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PERTURBATION SERIES FOR JACOBI MATRICES
AND THE QUANTUM RABI MODEL

MIRNA CHARIF1 AND LECH ZIELINSKI2

Abstract. We investigate eigenvalue perturbations for a class of infinite tridiagonal matrices
which define unbounded self-adjoint operators with discrete spectrum. In particular we obtain
explicit estimates for the convergence radius of the perturbation series and error estimates for
the Quantum Rabi Model including the resonance case. We also give expressions for coefficients
near resonance in order to evaluate the quality of the rotating wave approximation due to
Jaynes and Cummings.

Keywords: Jacobi matrix, unbounded self-adjoint operators, quasi-degenerate eigenvalue
perturbation, perturbation series, Quantum Rabi Model, rotating wave approximation

1. General presentation

1.1. Introduction. The main motivation of this paper is the Quantum Rabi Model (QRM)
which is the simplest physical example of interactions between radiation and matter. We refer
to [20] for physical explanations (see also [3]) and to [25] for a list of recent research works
in relation with the QRM. It appears (see [22], [4]) that the QRM Hamiltonian is unitarily
equivalent to the direct sum Jω∆(g)⊕Jω−∆(g), where ∆, ω and g are real parameters (see Section
1.5) and Jωs (g) is the self-adjoint operator defined in `2 by the matrix

Jωs (g) =



− s
2

g
√

1 0 0 0 · · ·

g
√

1 ω + s
2

g
√

2 0 0 · · ·

0 g
√

2 2ω − s
2

g
√

3 0 · · ·

0 0 g
√

3 3ω + s
2

g
√

4 · · ·
...

...
...

...
...

. . .


(1.1)

The QRM has become a subject of numerous experimental works in the domain of the
Cavity Quantum Optics. In practice the value of the coupling constant g is small and it is
natural to investigate an eigenvalue by means of the Taylor series with respect to g. Let us
notice that all diagonal entries of the matrix (1.1) are distinct if s is not a multiple of ω. Thus
the most interesting phenomena appear when s is a multiple of ω. For simplicity, in this paper,
we consider the situation s = ω and our analysis will concern the following problems :
(i) to prove that the eigenvalue branches are analytic functions of g and to give an explicit
bound for the convergence radius,
(ii) to give explicit estimates of the error due to a cut-off of the Taylor’s series,
(iii) to give a method of computing the coefficients and to express corrections of low order.

The results concerning points (i) and (ii) are given in Theorem 1.3. Concerning the point (i),
we must control the spectrum with respect to g in order to avoid eigenvalue crossing. The result
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concerning the point (ii) is obtained in a standard way: the Cauchy’s integral formula (see
Section 2.3) gives the bounds on the coefficients and clearly the estimates become better when
the convergence radius is greater. Theorem 1.3 is preceded by Theorem 1.2 which describes
results on perturbations of a simple eigenvalue.

The expressions for coefficients are given in Theorem 1.4 for perturbations of a simple
eigenvalue and in Theorem 1.5 for perturbations of a double eigenvalue. The case of the matrix
(1.1) with s = ω has been intensively studied in physics literature because of the rotating wave
approximation introduced in the famous paper of Jaynes and Cummings [10]. The reason of
this popularity has been double: the Jaynes-Cummings model is explicitly solvable (see Section
1.5) and the experimental results had confirmed a high quality of this approximation. However
more recent experiments have allowed to enlarge the values of the coupling constant g and
have shown limits of this approximation.

Our interest in this problem comes from the paper [7], where the authors investigate the
quality of the Jaynes-Cummings approximation and propose the corrections for the eigenvalues
of (1.1). The authors of [7] evoke the difficulties to control an infinite matrix and propose to
look at a small block with a hope to obtain correct approximations. In this paper we propose
a simple method of reducing the initial problem to an analogical problem for a finite block
(see Section 6). In Section 7 we show how to compute the coefficients and in Section 1.5 we
comment on the Jaynes-Cummings approximation. Moreover in Section 5 we explain what is
the minimal size of the block in order to recover a given coefficient of the Taylor’s series. It
appears that the coefficients proposed in [7] are not correct because the block is too small.

The purpose of this paper is to study these questions for a more general class of self-adjoint
operators in `2 of the form J(g) = D + gB where D is diagonal and B is tridiagonal (see
Section 1.2). Thus our results can be also applied to other models, e.g. to the two-photon
version of the QRM (see [8]).

1.2. Definition of J(g). We denote by `2 the Hilbert space of square summable complex
valued sequences with the norm ||(xj)j∈N∗ || =

(∑∞
j=1 |xj |

2
)
1/2 and the scalar product 〈x, y〉 =∑∞

j=1 xjyj . The canonical basis of `2 is denoted {ei}i∈N∗ (i.e. ei = (δi,j)j∈N∗) and `2fin denotes
the subspace of finite linear combinations of vectors from {ei}i∈N∗ . We denote by σ(L) the
spectrum of a linear operator L.

Let (di)
∞
i=1, (bi)

∞
i=1, (b′i)

∞
i=1 be real valued sequences and g ∈ R. We denote by J(g) the

closure of the linear symmetric operator defined on `2fin by the matrix
d1 + gb′1 gb1 0 0 · · ·
gb1 d2 + gb′2 gb2 0 · · ·
0 gb2 d3 + gb′3 b3 · · ·
0 0 gb3 d4 + gb′4 · · ·
...

...
...

...
. . .

 (1.2)

i.e. J(g) = D + gB with D and B satisfying

Dei = diei, (1.3)

Bei = b′iei + biei+1 + bi−1ei−1, (1.4)

where by convention bi−1ei−1 = 0 if i = 1.
We make the following assumptions

(H1) there exists ρ0 > 0 such that 2ρ2
0 < lim inf

i→∞

d2
i

b2i + b2i−1

(H2) the sequence (b′i)
∞
i=1 is bounded

(H3) di −−−→
i→∞

∞.
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Lemma 1.1. If (H1)-(H3) hold, then the operator J(g) is self-adjoint, bounded from below
and has discrete spectrum for all g ∈ [−ρ0, ρ0].

Proof. See [5] or [9]. �

1.3. Convergence radius and error estimates. Further on (di)
∞
i=1, (bi)

∞
i=1, (b′i)

∞
i=1 are

real sequences satisfying (H1)-(H3) and J(g) is the corresponding self-adjoint operator defined
for g ∈ [−ρ0, ρ0]. Our first result concerns perturbations of a simple eigenvalue of D. For this
purpose we fix k ∈ N∗ and make the assumption

dk 6= di for i ∈ N∗ \ {k}. (1.5)

Since σ(J(g) − (d + gb)I) = σ(J(g)) − (d + gb), our analysis of J(g) can be reduced to an
analysis of J(g)− (d+ gb)I and in particular we can use d = dk, b = b′k. Thus without any
loss of generality we can assume dk = b′k = 0. Moreover we denote

βi := |bi−1|+ |bi|+ |b′i|. (1.6)

Theorem 1.2. We fix k ∈ N∗ and assume dk = b′k = 0. Let ρ > 0 be such that

ρ < inf
i6=k

|di|
βi + βk

, (1.7)

where βi are given by (1.6). We also assume that (H1)-(H3) hold and ρ ≤ ρ0.
(i) If −ρ<g<ρ then the interval [−βkρ, βkρ] contains exactly one eigenvalue of J(g),

[−βkρ, βkρ] ∩ σ(J(g)) = {λk(J(g))}. (1.8)

(ii) The eigenvalue λk(J(g)) is simple and g → λk(J(g)) is real analytic, i.e.

λk(J(g)) =

∞∑
ν=1

ck,νg
ν if − ρ<g<ρ. (1.9)

(iii) The coefficients in (1.9) satisfy the estimates |ck,ν | ≤ βkρ1−ν and one has∣∣∣λk(J(g))−
∑

1≤ν≤N

ck,νg
ν
∣∣∣ ≤ βk|g|N+1

(ρ− |g|)ρN−1
if − ρ<g<ρ. (1.10)

Proof. See Section 6. �

Our second result concerns perturbations of a double eigenvalue of D. For this purpose we
fix k ∈ N∗ and make the assumption

dk+1 = dk 6= dj for j ∈ N∗ \ {k, k + 1}. (1.11)

Without loss of generality we can replace J(g) by J(g)−(d+gb)I with d = dk, b = (b′k+b′k+1)/2
and further on we assume

dk+1 = dk = 0 and b′k+1 = −b′k. (1.12)

We introduce the quantities
µk :=

(
b2k + b′2k

)1/2, (1.13)

β ′k−1 := |bk−2|+ |b′k−1|, (1.14)

β ′k+2 := |bk+2|+ |b′k+2|, (1.15)

γk := 3 max{|bk−1|, |bk+1|}+ 2 max{µk, β ′k−1, β
′
k+2}, (1.16)

γ ′k := max
{ ∣∣∣ bk−1

dk−1

∣∣∣, ∣∣∣ bk+1

dk+2

∣∣∣ } (1.17)

and
β ′i := |bi−1|+ |bi|+ |b′i| if i /∈ [k − 1, k + 2] (1.18)
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Theorem 1.3. Assume that (H1)-(H3) hold and k ∈ N∗ is fixed. Assume moreover that
(1.11)-(1.12) hold and 0 < ρ ≤ ρ0 satisfies the conditions

ρ ≤ inf
i/∈{k,k+1}

|di|
2(β ′i + µk)

, (1.19)

4ρµk ≤ inf
i/∈{k,k+1}

|di|, (1.20)

ρ γkγ
′
k e2ργ′k < µk, (1.21)

where µk, γk, γ ′k, β
′
i are given by (1.13)-(1.18).

(i) If −ρ<g<ρ and g 6= 0, then

[−2µkρ, 2µkρ] ∩ σ(J(g)) = {λk(J(g)), λk+1(J(g))}, (1.22)

where the eigenvalues λk(J(g)), λk+1(J(g)) are simple and satisfy{
λk(J(g)) < 0 < λk+1(J(g)) if g > 0,

λk+1(J(g)) < 0 < λk(J(g)) if g < 0
(1.23)

(ii) If j = 0, 1 and µk+1 := −µk, then one has

λk+j(J(g)) = −µk+jg +

∞∑
ν=2

ck+j,νg
ν if − ρ<g<ρ. (1.24)

(iii) The coefficients in (1.24) satisfy the estimates |ck+j,ν | ≤ µkρ1−ν for j = 0, 1 and∣∣∣λk+j(J(g)) + µk+jg −
∑

2≤ν≤N

ck+j,νg
ν
∣∣∣ ≤ µk|g|N+1

(ρ− |g|)ρN−1
if − ρ < g < ρ. (1.25)

Proof. See Section 6. �

1.4. Coefficients of the perturbation series.

Theorem 1.4. Let J(g) be as in Theorem 1.2.
(i) If b′j = 0 holds for all j ∈ N∗, then ck,ν = 0 when ν is odd and (1.9) holds with

ck,2 = − b2k
dk+1

−
b2k−1

dk−1
(1.26)

ck,4 =
b4k
d3
k+1

+
b4k−1

d3
k−1

+
b2kb

2
k−1

d2
k−1dk+1

+
b2kb

2
k−1

d2
k+1dk−1

−
b2kb

2
k+1

d2
k+1dk+2

−
b2k−1b

2
k−2

d2
k−1dk−2

. (1.27)

(ii) In the general case one has

λk(J(g)) = c2,k(g) g2 + c4,k(g) g4 +O(g6), (1.28)

where c2,k(g) and c4,k(g) are given by using di + gb′i instead of di in (1.26)-(1.27).

Proof. The assertions of Theorem 1.4 can be deduced from general formulas given e.g. in
Reed-Simon [16]. However we give an independent proof in Section 7.3. �

Next we assume that J(g) is as in Theorem 1.3. We denote

d0
i (g) := di + gb′i for i ∈ N∗, (1.29)

b1k(g) := b′k + g
b2k−1

d0
k(g)− d0

k−1(g)
, (1.30)

b1k+1(g) := b′k+1 + g
b2k+1

d0
k+1(g)− d0

k+2(g)
, (1.31)

b̂1k(g) := bk

(
1−

g2b2k−1

2(d0
k(g)− d0

k−1(g))2
−

g2b2k+1

2(d0
k+1(g)− d0

k+2(g))2

)
(1.32)
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and introduce the matrix

B1
k(g) :=

(
b1k(g) b̂1k(g)

b̂1k(g) b1k+1(g)

)
. (1.33)

Theorem 1.5. Let J(g) be as in Theorem 1.3, µk =
(
b2k + b′2k

)
1/2 and µk+1 := −µk.

(i) Let B1
k(g) be given by (1.33) and for j = 0, 1, let λ1

k+j(g) denote the eigenvalue of B1
k(g)

satisfying λ1
k+j(g) −−−→

g→0
−µk+j. Then

λk+j(J(g)) = g λ1
k+j(g) +O(g4). (1.34)

(ii) If b′k = 0, then the estimate (1.34) implies

λk+j(J(g)) = −µk+jg − g2
( b2k−1

2dk−1
+

b2k+1

2dk+2

)
+O(g3) (1.35)

(iii) At the end of Section 7.2 we give expressions for λk+j(J(g)), j = 0, 1, with the error O(g5).

Proof. See Section 7.2. �

1.5. Jaynes-Cummings approximation. The simplest interaction between a two-level atom
and a classical light field is described by the Rabi model [14], [15]. The quantized version can
be reduced to Jω∆(g)⊕ Jω−∆(g), where ∆ is the separation energy between two atomic levels
and ω is the frequency of the quantized one-mode electromagnetic field. In [10], Jaynes and
Cummings proposed to approximate Jωs (g) by

J̃ωs (g) =



− s
2

0 0 0 0 · · ·

0 ω + s
2

g
√

2 0 0 · · ·

0 g
√

2 2ω − s
2

0 0 · · ·

0 0 0 3ω + s
2

g
√

4 · · ·
0 0 0 g

√
4 4ω − s

2
· · ·

...
...

...
...

...
. . .


(1.36)

under the assumption that s ≈ ω and g is small. Since J̃ωs (g) is the direct sum

s

2
+ J̃ωs (g) = (0)⊕

⊕
m∈N∗

(
2mω + (s− ω) g

√
2m

g
√

2m 2mω

)
, (1.37)

we can find explicitly all its eigenvalues. Physical reasons for this approximation in semi-classical
and fully quantized version were usually given by means of the time dependent perturbation
theory (see [21], [1], [6]). The time independent approach was prosed in [7].

Following [7] let us consider the case ω = s. In this case, the eigenvalues of (1.36) are

(2m− 1
2
)ω ± g

√
2m, m = 0, 1, 2, . . .

On the other hand we can use Theorem 1.5 without the hypothesis dk = dk+1 = 0. The
corresponding shift of the diagonal entries in (1.1) gives the expressions

dk ± g|bk| −
g2

2

( b2k−1

dk−1 − dk
+

b2k+1

dk+2 − dk

)
+O(g3)

for the couple λk(J(g)), λk+1(J(g)). In the case of the QRM with s = ω, one has bk =
√
k,

d2m − d2m−1 = d2m+2 − d2m+1 = ω and the corresponding eigenvalue couple {λ2m(Jωω (g)),
λ2m+1(Jωω (g))}, satisfies

(2m− 1
2
)ω ± g

√
2m− g2

2ω
+O(g3).
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We observe that these eigenvalues coincide with the eigenvalues of the Jaynes-Cummings model
modulo O(g2). We can also use Theorem 1.5 with b′k 6= 0 in order to cover a situation when
the difference s− ω = cg. Reasoning similarly as in Section 2.4 it is also possible to consider
the case of entries bi, b′i which are analytic functions of g. We have not used this framework in
order to simplify the expressions for the convergence radius.

2. Preliminaries

2.1. Introduction. Sections 2-5 present a finite dimensional perturbation theory. In these
sections we denote by L(V ) the set of all linear operators defined on a finite dimensional linear
space V and {ei}ni=1 denotes the canonical basis of Cn.

We assume that J : C→ L(Cn) has the form

J(g) = D + gB(g), (2.1)

where D = diag(di)
n
i=1, i.e. Dei = diei for i = 1, . . . , n. Sections 2.2 and 2.2 contain two

elementary lemmas which are basic ingredients of our further analysis and in Section 2.4 we
prove a finite dimensional version of Theorem 1.2. We will use the following

Notation 2.1. (a) For λ∈C and ρ≥0 we denote D(λ, ρ) := {λ′∈C : |λ′ − λ| ≤ ρ}.
If ρ > 0 then D(λ, ρ) := {λ′∈C : |λ′ − λ| < ρ} and ∂D(λ, ρ) := {λ′∈C : |λ′ − λ| = ρ}.
(b) We denote by 〈·, ·〉 the scalar product of Cn and write B(g) = (bi,j(g))ni,j=1 with

bi,j(g) = 〈ei, B(g)ej〉.

(c) For ρ > 0 and i = 1, . . . , n, we denote βi(ρ) := sup
g∈D(0,ρ)

∑
1≤j≤n

|bi,j(g)|.

2.2. An auxiliary result.

Lemma 2.2. We fix k ∈ {1, . . . , n}. Let ρ > 0 be such that βk(ρ) > 0 and denote

φk(ρ) := min
i 6=k

|dk − di|
ρβk(ρ) + ρβi(ρ)

. (2.2)

If φk(ρ) > 1 and |g| < ρ, then

∂D(dk, ρβk(ρ)) ∩ σ(J(g)) = ∅. (2.3)

Proof. The Gershgorin’s theorem (see Th. 3.11 in [18]) ensures σ(J(g)) ⊂ D1 ∪ · · · ∪Dn, where

Di := D
(
di + gbi,i(g),

∑
j 6=i

|gbi,j(g)|
)
.

Since Di ⊂ D(di, |g|βi(|g|)), it remains to show that for every i one has

|g| < ρ =⇒ ∂D(dk, ρβk(ρ)) ∩ D(di, |g|βi(ρ)) = ∅. (2.4)

Since |g|<ρ =⇒ D(dk, |g|βk(ρ))⊂D(dk, ρ βk(ρ)), it is clear that (2.4) holds if i = k. Assume
now that i 6= k. Since by definition, Φk(ρ) > 1 implies

|dk − di| > ρβk(ρ) + ρβi(ρ), (2.5)

we deduce (2.4) from the fact that (2.5) ensures D(dk, ρβk(ρ)) ∩ D(di, ρβi(ρ)) = ∅. �
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2.3. Use of the Cauchy’s formula.

Lemma 2.3. We fix β > 0 and ρ > 0. If η : D(0, ρ)→ D(0, βρ) is holomorphic, then

|η(ν)(0)| ≤ βρ1−νν! (2.6)

holds for every ν ∈ N. Moreover for every N ∈ N and g ∈ D(0, ρ) one has∣∣∣η(g)−
∑

0≤ν≤N

η(ν)(0)

ν!
gν
∣∣∣ ≤ β|g|N+1

(ρ− |g|)ρN−1
. (2.7)

Proof. Denote cν = η(ν)(0)/ν! and take ρ′ < ρ. Then the Cauchy’s formula

cν =
1

2πi

∮
|g|=ρ′

η(g) g−1−νdg

allows us to estimate |cν | ≤ βρρ′−ν and taking the limit ρ′ → ρ we obtain

|cν | ≤ βρ1−ν . (2.8)

Using (2.8) we can estimate the left hand side of (2.7) by∑
ν≥N+1

|cνgν | ≤
∑

ν≥N+1

βρ(|g|/ρ)ν = βρ
|g|N+1

ρN+1(1− |g|/ρ)
,

completing the proof of Lemma 2.3. �

2.4. Finite dimensional version of Theorem 1.2. Let us fix ρ0 > 0 and assume that
B is holomorphic D(0, ρ0) → L(Cn), i.e. g → bi,j(g) are holomorphic on D(0, ρ0). We fix
k ∈ {1, . . . , n} and assume that

dk = 0 6= di if i 6= k. (2.9)
Assume moreover that 0 < ρ < ρ0 is such that βk(ρ) > 0 and φk(ρ) > 1. Due to (2.9), dk = 0
is a simple eigenvalue of J(0) = D and (2.3) allows us to define

Pk(J(g)) =
1

2πi

∮
|λ|=ρβk(ρ)

(λ− J(g))−1 dλ (2.10)

for g ∈ D(0, ρ). Following Kato [11] we observe that g → Pk(J(g)) is a holomorphic family
of eigenprojectors of J(g) satisfying rankPk(J(g)) = rankPk(J(0)) = 1 and λk(J(g)) =
tr
(
J(g)Pk(J(g))

)
is an eigenvalue of J(g) satisfying

σ(J(g)) ∩ D(0, ρβk(ρ)) = {λk(J(g))}.

Since g → λk(g) is holomorphic D(0, ρ) → D(0, ρβk(ρ)), the estimates (2.6)-(2.7) hold with
λk(g) and βk(ρ) instead of η(g) and β.

3. Quasi-degenerate case in finite dimension

3.1. Introduction. In this section J(g) = D + gB(g) is holomorphic D(0, ρ0)→ L(Cn) and
D = diag(di)

n
i=1. Moreover we fix n̂ ∈ {1, . . . , n− 1} and we make the assumption

i ≤ n̂ < j =⇒ di 6= dj . (3.1)

We write Cn = V̂ ⊕ Ṽ with
V̂ := span {ej}1≤j≤n̂, (3.2)

Ṽ := span {ej}1+n̂≤j≤n (3.3)
and consider the corresponding decomposition

D = D̂ ⊕ D̃ = diag(dj)
n̂
j=1 ⊕ diag(dj)

n
j=1+n̂, (3.4)

where D̂ ∈ L(V̂ ) and D̃ ∈ L(Ṽ ) are the restrictions of D to V̂ and Ṽ respectively. Then the
assumption (3.1) means that D̂ and D̃ have no common eigenvalue.
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Analyticity results for degenerate eigenvalues were given in [17], but in this paper we will
develop an approach of Schrieffer-Wolff [2] (see also [12], [13], [24], [2]) in order to prove

Proposition 3.1. Assume that (3.1) holds and ε0 > 0 is small enough. If |g| < ε0 then J(g)

is similar to Ĵ∞(g)⊕ J̃∞(g) where Ĵ∞ is holomorphic D(0, ε0)→ L(V̂) and J̃∞ is holomorphic
D(0, ε0)→ L(Ṽ).

Proof. See Sections 3.2–3.4. �

Using Proposition 3.1 in the case n̂ = 2 we get

Corollary 3.2. Assume that (3.1) holds with n̂ = 2 and d1 = d2 = 0. Assume moreover that
B(0) is self-adjoint and b1,2(0) 6= 0. If 0 < ρ < min{|dj | : j ≥ 3}, then there exists ε > 0 such
that for g ∈ D(0, ε) one has

D(0, ρ) ∩ σ(J(g)) = {λ1(J(g)), λ2(J(g))}, (3.5)

where g → λj(J(g)) are holomorphic on D(0, ε) for j = 1, 2 and

λj(J(g)) = µjg +O(g2), (3.6)

where µ1, µ2 are eigenvalues of B(0).

Proof. Let ε > 0 be small enough. Then the assertion of Proposition 3.1 ensures

σ(J(g)) = σ(Ĵ∞(g)) ∪ σ(J̃∞(g)) (3.7)

and there exists C > 0 such that

dist
(
σ(J̃∞(g)), {d3, . . . , dn}

)
≤ C|g|. (3.8)

Due to (3.8), D(0, ρ) ∩ σ(J̃∞(g)) = ∅ holds for ε > 0 small enough and (3.7) ensures

D(0, ρ) ∩ σ(J(g)) ⊂ σ(Ĵ∞(g)).

However Ĵ∞(g) = gB̂∞(g) and B̂∞(g) = B̂(0) + gB̂
(1)
∞ (g). The hypotheses that B̂(0) is

self-adjoint and b1,2(0) 6= 0 ensure that fact that B̂(0) has two distinct eigenvalues µ1, µ2,
hence σ(B̂∞(g)) = {µ1(g), µ2(g)} holds with g → µj(g) holomorphic in a neighbourhood of 0
due to the usual perturbation theory presented in Section 2.4. �

3.2. Schrieffer-Wolff approximation. We will define Ĵ∞(g) ⊕ J̃∞(g) as the limit of a
sequence of operators (Jl(g))∞l=0 of the form

Jl(g) = D + gBl(g). (3.9)

Using induction with respect to l we begin by setting J0(g) := J(g). Assume now that Jl(g) is
given by (3.9) and

Bl(g) =

(
B̂l(g) R+

l (g)

R−l (g) B̃l(g)

)
(3.10)

where B̂l : V̂ → V̂ , B̃l : Ṽ → Ṽ , R+
l : V̂ → Ṽ , R−l : Ṽ → V̂ . Then

Bl(g) = B̂l(g)⊕ B̃l(g) +Rl(g) (3.11)

and Rl(g) = (ri,j,l(g))
n
i,j=1 satisfies ri,j,l = 0 if (i, j) ∈ [1, n̂]2 ∪ [n̂ + 1, n]2. We define

Ql(g) = (qi,j,l(g))ni,j=1 by the formula

qi,j,l(g) =


i ri,j,l(g)

di − dj
if (i, j) /∈ [1, n̂]2 ∪ [n̂+ 1, n]2

0 otherwise
(3.12)

and observe that (3.12) ensures the equality

[D, iQl(g)] = −Rl(g), (3.13)
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where [A,A′] = AA′ −A′A is the commutator of A,A′ ∈ L(Cn). Then we define

Jl+1(g) = e−igQl(g)Jl(g)eigQl(g). (3.14)

Notation 3.3. If g ∈ C \ {0} and A, Q ∈ L(Cn), then we denote

FgQ(A) := e−igQAeigQ −A (3.15)

F̃gQ(A) :=
1

g

(
e−igQAeigQ −A− g[A, iQ]

)
(3.16)

Using these notations we can express the equality (3.14) in the form

Jl+1(g) = D + g
(
Bl(g) + [D, iQl(g)] + Fl(g)

)
(3.17)

with
Fl(g) = F̃gQl(g)(D) + FgQl(g)(Bl(g)) (3.18)

and combining (3.17) with (3.11)-(3.13) we obtain

Jl+1 = D + g
(
B̂l ⊕ B̃l + Fl

)
. (3.19)

3.3. Norm estimates.

Notation 3.4. (a) We denote by || · ||0 the norm defined on V̂ by

||x||0 =
(
|xk|2 + |xk+1|2)1/2. (3.20)

(b) We denote by || · ||′ the norm defined on Ṽ by

||x||′ = max
i/∈{k,k+1}

|xi|. (3.21)

(c) We denote by || · || the norm defined on Cn by the formula

||x̂+ x̃|| := max{ ||x̂||0, ||x̃||′ } for x̂ ∈ V̂ , x̃ ∈ Ṽ , (3.22)

and ||A|| = sup{||Ax|| : ||x|| = 1} is the corresponding operator norm.

Lemma 3.5. If A and Q ∈ L(Cn), then

||FgQ(A)|| ≤ e2||gQ|| ||[A, gQ]||, (3.23)

||F̃gQ(A)|| ≤ 1
2

e2||gQ|| ||[[A,Q], gQ]||. (3.24)

Proof. Using integral remainders of the Taylor’s formula for s→ e−isgQAeisgQ we get

FgQ(A) =

∫ 1

0

e−isgQ[A, igQ]eisgQds,

F̃gQ(A) =

∫ 1

0

e−isgQ[[A, iQ], igQ]eisgQ (1− s) ds.

We complete the proof using ||eisgQ|| ≤ e||gQ||. �

Lemma 3.6. Assume that C0 > 0 is fixed large enough. Then there exists ε0 > 0 such for
g ∈ D(0, ε0) and m ∈ N one has

||Rm(g)|| ≤ C1+3m
0 |gm| (3.25)

||B̂m(g)⊕ B̃m(g)− B̂m−1(g)⊕ B̃m−1(g)|| ≤ C1+3m
0 |gm| (3.26)

where for m = 0 we take B̂m−1 = 0 and B̃m−1 = 0 in (3.26).
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Proof. First of all we can assume that C0 > 0 is large enough to ensure

||B(g)|| ≤ C0 for g ∈ D(0, ε0) (3.27)

for a certain ε0 > 0 and
||Ql(g)|| ≤ C0||Rl(g)||. (3.28)

Let l ∈ N be such that the estimates (3.25)-(3.26) hold if m ≤ l. Further on we assume that
|g| ≤ ε0 and 2C3

0ε0 ≤ 1. Then one has C1+3m
0 |gm| ≤ 2−mC0 and

||Rm(g)|| ≤ 2−mC0 if m ≤ l, (3.29)

||B̂m(g)⊕ B̃m(g)− B̂m−1(g)⊕ B̃m−1(g)|| ≤ 2−mC0 if m ≤ l. (3.30)

Using (3.30) we can estimate ||B̂l(g)⊕ B̃l(g)|| by
l∑

m=0

||B̂m(g)⊕ B̃m(g)− B̂m−1(g)⊕ B̃m−1(g)|| ≤ 2C0,

hence
||Bl(g)|| ≤ ||B̂l(g)⊕ B̃l(g)||+ ||Rl(g)|| ≤ 3C0. (3.31)

Next we observe that (3.19) gives

Fl = Bl+1 − B̂l ⊕ B̃l =

(
B̂l+1 − B̂l R+

l+1

R−l+1 B̃l+1 − B̃l

)
(3.32)

and in order to prove that (3.25)-(3.26) hold for m = l + 1 it suffices to check the estimate

||Fl(g)|| ≤ C4+3l
0 |gl+1|. (3.33)

However using A = D and [D, igQl] = −gRl in (3.24), we can estimate

||F̃gQl(D)|| ≤ 1
2

e2||gQl(g)|| ||[Rl(g), gQl(g)]|| ≤ e ||Rl(g)|| ||gQl(g)|| (3.34)

due to 2||gQl(g)|| ≤ 2ε0C0||Rl(g)|| ≤ 2ε0C
2
0 ≤ 1 and ||[A,A′]|| ≤ 2||A|| ||A′||. Similarly, (3.23)

allows us to estimate
||FgQ(Bl(g))|| ≤ 2e ||Bl(g)|| ||gQl(g)||. (3.35)

Combining (3.34), (3.35) with (3.18) and assuming C0 ≥ 7e, we get

||Fl(g)|| ≤ e(||Rl(g)||+ 2||Bl(g)||)|g|C0||Rl(g)|| ≤

≤ 7eC2
0 |g| ||Rl(g)|| ≤ C3

0 |g| ||Rl(g)||.
Thus (3.25) for m= l gives (3.33), completing the proof of (3.25)-(3.26) for m= l + 1. �

3.4. End of the proof of Proposition 3.1. For m, l ∈ N satisfying m < l we denote

Um,l(g) = eigQm . . . eigQl−1 . (3.36)

Let ε0 > 0 be small enough. Due to Lemma 3.6 we can define

B̂∞(g) = lim
l→∞

B̂l(g), B̃∞(g) = lim
l→∞

B̃l(g) (3.37)

and the convergence is uniform with respect to g ∈ D(0, ε0). Thus denoting

Ĵ∞(g) := D̂ + gB̂∞(g), J̃∞(g) := D̃ + gB̃∞(g),

we find that Jl(g) = U0,l(g)
−1J(g)U0,l(g) converges to Ĵ∞(g)⊕ J̃∞(g) uniformly on D(0, ε0).

We still assume g ∈ D(0, ε0). Then

||Um,l(g)|| ≤ exp
( ∑
m≤i<l

||gQi(g)||
)
≤ C1

and ||U0,l(g)− U0,m|| ≤ C1||Um,l(g)− I|| can be estimated by

C2

∑
m≤i<l

||eigQi(g) − I|| ≤ C3

∑
m≤i<l

||gQi(g)|| ≤ 2−mC4|g|.
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Thus we can define U∞(g) as the limit of U0,l(g) as l → ∞ and ||U∞(g) − I|| ≤ C|g| holds
if C > 0 is fixed large enough. Assuming moreover |g| ≤ 1/(2C) we conclude that U0,l(g)

−1

converges to U∞(g)−1 as l→∞ and J∞(g) = U∞(g)−1J(g)U∞(g).

4. Finite dimensional version of Theorem 1.3

4.1. Introduction. In this section we consider J(g) = D + gB ∈ L(Cn), assuming that
D = diag(di)

n
i=1 and B is a tridiagonal matrix,

B =


b′1 b1 0 0 · · ·
b1 b′2 b2 0 · · ·
0 b2 b′3 b3 · · ·
0 0 b3 b′4 · · ·
...

...
...

...
. . .

 . (4.1)

We fix k ∈ N∗ and assume

dk+1 = dk = 0 6= di for i /∈ {k, k + 1} and b′k+1 = −b′k. (4.2)

Next we remark that a suitable permutation of the canonical basis allows us to work in the
framework of Section 3 with n̂ = 2, i.e. we can decompose

Cn = V̂ ⊕ Ṽ with V̂ := span{ek, ek+1} and Ṽ := V̂ ⊥. (4.3)

Then D = D̂ ⊕ D̃ holds with D̂ = diag(0, 0), D̃ = diag(di)i/∈{k,k+1} and

B =

(
B̂ R+

R− B̃

)
with B̂ =

(
b′k bk
bk −b′k

)
. (4.4)

We observe that σ(B̂) = {−µ, µ} holds with

µ :=
(
b2k + b′2k

)1/2. (4.5)

Due to Corollary 3.2 the spectrum of J(g) near 0 is composed of two eigenvalues

λk(J(g)) = −µg +O(g2), λk+1(J(g)) = µg +O(g2), (4.6)

holomorphic on D(0, ε) for a certain ε > 0. In the remaining of the section we prove

Proposition 4.1. Assume that J(g) = diag(di)
n
i=1 + gB holds with B given by (4.1) and real

entries (di)
n
i=1, (bi)

n−1
i=1 , (b′i)

n
i=1 satisfying (4.2). Let µk = µ be given by (4.5) and let (β′i)

n
i=1,

(γi)
n
i=1, (γ′i)

n
i=1 be given by (1.14)-(1.18). Assume moreover that ρ > 0 satisfies (1.19)-(1.21).

(i) If −ρ<g<ρ and g 6= 0, then (1.22) and (1.23) hold

(ii) the expansion formula (1.24) holds with µk+1 = −µk = −
(
b2k + b′2k

)
1/2,

(iii) the coefficients satisfy |ck+j,ν | ≤ µkρ1−ν for j = 0, 1 and (1.25) holds.

Proof. The proof is given in four steps described in Sections 4.2-4.5. �

4.2. First step of the proof of Proposition 4.1.

Notation 4.2. (a) For m ∈ N we define the linear subspace

Vm := span{ek+i}i∈[−m,m+1]. (4.7)

We observe that dimVm = min{2m+ 2, n} and V0 = V̂ .
(b) We define Πm as the orthogonal projector on Vm and Π′m := I −Πm.
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Reasoning as in Section 3.2 we denote Jl(g) = D + gBl where B0 = B and (3.14) holds
with Ql ∈ L(Cn) satisfying (3.13). Then using notations 4.2, we can write

B̂l ⊕ B̃l = Π0BlΠ0 + Π′0BlΠ
′
0. (4.8)

In this section we consider (3.9) with l = 0 and as before F0(g) is given by the equality

J1(g) = D + g
(
B̂ ⊕ B̃ + F0(g)

)
(4.9)

Moreover R0 = B − B̂ ⊕ B̃ satisfies R0 = Π1R0Π1 and has the form

R0 =


0 bk−1 0 0

bk−1 0 0 0
0 0 0 bk+1

0 0 bk+1 0

⊕OV⊥1 (4.10)

where OV⊥1 is the zero map on V ⊥1 . Thus Q0 = Π1Q0Π1 has the form

Q0 =


0 q̄k−1 0 0

qk−1 0 0 0
0 0 0 q̄k+1

0 0 qk+1 0

⊕OV⊥1 (4.11)

with
qk+1 := −ibk+1/dk+2, qk−1 := ibk−1/dk−1. (4.12)

In particular we have
||R0|| = max{|bk−1|, |bk+1|}. (4.13)

||Q0|| = γ′k = max{|qk−1|, |qk+1|}. (4.14)

Lemma 4.3. We have the estimate

||F0(g)|| ≤ γkγ′k|g|e2γ′k|g|. (4.15)

Proof. Due to Q0 = Π1Q0Π1 we have

[B,Q0] = [B◦, Q0] with B◦ := B −Π′1BΠ′1 (4.16)

and ||F0(g)|| can be estimated by

e2||gQ0||( 1
2
||[R0, gQ0]||+ ||B◦, gQ0]||) ≤ e2||gQ0||||gQ0||(||R0||+ 2||B◦||). (4.17)

Due to (4.13)-(4.14), (4.15) follows from (4.17) if we show that

||R0||+ 2||B◦|| ≤ γk. (4.18)

However B◦ = R0 + Π0B
◦Π0 + Π′0B

◦Π′0 holds with Π0B
◦Π0 = B̂ ⊕OV⊥0 and

Π′0B
◦Π′0 = OV0 ⊕


0 bk−2 0 0

bk−2 b′k−1 0 0
0 0 b′k+2 bk+2

0 0 bk+2 0

⊕OV⊥2 ,

hence
||Π′0B◦Π′0|| ≤ max{|bk−2|+ |b′k−1|, |bk+2|+ |b′k+2|}. (4.19)

In order to obtain (4.18), we observe that ||B◦|| can be estimated by

||R0||+ ||Π0B
◦Π0 + Π′0B

◦Π′0|| = ||R0||+ max{||Π0B
◦Π0||, ||Π′0B◦Π′0||} (4.20)

and it remains to use (4.13), (4.19) and ||Π0B
◦Π0|| = µ (the last equality is due to the fact B̂

is unitarily equivalent to diag (−µ, µ) and || · ||0 is the euclidean norm). �
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4.3. Second step of the proof of Proposition 4.1.

Lemma 4.4. Assume that λ ∈ C \ {−gµ, gµ} is such that |λ| ≤ 2µρ, where ρ satisfies
(1.19)-(1.21). Denote

J1,0(g) := gB̂ ⊕ (D̃ + gB̃). (4.21)

Then

||(J1,0(g)− λ)−1|| ≤ max
{ 1

|λ− gµ| ,
1

|λ+ gµ| ,
1

ρµ

}
. (4.22)

Proof. We denote J̃(g) := D̃ + gB̃ and observe that

(J1,0(g)− λ)−1 = (gB̂ − λ)−1 ⊕ (J̃(g)− λ)−1. (4.23)

Since B̂ is unitarily equivalent to diag (−µ, µ) and ||·||0 is the euclidean norm, the corresponding
operator norm

||(gB̂ − λ)−1||0 = max
{ 1

|λ− gµ| ,
1

|λ+ gµ|

}
. (4.24)

Due to (4.24) and (4.23), the proof of (4.22) will be complete if we show

||(J̃(g)− λ)−1||′ ≤ 1

ρµ
, (4.25)

where we used || · ||′ to denote the operator norm induced by the norm (3.21).
Since (1.20) ensures 2ρµ ≤ |di| − 2ρµ ≤ |di| − |λ| ≤ |di − λ| for all i /∈ {k, k + 1},

||(D̃ − λ)−1||′ = max
i/∈{k,k+1}

1

|di − λ|
≤ 1

2ρµ
. (4.26)

Let us introduce Ã(λ) := (D̃ − λ)−1B̃. We claim that (4.25) follows from

||gÃ(λ)||′ ≤ 1
2
. (4.27)

Indeed, we obtain (4.25) using (4.26)-(4.27) to estimate the norm of the resolvent series

(J̃(g)− λ)−1 =
∑
ν∈N

(
− gÃ(λ)

)ν
(D̃ − λ)−1.

In order to prove (4.27) we observe that Ã(λ) =
(
α̃i,j(λ)

)
i,j /∈{k,k+1} is the matrix with

α̃i,j(λ) = 〈ei, (D − λ)−1Bej〉 = 〈(D − λ̄)−1ei, Bej〉 =
〈ei, Bej〉
di − λ

and since V ⊥0 is equipped with the norm (3.21),

||Ã(λ)||′ ≤ max
i/∈{k,k+1}

∑
j /∈{k,k+1}

|α̃i,j(λ)| = max
i/∈{k,k+1}

β′i
|di − λ|

. (4.28)

However, if i /∈ {k, k + 1}, then (1.19) ensures |di| ≥ 2ρ(µ+ β′i) and consequently

|di − λ| ≥ |di| − |λ| ≥ |di| − 2ρµ ≥ 2ρβ′i.

Thus the right hand side of (4.28) can be estimated by 1
2ρ

and ||gÃ(λ)||′ ≤ |g|
2ρ
≤ 1

2
. �
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4.4. Third step of the proof of Proposition 4.1.

Lemma 4.5. Assume that ρ satisfies (1.19)-(1.21).
(a) If |g| ≤ ρ, then

∂D(0, 2ρµ) ∩ σ(J(g)) = ∅ (4.29)

(b) Assume that θ ∈ [0, 2π[ and 0 < t ≤ ρ. If g = teiθ then

∂D(±µρeiθ, µρ) ∩ σ(J(g)) = ∅. (4.30)

Proof. (a) If |λ| = 2µρ then |λ± gµ| ≥ µρ ≥ µ|g| and Lemma 4.4 ensures

||(J1,0(g)− λ)−1|| ≤ 1/(|g|µ). (4.31)

Denote Aλ(g) := F0(g)(J1,0(g)− λ)−1. Then (4.31), (4.15), (1.21) and |g| ≤ ρ, ensure

||gAλ(g)|| ≤ ||gF0(g)|| ||(J1,0(g)− λ)−1|| ≤ |g|2γ′kγke2ργ′k/(µ|g|) < 1, (4.32)

hence λ /∈ σ(J1(g)) = σ(J(g)) follows from the convergence of the resolvent series

(J1(g)− λ)−1 = (J1,0(g)− λ)−1
∑
ν∈N∗

(−gAλ(g))ν (4.33)

(b) If θ ∈ [0, 2π[ and 0 < t ≤ ρ, then

dist
(
± tµeiθ, eiθ∂D(±µρ, µρ)

)
= dist

(
± tµ, ∂D(±µρ, µρ)

)
= tµ. (4.34)

If λ ∈ ∂D(±µρeiθ, µρ) = eiθ∂D(±µρ, µρ) and g = teiθ, then |λ± gµ| ≥ |g|µ holds due to (4.34).
Then Lemma 4.4 gives (4.31), (4.32)-(4.33) and λ /∈ σ(J1(g)) = σ(J(g)). �

4.5. End of the proof of Proposition 4.1. Lemma 4.5(a) allows us to define on D(0, ρ)
the projectors

P (g) =
1

2πi

∮
∂D(0,2ρµ)

(λ− J(g))−1 dλ (4.35)

with rankP (g) = rankP (0) = 2, i.e J(g) has at most two eigenvalues in D(0, 2ρµ). Our next
step is to show that for κ ∈ {1,−1} one has

card
(
σ(J(|g|eiθ)) ∩ D(κρµeiθ, ρµ)

)
= 1 if 0 < |g| < ρ. (4.36)

Let us choose ε > 0 small enough. Then the property (4.36) holds if 0 < |g| ≤ ε due to (4.6).
Due to Lemma 4.5(b), the property (4.30) holds for g ∈ Kε,θ := [ε, ρ]eiθ. Since Kε,θ is compact,
Kε,θ has an open connected neighbourhood Uε,θ such that the property (4.30) still holds for
g ∈ Uε,θ. Thus

P±(g) =
1

2πi

∮
∂D(±ρµeiθ,ρµ)

(λ− J(g))−1 dλ (4.37)

are two holomorphic families of projectors defined on Uε,θ. However (4.6) ensures the fact that
rankP±(g) = 1 if |g| ≤ ε, hence rankP±(g) = 1 for all g ∈ Uε,θ. Thus

g ∈ Uε,θ =⇒ σ(J(g)) ∩ D(±ρµeiθ, ρµ) = {λ±(g)}

where g → λ±(g) = tr J(g)P±(g) are two distinct eigenvalues of J(g) if g 6= 0. Thus

σ(J(g)) ∩ D(0, 2ρµ) = {λ+(g), λ−(g)} (4.38)

and λ+(g) (respectively λ−(g)) is the holomorphic extension of λk+1(J(g)) (respectively
λk(J(g))) defined on D(0, ρ). Since η(g) = λk+1(J(g))− µg is holomorphic D(0, ρ)→ D(0, µρ),
Lemma 2.3 ensures |ck+j,ν | ≤ µρ1−ν and (1.25) holds for j = 1. Similarly, using η(g) =
λk(J(g)) + µg we obtain (1.25) for j = 0.
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5. Block approximation

5.1. Introduction. Let J(g) be as in Proposition 4.1 and ck,ν , ck+1,ν the coefficients of
the series (1.24) for λk(J(g)) and λk+1(J(g)) respectively. In this section we fix ν ∈ N∗
and claim that ck,ν and ck+1,ν depend only on the entries {(dk+i, b

′
k+i)}i∈[−ν/2,1+ν/2] and

{bk+i}i∈[−ν/2,ν/2]. In other words, the computation of ck,ν and ck+1,ν , can be reduced to the
computation of the corresponding coefficients for the operator defined by the sub-matrix of
the matrix J(g), namely by the block (〈ek+i, J(g)ek+j〉)(i,j)∈[−ν/2,1+ν/2]2 .
For this purpose we prove

Proposition 5.1. The coefficients ck,ν and ck+1,ν depend only on ΠlJΠl, where l ∈ N is such
that 2l + 1 ≥ ν.

Proof. The proof is given in three steps described in Sections 5.2-5.4. �

5.2. Generalized Kato-Temple estimate.

Notation 5.2. (a) Since µ and −µ are two distinct eigenvalues of B̂l(0) = B̂, choosing ε0 > 0

small enough we ensure the fact that for g ∈ [−ε0, ε0] the matrix B̂l(g) has two eigenvalues
λ̂0,l(g), λ̂1,l(g), satisfying

λ̂0,l(g) = −µ+O(g), λ̂1,l(g) = µ+O(g). (5.1)

For j ∈ {0, 1} we denote λj,l(g) := gλ̂j,l(g). Thus (5.1) implies

λ0,l(g) = −µg +O(g2), λ1,l(g) = µg +O(g2) (5.2)

(b) We denote Jl,0(g) := gB̂l(g)⊕ (D̃+gB̃l(g)). Thus

σ(Jl,0(g)) = {λ0,l(g), λ1,l(g)} ∪ σ(D̃+gB̃l(g)) (5.3)

holds due to σ(gB̂l(g)) = {λ0,l(g), λ1,l(g)}.

These notations allow us to deduce immediately the following estimate

λk+j(J(g)) = λj,l(g) +O(gl+1) (j = 0, ·1) (5.4)

Indeed, if 0 < ρ′ < min
i/∈{k,k+1}

|di|, then choosing ε0 > 0 small enough we ensure

σ(Jl,0(g)) ∩ [−ρ′, ρ′] = {λ0,l(g), λ1,l(g)} if g ∈ [−ε0, ε0] (5.5)

and Jl(g)− Jl,0(g) = gRl(g) = O(gl+1) implies

dist(σ(Jl(g))), σ(Jl,0(g))) = O(gl+1) (5.6)

due to the min-max principle. If g ∈ [−ε0, ε0] then combining (5.6) with (5.5) and Theorem
1.3, we get

dist({λk(J(g)), λk+1(J(g))}, {λ0,l(g), λ1,l(g)}) = O(gl+1) (5.7)

and it is clear that (5.4) follows from (5.7) and (5.2).
However writing an analogical decomposition in the case of perturbations of a simple

eigenvalue, we find that the standard Kato-Temple inequality (see Th. 3.8 in [18]) ensures
error estimates O(g2l+2) for the eigenvalue perturbed by the terms of order O(gl+1) in the
k-th line and k-th column. The following lemma states an analogical result in our framework.

Lemma 5.3. For j = 0, 1, let λj,l(g) be defined as in Notation 5.2. Then

λk+j(J(g)) = λj,l(g) +O(g2l+2). (5.8)
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Proof. Step 1. We claim that B̂l+1 = B̂l +O(g2l+1).

Since Jl = D + g(B̂l ⊕ B̃l +Rl) holds with Rl(g) = O(gl) and Jl+1 can be expressed by

e−igQlJle
igQl = Jl + ig[Jl, Ql]−

g2

2!
[[Jl, Ql], Ql]− i

g3

3!
[[Jl, Ql], Ql], Ql] + . . . (5.9)

with [D, iQl] = −Rl and Ql(g) = O(gl), we obtain Jl+1 = D + gBl+1 with

Bl+1 = B̂l ⊕ B̃l + [B̂l ⊕ B̃l, igQl] +O(g2l+1).

Therefore

B̂l+1 ⊕OV⊥0 = Π0Bl+1Π0 = B̂l ⊕OV⊥0 + Π0[B̂l ⊕ B̃l, igQl]Π0 +O(g2l+1)

and we obtain B̂l+1 = B̂l +O(g2l+1) if we check that

Π0[B̂l ⊕ B̃l, Ql]Π0 = 0. (5.10)

However OV⊥0 ⊕ B̃l = Π′0BlΠ
′
0 and obviously Π0[Π′0BlΠ

′
0, Ql]Π0 = 0. To complete the proof of

(5.10) we observe that B̂l ⊕OV⊥0 = Π0BlΠ0 and

Π0[Π0BlΠ0, Ql]Π0 = Π0[Π0BlΠ0,Π0QlΠ0]Π0 = 0,

where the last equality follows from the fact that Π0QlΠ0 = 0.

Step 2. We claim that B̂l+i = B̂l +O(g2l+1) holds for all i ∈ N.
Indeed, reasoning by induction we can repeat the proof from Step 1.
Step 3. To complete the proof of (5.8) we observe that (5.4) ensures

λk+j(J(g)) = λj,2l+1(g) +O(g2l+2) (5.11)

and choosing ε0 > 0 small enough we obtain

|λj,2l+1(g)− λj,l(g)| ≤ ||g
(
B̂2l+1(g)− B̂l(g)

)
|| = O(g2l+2)

for −ε0 < g < ε0 due to the min-max principle. �

5.3. Second step of the proof of Proposition 5.1.

Lemma 5.4. For every l ∈ N one has

(Jl − J)Π′l+1 = 0 = Π′l+1(Jl − J), (5.12)

RlΠ
′
l+1 = 0 = Π′l+1Rl. (5.13)

Proof. If l = 0, then (5.12) holds due to J0 = J and (5.13) holds due to (4.10). Reasoning by
induction we fix l ≥ 1 and assume that (5.12)-(5.13) hold with l − 1 instead of l. However
Rl−1Π′l = 0 = Π′lRl−1 implies

Ql−1Π′l = 0 = Π′lQl−1 (5.14)
and consequently eigQl−1Π′m = Π′m if m ≥ l. Therefore

JlΠ
′
l+1 = e−igQl−1Jl−1eigQl−1Π′l+1 = e−igQl−1Jl−1Π′l+1 = e−igQl−1JΠ′l+1, (5.15)

where the last equality is due to (5.12) with l− 1 instead of l. However a tridiagonal matrix J
satisfies JΠ′l+1 = Π′lJΠ′l+1 and

e−igQl−1JΠ′l+1 = e−igQl−1Π′lJΠ′l+1 = Π′lJΠ′l+1 = JΠ′l+1. (5.16)

Combining (5.15) with (5.16) we get (Jl − J)Π′l+1 = 0. Similarly we get Π′l+1(Jl − J) = 0,
hence (5.12) holds and it remains to prove that (5.12) implies (5.13).

Since Bl = (Jl −D)/g, it is clear that (5.12) implies

(Bl −B)Π′l+1 = 0 = Π′l+1(Bl −B). (5.17)

Using
Rl = Bl −Π0BlΠ0 −Π′0BlΠ

′
0 (5.18)
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and (Bl −B)Π′l+1 = 0 we get

(Rl −R0)Π′l+1 = (Bl −B)Π′l+1 −Π0(Bl −B)Π′l+1Π0 −Π′0(Bl −B)Π′l+1Π′0 = 0.

Similarly Π′l+1(Bl −B) = 0 implies Π′l+1(Rl −R0) = 0. �

5.4. End of the proof of Proposition 5.1. Let J(g) = D + gB and J◦(g) = D◦ + gB◦ be
two operators satisfying the hypotheses of Proposition 4.1 and assume that

Πi(J(g)− J◦(g))Πi = 0 (5.19)

holds for a certain i ∈ N. Then (1.24) holds and similarly

λk+j(J
◦(g)) = −µk+jg +

∞∑
ν=2

c◦k+j,νg
ν . (5.20)

Let Jl = D + gBl, J◦l = D◦ + gB◦l be constructed similarly as before. Then it suffices to show

Πi(Bi(g)−B◦i (g))Πi = 0. (5.21)

Indeed, (5.21) implies B̂i(g) = B̂◦i (g) and Lemma 5.3 ensures

λk+j(J(g))− λk+j(J
◦(g)) = O(g2i+2) for j = 0, 1,

hence ck+j,ν = c◦k+j,ν holds if ν ≤ 2i+ 1.
It remains to prove that (5.19) implies (5.21). Using induction we will prove that

Πi(Jl − J◦l )Πi = 0 (5.22)

holds for l = 0, . . . , i. Since J0 = J and J◦0 = J◦, (5.22) holds for l = 0 due to (5.19).
Let us assume that (5.22) holds for a certain l ≤ i− 1. Then

Πi(Bl −B◦l )Πi = 0 (5.23)

follows from (5.22) due to Bl −B◦l = g−1(Jl − J◦l ). Moreover, using (5.23) and

Rl −R◦l = Bl −B◦l −Π0(Bl −B◦l )Π0 −Π′0(Bl −B◦l )Π′0 (5.24)

we get Πi(Rl −R◦l )Πi = 0. Therefore Lemma 5.4 and l ≤ i− 1 ensure

Rl −R◦l = Πl+1(Rl −R◦l )Πl+1 = Πl+1Πi(Rl −R◦l )ΠiΠl+1 = 0,

hence Rl = R◦l and consequently Ql = Q◦l . Moreover l ≤ i − 1 implies that the operators
eigQl = eigQ◦l commute with Πi, hence

Πi(Jl+1 − J◦l+1)Πi = e−igQlΠi(Jl − J◦l )Πie
igQl = 0,

i.e. (5.22) holds for l + 1 if l ≤ i− 1. Thus (5.22) holds for l = 1, . . . , i and using (5.22) with
l = i we get (5.21), completing the proof of Proposition 5.1.

6. Proof of Theorem 1.2 and 1.3

6.1. Introduction. In this section we show how to deduce Theorem 1.2 and 1.3 from finite
dimensional results proved earlier. In both cases we use the min-max principle and deduce the
estimates for coefficients of the Taylor series using a finite dimensional block and Proposition
5.1. For this reason we assume g ∈ R.

Our approach uses the operators Ĵ+
n (g) and Ĵ−n (g) ∈ L(Cn), given by the formula

Ĵ±n (g) := diag(di)
n
i=1 + gB̂±n (6.1)
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where B̂+
n , B̂−n are the following tridiagonal matrices

B̂±n :=



b′1 b1 0 0
b1 b′2 b2
0 b2 b′3

. . .
. . .

. . .
b′n−3 bn−3 0 0
bn−3 b′n−2 bn−2 0

0 bn−2 b′n−1 bn−1

0 0 0 bn−1 b′n ± |bn|


(6.2)

In order to prove Theorem 1.2 we show that λk(J(g)) is well approximated by λk(J±n (g)) for
large n. In order to prove Theorem 1.3 we show moreover that λk+1(J(g)) is well approximated
by λk+1(J±n (g)) for large n.

6.2. Auxiliary operator inequality.

Lemma 6.1. Let B◦ be the linear map defined on `2fin by the formula

B◦ei = b◦i ei+1 + b◦i−1ei−1, (6.3)

where (b◦i )
∞
i=1 are real and by convention b◦i−1 = 0 if i = 1. Then for x ∈ `2fin one has

±〈x,B◦x〉 ≤ 〈x,diag(|b◦i |+ |b◦i−1|)∞i=1x〉. (6.4)

Proof. If x = (xj)
∞
j=1 then B◦x = (b◦jxj+1 + b◦j−1xj−1)∞j=1 and

〈x,B◦x〉 =
∑
j

b◦jxj+1x̄j +
∑
i

b◦i−1xi−1x̄i. (6.5)

Writing i = j + 1 in (6.5), we can estimate |〈x,B◦x〉| by∑
j

2|b◦j | |xj+1xj | ≤
∑
j

|b◦j |(|xj+1|2 + |xj |2). (6.6)

To complete the proof we write the right hand side of (6.6) in the form∑
i

|b◦i ||xi+1|2 +
∑
j

|b◦j ||xj |2 =
∑
j

(|b◦j−1|+ |b◦j |)|xj |2 (6.7)

and observe that the quantity (6.7) is equal to the right hand side of (6.4). �

6.3. Applying the min-max principle.

Notation 6.2. If L is a self-adjoint, bounded from below operator with discrete spectrum,
then (λ̂i(L))∞i=1 denotes the sequence of eigenvalues of L, enumerated in non-decreasing order,
counting multiplicities, i.e. λ̂1(L) ≤ λ̂2(L) ≤ . . . .

Let n ∈ N be fixed large enough. We decompose bi = bn,i + b◦n,i, b′i = b′n,i + b′ ◦n,i, where the
sequences (bn,i)

∞
i=1, (b′n,i)

∞
i=1 are the cut-off given by

bn,i =

{
bi if i < n

0 if i ≥ n
and b′n,i =

{
b′i if i ≤ n,
0 if i > n

Consequently B = Bn +B◦n holds if the operators Bn, B◦n are given by

Bnei = b′n,iei + bn,iei+1 + bn,i−1ei−1, B◦nei = b′ ◦n,iei + b◦n,iei+1 + b◦n,i−1ei−1

and Lemma 6.1 ensures
±〈x,B◦nx〉 ≤ 〈x,D◦nx〉, (6.8)
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where we denoted D◦n := diag(d◦i,n)i∈N∗ with

d◦i,n =


0 if i < n

|bn| if i = n

β′i if i > n

and β′i = |b′i|+ |bi|+ |bi−1|. Next we consider

J±n (g) := D + gBn ± gD◦n = Ĵ±n (g)⊕ diag(di ± gβ′i)∞i=n+1 (6.9)

where Ĵ±n (g) is the linear map acting on span{e1, . . . , en} by means of the matrix (6.2).
If i > n > k + 1 and ρ satisfies (1.19), then ρβ′i ≤ 1

2
di and

di ± gβ′i ≥ 1
2
di if − ρ < g < ρ, (6.10)

hence J±(g) are self-adjoint, bounded from below and have discrete spectrum. Moreover{
〈x, J−n (g)x〉 ≤ 〈x, J(g)x〉 ≤ 〈x, J+

n (g)x〉 if g ≥ 0

〈x, J+
n (g)x〉 ≤ 〈x, J(g)x〉 ≤ 〈x, J−n (g)x〉 if g ≤ 0

(6.11)

and the min-max principle ensures{
λ̂i(J

−
n (g)) ≤ λ̂i(J(g)) ≤ λ̂i(J+

n (g)) if g ≥ 0

λ̂i(J
+
n (g)) ≤ λ̂i(J(g)) ≤ λ̂i(J−n (g)) if g ≤ 0

(6.12)

6.4. End of the proof of Theorem 1.3. Let us fix ρ > 0 satisfying (1.19)-(1.21) and assume
that n > k + 2. We claim that Ĵ±n (g) satisfies the assumptions of Proposition 4.1 for the same
value ρ. Indeed, the entries of Ĵ±n (g) are the same as the entries of J(g) except the fact that
b′n is replaced by b′n ± |bn|, bi are replaced by 0 for i ≥ n and b′i are replaced by 0 for i > n.
Thus the values of β′i can only decrease after these modifications and the right hand side of
(1.19) can only increase. Applying Proposition 4.1 to Ĵ±n (g) we obtain

[−2µkρ, 2µkρ] ∩ σ(Ĵ±n (g)) = {λk(Ĵ±n (g)), λk+1(Ĵ±n (g))}, (6.13)

where the eigenvalue λk+j(Ĵ
±
n (g)) is simple if −ρ < g < ρ, g 6= 0, and satisfies

λk+j(Ĵ
±
n (g)) = −µk+jg +

∞∑
ν=2

c±k+j,n,νg
ν (6.14)

with |ck+j,ν | ≤ µkρ1−ν for j = 0, 1. We observe that (6.9) ensures

σ(J±n (g)) = σ(Ĵ±n (g)) ∪ {di ± gβ′i : i > n} (6.15)

Since (1.19) ensures 2ρµk < di − ρβ′i, one has

[−2µkρ, 2µkρ] ∩ σ(J±n (g)) = [−2µkρ, 2µkρ] ∩ σ(Ĵ±n (g)), (6.16)

hence (1.22)-(1.23) hold with J±n (g) instead of J(g) and λk+j(J
±
n (g)) = λk+j(Ĵ

±
n (g)) for

j = 0, 1. Let us fix 0 < g < ρ. Using (1.22)-(1.23) with J+
n instead of J , we get

λ̂l−1(J+
n ) < −2ρµk ≤ λ̂l(J+

n ) < 0 < λ̂l+1(J+
n ) ≤ 2ρµk < λ̂l+2(J+

n ), (6.17)

where l ∈ N∗ is such that λk(J+
n (g)) = λ̂l(J

+
n (g)) and due to the continuity of g → λ̂l(J

+
n (g)),

one has l = 1 + card{i ∈ N∗ : di < dk}. Similarly

λ̂l−1(J−n ) < −2ρµk ≤ λ̂l(J−n ) < 0 < λ̂l+1(J−n ) ≤ 2ρµk < λ̂l+2(J−n ). (6.18)

Thus λk+j(J
±
n (g)) = λ̂l+j(J

±
n (g)) for j = 0, 1, and

λ̂l−1(J) < −2ρµk ≤ λ̂l(J) < 0 < λ̂l+1(J) ≤ 2ρµk < λ̂l+2(J) (6.19)
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follows from (6.12). Using (6.19) we obtain (1.22)-(1.23) with λk+j(J(g)) = λ̂l+j(J(g)) for
j = 0, 1, and (6.14) ensures

λk+j(J(g)) ≤ λk+j(J
+
n (g)) ≤ −µk+jg +

∑
2≤ν≤N

c+k+j,n,νg
ν + CN |g|N+1, (6.20)

λk+j(J(g)) ≥ λk+j(J
−
n (g)) ≥ −µk+jg +

∑
2≤ν≤N

c−k+j,n,νg
ν − CN |g|N+1 (6.21)

for j = 0, 1. We observe that Proposition 5.1 applied to Ĵ+
n and Ĵ−n give

n > k + ν =⇒ c+k+j,n,ν = c−k+j,n,ν (6.22)

due to the fact that Πl(Ĵ
+
n − Ĵ−n )Πl = 0 holds if k + 1 + l < n. Therefore taking n > k +N in

(6.20)-(6.21) we obtain

λk+j(J(g)) = −µk+jg +
∑

2≤ν≤N

c+k+j,n,νg
ν +O(|g|N+1). (6.23)

Since Proposition 4.1 ensures |c+k+j,n,ν | ≤ µkρ
1−ν , we find that for every N ∈ N∗,

λk+j(J(g)) = −µk+jg +
∑

2≤ν≤N

ck+j,νg
ν +O(|g|N+1) (6.24)

holds with |ck+j,ν | ≤ µkρ
1−ν . Similar inequalities can be written when −ρ < g < 0. Thus

g → λk+j(J(g)) is real analytic, its convergence radius is greater or equal ρ and the remainder
estimates (1.25) follow as in the proof of Lemma 2.3.

6.5. End of the proof of Theorem 1.2. If ρ satisfies (1.7), then (6.10) should be replaced
by the fact that one can choose a constant C = C(ρ) large enough to ensure

i ≥ C ⇒ di ± gβi ≥ cdi (6.25)

where c = c(ρ) > 0 and g ∈ [−ρ, ρ]. It remains to fix n0 ∈ N large enough and use a similar
reasoning under the additional assumption that n ≥ n0.

7. Computations of coefficients

7.1. Introduction. To begin we recall well known situation of matrices 2 x 2.

Notation 7.1. (a) Further on we denote d0
i (g) := di + gb′i.

(b) We denote by d1
i (g), d1

i+1(g) the eigenvalues of

Ai(g) :=

(
d0
i (g) gbi(g)

gbi(g) d0
i+1(g)

)
(7.1)

(c) For t ∈ R we denote U(t) :=

(
cos t − sin t
sin t cos t

)
.

If di 6= di+1 then d0
i (g) 6= d0

i+1(g) holds for small |g| and the direct calculation gives{
d1
i (g) = d0

i (g) − ri(g),

d1
i+1(g) = d0

i+1(g) + ri(g)
(7.2)

with

ri(g) =
g2b2i

d0
i+1(g)− d0

i (g)
− g4b4i

(d0
i+1(g)− d0

i (g))3
+O(g6). (7.3)

Moreover
U(gθi(g))Ai(g)U(gθi(g))−1 = diag(d1

i (g), d1
i+1(g)) (7.4)

holds with
θi(g) :=

1

2g
arctan

( 2gbi
d0
i (g)− d0

i+1(g)

)
(7.5)
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Using arctan t = sin t+O(t3) = t+O(t3) and cos t = 1− t2

2
+O(t4), we obtain

θi(g) =
bi

d0
i (g)− d0

i+1(g)
+O(g2) (7.6)

sin(gθi(g)) =
gbi

d0
i (g)− d0

i+1(g)
+O(g3) (7.7)

cos(gθi(g)) = 1− g2b2i
2(d0

i (g)− d0
i+1(g))2

+O(g4). (7.8)

7.2. Proof of Theorem 1.5. We consider the first similarity transformation using

eigQ0 =


c −s 0 0
s c 0 0
0 0 ċ −ṡ
0 0 ṡ ċ

⊕ IV⊥1 , (7.9)

where
s(g) := sin

(
gθk−1(g))

)
), c(g) := cos

(
gθk−1(g))

)
, (7.10)

ṡ(g) := sin
(
gθk+1(g))

)
, ċ(g) := cos

(
gθk+1(g))

)
(7.11)

with θi(g) given by (7.5). The corresponding similarity transformation allows us to diagonalize
the blocks Ak−1(g) and Ak+1(g). Indeed, the direct calculation shows that the matrix J1(g) =

e−igQ0(g)J(g)eigQ0(g) equals
d0
k−2 gbk−2c −gbk−2s 0 0 0
∗ d0

k−1 − rk−1 0 gbksċ −gbksṡ 0
∗ ∗ d0

k + rk−1 gbkcċ −gbkcṡ 0
∗ ∗ ∗ d0

k+1 − rk+1 0 gbk+2ṡ
∗ ∗ ∗ ∗ d0

k+2 + rk+1 gbk+2ċ
∗ ∗ ∗ ∗ ∗ d0

k+3

 (7.12)

where the stars correspond to the symmetric entries and we have not written the terms which
are the same as in J(g). Then J1(g) = D + g(B̂1 ⊕ B̃1 +R1) holds with

gR1(g) =


0 0 −gbk−2s 0 0 0
∗ 0 0 gbksċ 0 0
∗ ∗ 0 0 −gbkcṡ 0
∗ ∗ ∗ 0 0 gbk+2ṡ
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⊕OV⊥2 (7.13)

and

gB̂1(g) =

(
d0
k + rk−1 gbkcċ
gbkcċ d0

k+1 − rk+1

)
= gB1

k(g) +O(g4) (7.14)

where B1
k(g) is given by (1.33). Indeed, if b̂1k, b

1
k, b

1
k+1 are given by (1.30)-(1.32), then

using (7.8) we find bkcċ = b̂1k + O(g3) and using (7.3) we find d0
k + rk−1 = gb1k + O(g4),

d0
k+1 − rk+1 = gb1k+1 +O(g4). Due to (7.14) the difference between eigenvalues of gB̂1(g) and
gB1

k(g) is O(g4) and Theorem 1.5 follows from (5.8) with l = 1.

(iii) Let gR1 be given by (7.13) and Q1 obtained from (3.12). Then (5.9) gives

J2 = J1 + [D, igQ1] + [g(B̂1 ⊕ B̃1 +R1), igQ1] + 1
2
[[D, igQ1], igQ1] +O(g5)

due to R1 = O(g) and Q1 = O(g). Moreover [D, igQ1] = −gR1 allows us to simplify

J2 = D + g(B̃1 ⊕ B̂1) + [g(B̂1 ⊕ B̃1), igQ1] + 1
2
[gR1, igQ1] +O(g5)
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and B̂2 − B̂1 depends only on 1
2
[gR1, igQ1] +O(g5) due to (5.10). Finally we find that

gB̂2(g) =

(
d0
k + rk−1 + pk gbkcċ

gbkcċ d0
k+1 − rk+1 + pk+1

)
+O(g5) (7.15)

holds with
pk := 〈ek, 1

2
[gR1, igQ1]ek〉 = −g2s2b2k−2/dk−2 − g2ṡ2b2k/dk+2, (7.16)

pk+1 := 〈ek+1,
1
2
[gR1, igQ1]ek+1〉 = −g2s2b2k/dk−1 − g2ṡ2b2k+1/dk+3. (7.17)

Then (5.8) ensures λk+j(J(g)) = λj,2(g) +O(g6), where {λj,2(g)}j=0,1 are the eigenvalues of
gB̂2 and using (7.15)-(7.17) we obtain λj,2(g) with the error O(g5).

7.3. Proof of Theorem 1.4. Let J(g) be as in Theorem 1.4. We apply the approach of
Section 3 in the case n̂ = 1. Consider first the case when b′i = 0 for all i. Under this assumption
we can check by induction that the functions g → 〈ei, Jl(g)ej〉 are even when i− j is even and
odd when i− j is odd. Since λk(J(g)) = 〈ei, Jl(g)ej〉+O(g2l), it is clear that g → λk(J(g)) is
even. Further on we consider a general case.

Notation 7.2. (a) We write d0
i (g) := di + gb′i and recall the assumption d0

k = 0.

(b) For l ∈ N we denote Vl := span{ek+j}−l≤j≤l and V̂ := V0 = Cek.

We begin by diagonalizing Ak−1(g) (see Notation 7.1). For this purpose we use

U(g) :=

c −s 0
s c 0
0 0 1

⊕ IV⊥1 .
with c and s given by (7.10). Then U(g)−1J(g)U(g) equals

d0
k−2 gbk−2c −gbk−2s 0
∗ d0

k−1 − rk−1 0 gbks
∗ ∗ rk−1 gbkc
∗ ∗ ∗ d0

k+1

 (7.18)

and using d0
k(g) = 0 in (7.3) we get

rk−1(g) = −
g2b2k−1

d0
k−1(g)

+
g4b4k−1

d0
k−1(g)3

+O(g6). (7.19)

The next step consists in diagonalizing the block
(
rk−1 gbkc
∗ d0

k+1

)
using

Ü(g) :=

1 0 0
0 c̈ −s̈
0 s̈ c̈

⊕ IV⊥1 (7.20)

where we denoted c̈ := cos(gθ̈), s̈ := sin(gθ̈) with

θ̈ :=
1

2g
arctan

( 2gbkc(g)

rk−1(g)− d0
k+1(g)

)
= − bk

d0
k+1(g)

+O(g2). (7.21)

Then we find that J1 := Ü−1U−1JUÜ has the form
d0
k−2 gbk−2c −gbk−2sc̈ gbk−2ss̈ 0
∗ d0

k−1 − rk−1 gbkss̈ gbksc̈ 0
∗ ∗ rk−1 − r̃k 0 gbk+1s̈
∗ ∗ ∗ d0

k+1 + r̃k gbk+1c̈
∗ ∗ ∗ ∗ d0

k+2

 (7.22)

with

r̃k(g) =
g2b2kc

2

d0
k+1 − rk−1

− g4b4kc
4

(d0
k+1 − rk−1)3

+O(g6). (7.23)
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We claim that the quantity (7.23) can be written in the form

g2b2k
d0
k+1(g)

−
g4b2kb

2
k−1

d0
k+1(g)d0

k−1(g)2
−

g4b2kb
2
k−1

d0
k+1(g)2d0

k−1(g)
− g4b4k
d0
k+1(g)3

+O(g6) (7.24)

Indeed, using (7.19) and c2 = 1− g2θ2
k−1 +O(g4), we get

c2

d0
k+1 − rk−1

=
1− g2(bk−1/d

0
k−1)2 +O(g4)

d0
k+1 + g2b2k−1/d

0
k−1 +O(g4)

=
1

d0
k+1

(
1−

(gbk−1

d0
k−1

)2
−

g2b2k−1

d0
k+1d

0
k−1

)
+O(g4)

and multiplying this expression by g2b2k we get the first three terms of (7.24).
Let us denote dk,1 := rk−1 − r̃k. Then reasoning similarly as before we can use two

rotations to diagonalize the blocks
(
d0
k−2 −gbk−2s
∗ dk,1

)
and

(
dk,1 gbk+1s̈
∗ d0

k+2

)
. This similarity

gives J2 = D + gB2 with B2 = (dk,2)⊕ B̃2 +R2 and

dk,2 = dk,1 +
g2b2k−2s

2c̈2

dk,1 − d0
k−2

−
g2b2k+1s̈

2

d0
k+2 − dk,1

+O(g6).

Using s = gθk−1 +O(g3), (7.21) and dk,1 = O(g2), we get

dk,2 = dk,1 −
g4b2k−1b

2
k−2

d0
k−1(g)2d0

k−2(g)
−

g4b2kb
2
k+1

d0
k+1(g)2d0

k+2(g)
+O(g6). (7.25)

If we express dk,1 := rk−1− r̃k using (7.19) and (7.23), we find that the quantity (7.25) gives the
right hand side of (1.28). To complete the proof it remains to observe that ||gR2(g)|| = O(g3)
ensures λk(J(g)) = dk,2(g) +O(g6) either by the usual Kato-Temple estimate or by repeating
the proof of Lemma 5.3 in this case.
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