € S, if |ATw| > £ 4+ \/2G(z,w), then x; = —M sign(A] w") (15)
Vi e S, if |ATw| < £ — \/2G(z,w), then z} =0 (16)
Vi € Sy, if |AiTw\ > \/m, then x; = —M sign(AZTw*) a7

Proof. Using an arbitrary dual point w, we have :

2
8
g
I
3
&
|
S
&
v
3
E)"
|
S
S
I
S
3
N4
|
S
&
I

—f* (W) = g™ (=ATw") + " (w) + ¢" (AT w).
Since f* is 1-strongly convex, we have:
Fr(w) > [(w*) + V7 (w) T (w = w*) + §[w - w*3.

Since g* is convex, we have:

g (—ATw) > g*(—ATw*) + (Bg*(—ATw*))T(—ATw + ATw*).
Therefore we have:
Gz, w) > —f*(w*) — g"(—ATw")
+ [(w) + VT (w) " (w = w*) + Slw — w3
+9"(~ATw") + (99" (~ATw")) " (—~ATw + ATw?),
= VI (w) (w—w*) + (99" (—~ATw")) " (=ATw + ATw*) + 1w — w* |3

Due to the first optimality condition, we have:

V()T (w —w*) + (99" (~ATw")) " (~ATw + ATw*) > 0.
Thus G(z,w) > |lw — w*|3, so |w — w*|2 < \/2G(x, w) which implies w* € B(w, \/2G(z, w)).
Then, using the rules of Proposition the tests of Proposition follow. O

As the duality gap decreases, the safe region shrinks, and the screening tests get
better at fixing variables. Therefore, screening tests are expected to be more efficient
when used with algorithms that fastly increase the dual objective, as for the early
pruning rules described in Section [2:1] Their practical performance will be studied
in the numerical experiments of Section

Both the early pruning described in Section[2]and the screening method discussed
in this section focused on the computation of the lower bound at each node: these

14

4.

are local enhancements. On the contrary, exploration rules discussed in Section @
affect the global behavior of the branch-and-bound procedure.

Exploration strategies

4.1. Motivation

The exploration strategy defines which node should be divided first, that is, it gen-
erates a scheduling of the nodes in the list (see step [4|in Algorithm . This node
scheduling impacts the global performance of the branch-and-bound algorithm [31].
Figure [f] gives an illustrative example, where a binary tree with four depth levels
(that is, 16 leaves for a total of 31 nodes) is explored either by a depth-first search
(top) or by a best-first search (bottom) strategy. This tree follows the convention
of Figure [2| regarding the left and right childs (one variable is put in S1 and in So,
respectively). Depth-first search seeks to fully develop a branch of the search tree
before jumping to another branch. On the contrary, best-first search picks the node
with the highest potential of improvement over the current objective value, that
is, it selects the node with the lowest (best) lower bound. Depth-first search tends
to fast provide good feasible solutions by favoring the nodes that are considered
as “good” by the branching strategy. In this example (where the optimal objective
value is 16), a solution with objective value equal to 18 is found in only 4 iterations,
but it requires 26 nodes to prove optimality. Indeed, 3 nodes were pruned, avoiding
the creation of 6 nodes. On the other hand, best-first search proves optimality more
quickly, with the optimal solution proved in 22 nodes: 8 nodes were pruned and
the creation of 10 nodes was avoided, by first increasing the lowest lower bound in
the scheduling. However, it is not very efficient to quickly find good solutions: in 4
iterations, the best solution found has an objective value of 32.

15

Best-first search

Figure 5.: Two different exploration strategies operating on a branch-and-bound tree.
Depth-first search (top) and best-first search (bottom). Numerical values in the upper
(respectively lower) part of each node N indicates its corresponding upper bound uby
(respectively its lower bound lbx) . The red arrows illustrate the path followed by the
exploration strategy. A node denoted by P is a pruned node: its children are not created,
saving all the nodes marked by an X.

4.2. Analogy with the data structure

Each exploration strategy defines a scheduling of the nodes that are stored in the
variable £ in Algorithm [I] Instead of considering £ as a list and the exploration
strategy as a sorting function on £, we merge both concepts by defining exploration
strategies through their corresponding data structure. Indeed, the scheduling of
nodes is implemented by the Push and Pop functions in Algorithm (stepsand,
defining a specific data structure representing a specific exploration strategy.
Standard exploration strategies include breadth-first search, depth-first search
and best-first search. Breadth-first search gives priority to the closest node to the
root node. In our search tree, it would symmetrically explore the branches where a
variable is included in the support (left child) and branches where such variable is
removed from the support (right child, see Section. This rather seems unsuitable
to our problem, whose structure is not symmetrical since we seek for sparse solutions,
that is, the size of the support is small. On the contrary, as introduced in Section
depth-first search first explores the deepest node in the tree, which was shown to
be an efficient strategy in the context of sparse optimization , It amounts to
first choosing one of the children of the node that was just divided. From a data
structure viewpoint, this corresponds to £ being a stack, also known as LIFO (Last
In First Out). Best-first search (also introduced in Section [£.1]) first selects the node
with the lowest lower bound of the objective function. It can be implemented with
a heap, which is a partially ordered data structure such that the first element of the
heap (the one extracted by the Pop function) always has the lowest score among all
elements. In the best-first search case, the score used in the heap is the lower bound,
and we say this is a heap sorted on the lower bound (note that a heap is always only

16

partially sorted, not fully sorted).

4.3. Dedicated exploration strategies

Building on this data structure view, we propose new exploration strategies specific
to our problem. The first two ones are variations of best-first search. Indeed, best-
first search _schedules nodes according to their lower bound, obtained by solving
problem , which is the sum of a least-squares term and an ¢;-norm term. In
order to analyze if one of the two terms dominates in the exploration efficiency, we
consider the two following strategies:

e least-squares first, which is a heap sorted on the value of the least-squares term at the solution

of problem || that is, %Hy — Awﬁﬁ”i,
e (; first, which is a heap sorted on the ¢1-norm term at the solution of problem l) that is,

frll=il; -

Additionally, in order to investigate the benefits brought by both depth-first
search (that quickly finds good feasible solutions) and best-first search (that is better
for proving optimality), we design mized strategies, which behave like a stack (depth-
first) at the beginning of the branch-and-bound algorithm, and then switch to a heap
sorted on either the lower bound, its least-squares term, or its £1-norm term.

5. Experimental results

This section is devoted to numerical experiments evaluating the different contri-
butions proposed in Sections [2] to [d] We first describe the numerical setup. Then,
Section evaluates the performance of the different algorithms described in Sec-
tion[2:2]in their ability to increase the dual objective function. The homotopy method
is shown to outperform its competitors, and is therefore chosen as the best algorithm
for the next Sections[5.3|and [5.4]exploiting duality, where the efficiency of node prun-
ing and variable screening are respectively studied. Finally, Section compares the
different exploration strategies.

5.1. Data-set description

We consider synthetic problems with random matrices as in [5} |6]: the rows of the
problem matrix A are drawn according to a multivariate centered normal distri-
bution N(0,%), with covariance matrix ¥ defined by ¥;; = p'"71. As p increases,
the correlation between the columns of A increases and the sparse recovery prob-
lem becomes more difficult, both from informational and computational points of
view [5]. We consider two correlation levels p € {0.8,0.92}. Columns are scaled so
that [|As]l2 = 1 Vi € {1,...,Q}. The dimension of y is N = 500, the dimension
of x is @ = 100. We build problem instances by generating a sparse vector Tiruth
with a random support of K components equal to 1, and K varying from 3 to
Unless otherwise stated, results are averaged over 10 instances for each value of K.
Synthetic data are generated as y = Azruen + &, with noise vectors & ~ N(0, 021)7 o
controlling the amount of noise in the data such that SNR. := || Aztrutn||3/(No?) = 6.
The penalization parameter p in Problem is tuned empirically so that all so-
lutions have the expected £y pseudo-norm, K. We set M to M := 1.1||ATy||~ for
each instance.

All experiments were performed with our own branch-and-bound code imple-
mented in C++ named Mimosa, running on a single thread, using a laptop computer
on Ubuntu 20.04.1 with 32 Go RAM and an Intel Core i7-10610U processor clocked
at 1.8 GHz. The installation procedure of Mimosa is given in Section [6}

IDataset available at https://gitlab.univ-nantes.fr/samain-g/mimosa-oms-dataset

17

https://gitlab.univ-nantes.fr/samain-g/mimosa-oms-dataset

5.2. Optimization for primal and dual objective functions

In this section, we empirically evaluate the convergence speed, for both the primal
and the dual objective functions (Problems and respectively), for each algo-
rithm described in Section foward-backward splitting (FBS), Chambolle-Pock
primal-dual iterations (ChaPo), coordinate descent (CoordDesc), active set (ActSet)
and homotopy continuation (HomCont).

By construction, ChaPo generates primal and dual iterates. FBS, CoordDesc
and ActSet generate sequences of primal iterates z®, for which we consider the
corresponding sequence of dual points using the KKT condition (5a), that is, wh =
Az* —y. HomCont requires an additional rescaling step that is described hereafter.
Recall that HomCont generates iterates ¥ which are the solutions to problem
for a decreasing sequence of values of penalization parameter x* > . Optimality
conditions show that the corresponding dual solution scales as p*. Therefore,

we build a sequence of dual candidates for Problem as w” = ﬁ(Axk —y). The

reader is referred to for similar arguments for implementing screening tests.

The left part of Figure [f] shows the typical evolution of the iterates of primal and
dual objective values for the implemented algorithms, run at the root node (that is,
So = S1 = ©), for one instance extracted from the dataset generated in Section
with p = 0.8, K = 9. At first iterations, the primal objective function decreases
faster with asymptotic methods (FBS, ChaPo, CoordDesc) than with exact ones
(ActSet, HomCont), with FBS being the best and HomCont the worst. However,
the exact methods converge in fewer iterations than asymptotic ones, with both
ActSet and HomCont terminating in 31 iterations, while CoordDesc converges after
40 iterations and proximal algorithms (FBS and ChaPo) did not terminate after 100
iterations.

Looking at the dual iterates, HomCont is by far the best at first iterations and
also converges first. CoordDesc first dual iterates are quite poor, then they quickly
become close to the optimal value, although a quite large number of iterations is
required for convergence. The first ActSet iterates are also very far from the optimal
value, but then they behave similarly to HomCont. Finally, proximal algorithms
suffer from slow dual convergence.

9 9
FBS
8 —Chambolle-Pock 8
CD 7
o o —Active set o
o6 —Homotopy S6
2, 2
85 S5l
© ©
£« E4T
&, £l
2 ol
0 10 20 30 40 0 0.01 0.02 0.03 0.04 0.05 0.06
Iterations Time (s)
2 2
1 1
[(3
2 2 of
8 3
81 81
© ©
LNl LNl
3t 3t
-4 C L L L . 4t L L L L L L
0 10 20 30 40 0 0.01 0.02 0.03 0.04 0.05 0.06
Iterations Time (s)

Figure 6.: Evolution of the primal (top) and dual (bottom) objective functions of a
relaxation problem at the root node of the branch-and-bound algorithm, for different
optimization strategies, as a function of the iteration number (left) and of the compu-
tating time (right).

Let us now compare the algorithms as a function of their computation time
(right part of Figure[6). Indeed, the cost of one iteration of HomCont or ActSet is
numerically more complex than one iteration of FBS, ChaPo or CoordDesc. Coord-
Desc is clearly slower than the proximal algorithms at first, then it becomes more

18

competitive at the very end, both for primal and dual iterates. ActSet primal iterates
decrease finally slower than those of HomCont: if both strategies require the same
number of iterations to converge, ActSet iterations are computationally more heavy.
The behavior of dual iterates definitely disqualifies CoordDesc and ActSet methods,
and HomCont is by far the fastest method that increases the dual objective.

In conclusion, due to its fast convergence to optimality as well as its best per-
formance for improving the dual objective objective, we will select the homotopy
continuation algorithm for the experiments in the next sections.

5.3. Duality-based early pruning

We now evaluate the performance of the duality-based early pruning strategy de-
scribed in Section [2] For each problem instance, the branch-and-bound procedure
given in Algorithm [I]|is run, and at each node N:

e we consider the number of iterations required by the homotopy method to compute the corre-

sponding lower bound, say, IX;

e we consider the number of iterations after which the dual objective function exceeds the best

known upper bound, say, I{;

IP _ Id
e we define the relative saving in iterations, expressed as NTN

N

We only focus on the most difficult instances with K = 9 non-zero values (that
is, we discard instances with lower cardinality). Figure [7| (top) reports the corre-
sponding savings, drawn as a function of the cardinality of subset S1 (the number
of non-zero components included in the solution at a given node), obtained over 10
problem instances, with p = 0.8. Although very few iterations can be saved for small
values of |S1|, early pruning becomes more efficient as |S1| increases. In particular,
when |S1| = K, more than 50% iterations are saved for 50% of the instances. Some
nodes are even pruned from the very first iteration of HomCont (100% saved iter-
ations, see the black dash on the figure). A possible explanation for this behavior
comes from our branching strategy, the maximum of amplitudes given in Equa-
tion : as we branch on variables which are likely to be non-zero at the optimal
solution, the variables in S; are likely to belong to the optimal support. Therefore,
lower bounds are expected to be more accurate as S1 grows. Conversely, when S is
small, we are either at the top of the branch-and-bound tree, where few decisions
have been made, or we are in the right side of the tree, filling Sp, which means
that we exclude variables with high amplitudes. In both cases, the lower bounds are
likely to be of poor quality (see the example on the right in Figure , and the dual
iterates are therefore of no interest.

Figure E (bottom) similarly shows the results obtained with p = 0.92. Although
the same trend can be observed (more iterations are saved for higher cardinality
of S1), the pruning performance is much weaker in this case, where only a few
percent of iterations can be saved. Such a behavior can be explained by noting
that the quality of the lower bounds obtained by the ¢;-norm relaxation of the £
pseudo-norm worsens as the columns of matrix A become more correlated (see [45]
and references therein). The higher p, the worse the relaxation. Here again, most
explored nodes are likely to correspond to the example on Figure [3] right, where
computing dual values cannot bring any improvement. Finally, we note that even
in this difficult setting, pruning could still save all iterations at some nodes with
support size close to the true cardinality.

19

[- - |
5 100 + 3 I
£ — | | |
£ 50 - - - 7 | | | -
et T 1 v | ; | 1 ‘ !
I A I Ea 1
N S N R e M= w E E E +
0 1 2 3 4 5 6 7 8 9 10
|51]
p=0.92
» 100 F T - T T *} T 3
g N
2 | ! : : :
5 %or I]
g S
N I R R A N R R R R R R
Soobr Lob L L L L4 b B82S F
2 4 6 8 10 12 14 16

[S1]

Figure 7.: Results for duality-based early pruning as a function of the number of non-
zero variables at the corresponding node, for two correlations levels p in matrix A. The
cardinality of the solution is K = 9. Each box shows the first and third quartiles on the
fraction of saved iterations, the red dash indicates the median value, and black dashes
indicate the extreme values.

5.4. Variable screening

The efficiency of the screening method described in Section [3]is now studied, using
a similar methodology to that in former Section At each node N of a given
branch-and-bound execution, we consider the fraction of variables that are removed
along the relaxation strategy. To this end:

e for a problem instance I, let NI‘S1| denote the number of nodes with a given cardinality of Sq
(the number of non-zero variables fixed at the node);

o let Vllsl‘ denote the total number of variables that were screened in such nodes;

e we define the instance-wise average ratio of variables that could be screened depending on the
[S1]
cardinality of Si: Fysy| = W;
I
e we define the global average ratio of variables that could be screened depending on the cardi-

[S11
IVI

T

In our experiments, the screening method only set variables x;,7 € S, to 0.

Figure (top) shows the screening performance on problem instances with p = 0.8
and K = 9. Contrary to the early pruning efficiency, variable screening appears to
be globally more efficient for nodes with few variables in Si (that is, upper nodes
in the decision tree and nodes on the right part of the tree). It generally achieves
elimination of 10 to 15 % of variables, with a relatively high dispersion among the
different problem instances. Figure (bottom) shows that the screening performance
severely drops for p = 0.92, where less than 2 % of the variables are removed. A
similar interpretation to that in Section [5.3] can be given: when the correlation
between the columns of A increases, it becomes harder to discriminate between the
variables, and in particular to decide that some variables are irrelevant (that is,
screened to 0).

nality of S; as]:G‘Sl‘ =

20

T

g0, |
2 | e :
= L * 4 |
§20 ;_~~~g__*_ _* : M M z
- i r +-- ___V-__i_-_a___*—-‘:"—--:\‘~ ¢

(= | | | [} Sem--0

: : . . 8 10
|S1]
p=092
T

n il
wn
2 3
CEIK) |
—~
g L2 ¢
=
e N NN |

ERIRIAE B A e o o B T
07* | | I I I ’ i_ -‘ - 0-=o - - -
0 2 4 6 8 10 12 " °
|51

Figure 8.: Screening performance as a function of the number of non-zero variables at
the corresponding nodes for two correlations levels in matrix A. The cardinality of the
solution is K = 9. For each instance, one point represents the average ratio of screened
variables Fys,) over the nodes with cardinality of |S1|. The dotted lined shows the
average ratio of screened variables over all instances, Fq.

5.5. Exploration strategies

In this section, we finally compare the performance of the different exploration
strategies proposed in Section[d] which are implemented as data structures. The stan-
dard depth-first search and best-first search strategies are respectively implemented
as a stack and a heap, which is sorted on the lower bound lbn (denoted heap™).
Problem-specific strategies are also implemented, namely heap"® and heapel, corre-
sponding to heaps sorted on the values of the lest-squares term and of the ¢;-norm
term in lbn, respectively. Finally, mixed strategies are implemented, that switch
from stack data structure (depth-first search) to heaps, with the three previously
described sorting options. The switch is performed after a given number of nodes, say
Nswitcn, have been explored, for which three values are considered: 20, 200 and 2000.
In the following, such strategies are correspondingly named stack ™+t + heap',
stack"i*" + heap®, and stack"switr + heapzl.

We first measure the total number of nodes that were created by each exploration
strategy to solve the instances to optimality (in the limit of one hour), aggregating
all instances with K € {3,5,7,9}, which amounts to 40 instances for each value of p.

21

1.01
1 o—
— 0
2099 1 s
] ——1b
= o-stack
8 0.98 < |=heap
% ! 1 —mixed
2 hd —20
5097 ¢ 4 200
2000
0.96 + J
0.95 & ! !
? 1.05 1.1 1.15
performance ratio
p =0.92
1& S ‘ ‘ S D
0.95
........... — 0
9 0.9 @ Is
+ I A 4
< 1b
: stack
o085 | .. NN { [reheap
= — mixed
+ R VA M ——, SUSG i — —20
£ 08 | --200
5 2000
>_’ ORI I O U O N WO
0.75+ o .
0.7 Y I I I I I
1 1.05 1.1 1.15 1.2 1.25 1.3

performance ratio

Figure 9.: Performance profiles comparing the number of created nodes for different ex-
ploration strategies, for moderately difficult problems (p = 0.8, top) and highly difficult
problems (p = 0.92, bottom). Exploration is run until the entire search tree has been
explored (computation time limited to one hour). The black dotted line with diamonds
represents the stack implementation, and the full line with circles represents the heap
implementation, sorted on the lower bound (magenta), its least-squares term (red), or
its /1-norm term (blue). Mixed strategies stack"wit: + heap use the same color code
for the heap sorting, and are represented with full lines for Ngyiven = 20, dashed lines
for Ngyiten = 200, and dotted lines for Ngyieen = 2000.

Figure [0] shows the corresponding performance profiles for p = 0.8 (top)
and p = 0.92 (bottom). In both cases, best-first search (heap™®) achieves the best
results, that is, it always explores less nodes than its competitors. Sorting the heap
based on the least-squares part of the lower bound (heap™®) is slightly less efficient,
although still better than the stack implementation (which is yet the strategy im-
plemented in the related works) As could be expected, mixed strategies
stack" " + heap'® achieve intermediate performance between heap'® and stack,
with parameter Nguwiten tuning the behavior closer to heap1b (which corresponds to
Nswiten = 0) or to stack (Nsyiten = +00). Similarly, stack™i** + heap"® behaves
between heap™® and stack. heap‘! is by far the worst strategy. Starting with some
depth-first search iterations substantially improves its performance, but still achieves
the worst results among all tested strategies. A possible explanation is that explor-

22

ing first the nodes with the lowest ¢1-norm value favors too much the sparsity of
the solution, therefore exploring in priority the right part of the branch-and-bound
tree where Sy grows. That is, nodes are explored where high values in z}} are put
to zero, which is likely to generate poor solutions.

We also note that the impact of the exploration strategy highly depends on the
problem difficulty: for p = 0.8, all strategies tend to align and give similar results,
with the best strategy outperforming the second one for only 5% of the instances,
while for p = 0.92 this is the case for 26% of the instances. Here again, this may be
due to the quality of the ¢; norm relaxation, which improves when p decreases: in
that case, the lower bounds are better, and it becomes easier, for all strategies, to
identify the nodes which should be pruned.

Finally, we study the performance of the different exploration strategies in their
ability to find the optimal solution, without proving its optimality. This may be of
interest in order to use the branch-and-bound procedure as a heuristic algorithm
with limited computation time. Figure shows similar behaviors both for p = 0.8
(top) and p = 0.92 (bottom), although results are more contrasted in the second case:
the best-first search strategy heap'® is now the most inappropriate one for finding
the optimum. Interestingly, depth-first search, yet acknowledged for its ability to
quickly discover good solutions, is not the best option either, as it is outperformed
by heap"®.

23

165 BT
g 2 .

09 r]

0.8 1 =a
2 s
" 0.7 1 b
I o-stack
8 0.6 F - |=heap
g —mixed
< | | |—20
2 05 200

2000

0.4

0.3

0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1.2 1.4 1.6 1.8 2
performance ratio
p=0.92
1 T T T T T

0.9¢

0.8
2
w07
—
©
S 0.6
3
cé 0.5

0.4

0.3

0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1.5 2 2.5 3

performance ratio

Figure 10.: Performance profiles comparing the number of created nodes required to
find the optimal solution without proving its optimality, for different explo-
ration strategies, for moderately difficult problems (p = 0.8, top) and highly difficult
problems (p = 0.92, bottom). The black dotted line with diamonds represents the stack
implementation, and the full line with circles represents the heap implementation, sorted
on the lower bound (magenta), its least-squares term (red), or its ¢;-norm term (blue).
Mixed strategies stackMi* + heap use the same color code for the heap sorting, and
are represented with full lines for Ngyiten = 20, dashed lines for Ngyicen = 200, and dotted
lines for Ngyiccn = 2000.

6. Software installation and usage

We distribute our source code for reproducibility and further usage. Section [6.1] first
describes the installation of a pre-packaged version for Ubuntu users, which han-
dles some prescribed dependencies and solvers. Section [6.2] provides more advanced
compiling options. Then, the overall object architecture is described in Section [6.3}
Finally, Section [6.4] gives usage instructions with both executable and shell scripts.

The code, called Mimosa for Mized Integer programming Methods for Optimization
of Sparse Approzimation criteria, is a C++ software licensed under the GNU Lesser

24

General Public License v3 termﬁﬂ Instructions are given for UNIX systems.

6.1. Ubuntu package installation

For Ubuntu users, a package named Mimosa_2.0.0_amd64.deb is already available
at https://box.ec-nantes.fr/index.php/s/Ki7xb7TxKHk4zW5,
Installing the code along with its dependencies is as simple as:

$ sudo apt install <path/to/Mimosa_2.0.0_amd64.deb>

6.2. Compiling

To compile the code, you will need the Dlib (http://dlib.net/)) and Armadillo
(http://arma.sourceforge.net/) libraries installed.
First retrieve the source:

$ git clone -b oms_europt2l
https://gitlab.univ-nantes.fr/samain-g/mimosa-solver

Then, in the project folder, create a build directory:
$ mkdir cmake_build && cd cmake_build
After this comes the cmake invocation:

$ cmake -DUSE_CPLEX=<0|1> -DCPLEX_ROOT_DIR=<path>
-DDLIB_ROOT_DIR=<path> -DArmadillo_ROOT_DIR=<path>
-DLOG_PER_NODE_STAT=<0|1> -DCMAKE_INSTALL_PREFIX=<path>

The last .. is mandatory. These options set some CMake variables VAR with the
syntax -DVAR=value.

Set USE_CPLEX to 1 in order to enable the CPLEX solver support for com-
parison purposes (see Section . In that case, CPLEX_ROOT_DIR specifies the
path to CPLEX. If USE_CPLEX = 0, CPLEX support is disabled, which makes
CPLEX_ROOT_DIR unused. Leaving USE_CPLEX unspecified triggers a "best-effort"
build. CMake will try to find CPLEX libraries, and otherwise it will fall back to
a no-CPLEX build.

Set DLIB_ROOT_DIR (respectively Armadillo_ROOT_DIR) to the correspond paths
for Dlib and Armadillo. If they are installed to a standard location in your system,
specifying such values is not required.

The LOG_PER_NODE_STAT variable controls whether statistics on individual node
should be printed or not. This is switched off by default because of the huge amount
of data generated. If you wish to reproduce the results in Section [5.3] you need to
set LOG_PER_NODE_STAT to 1.

Finally, the option CMAKE_INSTALL_PREFIX is used to specify the installation
path of Mimosa, otherwise Mimosa is installed in the default path of your system
(/usr/local/bin).

After this step, you should have a Makefile in the current folder. It can now be
compiled with:

$ make
This will create the Mimosa binary. Then:
$ sudo make install

will put the Mimosa binary and its companion shell scripts in
$CMAKE_INSTALL_PREFIX/bin, by default in /usr/local/bin.

6.3. Architecture

Mimosa uses an object-oriented paradigm favoring abstract interfaces, and was de-
signed to ease the integration of new variants for classic components of a branch-
and-bound algorithm.

2Terms available at https://opensource.org/licenses/LGPL-3.0

25

https://box.ec-nantes.fr/index.php/s/Ki7xb7TxKHk4zW5
http://dlib.net/
http://arma.sourceforge.net/
https://opensource.org/licenses/LGPL-3.0

The file interfaces.hpp gives the global overview of these interfaces. The branch-
and-bound main loop is defined in Optimizer.cpp, see Algorithm [T}

This loop manipulates nodes. The nodes interface is declared in interfaces.hpp,
the implementations are declared in NodeImplementation.hpp and defined in
NodeImplementation.cpp. The node definition defines which quantities are stored
in a node, and which ones are computed on-the-fly.

The implementations for dividing a node are declared in Split.hpp and defined
in Split.cpp. These two files contain the branching strategies available in Mimosa,
see Section [LL4

For the implementations computing the upper bounds (see Section , UB. hpp
and UB.cpp gives the necessary declarations and definitions.

For the computations of lower bounds (see Section, LB.hpp and LB. cpp are the
main entry points. The organization of the source files is described in HACKING.md.

The data structures coding the different exploration strategies (see Section
are declared in node_container.hpp and defined in node_container.cpp.

6.4. Usage

Upon compilation, one program Mimosa is generated, along with some shell scripts
to provide handy shortcuts. The Mimosa executable comes with all the options being
mandatory, while the shell scripts variants use sensible predefined settings.

Executable code. Mimosa takes instances from standard input. One instance
is a folder containing the following files:

e y.dat: the data measurements y
e A.dat: the problem matrix A
e mu.dat: the fp-norm penalty parameter p defined in (Pa4.0).

It provides some kind of activity log to standard output, including the solution Z. A
CSV file is also generated containing per-instance metrics used for the experiments
in Section [5.4] and 5.5

Mimosa also takes some command line arguments, in this order:

$ Mimosa 12pl0 <solver> <dualmod> <scrmod> <explo> <exploarg>

<solver> The solver to use, which is one element of:
full_cplex,
bb_cplex,
bb_homotopy_warm,
bb_homotopy_cold,
bb_activeset_warm,
bb_activeset_cold,
bb_icd_warm,

e bb_icd_cold

among which:

e full_cplex stands for a direct call to CPLEX solving a MIP formulation of the problem
(see [5] for more details). This is provided as a wrapper around CPLEX if you wish to
benchmark our code versus CPLEX.

e bb_cplex stands for the CPLEX quadratic programming solver used to compute the
lower bounds, and the lower bounds only. As for all solvers with names bb_$$, the
Mimosa Branch-and-Bound framework described in Section [I] is used, the algorithm to
compute the lower bounds being specified in the $$ part.

e bb_homotopy_$$, bb_activeset_$$, bb_icd_$$ stand for the Mimosa Branch-and-Bound
framework, with one of the three algorithms described in Section [2.2] used to compute
the lower bounds. The _warm suffix stands for warm start, where initial guesses are taken
from the output of the parent node evaluation. The _cold suffix stands for no warm start.
Experiments in this paper were done with bb_homotopy_cold.

<dualmod> The dualmod parameter is the period at which the dual objective function is evaluated for early
pruning within the iterations computing the lower bounds (by the previously described solvers).
Setting it to 0 disables dual computations. Experiments in Sections[5.3]and were performed
with dualmod = 1 (that is, at each iteration), while experiments in Section were performed
with dualmod = 0.

26

<scrmod> The

scrmod parameter is the period at which screening tests are implemented. Setting scrmod =

1 computes the screening tests every time the dual objective function is evaluated, scrmod = 2
computes them every two such evaluations, etc. scrmod = 0 disables screening. Experiments in
Section [5.4] were performed with scrmod = 1.

<explo> The

<exploarg> The

exploration strategy to use, among:
stack: depth first search,
heap_on_1b: best first search,
heap_on_11: ¢; first search,
heap_on_1s: least-square first search,
stack_then_heap_on_lb_iteration_threshold: mixed strategy, depth first search then
best first search after Nguiten iterations (see below),
stack_then_heap_on_11_iteration_threshold: mixed strategy, depth first search then
{1 first search after Ngyiten iterations,
stack_then_heap_on_ls_iteration_threshold: mixed strategy, depth first search then
least-square first search after Ngyitcn iterations,
stack_then_lds_iteration_threshold: mixed strategy depth first search then limited
discrepancy search after Ngyitcn iterations.

iteration threshold Nguitcn for mixed strategies (set to 0 for non-mixed strategies), see

Section A.21

An invocation example is then:

$ echo one_instance_here | Mimosa 12pl0 bb_homotopy_cold 1 2
stack_then_heap_on_1lb 20 my_results.csv

Shell scripts. The shell scripts give shorter ways to call Mimosa. All scripts use
these predefined values:

heap

that can

bb_homotopy_cold solver,
dualmod = 0,
scrmod = 0,

_on_1b exploration strategy,

Nswitch =0 5

be changed by editing the script.

Three scripts are provided, with different ways to take instances.

e Mimosa_12pl0_1linst takes one instance as an argument (and pipes it to Mimosa), as in the
following example:

$ Mimosa_12pl0_1linst <path/to/one/instance/folder>

e Mimosa_12pl0_listinst takes a file containing a list of instances as an argument. With a file
inst_list.txt listing instances like this:

path/to/one/instance/folder
path/to/another/instance/folder

an invocation example is:

$ Mimosa_12plO_listinst inst_list.txt

e Finally, Mimosa_12pl0_pipeinst takes a list of instances on standard input, as Mimosa does.
An invocation using the previous list would be:

$ cat inst_list.txt | Mimosa_12plO_pipeinst

A dynamically generated list can also be used with this third script, for example:

$ find /path/to/directory/containing/instances | grep K9 | sort |

head -n 20 | Mimosa_12plO_pipeinst

Discussion

In this paper, three acceleration techniques for branch-and-bound algorithms dedi-

cated to

linear sparse regression have been explored.

27

The first two ones relate to the computation of lower bounds involved at each node
of the branch-and-bound tree, which are obtained by solving convex, non-smooth,
box-constrained, optimization problems mixing least-squares and ¢;-norm terms.
Early pruning exploits convex duality in order to reject suboptimal nodes thanks
to the computation of dual bounds. Screening methods use dual iterates to prove
the nullity of some variables at the optimal point, therefore discarding them from
the remaining computation of the lower bound. Several dedicated algorithms were
studied in such a context, among which the homotopy continuation method appeared
to be the most efficient one for increasing the dual objective function. A detailed
performance analysis revealed that early pruning and screening are more efficient
for settings where the correlation between the columns of the problem matrix is
lower, and that their acceleration power depends on the considered node inside the
tree: while screening performs better for nodes with the lowest number of variables
included in the support, early pruning has more impact for nodes including a higher
number of active variables, close to the true sparsity level of the solution.

The third acceleration technique concerns the exploration strategy, where alter-
natives to standard methods were investigated, and implemented as specific data
structures for node scheduling. Contrary to early pruning and screening, the choice
of the exploration strategy was shown to have more impact on the more difficult
problems. In such cases, best-first search offers the lowest number of explored nodes
if the branch-and-bound procedure is run up to optimality. However, exploring in
priority the nodes with the lowest least-squares term was found to be more efficient
in order to quickly find good solutions. It is therefore a choice of interest if one ac-
cepts to trade the loss of the optimality proof against a subsequent reduction of the
computation time. To the best of our knowledge, such choices were never discussed
in the related literature, where depth-first search always seems to be chosen.

We provide a dedicated C++ implementation called Mimosa, where the different
proposals discussed in the paper can be applied or not. Outside of Mimosa, other
branch-and-bound solvers for sparse optimization |21} 23] could also benefit from
these accelerations.

These works pave the way for future ones. First, the efficiency of the proposed
techniques was shown to strongly vary with the problem structure, the type of node
in the search tree, the depth of the node, etc. In order to optimize the resulting
computation time, such methods should only be applied when they are potentially
useful, that is, when the potential acceleration brought compensates for the extra
computation cost. The resulting choices may highly depend on the problem, and
strategies that would learn such decisions for a given problem class are of first
interest.

More aggressive screening types for relaxed problems are also worth being studied.
Strong screening strategies |26}, 40] increase the number of variables that are fixed,
and hence reduce the computation time, but with the risk of making the solution
found sub-optimal. In that case, the optimal value of the reduced relaxation problem
may not be a lower bound of the considered original ¢y subproblem. Fortunately,
such cases could be detected by a non-zero duality gap. A valid strategy would then
consist in first applying strong screening and find a good, potentially sub-optimal
solution and, if necessary, include again the previously fixed variables for the last
iterations of the relaxation algorithm.

Finally, the discrepancy between the performance of best-first, least-squares first
and most notably ¢1-norm first exploration strategies may be a hint that using the
{1 norm to relax the £y cardinality term is too loose. This motivates the use of non
convex relaxation to improve the quality of lower bounds, e.g., based on the many
related works in the sparse approximation literature [38]. This would certainly raise
new methodological issues in order to guarantee the validity of the obtained bounds
and, subsequently, of the resulting branch-and-band procedure.

References
[1] S. Alliney and S. A. Ruzinsky. An algorithm for the minimization of mixed ¢; and

£ norms with application to bayesian estimation. IEEE Transactions on Signal
Processing, 1994.

28

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with Sparsity-
Inducing Penalties. 2011.

H. Bauschke and P. Combettes. Convex Analysis and Monotone Operator Theory
in Hilbert Space. 2011.

R. Ben Mhenni, S. Bourguignon, M. Mongeau, J. Ninin, and H. Carfantan. Sparse
Branch and Bound for Exact Optimization of £3-Norm Penalized Least Squares.
In ICASSP 2020, IEEFE International Conference on Acoustics, Speech and Signal
Processing, Barcelona, Spain, 2020.

R. Ben Mhenni, S. Bourguignon, and J. Ninin. Global optimization for sparse
solution of least squares problems. Optimization Methods and Software, 2021.

D. Bertsimas, A. King, and R. Mazumder. Best subset selection via a modern
optimization lens. The Annals of Statistics, 2016.

D. Bertsimas and R. Shioda. Algorithm for cardinality-constrained quadratic op-
timization. Computational Optimization and Applications, 2009.

D. Bienstock. Computational study of a family of mixed-integer quadratic pro-
gramming problems. In 5th International IPCO Conference, 1995.

A. Bonnefoy, V. Emiya, L. Ralaivola, and R. Gribonval. A dynamic screening
principle for the lasso. In Furopean Signal Processing Conference EUSIPCO, 2014.
S. Bourguignon, J. Ninin, H. Carfantan, and M. Mongeau. Exact sparse approxi-
mation problems via mixed-integer programming: formulations and computational
performance. IEEFE Transactions on Signal Processing, 2016.

A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex prob-
lems with applications to imaging. Journal of Mathematical Imaging and Vision,
2011.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis
pursuit. SIAM Review, 2001.

X. Cui, X. Zheng, S. S. Zhu, and X. Sun. Convex relaxations and MIQCQP
reformulations for a class of cardinality-constrained portfolio selection problems.
Journal of Global Optimization, 2013.

I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics, 2004.

E. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 2002.

J. Eckstein. Splitting methods for monotone operators with applications to parallel
optimization. PhD thesis, Massachusetts Institute of Technology, 1989.

B. Efron, T. J. Hastie, I. M. Johnstone, and R. Tibshirani. Least angle regression.
Annals of Statistics, 2004.

L. El Ghaoui, V. Viallon, and T. Rabbani. Safe Feature Elimination for the LASSO
and Sparse Supervised Learning Problems. Technical report, EECS Department,
University of California, Berkeley, 2010.

O. Fercoq, A. Gramfort, and J. Salmon. Mind the duality gap: safer rules for
the LASSO. In Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015.

J. H. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 2010.

T. Guyard, C. Herzet, and C. Elvira. Node-screening tests for £p-penalized least-
squares problem with supplementary material, 2021. URL: https://arxiv.org/
abs/2110.07308.

29

https://arxiv.org/abs/2110.07308
https://arxiv.org/abs/2110.07308

[42]

[43]

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
New York, NY, USA, 2001.

H. Hazimeh, R. Mazumder, and A. Saab. Sparse regression at scale: branch-and-
bound rooted in first-order optimization. Mathematical Programming, 2021.

J. J. Kormylo and J. M. Mendel. Maximum likelihood detection and estimation of
bernoulli - gaussian processes. IEEE Transactions on Information Theory, 1982.
H. Lee, A. Battle, R. Raina, and A. Ng. Efficient sparse coding algorithms. In
Advances in Neural Information Processing Systems, 2006.

M. Massias. From safe screening rules to working sets for faster lasso-type solvers.
In 10th NIPS Workshop on Optimization for Machine Learning, 2017.

J.-J. Moreau. Fonctions convexes duales et points proximaux dans un espace
hilbertien. Comptes Rendus Hebdomadaires des Séances de I’Académie des Sci-
ences, Paris, 1962.

P. Moulin and J. Liu. Analysis of multiresolution image denoising schemes using
generalized gaussian and complexity priors. IEEE Transactions on Information
Theory, 1999.

B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal
on Computing, 1995.

E. Ndiaye, O. Fercoq, A. Gramfort, and J. Salmon. Gap safe screening rules for
sparsity enforcing penalties. Journal of Machine Learning Research, 2017.

G. Nemhauser and L. Wolsey. General algorithms. In Integer and Combinatorial
Optimization. 1988. Chapter 11.4.

J. Nocedal and S. J. Wright. Numerical Optimization. New York, 2nd edition,
2006.

M. Osborne, B. Presnell, and B. Turlach. A new approach to variable selection in
least squares problems. IMA Journal of Numerical Analysis, 2000.

A. Raj, J. Olbrich, B. Gértner, B. Scholkopf, and M. Jaggi. Screening rules for
convex problems. In 9th NIPS Workshop on Optimization for Machine Learning,
2016.

R. T. Rockafellar. Convex Analysis. Princeton, 1970.

D. X. Shaw, S. Liu, and L. Kopman. Lagrangian relaxation procedure for
cardinality-constrained portfolio optimization. Optimization Methods Software,
2008.

S. Solntsev, J. Nocedal, and R. Byrd. An algorithm for quadratic ¢;-regularized
optimization with a flexible active-set strategy. Optimization Methods and Soft-
ware, 2015.

E. Soubies, L. Blanc-Féraud, and G. Aubert. A unified view of exact continuous
penalties for f-£y minimization. STAM Journal on Optimization, 2017.

C. Soussen, J. Idier, D. Brie, and J. Duan. From Bernoulli-Gaussian deconvolution
to sparse signal restoration. IEEE Transactions on Signal Processing, 2011.

R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and R. Tib-
shirani. Strong rules for discarding predictors in lasso-type problems. Journal of
the Royal Statistical Society Series B (Statistical Methodology), 2010.

A. M. Tillmann, D. Bienstock, A. Lodi, and A. Schwartz. Cardinality Minimiza-
tion, Constraints, and Regularization: A Survey, 2021. URL: https://arxiv.
org/abs/2106.09606.

J. A. Tropp. Greed is good: algorithmic results for sparse approximation. /[EEE
Transactions on Information Theory, 2004.

J. A. Tropp and S. J. Wright. Computational methods for sparse solution of linear
inverse problems. Proceedings of the IEEE, 2010.

30

https://arxiv.org/abs/2106.09606
https://arxiv.org/abs/2106.09606

[44]

[45]

[46]

P. Tseng. Convergence of a block coordinate descent method for nondifferentiable
minimization. Journal of Optimization Theory and Applications, 2001.

M. J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity re-
covery using ¢1-constrained quadratic programming (lasso). IEEE Transactions
on Information Theory, 2009.

Z. Xiang, H. Xu, and P. J. Ramadge. Learning sparse representations of high
dimensional data on large scale dictionaries. In Advances in Neural Information
Processing Systems, 2011.

31

	Dedicated Branch-and-Bound for sparse optimization
	Problem formulation
	Support space structuring and branch-and-bound architecture
	Bounding the nodes
	Branching strategy
	Contributions

	Convex duality for early node pruning
	Principle
	Dual bound quality of 1-norm algorithms
	Proximal algorithms
	Coordinate descent algorithms
	Active sets
	Homotopy continuation

	Leveraging convex screening
	Principle
	Screening rules for relaxation problems
	From screening rules to screening tests

	Exploration strategies
	Motivation
	Analogy with the data structure
	Dedicated exploration strategies

	Experimental results
	Data-set description
	Optimization for primal and dual objective functions
	Duality-based early pruning
	Variable screening
	Exploration strategies

	Software installation and usage
	Ubuntu package installation
	Compiling
	Architecture
	Usage

