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Abstract

Many systems have to be maintained while the underlying constraints, costs
and/or profits change over time. Although the state of a system may evolve
during time, a non-negligible transition cost is incurred for transitioning from
one state to another. In order to model such situations, we look at a recently
introduced multistage model where the input is a sequence of instances (one
for each time step), and the goal is to find a sequence of solutions (one for each
time step) that are both (i) near optimal for each time step and (ii) as stable as
possible. We propose a PTAS for the Multistage Knapsack problem. This
is the first approximation scheme for a combinatorial optimization problem
in the considered multistage setting, and its existence contrasts with the
inapproximability results for other combinatorial optimization problems that
are even polynomial-time solvable in the static case.
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1. Introduction

In a classical combinatorial optimization problem, given an instance of
the problem, we seek a feasible solution optimizing the objective function.
However, in many systems the input may change over the time and the
solution has to be adapted to the input changes. It is then necessary to
determine a tradeoff between the optimality of the solutions in each time step
and the stability/similarity of consecutive solutions. This is important since
in many applications there is a significant transition cost for changing (parts
of) a solution. Recently, Gupta et al. [2] and Eisenstat et al. [3] introduced a
multistage model in order to deal with such situations. They consider that
the input is a sequence of instances (one for each time step), and the goal
is to find a sequence of solutions (one for each time step) reaching such a
tradeoff.

Our work follows the direction proposed by Gupta et al. [2] who suggested
the study of more combinatorial optimization problems in their multistage
framework. In this paper, we focus on the multistage version of the Knapsack
problem. Consider a company owning a set N = {u1, . . . , un} of production
units. Each unit can be used or not; if ui is used, it spends an amount
wi of a given resource (energy, raw material,...), and generates a profit pi.
Given a bound W on the global amount of available resource, the static
Knapsack problem aims at determining a feasible solution that specifies
the chosen units in order to maximize the total profit under the constraint
that the total amount of the resource does not exceed the bound of W . In a
multistage setting, considering a time horizon t = 1, 2, . . . , T of, let us say, T
days, the company needs to decide a production plan for each day of the time
horizon, given that data (such as prices, level of resources,...) usually change
over time. This is a typical situation, for instance, in energy production
planning (like electricity production, where units can be nuclear reactors,
wind or water turbines,...), or in data centers (where units are machines
and the resource corresponds to the available energy). Moreover, in these
examples, there is an extra cost to turn ON or OFF a unit like in the case of
turning ON/OFF a reactor in electricity production [4], or a machine in a
data center [5]. Obviously, whenever a reactor is in the ON or OFF state, it is
beneficial to maintain it at the same state for several consecutive time steps,
in order to avoid the overhead costs of state changes. Therefore, the design
of a production plan over a given time horizon has to take into account both
the profits generated each day from the operation of the chosen units, as well
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as the potential transition profits from maintaining a unit at the same state
for consecutive days. We refer the reader interested in planning problems in
electricity production to [4].

We formalize the problem as follows. We are given a time horizon t =
1, 2, . . . , T , and a sequence of knapsack instances I1, I2, . . . , IT , one for each
time step, defined on a set of n objects. In every time step t we have to choose
a feasible set of objects St of It, which gives a knapsack profit. Taking into
account transition costs, we measure the stability/similarity of two consecutive
solutions St and St+1 by identifying the objects for which the decision, to be
picked or not, remains the same in St and St+1, giving a transition profit1.
We are asked to produce a sequence of solutions S1, S2, . . . , ST so that the
total knapsack profit plus the overall transition profit is maximized.

Our main contribution is a polynomial time approximation scheme (PTAS)
for the multistage version of the Knapsack problem. Up to the best of our
knowledge, this is the first approximation scheme for a multistage combina-
torial optimization problem and its existence contrasts with the inapprox-
imability results for other combinatorial optimization problems that are even
polynomial-time solvable in the static case (e.g. the multistage Spanning
Tree problem [2], or the multistage Bipartite Perfect Matching
problem [6]).

1.1. Problem definition

Formally, the Multistage Knapsack problem can be defined as follows.

Definition 1. In the Multistage Knapsack problem (MK) we are given:

• a time horizon T ∈ N∗, a set N = {1, 2, . . . , n} of objects;

• For any t ∈ {1, . . . , T}, any i ∈ N :

– pti the profit of taking object i at time t

– wti the weight of object i at time t

• For any t ∈ {1, . . . , T − 1}, any i ∈ N :

1One may want to consider penalties for modifying decisions. However, dealing with a
maximization problem, introducing penalties would lead to a mixed-sign objective, which
may, in turn, prevent to reach multiplicative approximation guarantees.
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– Bti ∈ R+ the bonus of the object i if we keep the same decision for
i at time t and t+ 1.

• For any t ∈ {1, . . . , T}: the capacity Ct of the knapsack at time t.

We are asked to select a subset St ⊆ N of objects at each time t so as to respect
the capacity constraint:

∑
i∈St wti ≤ Ct. To a solution S = (S1, . . . , ST ) are

associated:

• A knapsack profit
∑T

t=1

∑
i∈St pti corresponding to the sum of the profits

of the T chosen sets of objects;

• A transition profit
T−1∑
t=1

∑
i∈∆t

Bti where ∆t is the set of objects either

taken or not taken at both time steps t and t + 1 in S (formally
∆t = (St ∩ St+1) ∪ (St ∩ St+1)).

The value of the solution S is the sum of the knapsack profit and the transition
profit, to be maximized.

1.2. Related works

Multistage combinatorial optimization. A lot of optimization problems
have been considered in online or semi-online settings, where the input changes
over time and the algorithm has to modify the solution (re-optimize) by making
as few changes as possible. We refer the reader to [7, 8, 9, 10, 11, 12] and the
references therein.

Multistage optimization has been studied for fractional problems by Buch-
binder et al. [13] and Buchbinder, Chen and Naor [14]. The multistage model
considered in this article is the one studied in Eisenstat et al. [3] and Gupta
et al. [2]. Eisenstat et al. [3] studied the multistage version of facility location
problems. They proposed a logarithmic approximation algorithm. An et al.
[15] obtained constant factor approximation for some related problems. Gupta
et al. [2] studied the Multistage Maintenance Matroid problem for
both the offline and the online settings. They presented a logarithmic approx-
imation algorithm for this problem, which includes as a special case a natural
multistage version of Spanning Tree. The same paper also introduced the
study of the Multistage Minimum Perfect Matching problem. They
showed that the problem becomes hard to approximate even for a constant
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number of stages. Later, Bampis et al. [6] showed that the problem is hard
to approximate even for bipartite graphs and for the case of two time steps.
In the case where the edge costs are metric within every time step they first
proved that the problem remains APX-hard even for two time steps. They
also show that the maximization version of the problem admits a constant
factor approximation algorithm but is APX-hard. In another work [16], the
Multistage Max-Min Fair Allocation problem has been studied in
the offline and the online settings. This corresponds to a multistage variant
of the Santa Klaus problem. For the off-line setting, the authors showed
that the multistage version of the problem is much harder than the static
one. They provide constant factor approximation algorithms for the off-line
setting. Regarding the on-line setting, we refer the reader to [17] where
some approximability results are shown for a variety of subset maximization
problems in a multistage framework. Finally, in a very recent work [18],
the multistage Vertex cover problem was studied with a complexity
parameterized angle.

Knapsack variants.
Our work builds upon the Knapsack literature [19]. It is well known

that there is a simple 2-approximation algorithm as well as a fully polynomial
time (FPTAS) for the static case [20, 21, 22, 23]. There are two variants that
are of special interest for our work:

(i) The first variant is a generalization of the Knapsack problem known
as the k-Dimensional Knapsack (k −DKP ) problem:

Definition 2. In the k-dimensional Knapsack problem (k − DKP ), we
have a set N = {1, 2, . . . , n} of objects. Each object i has a profit pi and k
weights wji, j = 1, . . . , k. We are also given k capacities Cj. The goal is to
select a subset Y ⊆ N of objects such that:

• The capacity constraints are respected: for any j,
∑

i∈Y wji ≤ Cj;

• The profit
∑

i∈Y pi is maximized.

It is well known that for the usual Knapsack problem, in the continuous
relaxation (variables in [0, 1]), at most one variable is fractional. Caprara et
al. [24] showed that this can be generalized to (k −DKP ).

Let us consider the following ILP formulation (ILP − DKP ) of the
problem:
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max

∑
i∈N

piyi

s.t.

∣∣∣∣∣
∑
i∈N

wjiyi ≤ Cj ∀j ∈ {1, ..., k}

yi ∈ {0, 1} ∀i ∈ N

Theorem 1. [24] In the continuous relaxation (LP−DKP ) of (ILP−DKP )
where variables are in [0, 1], in any basic solution at most k variables are
fractional.

Note that with an easy affine transformation on variables, the same result
holds when variable yi is subject to ai ≤ yi ≤ bi instead of 0 ≤ yi ≤ 1: in any
basic solution at most k variables yi are such that ai < yi < bi.

[24] use the result of Theorem 1 to show that for any fixed constant k
(k −DKP ) admits a polynomial time approximation scheme (PTAS). Other
PTASes have been presented in [25, 26]. Korte and Schrader [27] showed that
there is no FPTAS for (k −DKP ) unless P = NP .

(ii) The second related variant is a simplified version of (k−DKP ) called
CARDINALITY(2−KP ), where the dimension is 2, all the profits are 1 and,
given a K, we are asked if there is a solution of value at least K (decision
problem). In other words, given two knapsack constraints, can we take K
objects and verify the two constraints? The following result is shown in [19].

Theorem 2. [19] CARDINALITY(2−KP ) is NP -complete.

1.3. Our contribution

As stated before, our main contribution is to propose a PTAS for the
multistage Knapsack problem. Furthermore, we prove that there is no
FPTAS for the problem even in the case where T = 2, unless P = NP . We
also give a pseudopolynomial time algorithm for the case where the number of
steps is bounded by a fixed constant and we show that otherwise the problem
remains NP-hard even in the case where all the weights, profits and capacities
are 0 or 1. The following table summarizes our main result pointing out the
impact of the number of time steps on the difficulty of the problem (“no
FPTAS” means “no FPTAS unless P=NP”).

T = 1 T fixed any T
pseudopolynomial pseudopolynomial strongly NP -hard
FPTAS PTAS PTAS
- no FPTAS no FPTAS
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We point out that the negative results (strongly NP-hardness and no
FPTAS) hold even in the case of uniform bonus when Bti = B for all i ∈ N
and all t = 1, . . . , T − 1.

2. ILP formulation

The Multistage Knapsack problem can be written as an ILP as follows.
We define Tn binary variables xti equal to 1 if i is taken at time t (i ∈ St)
and 0 otherwise. We also define (T − 1)n binary variables zti corresponding
to the transition profit of object i between time t and t+ 1. The profit is 1
if i is taken at both time steps, or taken at none, and 0 otherwise. Hence,
zti = 1− |x(t+1)i − xti|. Considering that we solve a maximization problem,
this can be linearized by the two inequalities: zti ≤ −x(t+1)i + xti + 1 and
zti ≤ x(t+1)i− xti + 1. We end up with the following ILP (called ILP −MK):



max
T∑
t=1

∑
i∈N

ptixti +
T−1∑
t=1

∑
i∈N

ztiBti

s.t.

∣∣∣∣∣∣∣∣∣∣∣

∑
i∈N

wtixti ≤ Ct ∀t ∈ {1, ..., T}

zti ≤ −x(t+1)i + xti + 1 ∀t ∈ {1, ..., T − 1},∀i ∈ N
zti ≤ x(t+1)i − xti + 1 ∀t ∈ {1, ..., T − 1},∀i ∈ N
xti ∈ {0, 1} ∀t ∈ {1, ..., T},∀i ∈ N
zti ∈ {0, 1} ∀t ∈ {1, ..., T − 1},∀i ∈ N

In devising the PTAS we will extensively use the linear relaxation (LP −
MK) of (ILP −MK) where variables xti and zti are in [0, 1].

3. A polynomial time approximation scheme

In this section we show that Multistage Knapsack admits a PTAS.
The central part of the proof is to derive a PTAS when the number of steps
is a fixed constant (Sections 3.1 and 3.2). The generalization to an arbitrary
number of steps is done in Section 3.3.

Building upon [24], our PTAS for a fixed number of time steps heavily
relies on a property of the relaxed LP-formulation of Multistage Knapsack:
we show that there are at most T 3 fractional variables in an optimal (basic)
solution of the (relaxed) Multistage Knapsack problem. Based on this
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bound, the PTAS is built from a combination of (1) bruteforce search (to find
the most profitable objects), (2) a preprocessing step and (3) a rounding of
the fractional solution of the (relaxed) LP-formulation. The preprocessing
step associated to the bound on the number of fractional variables allows to
bound the global loss of the solution built by the algorithm.

We show how to bound the number of fractional variables in Section 3.1.
We first illustrate the reasoning on the case of two time-steps, and then
present the general result. In Section 3.2 we present the PTAS for a constant
number of steps. For ease of notation, we will sometimes write a feasible
solution as S = (S1, . . . , ST ) (subsets of objects taken at each time step), or
as S = (x, z) (values of variables in (ILP −MK) or (LP −MK)).

3.1. Bounding the number of fractional objects in (LP −MK)

3.1.1. Warm-up: the case of two time-steps

We consider in this section the case of two time-steps (T = 2), and focus
on the linear relaxation (LP −MK) of (ILP −MK) with the variables xti
and zi in [0, 1] (we write zi instead of z1i for readability). We say that an
object is fractional in a solution S if x1i, x2i or zi is fractional.

Let us consider a (feasible) solution Ŝ = (x̂, ẑ) of (LP −MK), where
ẑi = 1− |x̂2i − x̂1i| (variables ẑi are set to their optimal value w.r.t. x̂).

We show the following.

Proposition 1. If Ŝ is a basic solution of (LP −MK), at most 4 objects
are fractional.

Proof. First note that since we assume ẑi = 1− |x̂1i − x̂2i|, if x̂1i and x̂2i are
both integers then ẑi is an integer. So if an object i is fractional either x̂1i or
x̂2i is fractional.

Let us denote:

• L the set of objects i such that x̂1i = x̂2i.

• P = N \ L the set of objects i such that x̂1i 6= x̂2i.

We first show Fact 1.

Fact 1. In P there is at most one object i with x̂1i fractional.
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Suppose that there are two such objects i and j. Note that since 0 <
|x̂1i− x̂2i| < 1, ẑi is fractional, and so is ẑj . Then, for a sufficiently small ε > 0,

consider the solution S1 obtained from Ŝ by transfering at time 1 an amount
ε of weight from i to j (and adjusting consequently zi and zj). Namely, in S1:

• x1
1i = x̂1i− ε

w1i
, z1

i = ẑi− di ε
w1i

, where di = 1 if x̂2i > x̂1i and di = −1 if
x̂2i < x̂1i (since i is in P x̂2i 6= x̂1i).

• x1
1j = x̂1j + ε

w1j
, z1

j = ẑi + dj
ε
w1j

, where dj = 1 if x̂2j > x̂1j and dj = −1

otherwise.

Note that (for ε sufficiently small) S1 is feasible. Indeed (1) x̂1i, x̂1j, ẑi and ẑj
are fractional (2) the weight of the knapsack at time 1 is the same in S1 and
in Ŝ (3) if x̂1i increases by a small δ, if x̂2i > x̂1i then |x̂2i − x̂i1| decreases by
δ so ẑi can increase by δ (so di = 1), and if x̂2i < x̂i1 then ẑi has to decrease
by δ (so di = −1), and similarly for x̂1j.

Similarly, let us define S2 obtained from Ŝ with the reverse transfer (from
j to i). In S2:

• x2
1i = x̂1i + ε

w1i
, z2

i = ẑi + di
ε
w1i

;

• x2
1j = x̂1j − ε

w1j
, z2

j = ẑi − dj ε
w1j

.

As previously, S2 is feasible. Then Ŝ is clearly a convex combination of S1

and S2 (with coefficient 1/2), so not a basic solution, and Fact 1 is proven.
In other words (and this interpretation will be important in the general

case), for this case we can focus on variables at time one, and interpret locally
the problem as a (classical, unidimensional) fractional knapsack problem. By
locally, we mean that if x̂1i < x̂2i then x1i must be in [0, x̂2i] (in S1, x1

1i cannot
be larger than x̂2i, otherwise the previous value of z1

i would be erroneous);
similarly if x̂1i > x̂2i then x1i must be in [x̂2i, 1]. The profit associated to
object i is p1i +diB1i (if xi1 increases/decreases by ε, then the knapsack profit
increases/decreases by p1iε, and the transition profit increases/decreases by
εdiB1i, as explained above). Then we have at most one fractional variable, as
in any fractional knapsack problem.

In P there is at most one object i with x̂1i fractional. Similarly there is at
most one object k with x̂2k fractional. In P , for all but at most two objects,
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both x̂1i and x̂2i, and thus ẑi, are integers.

Note that this argument would not hold for variables in L. Indeed if
x̂1i = x̂2i, then ẑi = 1, and the transition profit decreases in both cases: when
x̂1i increases by δ > 0 and when it decreases by δ. So, we cannot express Ŝ
as a convex combination of S1 and S2 as previously.

However, let us consider the following linear program (2−DKP ) obtained
by fixing variables in P to their values in Ŝ, computing the remaining capacities
C ′t = Ct −

∑
j∈P wtjx̂tj, and “imposing” x1i = x2i:

max
∑
i∈L

(p1i + p2i)yi +
∑
i∈L

B1i∑
i∈L

w1iyi ≤ C ′1∑
i∈L

w2iyi ≤ C ′2

yi ∈ [0, 1] ∀i ∈ L

Clearly, the restriction of Ŝ to variables in L is a solution of (2−DKP ).
Formally, let ŜL = (ŷj, j ∈ L) defined as ŷj = x̂1j . ŜL is feasible for (2−DKP ).

Let us show that it is basic: suppose that this is not the case, i.e., ŜL =
S1
L+S2

L

2
,

with S1
L = (y1

i , i ∈ L) 6= S2
L two feasible solutions of (2−DKP ). Then consider

the solution S1 = (x1, y1) of (LP −MK) defined as:

• If i ∈ L then x1
1i = x1

2i = y1
i , and z1

1i = 1 = ẑ1i.

• Otherwise (for i in P ) S1 is the same as Ŝ.

S1 is clearly a feasible solution of Multistage Knapsack. If we do the
same for S2

L, we get a (different) feasible solution S2, and Ŝ = S1+S2

2
, so Ŝ is

not basic, a contradiction.
By the result of [24], ŜL has at most 2 fractional variables. Then, in L,

for all, but at most 2, variables both x̂1i, x̂2i and ẑi are integers.

3.1.2. General case

The case of 2 time steps suggests to bound the number of fractional objects
by considering 3 cases:

• Objects with x̂1i fractional and x̂1i 6= x̂2i. As explained in the proof of
Proposition 1, this can be seen locally (as long as x1i does not reach
x̂2i) as a knapsack problem from which we can conclude that there is at
most 1 such fractional object.
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• Similarly, objects with x̂2i fractional and x̂1i 6= x̂2i.

• Objects with x̂1i = x̂2i fractional. As explained in the proof of Proposi-
tion 1, this can be seen as a (2−DKP ) from which we can conclude
that there are at most 2 such fractional objects.

For larger T , we may have different situations. Suppose for instance
that we have 5 time steps, and a solution (x, z) with an object i such that:
x1i < x2i = x3i = x4i < x5i. So we have xti fractional and constant for
t = 2, 3, 4, and different from x1i and x5i. The idea is to say that we cannot
have many objects like this (in a basic solution), by interpreting these objects
on time steps 3, 4, 5 as a basic optimal solution of a (3−DKP ) (locally, i.e.
with a variable yi such that x1i ≤ yi ≤ x5i).

Then, roughly speaking, the idea is to show that for any pair of time
steps t0 ≤ t1, we can bound the number of objects which are fractional and
constant on this time interval [t0, t1] (but not at time t0− 1 and t1 + 1). Then
a sum on all the possible choices of (t0, t1) gives the global upper bound.

Let us state this rough idea formally. In all this section, we consider a
(feasible) solution Ŝ = (x̂, ẑ) of (LP −MK), where ẑti = 1 − |x̂(t+1)i − x̂ti|
(variables ẑti are set to their optimal value w.r.t. x̂).

In such a solution Ŝ = (x̂, ẑ), let us define as previously an object as
fractional if at least one variable x̂ti or ẑti is fractional. Our goal is to show
the following result.

Theorem 3. If Ŝ = (x̂, ẑ) is a basic solution of (LP −MK), it has at most
T 3 fractional objects.

Before proving the theorem, let us introduce some definitions and show
some lemmas. Let t0, t1 be two time steps with 1 ≤ t0 ≤ t1 ≤ T .

Definition 3. The set F (t0, t1) associated to Ŝ = (x̂, ẑ) is the set of objects
i (called fractional w.r.t. (t0, t1)) such that

• 0 < x̂t0i = x̂(t0+1)i = · · · = x̂t1i < 1;

• Either t0 = 1 or x̂(t0−1)i 6= x̂t0i;

• Either t1 = T or x̂(t1+1)i 6= x̂t1i.

In other words, we have x̂ti fractional and constant on [t0, t1], and [t0, t1]
is maximal w.r.t. this property.
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For t0 ≤ t ≤ t1, we note C ′t the remaining capacity of knapsack at time t
considering that variables outside F (t0, t1) are fixed (to their value in x̂):

C ′t = Ct −
∑

i6∈F (t0,t1)

wtix̂ti.

As previously, we will see xt0i, . . . , xt1i as a single variable yi. We have
to express the fact that this variable yi cannot “cross” the values x̂(t0−1)i (if
t0 > 1) and x̂(t1+1)i (if t1 < T ), so that everything remains locally (in this
range) linear. So we define the lower and upper bounds ai, bi induced by
Definition 3 as:

• Initialize ai ← 0. If x̂(t0−1)i < x̂t0i then do ai ← x̂(t0−1)i. If x̂(t1+1)i < x̂t1i
then do ai ← max(ai, x̂(t1+1)i).

• Similarly, initialize bi ← 1. If x̂(t0−1)i > x̂t0i then do bi ← x̂(t0−1)i. If
x̂(t1+1)i > x̂t1i then do bi ← min(bi, x̂(t1+1)i).

Note that with this definition ai < x̂t0,i < bi. This allows us to define the
polyhedron P (t0, t1) as the set of y = (yi : i ∈ F (t0, t1)) such that{ ∑

i∈F (t0,t1)

wtiyi ≤ C ′t ∀t ∈ {t0, ..., t1}

ai ≤ yi ≤ bi ∀i ∈ F (t0, t1)

Definition 4. The solution associated to Ŝ = (x̂, ẑ) is ŷ defined as ŷi = x̂t0i
for i ∈ F (t0, t1).

Lemma 1. If Ŝ = (x̂, ẑ) is a basic solution, then the solution ŷ associated to
(x̂, ẑ) is feasible of P (t0, t1) and basic.

Proof. Since (x̂, ẑ) is feasible, then ŷ respects the capacity constraints (re-
maining capacity), and ai < ŷi = x̂t0i < bi so ŷ is feasible.

Suppose now that ŷ = y1+y2

2
for two feasible solutions y1 6= y2 of P (t0, t1).

We associate to y1 a feasible solution S1 = (x1, z1) as follows.
We fix x1

ti = x̂i for t 6∈ [t0, t1], and x1
ti = y1

i for t ∈ [t0, t1]. We fix variables
z1
it to their maximal values, i.e. z1

ti = 1− |x1
(t+1)i − x1

ti|. This way, we get a

feasible solution (x1, z1). Note that:

• z1
ti = ẑti for t 6∈ [t0 − 1, t1], since coresponding variables x are the same

in S1 and Ŝ;
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• z1
ti = 1 = ẑti for t ∈ [t0, t1 − 1], since variables x are constant on the

interval [t0, t1].

Then, for variables z, the only modifications between z1 and ẑ concerns the
“boundary” variables z1

ti for t = t0 − 1 and t = t1.
We build this way two solutions S1 = (x1, z1) and S2 = (x2, z2) of

(LP −MK) corresponding to y1 and y2. By construction, S1 and S2 are
feasible. They are also different provided that y1 and y2 are different. It
remains to prove that Ŝ is the half sum of S1 and S2.

Let us first consider variables x:

• If t 6∈ [t0, t1], x1
ti = x2

ti = x̂ti so x̂ti =
x1ti+x

2
ti

2
.

• If t ∈ [t0, t1], x1
ti = y1

i and x2
ti = y2

t , so
x1ti+x

2
ti

2
=

y1i+y2i
2

= ŷi = x̂ti.

Now let us look at variables z: first, for t 6∈ {t0 − 1, t1}, z1
ti = z2

ti = ẑti so

ẑti =
z1ti+z

2
ti

2
. The last and main part concerns the last 2 variables z(t0−1)i (if

t0 > 1) and zt1i (if t1 < T ).
We have z1

(t0−1)i = 1− |x1
t0i
− x1

(t0−1)i| = 1− |x1
t0i
− x̂(t0−1)i| and ẑ(t0−1)i =

1−|x̂t0i−x̂(t0−1)i|. The crucial point is to observe that thanks to the constraint
ai ≤ yi ≤ bi, and by definition of ai and bi, x

1
t0,i

, x2
t0,i

and x̂t0,i are either all
greater than (or equal to) x̂(t0−1)i, or all lower than (or equal to) x̂(t0−1)i.

Suppose first that they are all greater than (or equal to) x̂(t0−1)i. Then:

z1
(t0−1)i − ẑ(t0−1)i = |x̂t0,i − x̂t0−1,i| − |x1

t0,i
− x̂t0−1,i| = x̂t0i − x1

t0i
= ŷi − y1

i .

Similarly, z2
(t0−1)i − ẑ(t0−1)i = ŷi − y2

i . So

z1
(t0−1)i + z2

(t0−1)i

2
=

2ẑ(t0−1)i + 2ŷi − y1
i − y2

i

2
= ẑ(t0−1)i.

Now suppose that they are all lower than (or equal to) x̂t0−1,i. Then:

z1
(t0−1)i − ẑ(t0−1)i = |x̂t0i − x̂(t0−1)i| − |x1

t0i
− x̂(t0−1)i| = x1

t0i
− x̂t0i = y1

i − ŷi.

Similarly, z2
(t0−1)i − ẑ(t0−1)i = y2

i − ŷi. So

z1
(t0−1)i + z2

(t0−1)i

2
=

2ẑ(t0−1)i − 2ŷi + y1
i + y2

i

2
= ẑ(t0−1)i.

13



Then, in both cases, ẑ(t0−1)i =
z1
(t0−1)i

+z2
(t0−1)i

2
.

With the very same arguments we can show that
z1t1i

+z2t1i
2

= ẑt1i.

Then, Ŝ is the half sum of S1 and S2, contradiction with the fact that Ŝ
is basic.

Now we can bound the number of fractional objects w.r.t. (t0, t1).

Lemma 2. |F (t0, t1)| ≤ t1 + 1− t0.

Proof. P (t0, t1) is a polyhedron corresponding to a linear relaxation of a
k − DLP , with k = t1 + 1 − t0. Since ŷ is basic, using Theorem 1 (and
the note after) there are at most k = t1 + 1 − t0 variables ŷi such that
ai < ŷi < bi. But by definition of F (t0, t1), for all i ∈ F (t0, t1) ai < ŷi < bi.
Then |F (t0, t1)| ≤ t1 + 1− t0.

Now we can easily prove Theorem 3.

Proof. First note that if x̂ti and x̂(t+1)i are integral, then so is ẑti. Then, if
an object i is fractional at least one x̂ti is fractional, and so i will appear in
(at least) one set F (t0, t1).

We consider all pairs (t0, t1) with 1 ≤ t0 ≤ t1 ≤ T . Thanks to Lemma 2,
|F (t0, t1)| ≤ t1 + 1− t0. So, the total number of fractional objects is at most:

NT =
T∑

t0=1

T∑
t1=t0

(t1 + 1− t0) ≤ T 3.

Indeed, there are less than T 2 choices for (t0, t1) and at most T fractional
objects for each choice.

Note that with standard calculation we get NT = T 3+3T 2+2T
6

, so for T = 2
time steps N2 = 4: we have at most 4 fractional objects, the same bound as
in Proposition 1.

3.2. A PTAS for a constant number of time steps

Now we can describe the PTAS. Informally, the algorithm first guesses
the ` objects with the maximum reward in an optimal solution (where ` is
defined as a function of ε and T ), and then finds a solution on the remaining
instance using the relaxation of the LP. The fact that the number of fractional
objects is small allows to bound the error made by the algorithm.
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For a solution S (either fractional or integral) we define gi(S) as the reward
of object i in solution S: gi(S) =

∑T
t=1 ptixti +

∑T−1
t=1 ztiBti. The value of a

solution S is g(S) =
∑

i∈N gi(S).
Consider the algorithm ALP which, on an instance (ILP − MK) of

Multistage Knapsack:

• Finds an optimal (basic) solution Sr = (xr, zr) of the relaxation (LP −
MK) of (ILP −MK);

• Takes at step t an object i if and only if xrti = 1.

Clearly, ALP outputs a feasible solution, the value of which verifies:

g(ALP ) ≥ g(Sr)−
∑
i∈F

gi(S
r). (1)

where F is the set of fractional objects in Sr. Indeed, for each integral (i.e.,
not fractional) object the reward is the same in both solutions.

Now we can describe the algorithm Algorithm PTASConstantMK , which
takes as input an instance of Multistage Knapsack and an ε > 0.

Algorithm PTASConstantMK

1. Let ` := min
{⌈

(T+1)T 3

ε

⌉
, n
}

.

2. For all X ⊆ N such that |X| = `, ∀X1 ⊆ X, ...,∀XT ⊆ X:
If for all t = 1, . . . , T wt(Xt) =

∑
j∈Xt

wtj ≤ Ct, then:

• Compute the rewards of object i ∈ X in the solution (X1, . . . , XT ),
and find the smallest one, say k, with reward gk.

• On the subinstance of objects Y = N \X:

– For all i ∈ Y , for all t ∈ {1, . . . , T}: if pti > gk then set xti = 0.

– apply ALP on the subinstance of objects Y , with the remaining
capacity C ′t = Ct − wt(Xt), where some variables xti are set
to 0 as explained in the previous step.

• Let (Y1, ..., YT ) be the sets of objects taken at time 1, . . . , T by
ALP . Consider the solution (X1 ∪ Y1, ..., XT ∪ YT ).

3. Output the best solution computed.
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Theorem 4. The algorithm PTASConstantMK is a (1 − ε)-approximation

algorithm running in time O
(
nO(T 5/ε)

)
.

Proof. First, there are O(n`) choices for X; for each X there are 2` choices
for each Xt, so in all there are O(n`2`T ) choices for (X1, . . . , XT ). For each
choice (X1, . . . , Xt), we compute the reward of elements, and then apply ALP .
Since ` ≤ dT (T + 1)3/εe, the running time follows.

Now let us show the claimed approximation ratio. Consider an opti-
mal solution S∗, and suppose wlog that gi(S

∗) are in non increasing order.
Consider the iteration of the algorithm where X = {1, 2, . . . , `}. At this
iteration, consider the choice (X1, . . . , XT ) where Xt is exactly the subset
of objects in X taken by S∗ at time t (for t = 1, . . . , T ). The solution S
computed by the algorithm at this iteration (with X and (X1, . . . , XT )) is
S = (X1 ∪ Y1, . . . , XT ∪ YT ) where (Y1, . . . , YT ) is the solution output by ALP

on the subinstance of objects Y = N \X, where xti is set to 0 if pti > gk.

Note that since we consider the iteration where X corresponds to the `
objects of largest reward in the optimal solution, we do know that for an
object i > `, if pti > gk then the optimal solution does not take object i at
time t (it would have a reward greater than gk), so we can safely fix this
variable to 0. The idea behind putting these variables xti to 0 is to prevent
the relaxed solution to take fractional objects with very large profits. These
objects could indeed induce a very high loss when rounding the fractional
solution to an integral one as done by ALP .
By doing this, the number of fractional objects (i.e., objects in F ) does not
increase. Indeed, if we put a variable xti at 0, it is not fractional so nothing
changes in the proof of Theorem 3.

The value of S∗ is g(S∗) =
∑

i∈X gi(S
∗)+
∑

i∈Y gi(S
∗). Thus, by equation 1,

we have:

g(S) ≥
∑
i∈X

gi(S
∗) +

∑
i∈Y

gi(S
r)−

∑
i∈F

gi(S
r)

≥
∑
i∈X

gi(S
∗) +

∑
i∈Y

gi(S
∗)−

∑
i∈F

gi(S
r),

where F is the set of fractional objects in the optimal fractional solution of
the relaxation of the LP on Y , where xti is set to 0 if pti > gk.
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Each object of F has a profit at most gk at any time steps and a transition
profit at most

∑T−1
t=1 Bti, so

∀i ∈ F gi(S
r) ≤ Tgk +

T−1∑
t=1

Bti.

Now, note that in an optimal solution each object has a reward at least∑T−1
t=1 Bti (otherwise it simply never takes this object), so for all i ∈ F

gk ≥ gi ≥
∑T−1

t=1 Bti. So we have :

∀i ∈ F gi(S
r) ≤ (T + 1)gk

Since gi(S
∗) are in non increasing order, we have gk = g`(S

∗) ≤
∑
i∈X gi(S

∗)

`
.

So for all objects i in F , gi(S
r) ≤ (T+1)

∑
i∈X gi(S

∗)

`
. By Theorem 3, there are

at most T 3 of them, thus :

g(S) ≥
∑
i∈X

gi(S
∗) +

∑
i∈Y

gi(S
∗)−

∑
i∈F

gi(S
r)

≥
∑
i∈X

gi(S
∗) +

∑
i∈Y

gi(S
∗)− (T + 1)T 3

`

∑
i∈X

gi(S
∗)

≥ (1− ε)
∑
i∈X

gi(S
∗) +

∑
i∈Y

gi(S
∗) ≥ (1− ε)g(S∗).

By Theorem 4, for any fixed number of time steps T , Multistage
Knapsack admits a PTAS.

3.3. Generalization to an arbitrary number of time steps

We now devise a PTAS for the general problem, for an arbitrary (not
constant) number of steps. We actually show how to get such a PTAS
provided that we have a PTAS for (any) constant number of time steps. Let
Aε,T0 be an algorithm which, given an instance of Multistage Knapsack
with at most T0 time steps, outputs a (1− ε)-approximate solution in time
O(nf(ε,T0)) for some function f .

The underlying idea is to compute (nearly) optimal solutions on subin-
stances of bounded sizes, and then to combine them in such a way that at
most a small fraction of the optimal value is lost.
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Let us first give a rough idea of our algorithm PTASMK .
Given an ε > 0, let ε′ = ε/2 and T0 = d 1

ε′
e. We construct a set of solutions

S1, . . . , ST0 in the following way:
In order to construct S1, we partition the time horizon 1, . . . , T into d T

T0
e

consecutive intervals. Every such interval has length T0, except possibly the
last interval that may have a smaller length. We apply Aε,T0 at every interval
in this partition. S1 is then just the concatenation of the partial solutions
computed for each interval.

The partition on which it is based the construction of the solution Si,
1 < i ≤ T0, is made in a similar way. The only difference is that the first
interval of the partition of the time horizon 1, . . . , T goes from time 1 to
time i− 1. For the remaining part of the time horizon, i.e. for i, . . . T , the
partition is made as previously, i.e. starting at time step i, every interval
will have a length of T0, except possibly the last one, whose length may be
smaller. Once the partition is operated, we apply Aε,T0 to every interval of the
partition. Si, 1 < i ≤ T0, is then defined as the concatenation of the partial
solutions computed on each interval. Among the T0 solutions S1, . . . , ST0 , the
algorithm chooses the best solution.

The construction is illustrated on Figure 1, with 10 time steps and T0 = 3.
The first solution S1 is built by applying 4 times Aε,T0 , on the subinstances
corresponding to time steps {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, and {10}. The solution
S2 is built by applying 4 times Aε,T0 , on the subinstances corresponding to
time steps {1}, {2, 3, 4}, {5, 6, 7}, and {8, 9, 10}.

Figure 1: The three solutions for T0 = 3 and T = 10.

More formally, given an ε > 0, the algorithm PTASMK works as follows.

• Let ε′ = ε/2 and T0 =
⌈

1
ε′

⌉
. Let It = [t, . . . , t + T0 − 1] ∩ [1, . . . , T ] be
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the set of (at most) T0 consecutive time steps starting at t. We consider
It for any t for which it is non empty (so t ∈ [−T0 + 2, . . . , T ]).

• For t ∈ {1, . . . , T0}:

– Apply Aε′,T0 on all intervals It′ with t′ ≡ t (mod T0). Note that
each time step belongs to exactly one of such intervals.

– Define the solution St built from the partial solutions given by the
applications of Aε′,T0 .

• Choose the best solution S among the T0 solutions S1, . . . , ST0 .

Theorem 5. The algorithm PTASMK is a polynomial time approximation
scheme.

Proof. The algorithm calls the Aε′,T0 algorithm dT/T0e times for each of the

T0 generated solutions. Yet, the running time of Aε′,T0 is nf( 1
ε′ ,T0) = nf( 2

ε
,d 2
ε
e),

i.e a polynomial time for any fixed ε. So, the running time of the algorithm
for any T is

T0 ×
⌈
T
T0

⌉
nf( 2

ε
, 2
ε
) = O(Tnf( 2

ε
, 2
ε
)), a polynomial time for any fixed ε.

Each solution St of the T0 generated solutions may loose some bonus
between the last time step of one of its intervals It+kT0 and the first time step
of its next interval It+(k+1)T0 (in Figure 1 for instance, S1 misses the bonuses
between steps 3 and 4, 6 and 7, and 9 and 10). Let loss(St) be this loss with
respect to some optimal solution S∗. Since we apply Aε′,T0 to build solutions,
we get that the value g(St) of St is such that:

g(St) ≥ (1− ε′)g(S∗)− loss(St).

Since the output solution S is the best among the solutions St, by summing
up the previous inequality for t = 1, . . . , T0 we get:

g(S) ≥ (1− ε′)g(S∗)−
∑T

t=1 loss(S
t)

T0

.

Now, by construction the bonus between steps j and j + 1 appears in the
loss of exactly one St (see Figure 1). So the total loss of the T0 solutions is
the global transition bonus of S∗, so at most g(S∗). Hence:
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g(S) ≥ (1− ε′)g(S∗)− g(S∗)

T0

≥ (1− 2ε′)g(S∗) = (1− ε)g(S∗).

4. Pseudo-polynomiality and hardness results

We complement the previous result on approximation scheme by showing
the following results for Multistage Knapsack:

• First, it does not admit an FPTAS (unless P = NP ), even if there are
only two time steps (Section 4.1) and the bonus is uniform (Bti = B
for all i, all t);

• Second, the problem is pseudo-polynomial if the number of time steps T
is a fixed constant (Section 4.2) but is strongly NP -hard in the general
case even in the case of uniform bonus (Section 4.3).

4.1. No FPTAS

Theorem 6. There is no FPTAS for Multistage Knapsack unless P =
NP , even if there are only two time steps and the bonus is uniform.

Proof. We prove the result by a reduction from CARDINALITY(2−KP ),
known to be NP -complete (Theorem 2)

For an instance I of CARDINALITY(2−KP ), we consider the following
instance I ′ of Multistage Knapsack:

• There are T = 2 time steps, and the same set of objects N = {1, 2, ..., n}
as in I.

• The weights w1i and w2i are the same as in I, for all i ∈ N .

• p1i = p2i = 1 for all i ∈ N .

• B1i = 2 for all i ∈ N .
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We show that the answer to I is Yes (we can find K objects fulfilling
the 2 knapsack constraints) if and only if there is a solution of value at least
2K + 2n for the instance I ′ of MK.

If we have a set A of K objects for I, then we simply take these objects
at both time steps in I ′. This is feasible, the knapsack revenue is 2K and the
transition revenue is 2n.

Conversely, consider an optimal solution of value at least 2K + 2n in I ′.
In an optimal solution, we necessarily have x1j = x2j , i.e an object is taken at
the time 1 if and only if it is taken at the time 2. Indeed, assume that there is
one i ∈ N such that x1i 6= x2i, then consider the solution where x1i = x2i = 0.
This is still feasible; the knapsack revenue reduces by 1 but the transition
revenue increases by 2, contradiction. Thus the same set of objects A is taken
at both time steps. Since the value of the solution is at least 2K + 2n, the
size of A is at least K. Hence the answer to I is Yes.

Note that in I ′ the optimal value is at most 4n. We produce in this
reduction polynomially bounded instances of Multistage Knapsack (with
only two time steps), so the problem does not admit an FPTAS. Indeed,
suppose that there is an FPTAS producing a (1− ε)-approximation in time
p(1/ε, n), for some polynomial p. Let ε = 1

4n+1
. If we apply the FPTAS with

this value of ε on I ′ we get a solution S of value at least (1− ε)OPT (I ′) ≥
OPT (I ′) − OPT (I′)

4n+1
> OPT (I ′) − 1. Yet all the possible values are integers

so S is optimal. The running time is polynomial in n, impossible unless
P = NP .

So, if P 6= NP , the problem does not admit an FPTAS even if only the
weight constraint is allowed to change over time. We note that, in constrast,
if both the profits and the weight constraints are the same over time, i.e.,
pti = pi, wti = wi and Ct = C, then the multistage problem reduces to
the classical knapsack and then admits an FPTAS. Indeed, we only have
to compute a (1 + ε) solution for one stage (all stages are the same) using
an FPTAS algorithm for the classical knapsack problem, and replicate it all
along the process - thus getting both full bonus and (1 + ε)-approximate
profit. The existence of an FPTAS in the remaining case where the weight
constraints are the same but the profits and/or bonuses may vary over time
is left as an open question.
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4.2. Pseudo-polynomiality for a constant number of time steps

We show here that the pseudo-polynomiality of the Knapsack problem
generalizes to Multistage Knapsack when the number of time steps is
constant. More precisely, with a standard dynamic programming procedure,
we have the following.

Theorem 7. Multistage Knapsack is solvable in time O(T (2Cmax+2)Tn)
where Cmax = max{Ci, i = 1, . . . , T}.

Proof. For any T -tuple (c1, . . . , cT ) where 0 ≤ ci ≤ Ci, and any s ∈ {0, . . . , n},
we define α(c1, . . . , cT , s) to be the best value of a solution S = (S1, . . . , ST )
such that:

• The weight of knapsack at time t is at most ct: for any t,
∑

i∈St wti ≤ ci;

• The solution uses only objects among the first s: for any t, St ⊆
{1, . . . , s}.

The optimal value of Multistage Knapsack is then α(C1, . . . , CT , n). We
compute α by increasing values of s. For s = 0, we cannot take any object so
α(c1, . . . , cT , 0) = 0.

Take now s ≥ 1. To compute α(c1, . . . , cT , s), we simply consider all the 2T

possibilities for taking or not object s in the T time steps. Let A ⊆ {1, . . . , T}
be a subset of time steps. If we take object s at time steps in A (and only
there), we first check if A is a valid choice, i.e., wts ≤ ct for any t ∈ A; then
we can compute in O(T ) the corresponding reward rs(A) (

∑
t∈A pts plus the

transition bonus). We have:

α(c1, . . . , cT , s) =

max{rs(A) + α(c1 − w1s, . . . , cT − wTs, s− 1) : A ⊆ {1, . . . , T} valid}.

The running time to compute one value of α is O(T2T ). There are
O(nΠT

t=1(Ci + 1)) = O(n(Cmax + 1)T ) values to compute, so the running time
follows. A standard backward procedure allows to recovering the solution.

4.3. Strongly NP -hardness

Definition 5. Binary Multistage Knapsack is the sub-problem of the
Multistage Knapsack where all the weights, profits and capacities are all
equal to 0 or 1.
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For the usual Knapsack problem, the binary case corresponds to a trivial
problem. For the multistage case, we have the following:

Theorem 8. Binary Multistage Knapsack is NP -hard, even in the
case of uniform bonus.

Proof. We prove the result by a reduction from the Independent Set
problem where, given a graph G and an integer K, we are asked if there
exists a subset of K pairwise non adjacent vertices (called an independent
set). This problem is well known to be NP -hard, see [28].

Let (G,K) be an instance of the Independent Set problem, with
G = (V,E), V = {v1, . . . , vn} and E = {e1, . . . , em}. We build the following
instance I ′ of Binary Multistage Knapsack:

• There are n objects {1, 2 . . . , n}, one object per vertex;

• There are T = m time steps: each edge (vi, vj) in E corresponds to one
time step;

• At the time step corresponding to edge (vi, vj): objects i and j have
weight 1, while the others have weight 0, all objects have profit 1, and
the capacity constraint is 1;

• The transition profit is bti = B = 2nm for all i, t.

We claim that there is an independent set of size (at least) K if and only
if there is a solution for Binary Multistage Knapsack of value (at least)
n(m− 1)B +mK.

Suppose first that there is an independent set V ′ of size at least K. We take
the K objects corresponding to V ′ at all time steps. This is feasible since we
cannot take 2 objects corresponding to one edge. The built solution sequence
has knapsack profit mK and transition profit n(m− 1)B (no modification).

Conversely, take a solution of Binary Multistage Knapsack of value
at least n(m− 1)B +mK. Since B = 2nm, there must be no modification of
the knapsack over the time. Indeed, otherwise, the transition profit would
be at most n(m − 1)B − B, while the knapsack profit is at most mn, so
the value would be less than n(m− 1)B. So we consider the set of vertices
corresponding to this knapsack. Thanks to the value of the knapsack, it has
size at least K. Thanks to the capacity constraints of the bags, this is an
independent set.
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SinceB is polynomially bounded in the proof, this shows that Multistage
Knapsack is strongly NP -hard.
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