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ACTA ARITHMETICA
* (201*)

The mantissa distribution of the primorial numbers

by

Bruno Massé and Dominique Schneider (Calais and Lille)

1. Introduction. Fix a numeration base b and define the mantissa of the
positive real number x as the unique number Mb(x) in [1, b[ such that x =
Mb(x)bk for some integer k. We will use the following notations: log is the
natural logarithm, logb is the logarithm in base b, pn is the nth prime number
and Pn is the product of the first n prime numbers (Pn is sometimes denoted
pn#). We are interested in the distribution of the sequence (Mb(Pn))n and,
secondarily, of some sequences defined in a like manner.

1.1. Benford sequences. Benford’s law in base b is the probability
measure µb on [1, b[ defined by

µb([1, t[) = logb t (1 ≤ t < b).

When un is the nth Fibonacci number or un = n
n, un = n!, un = a

n

and un = a
pn (with logb a irrational), the sequence (un)n is known to have

a mantissa distributed following Benford’s law in the sense of the natural
density [1, 5, 11, 12]. That is,

(1.1) lim
N→∞

1

N

N�

n=1

1[1,t[(Mb(un)) = logb t (1 ≤ t < b).

The sequences (un)n satisfying (1.1) will be called natural-Benford. In partic-
ular, about 30.1 percent of the terms of a natural-Benford sequence have first
digit 1, in the sense of (1.1), when b = 10. This kind of property is known
as the first digit phenomenon and holds, more or less for many real-life data
sets.

The sequences (n)n and (pn)n are considered in particular in [2], [4], [5],
[6], [17] and [19]. They are not natural-Benford and their mantissa does not
admit any distribution in the sense of the natural density. However, they
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exhibit Benford behavior in a weaker sense: if un = n or un = pn, then

lim
N→∞

1

logN

N�

n=1

1

n
1[1,t[(Mb(un)) = logb t (1 ≤ t < b).

Such sequences (un)n will be called log-Benford.
The sequence (log n)n is neither natural-Benford nor log-Benford [8]. But

it can be called loglog-Benford because

lim
N→∞

1

log logN

N�

n=2

1

n log n
1[1,t[(Mb(log n)) = logb t (1 ≤ t < b).

All the natural-Benford sequences are log-Benford and all the log-Benford
sequences are loglog-Benford. The converses are false [8].

More generally, let (wn)n be a sequence of positive real numbers summing
to infinity and, for each N ≥ 1, let WN = w1 + · · ·+wN . The wn-density of
a set ∆ of positive integers is the number

lim
N→∞

1

WN

N�

n=1

wn 1∆(n)

provided that it exists. This is the limit of the weighted frequency of the
elements of ∆ among the positive integers. We shall say that the sequence
(un)n is Benford in the sense of the wn-density when, for all t ∈ [1, b[, the set
∆ = {n : Mb(un) < t} has wn-density logb t. See [8] for a general treatment
of this kind of densities and their connection with Benford sequences.

As pointed out by an anonymous referee, many references on Benford’s
law and special sequences are available in [3] (Schatte’s contributions should
be mentioned), and [6], [17], [16] and [10] contain quantitative theorems, with
respect to weighted means, closely related to those featuring in the present
paper.

1.2. Content. In Section 2, we present some useful properties of the
theory of uniform distribution. In particular, we pay a lot of attention to
van der Corput’s Difference Theorem and to some of its generalizations.

In Section 3 we show that the sequence (Pn)n of primorial numbers is
natural-Benford (while (pn)n is not). We provide an estimate of the conver-
gence rate in (1.1) depending only on the numeration base b. This is done
by proving the uniform distribution of (aϑ(pn))n, where ϑ denotes the first
Chebyshev function and a any nonzero real, with convergence rate depending
only on a.

In order to illustrate by a second example the utility of van der Corput’s
methods, we provide in Section 4 a brief discussion of the sequence (log 2×
· · · × log n)n. We show that it is log-Benford (while (log n)n is not).
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2. Preliminaries. We collect here the main tools we use. They are all
connected with the theory of uniform distribution modulo 1. Most of them
are known results.

The fractional part of a real number x will be denoted by {x}. For every
real λ, we set eλ(x) = exp(2iπλx) with i

2 = −1. All along this section,
(wn)n is a sequence of positive numbers summing to infinity. Recall that
WN = w1 + · · ·+ wN .

2.1. Basic properties. A sequence (xn)n of real numbers is said to be
uniformly distributed modulo 1 (u.d. mod 1) in the sense of the wn-density
when, for all t ∈ [0, 1[,

lim
N→∞

1

WN

N�

n=1

wn1[0,t[({xn}) = t.

Due to Dini’s Theorem, this is equivalent to

lim
N→∞

1

WN

sup
t∈[0,1[

���
N�

n=1

wn1[0,t[({xn})− t

��� = 0.

The simple fact that logb x and logb(Mb(x)) are equal modulo 1 yields the
following.

Lemma 2.1. A sequence (un)n of positive numbers is Benford in the sense
of the wn-density if and only if (logb un)n is u.d. mod 1 in the sense of the
same wn-density.

The next statement is known as the Weyl Criterion. A simple proof in the
case wn = 1 is available in [7, p. 7]. The proof in the general case proceeds
along the same lines.

Lemma 2.2. A sequence (xn)n of real numbers is u.d. mod 1 in the sense
of the wn-density if and only if for all integers k �= 0,

lim
N→∞

1

WN

N�

n=1

wnek(xn) = 0.

As a direct consequence of this lemma, if a sequence (un)n of positive
numbers is Benford in the sense of the wn-density, then so is (λumn )n for all
integer m �= 0 and positive λ.

Lemma 2.3 is elementary but crucial and we did not find any reference
for it.

Lemma 2.3. Let (an)n and (bn)n be two bounded equivalent sequences of
complex numbers, and let (w�

n)n be a sequence of positive numbers summing
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to infinity and equivalent to (wn)n. Set W
�
N

= w
�
1 + · · · + w

�
N

(N ≥ 1).
Then

lim
N→∞

����
1

WN

N�

n=1

wnan − 1

W
�
N

N�

n=1

w
�
nbn

���� = 0.

Proof. Set bn = an+anεn and w
�
n = wn+wnε

�
n with limn εn = limn ε

�
n=0.

Then, for all N ≥ 1,
����

1

WN

N�

n=1

wnan − 1

W
�
N

N�

n=1

w
�
nbn

���� ≤
����
W

�
N
−WN

W
�
N

1

WN

N�

n=1

wnan

����

+

����
1

W
�
N

N�

n=1

wnan(εn + ε
�
n + εnε

�
n)

����.

By the Stolz–Cesàro Theorem, the sequences (WN )N and (W �
N
)N are equiv-

alent. So the first term in the above sum tends to 0 as N tends to infinity
because the sequence ((1/WN )

�
N

n=1wnan)N is bounded. Moreover, by the
classical generalization of the Cesàro Theorem, the second term tends to 0
too, because (WN )N and (W �

N
)N are equivalent and limn an(εn+ ε

�
n+ εnε

�
n)

= 0.

If two sequences of positive numbers (un)n and (vn)n are equivalent, then
for every integer k the sequences of complex numbers (ek(logb(un)))n and
(ek(logb(vn)))n are equivalent too. This and Lemmas 2.1, 2.2 and 2.3 prove
Lemma 2.4 below.

Lemma 2.4. Two equivalent sequences of positive numbers are simulta-
neously natural-Benford (respectively log-Benford, loglog-Benford).

2.2. Van der Corput’s Difference Theorem. Van der Corput’s Dif-
ference Theorem [7, p. 26] says that, in the context of the natural density, a
sequence (xn)n is u.d. mod 1 when, for every positive integer h, the sequence
(xn+h − xn)n is u.d. mod 1. It derives from Lemma 2.5 below. We present
here three generalizations of this theorem. The first one is due to Tsuji [18]
and extends van der Corput’s Difference Theorem to the general context of
weighted densities. The second and the third say that, again in the context
of weighted densities, (xn)n is u.d. mod 1 if (xn+h − xn)n tends to be u.d.
mod 1 as h tends to infinity in a sense made precise in the statements of
Lemmas 2.9 and 2.10. To the best of our knowledge, Lemmas 2.8–2.10 are
new results.

Lemma 2.5 is a direct consequence of van der Corput’s Fundamental
Inequality [7, p. 25] and is crucial in the proof of Theorem 3.4 below.

Lemma 2.5. Let N be a positive integer greater than 1, and a1, . . . , aN

be N complex numbers of modulus 1. Then there exists an absolute constant
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C such that for all positive integers H < N ,
����
1

N

N�

n=1

an

����
2

≤ C

H
+

C

H

H�

h=1

����
1

N − h

N−h�

n=1

anan+h

����.

Lemma 2.6 is Tsuji’s extension of the above lemma to the case of general
weighted densities. The real part of a complex number z is denoted by R(z).

Lemma 2.6. Let N be a positive integer greater than 1, and a1, . . . , aN

be N complex numbers. Then for all positive integers H < N ,

|
�

N

n=1wnan|2

WN+H−1
≤ 1

H2

N�

n=1

w
2
n|an|2

H−1�

j=0

1

wn+j

+ 2R
�

1

H2

H−1�

h=1

N−h�

n=1

wnwn+hanan+h

H−1�

j=h

1

wn+j

�
.

Tsuji [18, Theorem 10] used this lemma to prove the following general-
ization of van der Corput’s Difference Theorem.

Lemma 2.7. Let (xn)n be a sequence of real numbers. Suppose that, for
all positive integers h, (wn/wn+h)n is decreasing and (xn+h − xn)n is u.d.
mod 1 in the sense of the wn-density. Then (xn)n is u.d. mod 1 in the sense
of the wn-density.

We now present the second generalization. The next lemma uses the
bound in Lemma 2.6 more precisely than Lemma 2.7.

Lemma 2.8. Let (an)n be a sequence of complex numbers bounded in
modulus by 1. Assume that (wn)n and (wn+1)n are equivalent. For h ≥ 1, set

lh = lim sup
N→∞

����
1

WN

N�

n=1

wnanan+h

����.

Then

lim
H→∞

1

H

H−1�

h=1

lh = 0 ⇒ lim
N→∞

����
1

WN

N�

n=1

wnan

���� = 0.

Proof. Note that the hypotheses on (wn)n and the Stolz–Cesàro Theorem
imply that for all j ≥ 1 the sequences (WN )N and (WN+j)N are equivalent.

Since WN ≥ WN−h and H ≥ H − h, Lemma 2.6 leads to

|
�

N

n=1wnan|2

W
2
N

WN

WN+H−1
≤ 1

HWN

N�

n=1

wn

H

H−1�

j=0

wn

wn+j

+
2

H

H−1�

h=1

1

WN−h

����
N−h�

n=1

wn

H − h
anan+h

H−1�

j=h

wn+h

wn+j

����.
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Fix h and H. Then WN and WN+H−1 are equivalent as N → ∞. More-
over

�
H−1
j=0

wn
wn+j

converges to H and
�

H−1
j=h

wn+h

wn+j
converges to H − h as

n → ∞, since (wn)n and (wn+1)n are supposed to be equivalent.
Hence, by Lemma 2.3, for all H,

lim sup
N→∞

����
1

WN

N�

n=1

wnan

����
2

≤ 1

H
+

2

H

H−1�

h=1

lh,

which implies

lim sup
N→∞

����
1

WN

N�

n=1

wnan

����
2

≤ 2 lim sup
H→∞

�
1

H

H−1�

h=1

lh

�
.

Lemmas 2.8 and 2.2 prove the following generalization of Tsuji’s Theo-
rem. The condition “(xn+h − xn)n is u.d. mod 1 for all h” is replaced by
a weaker one which may be interpreted as “(xn+h − xn)n tends to be u.d.
mod 1 as h → ∞”.

Lemma 2.9. Let (xn)n be a sequence of real numbers. For integers h ≥ 1
and k �= 0, set

lh,k = lim sup
N→∞

����
1

WN

N�

n=1

wnek(xn+h − xn)

����

and suppose that, for all k, (lh,k)h converges to 0 as h → ∞ or, more gener-
ally, that

lim
H→∞

1

H

H−1�

h=1

lh,k = 0.

Then (xn)n is u.d. mod 1 in the sense of the wn-density.

Lemma 2.10 is a kind of Paul Lévy’s Theorem for arrays of distribution
functions and is essential in the proof of Theorem 4.1.

Lemma 2.10. Let (yh,n)h≥1,n≥1 be an array of numbers in [0, 1[. For
positive integers N and h, for integers k different from zero and t ∈ [0, 1],
set

αh(k) = lim sup
N→∞

����
1

WN

N�

n=1

wnek(yh,n)

����,

FN,h(t) =
1

WN

N�

n=1

wn1[0,t[(yh,n),

βh(t) = lim sup
N→∞

|FN,h(t)− t|.
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Then �
∀t lim

h→∞
βh(t) = 0

�
⇒

�
∀k lim

h→∞
αh(k) = 0

�
.

Proof. We first apply classical methods used in the proof of Dini’s Theo-
rem. For a positive integer h and t ∈ [0, 1], set γh=lim supN supt |FN,h(t)−t|,
and let M be a positive integer. Fix t ∈ [0, 1] and m ∈ {0, . . . ,M − 1} such
that m/M ≤ t < (m+ 1)/M , and positive integers N and h. Then

FN,h(t)− t ≤ FN,h

�
m+ 1

M

�
− m+ 1

M
+

1

M
,

FN,h(t)− t ≥ FN,h

�
m

M

�
− m

M
− 1

M
,

because all the functions considered here are nondecreasing. Hence

sup
t∈[0,1]

|FN,h(t)− t| ≤ max
m=0,...,M

����FN,h

�
m

M

�
− m

M

����+
1

M
.

This implies, for all h and M ,

γh ≤ lim sup
N→∞

max
m=0,...,M

����FN,h

�
m

M

�
− m

M

����+
1

M

≤ max
m=0,...,M

βh

�
m

M

�
+

1

M
,

since the set {0, . . . ,M} is finite. It follows that
�
∀t lim

h→∞
βh(t) = 0

�
⇒

�
lim
h→∞

γh = 0
�
.

Fix now k ∈ Z∗. For each h ∈ N∗, let Nh be an integer such that

(2.1)
����

����
1

WNh

Nh�

n=1

wnek(yh,n)

����− αh(k)

���� ≤
1

h

and large enough to ensure that

sup
t∈[0,1[

|FNh,h
(t)− t| ≤ γh + 1/h.

The integer Nh exists because at least one subsequence of
�����

1

WN

N�

n=1

wnek(yh,n)

����

�

N

converges to αh(k) and every subsequence of
�

sup
t∈[0,1[

|FN,h(t)− t|
�

N

has upper limit lower than or equal to γh.



8 B. Massé and D. Schneider

If we suppose limh γh = 0 and denote the Dirac measure at yh,n by δyh,n ,
then the sequence of probability measures

�
1

WNh

Nh�

n=1

wnδyh,n

�

h

converges weakly to the uniform distribution on [0, 1[. So Paul Lévy’s Theo-
rem, characterizing weak convergence by means of Fourier transform, implies

lim
h→∞

����
1

WNh

Nh�

n=1

wnek(yh,n)

���� = 0.

The proof is completed by using (2.1).
Remark 2.11. The converse of Lemma 2.10 is true and is a consequence

of the Erdős–Turán inequality (see Lemma 3.1 for the version of this inequal-
ity involving the natural density and [3] for the versions involving weighted
densities). Applying Lemma 2.9 and Lemma 2.10 with yh,n = xn+h − xn

leads to a new criterion, more telling than Lemma 2.9: if for all t ∈ [0, 1[,

lim
h→∞

lim sup
N→∞

����
1

WN

N�

n=1

wn1[0,t[(xn+h − xn)− t

���� = 0,

then (xn)n is u.d. mod 1 in the sense of the wn-density.

3. The primorial numbers. Throughout this section we set, for n ≥ 2,
Pn = p1 × · · · × pn, where pn denotes the nth prime number, and Qn =
2 log 2× · · · × n log n.

Recall that the sequence (pn)n is log-Benford and is not natural-Benford.
We shall now prove that (Pn)n is natural-Benford and provide a convergence
rate estimate. We shall make use of Lemma 2.5 above and of Lemmas 3.1
and 3.3 below.

Lemma 3.1 is available, among many other references, in [14] and known
as the Erdős–Turán inequality. Let (xn)n be a real sequence in [0, 1[ and N

be a positive integer. The number DN (xn), defined by

DN (xn) = sup
0<c<d<1

����
1

N

N�

n=1

1[c,d[(xn)− (d− c)

����,

is called the discrepancy of (xn)Nn=1 (see [3] for more information on this
subject).

Lemma 3.1. For every positive integer K,

DN (xn) ≤
1

K + 1
+

K�

k=1

1

k

1

N

���
N�

n=1

ek(xn)
���.
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We point out that, in the above inequality, the choice of the integer K ≥ 1
is free. Lemma 3.2 is known as van der Corput’s Theorem [7, p. 17].

Lemma 3.2. Let a and b be two integers with a < b, let ρ > 0, and let f be
twice differentiable in [a, b] and such that f ��(x) ≥ ρ > 0 or −f

��(x) ≥ ρ > 0
for all x ∈ [a, b] and some positive real ρ. Then

���
b�

n=a

exp (2iπf(n))
��� ≤ (|f �(a)− f

�(b)|+ 2)

�
4
√
ρ
+ 3

�
.

Lemma 3.3 is a direct consequence of Lemma 3.2.

Lemma 3.3. There exists an absolute constant C such that for all θ > 0
and all positive integers L, M and h with L < M and h ≤ M ,

���
M�

n=L

eθ(log(Qn+h/Qn))
��� ≤ C

�
M

√
hθ

L
+

M√
hθ

+
hθ

L
+ 1

�
.

Proof. Let L, M , θ and h satisfy the hypothesis. If

f(x) = θ

h�

j=1

log
�
(x+ j) log(x+ j)

�
,

then for all x ∈ [L,M ],

0 < f
�(x) ≤ f

�(L) ≤ 2hθ

L
and −f

��(x) ≥ −f
��(M) ≥ hθ

4M2
.

Thus, by Lemma 3.2,
���

M�

n=L

eθ(log(Qn+h/Qn))
��� ≤

�
2hθ

L
+ 2

��
8M√
hθ

+ 3

�
.

The next theorem is stated in terms of mantissa distribution of (Pn)n.
It could have been equivalently stated in terms of distribution modulo 1 of
(aϑ(pn))n where ϑ denotes the first Chebyshev function and a any nonzero
real.

Theorem 3.4. There exists a positive constant Cb, depending only on
the numeration base b, such that for every positive integer N ,

sup
t∈[1,b[

����
1

N

N�

n=1

1[1,t[(Mb(Pn))− logb t

���� ≤ Cb

(log logN)1/2

(logN)1/9
.

In particular the sequence (Pn)n is natural-Benford.

Proof. In what follows, C denotes an absolute positive constant which
may vary from line to line. It is written Cb when it depends on b. Recall that
for all n ≥ 1, n log n ≤ pn ≤ n log n+ Cn log log n [13].
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Fix N > 1. By Lemma 3.1, for every positive integer K,

(3.1) sup
t∈[1,b[

����
1

N

N�

n=1

1[1,t[(Mb(Pn))− logb t

���� ≤ DN ({logb Pn})

≤ 1

K + 1
+

K�

k=1

1

k

1

N

����
N�

n=1

ek(logb Pn)

����

and by Lemma 2.5, for all positive integers h, k and H < N ,

(3.2)
����
1

N

N�

n=1

ek(logb Pn)

����
2

≤ C

H
+

C

H

H�

h=1

����
1

N − h

N−h�

n=1

ek(logb(Pn+h/Pn))

����.

By the Triangular Inequality and the Mean Value Theorem, for all h, k

and M ,
���

M�

n=2

ek(logb(Pn+h/Pn))
��� ≤

M�

n=2

2kπ logb

�
Pn+h/Pn

Qn+h/Qn

�
(3.3)

+
���

M�

n=2

ek(logb(Qn+h/Qn))
���.

We are going to calculate a bound for each term of (3.3) and then choose
the best possible H in (3.2) and the best possible K in (3.1).

Fix M ≥ 3 and h ≥ 1. For n ≥ 3,

1 ≤ Pn+h/Pn

Qn+h/Qn

≤
h�

j=1

(n+ j) log(n+ j) + C(n+ j) log log(n+ j)

(n+ j) log(n+ j)

≤
�
1 + C

�
log log n

log n

��h

.

If we set θ = k/log b, this leads to
M�

n=3

2kπ logb

�
Pn+h/Pn

Qn+h/Qn

�
≤ Chθ

M�

n=3

log log n

log n
(3.4)

≤ Chθ(log logM)
M

logM
by the classical properties of the logarithmic integral function. On the other
hand, by Lemma 3.3, if h ≤ M ,

(3.5)
���

M�

n=3

ek(logb(Qn+h/Qn))
��� ≤

√
M +

���
M�

n=�
√
M�

eθ(log(Qn+h/Qn))
���

≤
√
M + C

�√
M

√
hθ +

M√
hθ

+
hθ√
M

+ 1

�
.
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Combining (3.3)–(3.5) gives
���

M�

n=1

ek(logb(Pn+h/Pn))
��� ≤ Cb

�
hk

M log logM

logM
+
√
hk

√
M +

M√
hk

+
hk√
M

�
.

Since N−(logN)2/3 and N are equivalent, since log(N−(logN)2/3) and
logN are equivalent, and so on, we get, for all h ≤ (logN)2/3,

1

N − h

���
N−h�

n=1

ek(logb(Pn+h/Pn))
��� ≤ Cb

�
hk

log logN

logN
+

√
hk√
N

+
1√
hk

+
hk

N3/2

�
.

Hence, if H = �(logN)2/3�, then

1

H

H�

h=1

1

N − h

���
N−h�

n=1

ek(logb(Pn+h/Pn))
��� ≤ Cbk

log logN

(logN)1/3
,

and so, by (3.2),
����
1

N

N�

n=1

ek(logb Pn)

���� ≤ Cb

�
1

(logN)2/3
+ k

log logN

(logN)1/3

�1/2

≤ Cb

√
k
(log logN)1/2

(logN)1/6
.

Thus, for every positive integer K,
K�

k=1

1

k

1

N

���
N�

n=1

ek(logb Pn)
��� ≤ Cb

√
K

(log logN)1/2

(logN)1/6
.

The proof is completed by taking K = �(logN)1/9� in (3.1).

4. Product of the first n logarithms. Recall that the sequence
(log n)n is loglog-Benford and is not log-Benford [8]. We shall now prove
that the sequence (log 2 × · · · × log n)n is log-Benford. Lemma 3.2 is ineffi-
cient in dealing with log 2 × · · · × log n because of the value of the second
derivative of x �→ log log x. Fortunately, we can use direct calculations which
are themselves fruitless for sequences like (Pn)n.

Theorem 4.1. The sequence (log 2× · · · × log n)n is log-Benford.
Proof. Set un = log 2× · · · × log n and, for N ≥ 2 and s ∈ [1, b],

FN,h(s) =
1

logN

N�

n=1

1

n
1[1,s[

�
Mb((log n)

h)
�
.

For all h, un+h/un is equivalent to (log n)h as n → ∞, and this implies that,
for all integer k, ek(logb(un+h/un)) is equivalent to ek(logb((log n)

h)). So,
using Lemma 2.3 with wn = w

�
n = 1/n, for all k and all h we obtain
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(4.1) lim
N→∞

�
1

logN

N�

n=1

1

n
ek

�
logb

�
un+h

un

��

− 1

logN

N�

n=1

1

n
ek(logb((log n)

h))

�
= 0.

If we prove that for all s ∈ [1, b],

(4.2) lim
h→∞

lim sup
N→∞

FN,h(s) = lim
h→∞

lim inf
N→∞

FN,h(s) = logb s,

this will imply

lim
h→∞

lim sup
N→∞

����
1

logN

N�

n=1

1

n
1[0,logb s[

({logb((log n)h)})− logb s

���� = 0.

Then Lemma 2.10 will prove that, for all k,

lim
h→∞

lim sup
N→∞

����
1

logN

N�

n=1

1

n
ek(logb((log n)

h))

���� = 0,

and (4.1), Lemma 2.9 with wn = 1/n, and Lemmas 2.2 and 2.1 will conclude
the proof.

But direct calculations, using Fuchs’ and Letta’s methods (see [5] and [9,
p. 11]), show that

lim inf
N→∞

FN,h(s) =
s
1/h − 1

b1/h − 1
and lim sup

N→∞
FN,h(s) =

b
1/h(s1/h − 1)

s1/h(b1/h − 1)
.

These two limits tend to logb s as h → ∞. This proves (4.2).

5. Concluding remarks. Van der Corput’s methods, described in Sec-
tion 2.2, can also be used to prove that the product sequence (Un)n = (u1×
· · ·×un)n and the corresponding iterated product sequence (U1×· · ·×Un)n
are log-Benford or natural-Benford when un = log 2 × · · · × log n, un = n!,
un = n

n and un = Pn. When un = n! (respectively un = n
n), the num-

bers Un are called superfactorials (respectively hyperfactorials). A detailed
discussion of this subject is in preparation.

It is known that
Pn = e

(1+εn)n logn

with limn εn = 0. But this does not provide an equivalent of Pn. In contrast,
the hyperfactorial sequence is equivalent to

An
n
2
/2+n/2+1/12 × e

−n
2
/4

where A is a constant, and this can be used together with Lemma 2.4 to
prove that the hyperfactorial sequence is natural-Benford.
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We do not know if the sequence (n#)n, defined by n# =
�

pr≤n
pr,

is Benford or not because of the irregularity of the prime gaps. So we do
not know if the values ϑ(n) of the first Chebyshev function at integers are
u.d. mod 1 or not. Of course, since they are respectively equivalent to n

and n log n, the sequences (ϑ(n))n and (ϑ(pn))n are log-Benford and are not
natural-Benford. But this is off topic.

The fact that the sequence (Pn)n is natural-Benford can be proved quickly
by combining Lemmas 3.3, 2.3 and 2.9. Indeed, Lemma 3.3 shows that

lim
h→∞

lim sup
N→∞

����
1

N

N�

n=1

ek(Qn+h/Qn)

���� = 0

where Qn = 2 log 2×· · ·×n log n. Since Qn+h/Qn and Pn+h/Pn are equivalent
as n → ∞, Lemma 2.3 shows that this is also true when we replace Qn+h/Qn

by Pn+h/Pn. Lemma 2.9 with wn = 1 concludes the proof.
The main term in the calculations in the proof of Theorem 3.4 comes

from the term Cn log log n in the formula pn ≤ n log n + Cn log log n. If we
replace pn by n log n in Theorem 3.4, we obtain a far better convergence
rate:

sup
t∈[1,b[

����
1

N

N�

n=2

1[1,t[(Mb(Qn))− logb t

���� ≤ CbN
−1/10

where Cb is a positive constant depending only on b. The proof proceeds along
the same lines as the proof of Theorem 3.4: it suffices to replace Pn by Qn

in (3.1) and (3.2), to use (3.5) and to choose H = �
√
N� and K = �N1/10�.

The numbers Pn − 1 and Pn +1 have few divisors and many of them are
prime numbers (in this case they are called primorial primes). Yet (Pn−1)n
and (Pn + 1)n are natural-Benford since they are equivalent to (Pn)n.

We cannot prove or disprove that (log 2×· · ·× log n)n is actually natural-
Benford with our methods. Indeed, if we replace 1/n by 1 in the proof of
Theorem 4.1, we get lim infN FN,h(s) = 0 and lim supN FN,h(s) = 1 for all s
and all h. So (xn − xn+h)n does not tend to be u.d. mod 1 as h → ∞ when
xn = log 2× · · · × log n (see the remark at the end of Section 2).

Fuchs and Letta’s methods (see [5] and [9, p. 11]) and direct calcula-
tions prove that the sequence (log log n)n is not loglog-Benford. The ar-
guments used in the proof of Theorem 4.1 show that the sequence (u1 ×
· · · × un)n is loglog-Benford when un = log log n. Of course we can also
consider (log log log n)n with the weights 1/(n log n log log n) and so on.
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Abstract (will appear on the journal’s web site only)
We show that the sequence of mantissas of the primorial numbers Pn,

defined as the product of the first n prime numbers, is distributed following
Benford’s law. This is done by proving that the values of the first Chebyshev
function at prime numbers are uniformly distributed modulo 1. We provide a
convergence rate estimate. We also briefly treat some other sequences defined
in the same way as Pn.
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