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Abstract

This paper is about turedos, which are Turing machine whose head can
move in the plane (or in a higher-dimensional space) but only in a self-
avoiding way, by putting marks (letters) on visited positions and moving
only to unmarked, therefore unvisited, positions. The key parameter of
turedos is their lookup radius: the distance up to which the head can look
around in order to make its decision of where to move to and what mark to
write. In this paper we study the hierarchy of turedos according to their
lookup radius and the dimension of space using notions of simulation up
to spatio-temporal rescaling (a standard approach in cellular automata or
self-assembly systems). We establish that there is a rich interplay between
the turedo parameters and the notion of simulation considered. We show
in particular, for the most liberal simulations, the existence of 3D turedos
of radius 1 that are intrinsically universal for all radii, but that this is
impossible in dimension 2, where some radius 2 turedo are impossible
to simulate at radius 1. Using stricter notions of simulation, intrinsic
universality becomes impossible, even in dimension 3, and there is a strict
radius hierarchy. Finally, when restricting to radius 1, universality is again
possible in dimension 3, but not in dimension 2, where we show however
that a radius 3 turedo can simulate all radius 1 turedos.

1 Introduction

The field of biomolecular computing has given rise to several theoretical
models that describe growing process of (molecular) assemblies governed by
local interaction or gluing rules. One of the most studied one, the abstract
Tile Assembly model (aTAM) [19], describes a process where the growth can
happen anywhere asynchronously. It was successfully implemented in vitro as
DNA self-assembly [18]. In oritatami systems, introduced more recently [9, 8]
and inspired from RNA origami [11, 7], the growth happens at a unique given
point of the assembly and in a sequential manner. Despite their obvious
differences as models of biomolecular systems, they share common features as
computational models. Both are limited by the fact that they can only grow
shapes (and not erase them), but both were shown capable of embedding
universal computations in different ways [10, 12, 3, 14, 19]. Recently, it was
also shown through new results on oritatami systems that the infinite limit
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shapes both models can generate from finite seeds have the same
computational complexity and the same possible densities of occupied position
in the plane [17]. The key ingredients of these new results were, on one hand,
the introduction of a new model, called turedos, which abstracts away low level
details of oritatami systems and is easier to program, and on the other hand, a
proof that oritatami systems can simulate a large family of turedos. This
underlines the interest of turedos but also the surprising capabilities of models
of sequential growth process in the plane. The present work is entirely focused
on the turedo model and aims at better understanding its limitations and its
expressive power as a growth process and computational model.

Turedos. Intuitively, a turedo is a Turing machine whose head can move
in the plane or in the 3-dimensional space but only in a self-avoiding way, i.e.
without going back to a previously visited position. More precisely, the turedo’s
head can only move to empty or unmarked positions, and it must put a mark on
each visited position when leaving it. The key ingredient of a turedo, and what
makes its main computational power, is its lookup radius: when deciding a move
and what mark to put on the visited position, the turedo has access to the local
configuration of marks around its position, up to some finite distance. Like any
Turing machine, a turedo also has a set of internal head states. Without entering
into details, an oritatami system consists of a “molecule” made of “beads” that
can attract each other. The molecule grows at each step following a periodic
bead sequence and folds as follows: the δ most recently produced beads are
free to move around to look for the position that maximizes the number of
bonds they can make with each other ; then the first (oldest) bead among
the δ most recent ones is fixed according to that position, a new free bead is
added and the process iterates. This behavior can be realized in a turedo of
radius δ + 1. The main result of [17] is that oritatami of delay 3 can simulate
turedos of radius 1. In fact, turedos also naturally capture variants of oritatami
systems: for instance, one can imagine negative (repulsive) bonds in the process
of maximizing gluing strength, or add local rules forbidding two bead type to be
neighbor of each other. Therefore negative results on turedos become negative
results on oritatami systems, but also potential variants of them.

Simulations and universality. The main question we address here is
how the capabilities of turedos change with their radius and what is the role
of the dimension of space. We are interested in qualitative differences and
don’t compare turedos move by move and cell by cell. We rather use a notion of
simulation allowing spatio-temporal rescaling, similar to the one used in cellular
automata [4, 1], in aTAM [6, 5, 16] or in the simulation result of turedo by
oritatamis [17]. Intuitively a cell can be simulated by a block of cells, and
a step by a finite number of steps. We are naturally interested by hierarchy
results (existence of turedos that can’t be simulated by lower radius ones), or
on the contrary by universality results (existence of turedos that can simulate
all turedos or a large class of them). For instance, the existence of intrinsically
universal systems in the aTAM model was much studied and it was shown that it
crucially depends on natural parameters of the model [6, 16, 5, 13]. However, as
natural as it might seem, a formal notion of simulation is never a neutral choice
when tackling these questions [1, 4, 2]. Thus, in addition to the parameters of
the turedo model we also study the influence of the notion of simulation itself.
For this we identify various ingredients, in particular the possibility of fuzz, i.e.
the tolerance allowed for the simulating turedo to visit some regions of space
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close to the ongoing assembly that represent empty cells of the simulated turedo
and are therefore not yet been visited by it. Note that a similar notion of fuzz
appeared in the intrinsic universality results on aTAM [5]. We end up with
three notions of simulation: the rigorous, the fuzzless and the liberal ones.

Our contributions. After formalizing all the concepts mentioned so far
(Section 2), we establish a surprisingly diverse general picture of the capabilities
of turedos of simulating each other. Separating the negative results (Section 3)
from the positive ones (Section 4), our results are the following:

1. under fuzzless simulation, intrinsic universality is impossible whatever
the dimension, there is a radius hierarchy, and actually the impossibility
strikes at radius 2: no turedo can fuzzlessly simulate all radius 2 turedos
(Theorem 1);

2. when restricting to radius 1, rigorous intrinsic universality is possible in
dimension 3 (Theorem 5), but not in dimension 2 (Theorem 2);

3. however, we built a 2D turedo of radius 3 which is able to rigorously
simulate all 2D turedo of radius 1 (Theorem 4);

4. for liberal simulations, we establish intrinsic universality in dimension 3
and a complete hierarchy collapse at radius 1 (Corollary 1);

5. finally we show that there is a 2D turedo of radius 2 which is impossible
to simulate at radius 1, even under liberal simulations (Theorem 3).

Besides the above results, our contribution also lies in the constructions
and proof techniques. For instance, the negative result 5 is based on a general
lemma for 2D turedos of radius 1, which bounds the quantity of information
(using Kolmogorov complexity) that can be carried from the seed to another
connected component of the plane when the plane is divided by a 4-connected
path. As another example on the constructive side, result number 3 above uses
a novel construction technique (called heat sink trick) that fully exploits the
potential of radius 3 and could be used in any place where two unbounded
streams of information have to be crossed. Finally, in Section 5, we discuss
various questions left open and present what we believe are promising future
research directions.

2 Definitions

We denote by N the set of natural numbers (including 0), by N+ the positive
ones, and by Z the set of integers. We consider turedos on Z

d for d = 2 or 3 (and
in particular, we don’t use the hexagonal lattice on the plane, mostly to simplify
notations and dimension change). We fix a blank symbol ⊥used to represent
empty positions and common to all turedos. The ball of radius r in dimension
d, denoted Bd(r), is the set of positions reachable in r elementary moves (moves
along vector of the canonical based of Z

d) from the origin. Bd(1) will always be
the set of possible head moves in dimension d. We denote by c[z; S] the pattern
of shape S around position z in configuration c, i.e. the map z′ ∈ S 7→ cz+z′ .
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Definition 1 (Turedo). A turedo of dimension d and radius r is a triple
T = (A, Q, δ) where A is its finite alphabet with ⊥ ∈ A, Q is its finite set of
head states and

δ : Q×ABd(r) → Q×A \ {⊥} ×Bd(1)

is its local transition map. A global state of T is a triple

(c, z, q) ∈ GT = AZ
d

× Z
d ×Q specifying a configuration, a position and a head

state. The global transition map FT : GT → GT associated to T is defined by:

FT (c, z, q) =

{

(c, z, q) if c(z) 6= ⊥ or c(z + µ) 6= ⊥
(c′, z + µ, q′) else,

where (q′, a, µ) = δ(q, c[z; Bd(r)]) and configuration c′ is defined by c′(z) = a and
c′(z′) = c(z′) for all z′ 6= z.

The domain of a global state (c, z, q) is the set of non-blank positions of c
plus the head position, formally: D(c, z, q) = {z} ∪

⋃

{z′ : c(z′) 6= ⊥} A global
state (c, z, q) is finite if its domain is finite. We are interested in orbits starting
from finite initial global states, called finite seeds.

Example 1 (The spiral-XOR turedo). Let A = {⊥, 0, 1} and Q = {←, ↑,→, ↓}.
The spiral-XOR turedo has the following local rule. The head holds a direction
d ∈ Q and tries to move in that direction and let behind, as letter of A, the sum
modulo 2 of the states of neighboring (non ⊥) positions. When it can do the d
move, it changes its internal state (counter-clockwise), when it can’t it takes the
first available move (clockwise) and doesn’t change its state. Of course if there
is no neighbor in state ⊥ then the turedo is blocked. The following table shows
the local transition map up to rotation of d (the red arrow can be rotated and
all blue arrows are defined relatively to the red arrow):

state 1st empty neighbor new state letter move
↑ ↑ (+0) ← (-1)

∑

mod2 ↑ (+0)
↑ → (+1) ↑ (+0)

∑

mod2 → (+1)
↑ ↓ (+2) ↑ (+0)

∑

mod2 ↓ (+2)
↑ ← (+3) ↑ (+0)

∑

mod2 ← (+3)

See Figure 1 for an example of orbit.

The main focus of this paper is to understand the role of radius and
dimension in the computational complexity of turedos. We will denote by
TURd(r) the set of turedos of dimension d and radius r, and
TURd =

⋃

r≥1 TURd(r).
Before formalizing simulation, we first need to define block encodings which

are ways to represent global states of a simulated turedo by blocks in the
simulator. Any given b ∈ N

d
+ defines a rectangular block

Rb = {z ∈ N
d : 0 ≤ zi < bi for 1 ≤ i ≤ d} and Zd can be tiled by translated

copies of Rb in a regular way by placing them on the sublattice b⊗ Z
d where

⊗ denotes the component-wise product. Each position z ∈ Z
d can be uniquely

decomposed into z = ρb(z) + µb(z) where ρb(z) ∈ b⊗ Z
d is the reference point

of a block and µb(z) ∈ Rb is an offset inside it.
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Initial global state Global state after 10 stepsGlobal state after 307 steps

Figure 1: Example of orbit of the spiral-XOR turedo (example 1) starting from
a finite seed. Green represents 0, yellow represents 1 and white represents ⊥.
The head holds a direction (where the black triangle is pointing to) and its
self-avoiding trajectory since the beginning is drawn as a black path.

Definition 2 (Block encoding). Let us fix a dimension d. Given two pairs
of alphabets and state sets (A1, Q1) and (A2, Q2) with ⊥ ∈ A1 ∩A2, a block
encoding of global states G1 = AZ

d

1 × Z
d ×Q1 into G2 = AZ

d

2 × Z
d ×Q2 is given

by a block size b ∈ N
d
+ and two partial onto maps:

• the headless block decoding map α : Dα ⊆ ARb

2 → A1 verifying ⊥Rb ∈ Dα

and α(⊥Rb ) = ⊥,

• the head block decoding map β : Dβ ⊆ ARb

2 ×Rb ×Q2 → Q1 ×A1.

A global state (c, z, q) ∈ G2 is valid for the encoding if it is made only of
patterns from Dα far from the head and Dβ around the head, precisely if:
(c[ρb(z); Rb], µb(z), q) ∈ Dβ and c[ρb(z′); Rb] ∈ Dα for all z′ ∈ Z

d such that
ρb(z′) 6= ρb(z).

Finally, the global decoding map Γ associates to any valid global state
(c2, z2, q2) ∈ G2 a global state (c1, z1, q1) ∈ G1 defined by application of decoding
maps α or β on each block according to the presence of the head in the block,
i.e. :

• b⊗ z1 = ρb(z2),

• (q1, c1(z1)) = β(c2[ρb(z1); Rb], µb(z2), q2),

• c1(z) = α(c2[ρb(z2); Rb]) for all z 6= z1.

The map α and β being partial and onto intuitively means that not all
global states are valid, and that any global state of AZ

d

1 × Z
d ×Q1 can be

encoded. Note that the headless block decoding map α always decodes blank
blocks ⊥Rb as blank state ⊥. Denote by Db(c2, z2, q2) the block domain of
global state (c2, z2, q2) which is the set of blocks that are not entirely blank,
i.e. Db(c2, z2, q2) = {z : b⊗ z = ρb(z2) or c2[b⊗ z; Rb] 6= ⊥Rb}.

We can now define simulations precisely using block encodings. Intuitively,
we ask for the simulator to be able to reproduce any orbit of the simulated
turedo starting from a finite seed, and using a (fixed) finite number of steps to
simulate one step. Since we want the initial seed of the simulator to be neutral
and without any pre-computed information about the future of the simulated
orbit, we ask that its block domain correspond to the domain of the simulated
seed.
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Original Rigorous Fuzzless Liberal

Figure 2: Differences in allowed head movements in rigorous, fuzzless and liberal
simulations with 2× 2 blocks. The colors have the following meaning: in red
the positions or blocks which are not empty initially, in yellow the positions or
blocks coding a non-⊥ letter during the orbit; in white the positions or blocks
coding ⊥; in black the movement of the head.

Definition 3 (Simulation). Let d be a fixed dimension. We say that a
d-dimensional turedo T2 simulates a d-dimensional turedo T1 if there is:

• a block encoding of GT1
into GT2

of bock size b and global decoding map Γ,

• a time scaling factor k ∈ N+,

such that for each finite global state (c1, z1, q1) ∈ GT1
and each global state

(c2, z2, q2) ∈ GT2
verifying:

• corresponding block domain: D(c1, z1, q1) = Db(c2, z2, q2),

• correct encoding: (c1, z1, q1) = Γ(c2, z2, q2),

then it holds ∀t ∈ N, F t
T1

(c1, z1, q1) = Γ
(

F kt
T2

(c2, z2, q2)). Such simulations are
the base upon which we define three variants (two restrictions and one
generalization).

We say that a simulation is fuzzless if the block domain in the simulator
orbit remains identical to the domain of the simulated orbit, precisely:
∀t ∈ N : Db(F kt

T2
(c2, z2, q2)) = D(F t

T1
(c1, z1, q1)).

We say that a simulation is rigorous if the movements of the head of T2 in
simulating orbits strictly remains inside blocks corresponding to the simulated
head position of T1, even at intermediate steps, precisely: if zt

1 denotes the head
position of F t

T1
(c1, z1, q1) and zt

2 that of F t
T2

(c2, z2, q2), it holds for all t′ with

kt ≤ t′ ≤ k(t + 1) : zt′

2 ∈ (b ⊗ zt
1 + Rb) ∪ (b⊗ zt+1

1 + Rb).
Finally, a liberal simulation is a generalized simulation where we only ask

that for each finite global state (c1, z1, q1) ∈ GT1
there exists a global state

(c2, z2, q2) ∈ GT2
with corresponding block domain and correct encoding such

that it holds ∀t ∈ N, F t
T1

(c1, z1, q1) = Γ
(

F kt
T2

(c2, z2, q2)).

Liberal simulations can have fuzz and make non-rigorous head movements.
Note that fuzzless simulations are equivalent to simulations where the headless
block decoding map is such that α(u) = ⊥ ⇐⇒ u = ⊥Rb , i.e. that the only
block coding⊥ is⊥Rb . Note also that a rigorous simulation is necessarily fuzzless
because the head of the simulator has no opportunity, even at intermediate
time steps, to visit blocks not corresponding to the domain of the simulated
configuration. The power of fuzzless simulations compared to rigorous ones is
to allow the head to go back to blocks that were previously visited. Thus the
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head can potentially retrieve information from non adjacent blocks that were
written a long time ago. With rigorous simulation on the contrary, the head
has only access to adjacent blocks during a simulation cycle.

We denote by ≤ the liberal simulation, by ≤F L the fuzzless simulation and
by ≤R the rigorous simulation. Among many properties of these simulation
relations, we are particularly interested in universality: the capacity of a single
turedo to simulate a whole set of turedos. Given a dimension d and a radius r, we
denote by U≤

d (r) the set of turedos T ∈ TURd such that for any T ′ ∈ TURd(r)
it holds T ′ ≤ T . We denote by U≤

d the set of turedos T ∈ TURd such that
for any T ′ ∈ TURd it holds T ′ ≤ T . We use similar notations for simulation
relations ≤R and ≤F L.

3 Separation Results

3.1 No Fuzz, no Fun

The fuzzless condition gives much importance to larger radii, simply because
a turedo’s head surrounded by blocks coding ⊥ cannot read information far
away without moving inside these blocks and thus creating fuzz. The following
theorem exploits this obvious limitation to show two immediate consequences:
first, there is a radius hierarchy (new behaviors appear at radius r+1 that cannot
be simulated at radius r) and thus no general fuzzless universality; second,
universality is impossible even at radius 2: any turedo (whatever its radius)
will fail to simulate some radius-2 turedo. The dimension plays no role in these
results.

Theorem 1. For any d ≥ 2 and r ≥ 1, we have the following:

• there is Tr+1 ∈ TURd(r + 1) such that for all Tr ∈ TURd(r),
Tr+1 6≤F L Tr ; in particular, U≤F L

d = ∅.

• for any Tr ∈ TURd(r) there exists T2 ∈ TURd(2) such that T2 6≤F L Tr ;

in particular, U≤F L

d (r) = ∅ for any r ≥ 2.

Proof. We prove the result for d = 2, the argument can be generalized to higher
dimension straightforwardly (by completing 2D configurations by ⊥ everywhere
else).

For the first item, simply consider a turedo Tr+1 ∈ TUR2(r + 1) that has
the following behavior when the head in position (0, 0) has only ⊥ letters at
the north and at the south of its current position: read the letters at positions
(r + 1, 0) and (0, r + 1) and move to the north is they are equal and to the
south otherwise. Consider any turedo Tr ∈ TUR2(r) and any block size b ∈ N

2
+.

To simulate Tr+1 fuzzlessly, Tr has to move either to block b⊗ (0, 1) or block
b⊗ (0,−1) depending on blocks b⊗ (r + 1, 0) and b⊗ (0, r + 1) without entering
into any other neighboring block: this is impossible, because with radius r turedo
Tr can’t have any information about either b ⊗ (r + 1, 0) or b⊗ (0, r + 1) before
making a decisive move (by entering inside either b⊗ (0, 1) or b⊗ (0,−1)) so it
will fail to correctly simulate the orbit of at least one seed.

The second item can be proved similarly, using a pumping trick on the
alphabet: for any fixed Tr ∈ TUR2(r) with alphabet of cardinal k, choose
T2 ∈ TUR2(2) with an alphabet strictly larger than kr2

so that at least on
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Figure 3: Example of a copy-and-move operation (on the left) and its rigorous
simulation by a turedo of radius 1 with 3× 3 block size (on the right). The color
convention is as follows: in red the letters present in the seed, in dark yellow
the initial position of the head, and in light yellow, the positions visited by the
head during the orbit. The only position on the south side of the middle block
that can depend on a is the lower right corner, marked with a X .

dimension of the block size b of any potential simulation of T2 by Tr has to
be at least r + 1 (otherwise there is simply no way to code all letters of T2 on
different blocks of size b). Then, choosing T2 to have the same behavior as Tr+1

above, we get the same contradiction: there is a direction of b, let’s say the
vertical one, which overwhelms the radius r of Tr so Tr won’t be able to read
the content of block b⊗ (0, 2) before making a decisive move and will therefore
fail to correctly simulate at least one orbit.

3.2 Dimension 2 and Radius 1: the Jordan Curve Burden

A turedo’s head in dimension 2 always moves drawing a 4-connected path. When
the turedo has radius 1, it has no way to read information across such a path
(while it could with a larger radius). Therefore head movements for turedos of
radius 1 turns into potential information barriers. The precise way in which this
simple observation affects the simulation power of such turedos depends on the
type of simulation considered.

Let us first consider rigorous simulations. Any turedo T (whatever its
radius) can obviously do the following elementary copy-and-move operation
(see Figure 3):

• move to the right to some position z;

• read the letter a present at position z + (1, 0);

• then move to position z + (0, 1) and leave behind letter a at position z.

In particular, if the head continues its way and later arrives at position z − (0, 1)
from the south, it can read the information a copied at position z.

However, if we suppose that some T1 ∈ TUR2(1) simulates T under rigorous
simulations with block size b, the movement of its head inside block b⊗ z to
simulate the above copy-and-move step must be the following (see Figure 3):

• coming from the left side of the block, it draws some path inside it until
it reaches the right border (if not it cannot read any information from the
adjacent block to the right);

• then it must move north, otherwise it would be trapped in the south part
of the blocks by the 4-connected path drawn so far that connects the left
and right sides of the block;
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a2

. . .
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Figure 4: Behavior of turedo T ′ on the seed σ(~a, 2, a). The red and blue colors
indicate letters present in the seed. The dark yellow color indicates the initial
position of the head and light yellow cells represent the path of the head until
the last step of the orbit. The orange cell correspond to the position of the head
before moving left or right according to the result of the test .

• it must finally escape through the north side.

This head movement is such that at most 1 letter of T1 is written on the south
side of block b ⊗ z after having had the opportunity to read some information
from the adjacent block that encodes letter a. In particular, if T1 has smaller
alphabet than T this is not enough to completely encode a on the south side
of block b⊗ z. So, this is a limitation that has to be dealt with if later in the
simulation the head arrives from the south and has to read from the south side
of block b⊗ z. A single copy-and-move is not enough to get a contradiction
because the simulation of T1 could be organized so as to transport the complete
information about a along the way and have it on hands already when arriving
at the south of block b⊗ z. However, by repeating such copy-and-move steps,
one can saturate the simulator and show the following theorem that states that
there is no universal turedo of radius 1 among turedos of radius 1 for rigorous
simulations.

Theorem 2. For any T ∈ TUR2(1) there is T ′ ∈ TUR2(1) such that T ′ 6≤R T .

In particular U≤R

2 (1) ∩TUR2(1) = ∅.

Proof. Let Q be the state set of T , A be the alphabet of T and consider any
alphabet A+ with m = |A| < |A+| = m+. Then it is straightforward to
construct a turedo T ′ ∈ TUR2(1) of alphabet A′ = A+ ∪ {↓,←, ↑} that has
the following behavior (see Figure 4):

• for any n ∈ N, any ~a = (a0, . . . , an) ∈ An+1
+ , a′ ∈ A+ and 0 ≤ i ≤ n,

consider the finite seed σ(~a, i, a′) with head in position (0, 0), aj in
position (3j + 2, 0) for 0 ≤ j ≤ n, a′ in position (3i + 1,−3) and ↓ in
positions (3(n + 1) + 2, 0) and (3(n + 1) + 2,−1), ← in position
(3(n + 1) + 2,−2) and finally ↑ at position (3i,−2);

• from such a seed, T ′ starts a sequence of n + 1 copy-and-move steps that
results in having a copy of aj at position (3j + 1, 0) for 0 ≤ j ≤ n; the end
of this phase occurs at time step 5(n + 1) and the head reaches position
(3(n + 1), 0);

• then T ′ reaches the first ↓ and follows the move indications of arrows
(down, down, left), until it reaches the up arrow, and moves from position
(3i + 1,−2) to (3i + 1,−1);
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• finally, at position (3i + 1,−1) it moves right if ai = a′ and left otherwise
(it can do so because it has copied the value of a′ when leaving position
(3i + 1,−2)).

Let’s call tn,i the time step at which occurs this final left or right move (tn,i

only depends on i and n): at time tn,i, the head of T ′ must be either at
position (3i,−1) or (3i + 2,−1). Thus T ′ implements on seed σ(~a, i, a′) the
test of whether ai = a′. We are going to show that T cannot simulate T ′ under
rigorous simulations. Suppose by contradiction that T ′ ≤R T with block size b
and time scaling factor k. Given n ∈ N and 0 ≤ i ≤ n, denote by An ⊆ Z

2 the
set of positions that are on the right side of block b⊗ (3(n + 1), 0) (the block
corresponding to the position reached by T ′ at the end of the copy-and-move
sequence as detailed above). Denote by Bi,n ⊆ Z

2 the set of positions that are
on the south side of block b⊗ (3i + 1, 0). Finally, denote by Ci,n ⊆ Z

2 the set
of positions made of the union of blocks (3i + 1,−3), (3i,−2),
(3(n + 1) + 2, 0), (3(n + 1) + 2,−1), (3(n + 1) + 2,−2) (i.e. those
corresponding to position a′ or an arrow {↓,←, ↑} in the seed σ(~a, i, a′)).
Consider now n ∈ N, ~a,~c ∈ An+1

+ a′ ∈ A+ and 0 ≤ i ≤ n, and take any two
global states g1 and g2 of T that correctly simulate the orbits of T ′ on seed
σ(~a, i, a′) and σ(~c, i, a′) respectively and that are identical on Ci,n Considering
time step t0(n) = 5k(n + 1) corresponding to the end of the copy-and-move
sequence, if global states T t0(n)(g1) and T t0(n)(g2) are identical on domains An

and Bi,n and have the same head state, then both orbits must make the same
final decision to move to the left block or the right block at the final time step
ktn,i, precisely: the head in global state T ktn,i(g1) is in the same block as the
head in global state T ktn,i(g2) (and it must be either b⊗ (3i,−1) or
b⊗ (3i + 2,−1)). Indeed, by the property of rigorous simulations and the
behavior of T ′, the only positions with content written before t0(n) that the
head of T can possibly read between time step t0(n) and ktn,i are positions in
An ∪Bi,n ∪Ci,n, so the orbit starting from step t0(n) is completely
determined by the content of the configuration in that domain and the
internal state of T at time t0(n).

Claim 1. There must exist n ∈ N, 0 ≤ i ≤ n, ~a ∈ An+1
+ , a′ ∈ A+ and ~c ∈ An+1

+

with aj = cj for all j < i and ai 6= ci, and two global states g1 and g2 of T that
correctly simulate seeds σ(~a, i, a′) and σ(~c, i, a′) respectively, and also such that
T t0(n)(g1) and T t0(n)(g2) have same head state and are identical on domain
An ∪Bi,n ∪Ci,n.

Proof of the claim. In this proof, we fix for each a ∈ A+ a unique block of ARb

that encodes it, and for any seed of T ′ we only consider a unique global state
of T that simulates it. First, there are only a bounded number (bound in n) of
possible content of a configuration on domain An and state of T , so for each n
there must exist u ∈ AAn and q ∈ Q, a set Xn ⊆ An

+ of size Ω(mn
+) such that

for each 0 ≤ i ≤ n and each ~a ∈ Xn, the corresponding global state g of T
simulating T ′ on seed σ(~a, i, n), is such that T t0(n)(g) is equal to u on domain
An and with head state q.

Second, we claim that for large enough n there must be some i and a prefix
a0, . . . , ai−1 ∈ Ai

+ such that there are at least m + 1 choices of ai ∈ A+ such
that a0, . . . , ai can be completed into an element ~a ∈ Xn. Indeed, otherwise we
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would have |X | ≤ mn which would contradict the fact that |X | ∈ Ω(mn
+) for

large enough n since m < m+.
Now consider the set of global states that simulates the seeds σ(~a, i, a′) where

~a ∈ Xn are the m + 1 completed vectors from the common prefix a0, . . . , ai−1,
and a′ ∈ A+. They are identical on the blocks corresponding to the common
prefix a0, . . . , ai−1 of the seed they simulate. As already said, these global
states at step t0(n) are also identical on domain An and have same head state.
Moreover, on domain Bi,n and still at step t0(n), they agree because of the
common prefix a0, . . . , ai−1, except possibly on the lower-right corner where
they can take at most m different values (see Figure 3 and discussion at the
beginning of this section). We deduce that among the m + 1 choices for ai, at
least 2 must correspond to global states that completely agree on Bi,n. Denote
by a′ and c′ these two choices and consider ~a and ~c to be the vectors completing
the prefixes a0, . . . , ai−1, a′ and a0, . . . , ai−1, c′ respectively. The claim follows
by choosing seeds σ(~a, i, a′) and σ(~c, i, a′).

The theorem follows from the claim by contradiction: as shown above, global
states g1 and g2 force the same behavior of T starting from time t0(n), but at
the same time their orbits should not end up in the same block because they
simulate seeds of T ′ that do not have the same answer to the final equality
test.

We will now establish a strong separation between TUR2(1) and TUR2(2)
even under liberal simulations. We first establish a lemma expressing bounds on
information leakage between too regions separated by a 4-connected path. It is
formulated using Kolmogorov complexity. Recall that the (plain) Kolmogorov
complexity of a string u ∈ {0, 1}∗ is the length of the shortest program that
outputs u, more precisely the length of the shortest v ∈ {0, 1}∗ such that a
suitable fixed universal Turing machine outputs u on input v (see [15]). For
any X ⊆ Z

2 and any (partial) configuration c ∈ QX of finite domain, we denote
by K(c) its Kolmogorov complexity, which is the Kolmogorov complexity of the
finite binary string u that encodes c as a list of pairs (z, c(z)) such that c(z) 6= ⊥
given in lexicographical order.

Lemma 1. Let C0 ∈ N be some constant and T ∈ TUR2(1). Then there is
another constant C ∈ N with the following property. Consider any 4-connected
path ρ of Z

2 that divides Z
2 in 2 or more connected components, and any finite

global state s ∈ GT with head at position (0, 0), and whose domain D(s) lies
entirely in one of the connected components defined by ρ, denoted A0. Suppose
moreover that for some n ∈ N, the orbit from global state s to global state
(c, z, q) = F n

T (s) is such that the head visits path ρ at most C0 times. Then,
the restriction of c to the complement of A0 has ’small’ kolmogorov complexity:
K(c|Z2\A0

) ≤ C log(n).

Proof. We show that c|Z2\A0
can be computed from the following description

D:

• the finite list of positions on ρ that are visited by the head during the n
first steps of the run starting from s;

• the list of events corresponding to each such position z given as a triple:
time at which the head leaves position z, letter written at that step, and
move made by the head at that step.

11



This description is of size O(log(n)) because both positions z and time steps
occurring in the above lists are bounded by n by definition (recall that the head
is initially at (0, 0)).

Because T is of radius 1 and ρ is 4-connected, each time the head of the
turedo is neither in A0 nor on ρ, the local transition does not depend on the
current configuration on domain A0. A Turing machine can therefore compute
c|Z2\A0

from this description by maintaining the following partial information
step by step:

• the current configuration restricted to domain Z
2 \A0,

• the partial information on the head position z: the exact position if z 6∈ A0

or the state “undefined” else.

This information is straightforward at the initial step since D(s) ⊆ A0 so the
head is in A0 and the configuration is ⊥ everywhere outside A0. The partial
information at step n is enough to give c|Z2\A0

and it is updated from one step
i to the next i+ as follows:

• if the partial information on the head at step i is undefined and time step
i + 2 does not appear in the lists of D, then don’t change the partial
information (the head is in A0 and won’t move to ρ at step i + 1);

• if the head information is undefined but step i + 2 appears in D, then
updates the head position to the position on ρ that corresponds to the
item stamped by time steps i + 2 in D;

• if the head position is on ρ then some item in the list of D must be stamped
by time step i + 1 and gives all the information to update both the head
position and the configuration on ρ;

• finally if the head position is neither in A0 nor on ρ, then the knowledge of
the current configuration restricted to domain Z

2 \A0 is enough to update
the partial information (position and partial configuration).

Note that if the seed s has ’large’ kolmogorov complexity, for instance Ω(n),
then n steps are far from enough to transmit all the information about s to
another connected component under the hypothesis of the above lemma. The
power of this lemma lies in the fact that constant C does not depend on the
path ρ nor on the seed s. In particular, one can choose ρ depending on s to
apply the lemma. Turedos of radius 2 can overcome the limitation of Lemma 1
because they can transmit information over a path without writing on it. It
turns out that this is enough to separate TUR2(2) from TUR2(1) even under
liberal simulations.

Theorem 3. There is T2 ∈ TUR2(2) such that for any T1 ∈ TUR2(1):
T2 6≤ T1.

Proof. Let’s consider the turedo T2 ∈ TUR2(2) that behaves as follows on a
seed made of a vertical word u of length n (see Figure 5):

12



u u u u u u u u u u u u u u u u u u u u u u u u un

n n

zS

zN

Figure 5: Orbit of turedo T2 starting from a seed u of length n (in red) with the
head initially in the position shown in dark yellow. The last part of the orbit is
shown in orange.

• it copies u to the right by making zigzags and does this n times (it
implements a unary counter initialized to the length of u while making
copies);

• it then moves one cell to the right without making copies (and thus leaving
an empty column above);

• it then do again n copies of u by zigzag while moving to the right (note
that the first copy can be done because T has radius 2);

• at the end of the last copy it goes around the last bloc of n copies by the
north side until it encounters the empty column and then goes down into
it until it is blocked.

Denote by zN and zS the northmost and southmost positions of the last sequence
of n south moves of the head (see Figure 5), and by tN and tS the respective
time steps at which the head is at position zN and zS . Note that tS is O(n2)
and it is the final step of the orbit considered here.

Now suppose by contradiction that there is some T1 ∈ TUR2(1) such that
T2 ≤ T1. Denote by k the time rescaling factor and b the block size involved in
this simulation. Let’s suppose that n is large enough (to be precised later) and
that u has large kolmogorov complexity, let’s say Ω(n). Consider a global initial
state s1 for T1 from which starts a correct simulation of the run of T2. When the
simulation reaches step ktN , the head of T1 is inside bloc b⊗ zN and there must
be a finite 4-connected path p1, . . . , pm of empty positions from this position to
some position inside bloc b⊗ zS because T2 has to simulate the state changes
made by T1 between steps tN and tS along the vertical segment of positions
from zN to zS. Let ρ denote the infinite path that extends p1, . . . , pm infinitely
to the north from p1 and infinitely to the south from pm.

We claim that there is a bound C0 depending only on T1, b and k, but not
on n and neither on u, such that the run of T1 starting from global state s1 until
time step ktN crosses at most C0 times path ρ. First, by choice of p1, · · · , pm,
such crossings can only happen at positions of ρ that are either at the north of
p1 or at the south of pm. The simulation is liberal, so the head of T1 has some
freedom of move but it must always remain at a bounded distance from the
block corresponding to the simulated head position of T2 during intermediate
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steps, precisely: if the head of T2 is at position z at time step t, then the head of
T1 must be inside block b⊗ z at time step kt and therefore at distance at most k
of block b ⊗ z during time steps between kt and k(t + 1). A position is therefore
potentially reachable by T1 before time step ktN only if it is at distance at most
k from a block b⊗ z such that position z in the run of T2 is visited before time
step tN . The key observation is that in the run of T2, there are only finitely
many positions that are visited before time tN and at distance less than k from
either zN or any position at the north of it, or from zS or any position at the
south of it. From this we deduce that ρ \ {p1, . . . , pm} is crossed a bounded
number of times C0 by the head of T1 before time step ktN . The claim that ρ
is crossed at most C0 times before time step ktN follows since {p1, . . . , pm} are
by definition empty before this time step.

Finally, note that path p1, . . . , pm cannot move away more than distance
k from blocks b⊗ zN to b⊗ zS , so if n is large enough, the domain of s2 is
guaranteed to lie entirely inside the left connected component A0 of Z

2 \ ρ.
Similarly, the blocks containing the encoding of the rightmost copy of u must
lie entirely inside Z

2 \A0. In particular, the configuration c of T1 reached at step
ktN must be such that K(c|Z2\A0

) ∈ Ω(n) by choice of u. However, Lemma 1
applied at step ktN to T1 and ρ gives: K(c|Z2\A0

) ≤ C log(ktS) ∈ O(log(n))
which is a contradiction for large enough n.

4 Universality Results

4.1 Radius 3 in 2D under Rigorous Simulations: the Heat

Sink Trick

Theorem 2 shows that no turedo of radius 1 can be universal for TUR2(1)
under rigorous simulations. We show that this is however possible with radius
3. In order to achieve universality, four key behaviours must be performed by
our turedo at each simulation step. It needs to read all necessary information
of neighbouring blocks, compute the next simulation step, write the computed
letter and exit the current block (entering the correct next one). Figure 6
illustrate those behaviours. To rigorously simulate a turedo of radius 1, it
seems natural to perform the 3 behaviours interacting with neighbours on the
edge of the block, each on its layer, motivating a radius 3. But as we are dealing
with universality, the so called necessary information is not only the letters of
neighbouring blocks but also the transition table defining the simulated turedo.
Carrying this information has a direct impact on the width of the reading and
writing layer, we propose an intertwined zigzag to merge the space occupied by
those two, keeping the radius 3 and taking full advantage of it.

Theorem 4. U≤R

2 (1) ∩TUR2(3) 6= ∅.

Proof. We show that there is T3 ∈ TUR2(3) such that for all T1 ∈ TUR2(1):
T1 ≤R T3. Denote T3 = (A3, Q3, δ3). Let’s take T1 ∈ TUR2(1) some 2D turedo,
T1 = (A1, Q1, δ1), a configuration c1 ∈ AZ

2

1 and describe how T3 simulates it
with square blocks R(n,n) and n = 0 mod 4. We first focus on the organisation
of transmittable information in a given block B, i.e. the transition table δ1 and
the letter a1 ∈ A1 in this position in c1. To be accessible to the neighbouring
blocks, this information is present on the outside edges of B, repeated on each
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transition tablebuffer a1 ∈ A1 buffertransition table

b1

∈

A1

Figure 6: Behaviour, in one block, of the presented 2D radius 3 turedo T3 ∈
U≤R

2 (1). The light blue rectangles represent the information to read of the
neighbouring cells. In this example, a letter of A1 is encoded by 3 letters of
A3. We can see the 2 padding cells, the transition table (here of arbitrary small
size for readability of the figure), the buffer of size 12 (to contain 4 letters of
A1 encoded), the padding, the letter of the block encoded by 3 letters of A3

repeated 4 times each and again the the padding, the buffer, the table and the
last 2 padding cells. The arrows represent the path followed by the turedo,
entering the block in the bottom left of the figure. The blue part reads the
content of the adjacent blocks, the grey one allows for turning, the orange one
is where the computing takes place, the red one fetchs the computed letters (and
writes them on the faces that will not be visited again before exiting the block)
and the green one finishes to write the letters and exits to the next block.

edge such that B(0, i) = B(i, n − 1) = B(n − 1, n − 1 − i) = B(n − 1 − i, 0).
Considering a partial onto letter decoding map γ : Am

3 → A1 with m ∈ N,
the organisation on one edge of B is the following. The first two positions
B(0, 0) and B(0, 1) are empty or irrelevant, then the next 3m|A1| positions
from B(0, 2) to B(0, 3m|A1| + 1) are the encoding of the transition table with
γ (which we assume to be a multiple of 4 without loss of generality). Positions
B(0, 3m|A1|+ 2) to B(0, m(3|A1|+ 4) + 1) are reserved for a buffer in which 4
letters will be encoded (the ones contained in the 4 neighbouring blocks). Then
m(3|A1|+ 4) + 2 positions are empty or irrelevant, from B(0, m(3|A1|+ 4) + 2)
to B(0, 2m(3|A1| + 4) + 3), to allow the block to be spacious enough for the
computation. Following that is written u ∈ A4m

3 such that u(4i + k) = γ(a1)(i)
for all 0 ≤ k < 4 (the redundancy is present to ensure proper reading later).
Then again, from B(0, 2m(3|A1| + 6) + 4) to B(0, 3m(3|A1| + 4) + 2m + 5)
is some irrelevant padding followed by the 4m sized buffer, the 3m|A1| sized
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transition table and 2 irrelevant position, finishing at B(0, m(12|A1|+ 20) + 7).
An illustration of this distribution is represented in figure 6.

Let’s now describe the behaviour of T3 in a block to achieve universality.
As all necessary information to compute is contained in a m(3|A1| + 4) letters
long word on A3, we base our construction on two types zigzags of this size :
the square and the heat sink. A square gadget of even size k is a back and
forth k/2 times of a k sized line during which the content of the original line is
replicated on each four sides of the created square. This copy is possible thanks
to the radius of T3 being greater than 2. Its main use is to keep and spread
information while cornering. A heat sink gadget is a zigzag with each back and
forth being spaced by 2. The radius 3 of T3 allows the heat sink to still copy
information from the previous zag during a zig. Its purpose is to acquire and
transmit data laterally while being intertwined with another heat sink. Both
gadget and the simulation of a block are illustrated in figure 6 to illustrate the
following explanation.

T3 enters a block B at position B(0, 2) (or B(2, n−1), B(n, n−3), B(n−3, 0)
up to rotation), it first continues forward by 2 (until reaching B(2, 2)) then turns
90◦ counter-clockwise and starts a square gadget, initialised by the copy of the
transition table and empty buffer available at distance 3. Those squares will be
performed at each corners of the block with in between a heat sink which will
both transmit the transition table already collected earlier and approach the
outside edge of the neighbouring block at distance 3, reading its information
and filling the buffer. (The heat sink has access to only half of this information
but it has been taken care of by the redundancy detailed earlier). Once the
information of all four neighbouring blocks collected, right after the last letter
has been read, T3 turns toward the center of the block, using the space left by
the padding, performing one more square gadget. With a big enough transition
table and a well chosen encoding, computing the next transition of T1 can be
performed in a square the size of the buffer and transition table encoded. As
the only way to leave the center of the block is now a path of width 1, T3

must transmit its computation before rejoining the edge of the block. It does
so with a zigzag that follows along the the inside of the reading heat sink.
This information is then retrieved by the writing process, with a heat sink
intertwined with the reading one. The writing process writes on the edge of the
block on the faces before the exit one and at distance 1 after. When following a
square gadget, it copies the transition table and writes an empty buffer (which
is possible because the square not only corners but copies information on all
its sides), when following a reading gadget, it creates a heat sink gadget of
its own, fetching the computed information and writing it on the face of the
block. Lastly, once all the writing has been done, T3 finishes filling its block by
going back to the exit edge, following the writing path which had been shifted
to the inside by 1 to allow for this, copying everything from the reading path
to effectively write it on the edge making it attainable and finally T3 exits the
block at distance 2 from the corner.

4.2 The Power of Third Dimension and Liberal

Simulations

Having a third dimension available allows for a lot more freedom to simulate a
turedo. Let us first focus on TUR3(1) and rigorous simulations. In dimension
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Figure 7: One block of the presented 3D radius 1 turedo T ∈ U≤R

3 (1). At
this stage T comes from the block above, the front and left blocks are also non-
empty and the others are empty. T will exit the block by entering the next
block at its right. On the right is represented the disposition of information.
The light blue cubes are information to read in adjacent blocks and the red ones
are information written by T in the considered block. In this example, a letter
of A′ is encoded by 2 letters of A, the transition table is of arbitrary small size
for readability and they are written in a cross on the faces of blocks. On the left
is the behaviour of T in the same considered block, in blue is the reading phase
(building also a skeleton), in orange the computation phase, in red the writing
phase and in green the exit phase.

2 we had to use the heat sink trick to gather all required information and we
used a radius of 3 to accommodate for a reading, a writing and an exiting layer.
The third dimension allows us to shrink the radius to 1 thanks to its crossing
capabilities. The trick to achieve this is to have a marker to indicate if the
neighbouring block is empty or not, to prevent trying to read in spaces where
the turedo will have to write later on.

Theorem 5. U≤R

3 (1) ∩TUR3(1) 6= ∅.

Proof. We show that there is T ∈ TUR3(1), T = (A, Q, δ), such that for all
T ′ ∈ TUR3(1): T ′ ≤R T . Denote T ′ = (A′, Q′, δ′). For a block B, the
transmittable information is organised on the faces as follow. In the center of
each faces, a marker is written, indicating that information is present. On the
face of the block facing the next block (the exit face), added to the presence
marker, is an empty cross of width 1 with only at its end a stop marker
indicating the end the block. Surrounding it is a cross of width 3 in which is
written the transition table and a buffer big enough to accommodate for the
encoding of 6 letters of A′ and one state from Q′ (with the size of the
transition table and the buffer plus 1 left before writing). On the face of the
block facing other empty blocks, the same crossing pattern is used to only
write the presence marker and the computed letter at distance 2 of the center
of the face. See figure 7 for this organisation on an example.

T has the following behaviour in a block, also illustrated in figure 7. First,
T performs a reading phase : entering a block by the middle of a face, it travels
straight to the edge of the face until reading the stop marker. We assume
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T entering by the middle of the face as it truly enters at distance one of the
middle but this shift of one position in one direction can be remembered and
corrected immediately after entering. This allows T to turn and go back toward
the center, reading the transition table and the buffer. All this information
gathered, T follows a fixed path composed of shrinking zigzags, staying in the
planes formed by the 3D cross centered in the block (hence the peculiar way
we place information, to reserve space for this path). Doing so, it reaches the
center of each face while carrying the transition table and filling the transition
buffer when a presence marker is read. As the order in which the faces are
visited is fixed, T can store in its head state which neighbouring blocks are
empty. This reading phase has the added benefit to have created a skeleton
in the block, enabling easy travel for the following phases. Next T enters the
computing phase consisting of a square zigzag, using the transition table and
the now filled buffer carried previously and so present in all the branches of
the centered 3D cross. Once the next step of the simulation computed, T can
carry the letter to encode following the skeleton and write it on all previously
identified faces except the exit one. The last phase, the exit one, consists in
carrying the encoded letter to the exit face, retrieve on the centered 3D cross
the transition table and the buffer (reset with the new state and letter of the
computed transition) and writing all this information as previously presented
thanks to square and triangular zigzags. Finally T exits to the next block, at
distance one of the center of the face (to get around the reading skeleton).

The combination of 3D and liberal simulations allows to shrink the radius of
any turedo to 1. In this construction, the computation of simulated transitions
is done internally in the simulating turedo’s head. The challenging part however
is in acquiring the states of distant neighbors. Thankfully the liberal nature of
the simulation allows travel through empty blocks and the 3D enables crossing
paths without intersection. Still, a rigorous organisation is needed in order to
prevent overlapping.

Theorem 6. For any radius r and any Tr ∈ TUR3(r) there is T1 ∈ TUR3(1)
such that Tr ≤ T1.

Proof. Let r ∈ N+ and Tr ∈ TUR3(r), Tr = (Ar, Qr, δr). We build T1 =
(A1, Q1, δ1), with Q1 big enough to encode in one state a position z ∈ Z

3

modulo 2r of each dimension and the |B3(r)| neighbouring letters. This allows
for an instant computation of δr once all needed information is gathered. Let b
be the block size, the critical aspect of this simulation is for T1 to visit all blocks
b⊗ z′ with z′ ∈ z + B3(r) for each simulation step. Therefore we have to assign
non intersecting exploration paths for all positions at distance less than 2r. To
achieve this, we define C = {0, ..., 8r3 − 1} a set of colors and we assign the color
(z1 mod 2r) + 2r(z2 mod 2r) + 4r2(z3 mod 2r) to the block b⊗ (z1, z2, z3). By
taking b = 8r3l + 7 with l ∈ N+, in each block, for each color c ∈ C, we can
reserve tubes of width l following the edges of a centered cube of edges of length
lc + 1 and the direct extension of said edges to the face of the block (see figure
8b). This creates reserved spaces for each color consisting of centered nested
cubes. Those cubes fill a space of 8r3l, we add 1 to have a proper center and 6
to have some padding near the faces of the blocks (we will discuss its necessity
later). Note that l actually doesn’t need to be large, l = 10 is enough. On each
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face of the block b⊗ z, the letter a ∈ Ar ⊂ A1 is repeated in a cross pattern
(see 8a).

(a) The letter a ∈ Ar ⊂ A1 is
repeated on all faces in a cross
pattern.

(b) Reserved space for the
exploration path of color c ∈

C.

(c) One face of a
block.

Figure 8: Representation of the reserved space for color c in block b⊗ z. In
red are the tubes of width l on the edges of the centered cube of edges of length
lc + 1. In green are the extensions of said tubes, allowing to reach the reserved
space for color c in the neighbouring blocks, completing the exploration path
of color c (8b). Those extensions also allow the exploration path to access the
blue cross containing the letter of position z in the configuration (to either read
or write)(8c).

FTr
(cr, zr, qr) is simulated as follow. Assuming T1 knows the color c ∈ C

of block b⊗ zr (which is possible as its position in all directions modulo 2r is
stored in its head state), we can define a reference starting position to explore the
neighbouring blocks by ordering the directions of B3(1). Moreover, this ordering
allows to decide a depth-first exploration of the blocks b⊗ z′ with z′ ∈ B3(r)
passing through each block at most seven times. Once the exploration done,
back in block b⊗ z, the head of T1 contains all necessary information to compute
δr and all that remains to do is to write the computed letter in a cross pattern
on the faces of the block. This is possible following a eulerian path, crossing
only on the center of the faces, hence the padding of 2 defined earlier. The 1
padding left is for T1 to align itself with its next color (which is possible since
it knows its current color and has computed to in which block to go next).

By combining Theorem 5 and Theorem 6, we get the existence of an
intrinsically universal 3D turedo for liberal simulations as expressed in the
following corollary.

Corollary 1. U≤
3 ∩TUR3 6= ∅.

5 Discussion

The problem tackled in this work depends on three parameters (radius,
dimension, simulation). Our results give a rather clear picture of the
simulation hierarchies in 3D, but we left several open question in the 2D case,
in particular: is there a turedo in TUR2(2) which is universal for TUR2(1)
under rigorous simulations? what if we allow liberal simulations? Actually
even Theorem 2 raises questions: the simulation impossibility makes a crucial
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use of non-connected seeds, does this impossibility remain if we just ask
simulation of orbits starting from connected seeds?

In this work we chose the square lattice in 2D (to simplify and as we also
consider the 3D case) whereas oritatami are mostly considered on the
hexagonal lattice. We don’t expect any significant difference on the simulation
hierarchy result by changing from square to hexagonal lattice on a given model
(either turedos or oritatami). However, it is not clear that the delay hierarchy
for oritatami behaves likes the radius hierarchy for turedos. In particular, we
don’t know if an analog of Theorem 4 holds for oritatami. The key difference
between a large radius turedo and a large delay oritatami is that the turedo
can gather information locally across obstacles, while the oritatami can only
probe information around that can be reached by a path of empty positions
(because it can only probe by trying to position a small strand of beads).

We end this paper by suggesting the following two directions in order to
better understand the gap between turedos and oritatami systems: what if we
restrict turedos to ’see’ only neighboring positions that can be reached through
a path of r empty positions? and what if we enrich oritatami systems by a more
general ’magnetic’ attraction law between beads where pairs of distant beads
can still contribute to the total amount of attraction that the free strand at the
end of the molecule is trying to maximize (let’s say by a quadratic decrease with
distance up to some radius)?
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