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1 Introduction

Gaseous detonations can be described as supersonic combustion waves whose structure consists of an
inert shock wave followed by a reactive layer [1]. The classical Chapman-Jouguet (CJ) theory pre-
dicts accurately the overall gas state behind a steady detonation front and its unique self-propagating
regime considering the detonation as a discontinuity. However, the unsteady dynamics of the detonation
wave are strongly sensitive to small modifications of its inner structure [2]. Hence, anticipate whether a
detonation will be initiated based exclusively on the constitutive properties of the reactive mixture repre-
sents a rather difficult question. A simplified model describing the critical dynamics of direct initiation
of spherical detonations in the small heat release limit is investigated here numerically. This model pro-
vides fundamental physics insights into the initiation of detonations phenomenon that may contribute to
the definition of more sophisticated design specifications in the context of explosion safety.

Two different modes of initiation of a self-propagating detonation are commonly identified: direct ini-
tiation and deflagration to detonation transition (DDT). The direct initiation mode corresponds to a fast
transition from a decaying blast wave into a self-sustained detonation, while in the DDT a slower transi-
tion from a deflagration to a detonation takes place. The fast mode, addressed here, is thus characterised
by the absence of a predetonation deflagration.

Numerous efforts have been made to define the detonability (i.e., the potential to detonate under specific
conditions) of a particular mixture. In particular, the minimum deposited energy required for direct
initiation has been widely investigated. A first criterion was proposed by Zeldovich et al. [3] suggesting
the time taken by the decaying blast wave to reach the CJ velocity should be larger than the reaction
time. This criterion introduces the concept of a critical radius, of the order of the detonation thickness,
at which the blast wave should propagate faster than the CJ velocity to initiate a detonation. However,
experimental tests showed later that the critical radius is actually three orders of magnitude larger than
the detonation thickness [4]. He & Clavin (1994) [5] analysed the effect of the curvature in the quasi-
steady evolution of cylindrical and spherical detonations. Their study showed that flow divergence is
responsible for the existence of a critical radius larger than the detonation thickness below which there is
no possible solution for a self-propagating detonation. The critical radius predicted by this analysis was
subsequently confirmed by Direct Numerical Simulations (DNS) [6]. Nevertheless, this model fails to
explain the non-steady behaviour also observed in DNS [6–8]. The work of Liñán et al. [9] builds upon
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the quasi-steady approximation to study the external flow structure when transitioning from a strong
non-reactive blast wave to a steady spherical CJ detonation. Recently, in a series of works by Clavin
et al. [2, 10–12] the unsteady dynamics of detonations in the asymptotic limit of small heat release
have been revisited. The asymptotic analysis including unsteadiness, curvature, and the burnt gas flow
reduces the problem to a single Burgers’ like equation with a reactive and a geometrical term. Numerical
integration of this equation shows that this simplified model is able to reproduce to a certain extent the
unsteady behaviour observed in DNS. Particularly, a deceleration of the front well below the CJ velocity
and a later re-acceleration towards the self-sustained regime can be observed in the critical dynamics.
Numerical results of a parametric study are presented here with special focus on the relative position of
the sonic point as key driver for the critical slowdown prior to successful ignition.

2 Detonation model

The reactive Euler’s equations in spherical geometry governing the dynamics of the inner detonation
structure can be written as a set of hyperbolic equations
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where p, u, T , and Y are respectively the pressure, the radial velocity of the flow in the laboratory
reference frame, the temperature, and the progress variable (Y = 0 in the initial mixture and Y = 1
in the burned gas), and a, γ, qm, tr, and ω are respectively the sound speed, the ratio of specific heat
γ ≡ cp/cv, the chemical heat release per unit mass of mixture, the reaction time at the Neumann
state of the planar CJ detonation and the non-dimensional heat-release rate. These equations relate the
propagation of the disturbances of pressure p and radial velocity u to the rate of heat release ω/tr and
the divergence of the flow 2u/r. Assuming an ideal gas model with p = cv(γ − 1)ρT , a2 = γp/ρ and
γ = const., when the chemical kinetics ω(T, Y ) are known, the four equations in (1) and (2) form a
closed set for p, u, T and Y .

Due to the large activation energy E that characterizes the combustion chemistry, the lead shock can be
considered as a discontinuity in the study of the detonation structure. The boundary conditions in the
initial mixture are thus given by the Rankine-Hugoniot relations with respect to the unburnt gas

pN
pu

= 1 +
2γ

γ + 1
(M2 − 1),

ρu
ρN

=
2 + (γ − 1)M2

(γ + 1)M2
,

uN
au

=

(
1− ρu

ρN

)
M, (3)

where the subscript u denotes the unburnt fresh mixture at rest and the subscriptN denotes the Neumann
state just behind the shock. The Rankine-Hugoniot relations depend exclusively on the propagation
velocity of the lead shock D through its Mach number M ≡ D/au.

The study of the direct initiation process begins with the blast wave assumed to be produced by an
intense point explosion (i.e., a sudden release of a large amount of energy concentrated at a point).
The blast wave classical problem accepts a self-similar solution in the strong shock limit in which the
velocity distribution evolves roughly in a linear fashion from the respective value behind the shock to
the origin [1]. The initial flow field is then described by a linear profile from the Neumann state at the
lead shock position to zero at the origin.

As in the detonation model of Clavin & Williams (2002) [13], the direct initiation is studied here through
an asymptotic analysis in the limit of small heat release ε2 ≡ qm/(cpTu) � 1 coupled with the New-
tonian approximation (γ − 1)/ε� 1. This distinguished limit introduces two main simplifications: the
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variation of the sound speed across the detonation structure, being of order ε2, can be neglected to first
order; and, two time scales can be identified. The propagation velocities (in the lead shock reference
frame) of the acoustic downstream running wave and the entropy wave are of the order of the sound
speed which is greater by a factor 1/ε than the propagation velocity of the upstream running acous-
tic wave. Therefore, to first order the effects of the downstream running wave and entropy wave are
considered instantaneous, and the dynamics of the inner structure is governed by the larger time scale
tr/ε. Hence, the inner structure of the unsteady and curved detonation must be studied in terms of the
non-dimensional coordinate ξ attached to the moving front of the lead shock and the reduced time scale
of order unity τ

ξ ≡ r − rf (t)

autr
, and τ ≡ ε t

tr
. (4)

In addition, it is convenient to introduce the dimensionless quantities of order unity in the small heat
release limit as in [10]
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where µ(ξ, τ), π(ξ, τ) and y(τ) represent respectively the normalized flow velocity, the pressure and the
propagation velocity of the lead shock. A reduced form of the activation energy b ≡ 2ε(γ−1)E/(kBTu)
is also defined.

Neglecting terms smaller than ε2, the first order of the intrinsic dynamics of the detonation structure in
the small heat release limit is governed by a single hyperbolic equation including reactive and geometric
terms
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where the reduced front radius r̃f (τ) ≡ εrf/(trau) has been introduced. Similarly, the Neumann state
condition (3) on the leading front is reduced to

ξ = 0 : µ = 1 + 2y(τ)/b. (7)

The chemical kinetics for a propagation velocity close enough to the CJ velocity y(τ) = O(1) are
modelled as in [5]. The unsteady distribution of the rate of heat release ω(ξ, τ) is expressed in terms of
the front propagation velocity and the steady state distribution. Accordingly, the distribution of reaction
rate is governed by a scaling law depending on the reaction zone length ξb. Adopting the distribution of
the steady planar CJ wave ωoCJ (ξ) presented in [10], the heat release distribution takes the form

ω(ξ, y) = ey(τ)ωoCJ (ξey(τ)), ξ < ξb = −e−y : ω = 0. (8)

However, this model shares the limitation of the single step Arrhenius rate law. As pointed out in [8], if
the induction to reaction zone length ratio is fixed, the system will react until completion. It is required
then to set a lower bound in the propagation velocity y below which the reaction remains frozen

y ≤ yc : ω(ξ, y) = 0. (9)

This lower bound corresponds to the well known cross-over temperature that leads to the chemical-
kinetics quenching. A value of yc = −b/2 is used here considering typical values of cross-over temper-
ature, see [11].
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Figure 1: Trajectories ‘detonation velocity y vs front radius r̃f ’ for different initial radius. Left: Stable
detonation b = 1. Right: Weakly unstable detonation b = 2.

3 Numerical integration

In order to analyse the presented simplified model, the hyperbolic equation (6) has been integrated
numerically. The numerical integration begins with a linear velocity profile as a rough approximation
to the blast wave solution. Following a splitting strategy, the three terms of the hyperbolic equation
are integrated successively. The convective component is evaluated using the High-Resolution Central
Scheme of Kurganov & Tadmor (KT) [14]. Next, both the curvature and the reactive terms are integrated
by an explicit Euler method. At the end of the integration step, a new value of the propagation velocity
y is computed from the solution obtained through the boundary condition (7).

The KT central scheme admits a semi-discrete formulation maintaining its high-resolution independent
of O(1/∆t) [14]. Thanks to this feature, a sufficiently small time step can be chosen so that the trunca-
tion and splitting error do not degenerate the solution.

Several numerical integrations have been performed for a range of initial front radii r̃fi, and two reduced
activation energies b illustrating a stable and a weakly unstable regime. For a fixed initial propagation
velocity yi, each initial radius r̃fi represents an initial deposited energy. A greater initial energy would
create in a larger blast wave propagating at equal velocity, thus these two parameters are directly linked.
In the chemical kinetics model investigated here, the transition from marginally stable detonations to
weakly unstable detonations occurs for a value of the reduced activation energy of bc ≈ 1.27 [10].

4 Results and discussion

The different trajectories ‘detonation velocity y vs radius r̃f ’ obtained are shown in Fig. 1. A stable
detonation regime with b = 1 is presented on the left, while the evolution of a marginally unstable det-
onation b = 2 is shown on the right. The results of these stable and marginally unstable detonations are
similar, except for the nonlinear oscillation superimposed on the trajectories. In both cases, successful
initiation and detonation failure are observed revealing the dependence of the outcome on the initial
conditions. The characteristic behaviour of the non-steady critical dynamics is also observed in both
situations. After slowing down well below the CJ velocity, the detonation front re-accelerates back to
the self-sustained regime. The evolution of the detonation initiation near criticality is closely related to
the evolution of the sonic point ξs, where the flow velocity relative to the front equals the sound speed.
In terms of the problem variables, the sonic point is located where the relation µ(ξs, τ) = y(τ)/b is
satisfied. At this point, the gas flow is isolated from the damping induced by the rarefaction wave. The
sonic point trajectory is shown in Fig. 2. For clarity, the stable regime has been chosen to show the
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Figure 2: Sonic point ξs and end of reaction ξb trajectories in thick line with its corresponding ‘detona-
tion velocity y vs front radius r̃f ’ trajectory in the background for a stable detonation b = 1. Left: Failure
of detonation initiation for r̃fi = 0.7. Right: Successful initiation of the detonation for r̃fi = 1.0.

sonic point ξs and the reaction wave exit ξb positions relative to the lead shock. The difference between
figures lies in the initial front radius r̃fi (i.e., the initial energy). On the left, the smaller initial radius
leads to a detonation failure while on the right the detonation succeeds to initiate because of the larger
initial energy. The corresponding trajectory ‘detonation velocity y vs front radius r̃f ’ is included in the
background so that the front behaviour can be analysed in relation to the sonic point location. As the
lead shock decays due to both the effect of rarefaction wave and flow divergence, the sonic point ξs
approaches the end of the reaction ξb. Once the sonic point is close enough to the exit of the reaction
wave, the time delay of the detonation inner structure response to the rarefaction wave becomes rele-
vant. Initially, the decay rate of the front is reduced and a mechanism of slowdown can be identified. As
long as the chemical-kinetics quenching does not terminate the combustion, the sonic condition will be
attained, i.e. the sonic point will catch the end of the reaction layer. Note that the minimum propagation
velocity y(τ) for successful initiation corresponds to the sonic condition. As soon as the sonic point
reaches the reaction wave, it isolates the detonation inner structure from the rarefaction wave. Then, the
detonation now unaffected by the damping effect of the rarefaction wave, starts to accelerate towards
the self-sustained CJ regime.

5 Conclusions

The asymptotic limit of small heat release reduces the mathematical description of the inner structure of
a detonation to a single hyperbolic equation. This distinguished limit leverages the two-time-scale nature
of the problem, which is amplified although it also characterises to a lesser extent the real detonations
close to the CJ regime. The solution obtained by the numerical integration of the hyperbolic equation
reveals the well known existence of a critical energy below which the direct initiation of a detonation
fails. Furthermore, the usual critical dynamics, characterised by a decay well bellow the CJ velocity,
followed by a re-acceleration towards the self-sustained regime, is also captured by this simple model.
This behaviour is explained by the evolution of the sonic point where the velocity relative to the lead
shock equals the sound speed. Initially, the propagation velocity descends below the CJ velocity while
the sonic point approaches the exit of the reaction wave. As the sonic point gets closer to the end of the
reaction zone, the slowdown mechanism of the wave decay is strengthened. The slowdown mechanism
arises from an increase in the time delay of the response of the detonation inner structure to the trailing
rarefaction wave. A minimum in the propagation velocity is observed when the sonic point reaches the
inner structure of the detonation. The deceleration of the decay is followed by a re-acceleration back
to the CJ regime in which the reaction zone is isolated from the rarefaction wave through the sonic

28th ICDERS – June 19 - 24, 2022 – Napoli, Italy 5



Hernández Sánchez, R. Critical dynamics of spherical detonations

point. Hence, the sonic point remains within the detonation inner structure during the re-acceleration
phase and in the self-sustained regime. The initiation process will fail if the front velocity decays bellow
the chemical-kinetics quenching point before the sonic point catches the detonation structure. At small
front radius, the curvature is larger and therefore the flow divergence damping is stronger, so the outcome
depends ultimately on the lead front radial position at which the velocity of the overdriven detonation
crosses the CJ velocity.
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We thank Prof. Amable Liñán for stimulating discussions. This work was supported by the French
National Research Agency under agreement ANR–18–CE05–0030.

References

[1] P. Clavin and G. Searby, Combustion Waves and Fronts in Flows: Flames, Shocks, Detonations,
Ablation Fronts and Explosion of Stars. Cambridge University Press, 2016.

[2] P. Clavin and B. Denet, “Analytical study of the direct initiation of gaseous detonations for small
heat release,” Journal of Fluid Mechanics, vol. 897, 2020.

[3] Y. B. Zeldovich, S. M. Kogarko, and N. N. Simonov, “An experimental investigation of spherical
detonation of gases,” Soviet physics. Technical physics., vol. 1, no. 8, pp. 1689–1731, 1956.

[4] J. H. Lee, “Dynamic parameters of gaseous detonations,” Annual review of fluid mechanics, vol. 16,
no. 1, pp. 311–336, 1984.

[5] L. He and P. Clavin, “On the direct initiation of gaseous detonations by an energy source,” Journal
of Fluid Mechanics, vol. 277, pp. 227–248, 1994.

[6] L. He, “Theoretical determination of the critical conditions for the direct initiation of detonations
in hydrogen-oxygen mixtures,” Combustion and Flame, vol. 104, no. 4, pp. 401–418, 1996.

[7] C. A. Eckett, J. J. Quirk, and J. E. Shepherd, “The role of unsteadiness in direct initiation of
gaseous detonations,” Journal of Fluid Mechanics, vol. 421, pp. 147–183, 2000.

[8] H. D. Ng and J. H. S. Lee, “Direct initiation of detonation with a multi-step reaction scheme,”
Journal of Fluid Mechanics, vol. 476, pp. 179–211, 2003.
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energy sources,” Comptes Rendus Mécanique, vol. 340, no. 11, pp. 829–844, 2012.

[10] P. Clavin and B. Denet, “Decay of plane detonation waves to the self-propagating Chap-
man–Jouguet regime,” Journal of Fluid Mechanics, vol. 845, pp. 170–202, 2018.

[11] P. Clavin, R. Hernández Sánchez, and B. Denet, “Asymptotic analysis of the critical dynamics of
spherical gaseous detonations,” Journal of Fluid Mechanics, vol. 915, p. A122, 2021.

[12] H. Tofaili, G. Lodato, L. Vervisch, and P. Clavin, “One-dimensional dynamics of gaseous detona-
tions revisited,” Combustion and Flame, vol. 232, p. 111535, 2021.

28th ICDERS – June 19 - 24, 2022 – Napoli, Italy 6



Hernández Sánchez, R. Critical dynamics of spherical detonations

[13] P. Clavin and F. A. Williams, “Dynamics of planar gaseous detonations near Chapman-Jouguet
conditions for small heat release,” Combustion Theory and Modelling, vol. 6, no. 1, pp. 127–139,
2002.

[14] A. Kurganov and E. Tadmor, “New High-Resolution Central Schemes for Nonlinear Conservation
Laws and Convection–Diffusion Equations,” Journal of Computational Physics, vol. 160, no. 1,
pp. 241–282, 2000.

28th ICDERS – June 19 - 24, 2022 – Napoli, Italy 7


	Introduction
	Detonation model
	Numerical integration
	Results and discussion
	Conclusions
	Acknowledgements

