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Gontran Lance, Emmanuel Trélat*, and Enrique Zuazua

Numerical issues and turnpike
phenomenon in optimal shape design

Abstract: This article follows and complements [12] where we have established the
turnpike property for some optimal shape design problems.
Considering linear parabolic partial differential equations where the shapes to
be optimized acts as a source term, we want to minimize a quadratic criterion.
Existence of optimal shapes is proved under some appropriate assumptions. We
prove and provide numerical evidence of the turnpike phenomenon for those
optimal shapes, meaning that the extremal time-varying optimal solution remains
essentially stationary; actually, it remains essentially close to the optimal solution
of an associated static problem.

Keywords: Optimal shape design, turnpike, numerical analysis, optimal control

Introduction

This paper is devoted to studying large-time shape design problems and to providing
evidence of the turnpike phenomenon, stating that the optimal time-varying design
mostly stays stationary along the time interval. We complete and comment on
results in [12] and we focus on the numerical solving of those large-time time-varying
shape design problems, which we illustrate with a number of numerical simulations.
We introduce in Section 1 the general framework and theoretical results which
are then numerically illustrated along the paper. We use the relaxation method
which is classical in optimal shape design. Section 2 focuses on the numerical
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implementation issues, with an approach following the theoretical study. Some
numerical illustrations of the turnpike phenomenon in shape design are given in
Section 3. In Section 4, we give some open questions and issues. We illustrate with
numerical examples some geometric properties of optimal solutions. A section is
particularly set apart for the open issue of the kinetic interpretation of shallow
water equations for solving a given shape design problem. We finally provide some
proofs in an appendix.

1 Optimal shape design in parabolic case

1.1 Context

Throughout the paper, we denote by:
– |𝑄| the Lebesgue measure of a measurable subset 𝑄 ⊂ R𝑑, 𝑑 ≥ 1;
– (𝑝, 𝑞) the scalar product in 𝐿2(Ω) of 𝑝, 𝑞 in 𝐿2(Ω);
– ‖𝑦‖ the 𝐿2-norm of 𝑦 ∈ 𝐿2(Ω);
– 𝜒𝜔 the indicator (or characteristic) function of 𝜔 ⊂ R𝑑;
– 𝑑𝜔 the distance function to the set 𝜔 ⊂ R𝑑.

Let Ω ⊂ R𝑑 (𝑑 ≥ 1) be an open bounded Lipschitz domain. We consider the
uniformly elliptic second-order differential operator

𝐴𝑦 = −
𝑑∑︁

𝑖,𝑗=1

𝜕𝑥𝑗

(︀
𝑎𝑖𝑗(𝑥)𝜕𝑥𝑖𝑦

)︀
+

𝑑∑︁
𝑖=1

𝑏𝑖(𝑥)𝜕𝑥𝑖𝑦 + 𝑐(𝑥)𝑦

with 𝑎𝑖𝑗 , 𝑏𝑖 ∈ 𝐶1(Ω), 𝑐 ∈ 𝐿∞(Ω) with 𝑐 ≥ 0. We consider the operator (𝐴,𝐷(𝐴))

defined on the domain 𝐷(𝐴) encoding Dirichlet conditions 𝑦|𝜕Ω = 0; when Ω is 𝐶2

or a convex polytop in R2, we have 𝐷(𝐴) = 𝐻1
0 (Ω)∩𝐻2(Ω). The adjoint operator

𝐴* of 𝐴, also defined on 𝐷(𝐴) with homogeneous Dirichlet conditions, is given by

𝐴*𝑣 = −
𝑑∑︁

𝑖,𝑗=1

𝜕𝑥𝑖

(︀
𝑎𝑖𝑗(𝑥)𝜕𝑥𝑗𝑣

)︀
−

𝑑∑︁
𝑖=1

𝑏𝑖(𝑥)𝜕𝑥𝑖𝑣 +

(︃
𝑐−

𝑑∑︁
𝑖=1

𝜕𝑥𝑖𝑏𝑖

)︃
𝑣

and is also uniformly elliptic, see [8, Definition Chapter 6]. The operators 𝐴 and
𝐴* do not depend on 𝑡 and have a constant of ellipticity 𝜃 > 0 (for 𝐴 written in
non-divergence form), i.e.:

𝑑∑︁
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥)𝜉𝑖𝜉𝑗 ≥ 𝜃|𝜉|2 ∀𝑥 ∈ Ω.
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Moreover, we assume that
𝜃 > 𝜃1 (1)

where 𝜃1 is the largest root of the polynomial

𝑃 (𝑋) =
𝑋2

4min(1, 𝐶𝑝)
− ‖𝑐‖𝐿∞(Ω)𝑋 −

∑︀𝑑
𝑖=1 ‖𝑏𝑖‖𝐿∞(Ω)

2

where 𝐶𝑝 is the Poincaré constant of Ω. This assumption is used to ensure that an
energy inequality is satisfied with constants not depending on the final time 𝑇 (see
Appendix A.2).

We assume throughout that the operator 𝐴 satisfies the classical maximum
principle (see [8, sec. 6.4]) and that

𝑐* = 𝑐−
𝑑∑︁

𝑖=1

𝜕𝑥𝑖𝑏𝑖 ∈ 𝐶2(Ω).

A typical example satisfying all assumptions above is the Dirichlet-Laplacian, which
we will consider in some of our numerical simulations.

We recall that the Hausdorff distance between two compact subsets 𝐾1,𝐾2 of
R𝑑 is defined by

𝑑ℋ(𝐾1,𝐾2) = sup
(︁

sup
𝑥∈𝐾2

𝑑𝐾1
(𝑥), sup

𝑥∈𝐾1

𝑑𝐾2
(𝑥)
)︁
.

1.2 Setting

Let 𝐿 ∈ (0, 1). We define the set of admissible shapes

𝒰𝐿 = {𝜔 ⊂ Ω measurable | |𝜔| ≤ 𝐿|Ω|} (2)

Dynamical optimal shape design problem (DSDT)

Let 𝑦0 ∈ 𝐿2(Ω) and let 𝛾1 ≥ 0, 𝛾2 ≥ 0 be arbitrary. We consider the parabolic
equation controlled by a (measurable) time-varying map 𝑡 ↦→ 𝜔(𝑡) of subdomains

𝜕𝑡𝑦 +𝐴𝑦 = 𝜒𝜔(·), 𝑦|𝜕Ω = 0, 𝑦(0) = 𝑦0 (3)

Given 𝑇 > 0 and 𝑦𝑑 ∈ 𝐿2(Ω), we consider the dynamical optimal shape design
problem (DSDT) of determining a measurable path of shapes 𝑡 ↦→ 𝜔(𝑡) ∈ 𝒰𝐿 that
minimizes the cost functional

𝐽𝑇 (𝜔(·)) =
𝛾1
2𝑇

𝑇∫︁
0

‖𝑦(𝑡)− 𝑦𝑑‖2 𝑑𝑡+
𝛾2
2

‖𝑦(𝑇 )− 𝑦𝑑‖2

where 𝑦 = 𝑦(𝑡, 𝑥) is the solution of (3) corresponding to 𝜔(·).
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Static optimal shape design problem (SSD)

For the same target function 𝑦𝑑 ∈ 𝐿2(Ω), we consider the associated static shape
design problem

min
𝜔∈𝒰𝐿

𝛾1
2
‖𝑦 − 𝑦𝑑‖2, 𝐴𝑦 = 𝜒𝜔, 𝑦|𝜕Ω = 0 (SSD)

1.3 Results

1.3.1 Existence of solutions

Existence and uniqueness of solutions have been established in [12]. To facilitate the
reading, we give a sketch of proof in the static case in Section A.3. In few words, we
consider a relaxation of (DSDT) and (SSD) with the following idea: we replace
the source term 𝜒𝜔, the characteristic function of some shape 𝜔 ∈ 𝒰𝐿 by a function
𝑎 ∈ 𝐿∞(Ω, [0, 1]) (convexification, also called relaxation in classical optimal shape
design theory). We can then use classical arguments of optimal control theory
such as the use of the adjoint variable and the application of first-order optimality
conditions coming from the Pontryagin maximum principle (see [16, Chapter 2,
Theorem 1.4; Chapter 3, Theorem 2.1]). Convexification methods can be found in
[2] and are a particular case of homogenization methods in shape design which are
also very powerful for numerical design. In Section 2.1 we introduce the convexified
(relaxed) version of the problems (DSDT) and (SSD). Existence of optimal shapes
is ensured under appropriate assumptions (see [12] for complete proofs).

Theorem 1 ([12]). We distinguish between Lagrange and Mayer cases.
1. 𝛾1 = 0, 𝛾2 = 1 (Mayer case): If 𝐴 is analytic hypoelliptic in Ω then there exists

a unique optimal shape 𝜔𝑇 solution of (DSDT).
2. 𝛾1 = 1, 𝛾2 = 0 (Lagrange case): Assuming that 𝑦0 ∈ 𝐷(𝐴) and that 𝑦𝑑 ∈

𝐻2(Ω):
(i) If 𝑦𝑑 < 𝑦0 or 𝑦𝑑 > 𝑦1 then there exist unique optimal shapes �̄� and 𝜔𝑇 ,

respectively solutions of (SSD) and of (DSDT).
(ii) There exists a function 𝛽 such that if 𝐴𝑦𝑑 ≤ 𝛽, then there exists a unique

optimal shape �̄�, solution of (SSD).

Some illustrations are provided in Section 2.2. Under the assumptions of Theorem
1, we next derive turnpike properties.
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1.3.2 Turnpike

The turnpike phenomenon was first observed and investigated by economists for
discrete-time optimal control problems (see [7, 17]). There are several possible
notions of turnpike properties, some of them being stronger than the others (see
[27]). Exponential turnpike properties have been established in [9, 19, 20, 23, 24,
25] for the optimal triple resulting of the application of Pontryagin’s maximum
principle, ensuring that the extremal solution (state, adjoint and control) remains
exponentially close to an optimal solution of the corresponding static controlled
problem, except at the beginning and at the end of the time interval, as soon as 𝑇

is large enough. This follows from hyperbolicity properties of the Hamiltonian flow.
In [12] we establish some results on turnpike property for linear parabolic optimal
shape design problem. We denote by (𝑦𝑇 , 𝑝𝑇 , 𝜒𝜔𝑇 ) and (𝑦, 𝑝, 𝜒�̄�) the optimal triple
of both problems (DSDT) and (SSD). We show that the dynamical optimal triple,
when 𝑇 is large, remains most of the time “close” to the static optimal triple. In the
Mayer case, we show that the Hausdorff distance between the dynamical optimal
shape and the static one satisfies an exponential turnpike.

Theorem 2 ([12]). For 𝛾1 = 0, 𝛾2 = 1 (Mayer case), for Ω with 𝐶2 boundary and
𝑐 = 0 there exist 𝑇0 > 0, 𝑀 > 0 and 𝜇 > 0 such that, for every 𝑇 ≥ 𝑇0,

𝑑ℋ
(︀
𝜔𝑇 (𝑡), �̄�

)︀
≤ 𝑀𝑒−𝜇(𝑇−𝑡) ∀𝑡 ∈ (0, 𝑇 ).

Concerning the Lagrange case, an exponential turnpike property is conjectured,
supported by several numerical simulations (see Section 3) but for theoretical
results, we only establish integral and measure turnpike properties.

Theorem 3 ([12]). For 𝛾1 = 1, 𝛾2 = 0 (Lagrange case), there exists 𝑀 > 0

(independent of the final time 𝑇 ) such that

𝑇∫︁
0

(︀
‖𝑦𝑇 (𝑡)− 𝑦‖2 + ‖𝑝𝑇 (𝑡)− 𝑝‖2

)︀
𝑑𝑡 ≤ 𝑀 ∀𝑇 > 0.

Theorem 4 ([12]). For 𝛾1 = 1, 𝛾2 = 0 (Lagrange case), the state-adjoint pair
(𝑦𝑇 , 𝑝𝑇 ) satisfies the state-adjoint measure-turnpike property: for every 𝜀 > 0,
there exists Λ(𝜀) > 0, independent of 𝑇 , such that

|𝑃𝜀,𝑇 | < Λ(𝜀) ∀𝑇 > 0

where 𝑃𝜀,𝑇 =
{︀
𝑡 ∈ [0, 𝑇 ] | ‖𝑦𝑇 (𝑡)− 𝑦‖+ ‖𝑝𝑇 (𝑡)− 𝑝‖ > 𝜀

}︀
.
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Proofs are done in [12] but, for the convenience of the reader, we give a sketch of
proof of Theorem 3 in Appendix A.3. Based on the numerical simulations presented
in Section 3, we conjecture that the exponential turnpike property is satisfied, i.e.,
given optimal triples (𝑦𝑇 , 𝑝𝑇 , 𝜒𝜔𝑇 ) and (𝑦, 𝑝, �̄�), there exist 𝐶1 > 0 and 𝐶2 > 0

independent of 𝑇 such that

‖𝑦𝑇 (𝑡)− 𝑦‖+ ‖𝑝𝑇 (𝑡)− 𝑝‖+ ‖𝜒𝜔𝑇 (𝑡) − 𝜒�̄�‖ ≤ 𝐶1

(︁
𝑒−𝐶2𝑡 + 𝑒−𝐶2(𝑇−𝑡)

)︁
for a.e. 𝑡 ∈ [0, 𝑇 ].

2 Numerical implementation

Computation of the cost function is conditioned to solve the PDE (3). We use a
variational formulation and a finite element approach. Using FreeFEM++ we
consider a mesh of the domain Ω, a finite element space with P1-Lagrange elements
and decompose all functions according to this triangulation. To solve numerically
(DSDT) and (SSD), we consider convexification method which introduces a more
general problem whose solution is expected to be a shape under the assumptions
of Theorem 1 and whose solution is computed via an interior point optimization
method (IpOpt, see [26]).

2.1 Convexification method

The convexification method is a relaxation of the initial problem which allows to
use classical tools of PDE optimal control. This is a well known method in shape
optimization which has the double benefit to provide strategies to set theoretical
results (see Section A.3 and see [21]) and a framework for numerical solving. Given
any measurable subset 𝜔 ⊂ Ω, we identify 𝜔 with its indicator (characteristic)
function 𝜒𝜔 ∈ 𝐿∞(Ω; {0, 1}) and, following [3, 21, 22], we identify 𝒰𝐿 with a subset
of 𝐿∞(Ω). Then, the convex closure of 𝒰𝐿 in 𝐿∞ weak star topology is the set

𝒰𝐿 =

⎧⎨⎩𝑎 ∈ 𝐿∞(︀Ω; [0, 1])︀ ⃒⃒⃒ ∫︁
Ω

𝑎(𝑥) 𝑑𝑥 ≤ 𝐿|Ω|

⎫⎬⎭ (4)

which is weak star compact. More generally, we refer the reader to [2] for details
on convexification and homogenization methods. We define the convexified (or
relaxed) optimal control problem (OCP)T as the problem of determining a control
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𝑡 ↦→ 𝑎(𝑡) ∈ 𝒰𝐿 minimizing the cost

𝐽𝑇 (𝑎) =
𝛾1
2𝑇

𝑇∫︁
0

‖𝑦(𝑡)− 𝑦𝑑‖2 𝑑𝑡+
𝛾2
2

‖𝑦(𝑇 )− 𝑦𝑑‖2

under the dynamical constraints

𝜕𝑡𝑦 +𝐴𝑦 = 𝑎, 𝑦|𝜕Ω = 0, 𝑦(0) = 𝑦0. (5)

The corresponding convexified static optimization problem is

min
𝑎∈𝒰𝐿

𝛾1
2
‖𝑦 − 𝑦𝑑‖2, 𝐴𝑦 = 𝑎, 𝑦|𝜕Ω = 0. (SOP)

Solving (OCP)T and (SOP) under the assumptions of Theorem 1 implies that the
optimal solutions of these convexified problems happen to be the upper level sets of
the adjoint-state and hence are shapes that are the optimal solutions, respectively,
of (DSDT) and of (SSD). When the assumptions done in Theorem 1 are not
satisfied, a relaxation phenomenon might be observed, namely, it may happen that
the optimal solution of (OCP)T or of (SOP) is not the characteristic function
of some subset, insofar it takes values in (0, 1) on a subset of positive measure.
In Section 2.2 we give an example of a target function 𝑦𝑑 such that the optimal
solution �̄� of (SOP) is not 0 or 1.

Since (OCP)T and (SOP) are almost linear quadratic, we generate a mesh
of Ω and we introduce the finite element space 𝑉ℎ of P1-Lagrange element with its
basis (𝜔𝑖) ∈ 𝐻1(Ω). Introducing the matrices

𝐴𝑖𝑗 =

∫︁
Ω

∇𝜔𝑖 · ∇𝜔𝑗 𝑑𝑥, 𝐵𝑖𝑗 =

∫︁
Ω

𝜔𝑖𝜔𝑗 𝑑𝑥, 𝐿𝑣𝑖 =

∫︁
Ω

𝜔𝑖 𝑑𝑥

we write (SOP) as

min
(𝑌,𝑈)∈R2𝑁𝑣

(𝑌 − 𝑌𝑑)
𝑇𝐵(𝑌 − 𝑌𝑑), 𝐴𝑌 = 𝐵𝑈, 𝐿𝑇

𝑣 𝑈 ≤ 𝐿|Ω| (6)

where 𝑁𝑣 is the size of the finite element space (for P1-Lagrange elements, 𝑁𝑣 is
the number of vertices). For time-discretization, we use an implicit Euler scheme
with 𝑁𝑡 steps. Introducing the matrices

𝐴𝑡 = 𝐴+
1

𝛿𝑡
𝐵, 𝐵𝑡 =

1

𝛿𝑡
𝐵, 𝛿𝑡 =

𝑇

𝑁𝑡 − 1
(7)

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
𝐼𝑁𝑣

0𝑁𝑣
· · · 0𝑁𝑣

𝐵𝑡 𝐴𝑡
. . .

...
...

. . .
. . . 0𝑁𝑣

0𝑁𝑣
· · · 𝐵𝑡 𝐴𝑡

⎞⎟⎟⎟⎟⎟⎠ , �̃� =

⎛⎜⎜⎜⎜⎜⎝
0𝑁𝑣

0𝑁𝑣
· · · 0𝑁𝑣

0𝑁𝑣
𝐵𝑡

. . .
...

...
. . .

. . . 0𝑁𝑣

0𝑁𝑣
· · · 0𝑁𝑣

𝐵𝑡

⎞⎟⎟⎟⎟⎟⎠ (8)
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we write (OCP)T as

min

{︂
(𝑌 − 𝑌𝑑)

𝑇 �̃�(𝑌 − 𝑌𝑑)
⃒⃒⃒

(𝑌,𝑈) ∈ R2𝑁𝑣𝑁𝑡 , 𝐴𝑌 = �̃�𝑈,

𝐿𝑇
𝑣 𝑈𝑖 ≤ 𝐿|Ω| ∀𝑖 ∈ {1 · · ·𝑁𝑡}

}︂
(9)

The state variable 𝑌 is seen here as an optimization variable. The discretized
convexified problems are linear quadratic optimization problems with inequality
and equality constraints. It is then easy to compute the derivatives of the various
functions involved. We implement them as well as their derivatives and we call
the optimization routine IpOpt via FreeFEM++. The more information on
derivatives and Hessians we give to IpOpt the faster solving is. To solve (6) and
(9) we compute the gradient and Hessian of the cost function, the Jacobian of the
constraint function and we add (dummy) bound variables to help the solver.

2.2 Some numerical examples

We present here some particular cases of the following optimization problem (SSD)

min
𝜔

1

2
‖𝑦 − 𝑦𝑑‖2, 𝐴𝑦 = 𝜒𝜔, 𝑦|𝜕Ω = 0, |𝜔| ≤ 𝐿|Ω|

for some various operators 𝐴, spaces Ω and target functions 𝑦𝑑.

2.2.1 Ω = [−1, 1]2, 𝑦𝑑 = 0.1 and 𝐴 = −△

We solve here the problem for 𝑦𝑑 = 0.1 and 𝑦𝑑 = 2−𝑥2+𝑦2

20 . The function 𝑦𝑑 satisfies
the assumptions done in Theorem 1 in the first example and does not in the second
one. Convexification method does not require many iterations. This may be due to
two facts: first, IpOpt is known to be a very efficient optimization method; second,
we have implemented the Hessian of the cost function and we have therefore a
Newton method. We notice in the second case, when 𝑦𝑑 = 2−𝑥2+𝑦2

20 is no more
convex that the optimal solution is not 0 or 1 but, in the middle of Ω, takes values
into (0, 1).

2.2.2 Ω = [−1, 1]2, 𝑦𝑑 = 0.1 and 𝐴 second-order operator

Here, the assumptions of Theorem 1 are not always satisfied. We take various
second-order operators 𝐴, of ellipticity constant 𝜃1 > 0, 𝜃1 = 0 or 𝜃1 < 0 with the
following operators:
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(a) (b)

Fig. 1: Optimal static shape: (a) 𝑦𝑑 = 0.1; (b) 𝑦𝑑 = 2−𝑥2+𝑦2

20
.

(a) (b) (c)

Fig. 2: Optimal static solution: (a) 𝜃1 > 0; (b) 𝜃1 = 0; (c) 𝜃1 < 0.;

– 𝜃1 > 0 : 𝐴𝑦 = −𝜕11𝑦 − 𝜕22𝑦 − 0.5𝜕12𝑦 − 0.5𝜕21𝑦

– 𝜃1 = 0 : 𝐴𝑦 = −𝜕11𝑦 − 𝜕22𝑦 − 𝜕12𝑦 − 𝜕21𝑦

– 𝜃1 < 0 : 𝐴𝑦 = −𝜕11𝑦 − 𝜕22𝑦 − 1.5𝜕12𝑦 − 1.5𝜕21𝑦

When 𝜃1 > 0, we are in the hypothesis of Theorem 1. When 𝜃1 = 0, it seems we
lose some regularity on the optimal solution. Finally, when 𝜃1 < 0, we still observe
convergence of our algorithm but we can no more infer the theoretical results stated
at the beginning.

2.2.3 Ω = [−1, 1]3, 𝑦𝑑 = 0.025 and 𝐴 = −△

FreeFEM++ is also very powerful to solve PDEs in 3D. Except mesh generation,
the previously described methods are unchanged. Of course, in 3D the time required
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Fig. 3: Optimal static shape 3D

to compute the solution is much larger and will be a limiting factor for the solving
of the time problem.

3 Numerical examples illustrating the turnpike
phenomenon

In this section, in order to illustrate the turnpike phenomenon, we give numerical
simulations for various domains, target functions 𝑦𝑑 and operators 𝐴.

Case: Ω = [−1, 1]2, 𝑦𝑑 = 0.1 and 𝐴 = −△
We plot on Figure 4 the time solution cylinder and the shape’s behavior at some
sample times and for several examples. We plot in comparison the time shape at
the middle-time of the trajectory and we observe that it is very similar to the
optimal static shape.

To observe the exponential turnpike phenomenon we plot the quantity 𝑡 ↦→
‖𝑦𝑇 (𝑡)− 𝑦‖+ ‖𝑝𝑇 (𝑡)− 𝑝‖+ ‖𝜒𝜔𝑇 (𝑡) − 𝜒�̄�‖ for various final times 𝑇 ∈ {1, 3, 5} on
Figure 5.

The larger is 𝑇 , the more close to 0 is the residual between the two optimal
triples. The behavior of the residual function is typical of the exponential turnpike
and supports our conjecture that this phenomenon might be proved. Moreover,
we observe that, most of the time, the dynamical shape remains very close to the
static one. These numerical observations seem to hold systematically under the
assumptions done in Theorem 1. The turnpike phenomenon occurs even when we
observe relaxation or when the second-order operator 𝐴 is such that 𝜃1 = 0.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 4: Optimal dynamical shape: (a) Time shape; (b) 𝑡 = 0; (c) 𝑡 = 0.5; (c) 𝑡 ∈ (0.5, 1.5);
(e) 𝑡 = 1.5; (f) 𝑡 = 𝑇 ; (g) Static shape.

Fig. 5: 𝑡 ↦→ ‖𝑦𝑇 (𝑡)− 𝑦‖+ ‖𝑝𝑇 (𝑡)− 𝑝‖+ ‖𝜒𝜔𝑇 (𝑡) − 𝜒�̄�‖ for 𝑇 ∈ {1, 3, 5}
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 6: (a) Time shape; (b) 𝑡 = 0; (c) 𝑡 = 0.5; (c) 𝑡 ∈ (0.5, 1.5); (e) 𝑡 = 1.5; (f) 𝑡 = 𝑇 ; (g)
Static shape.

Case: Ω = [−1, 1]2, 𝑦𝑑 = 1
20 (𝑥𝑦 + 1) and 𝐴 = −△

Case: Ω = half-stadium, 𝑦𝑑 = 1
20 (𝑥𝑦 + 1) and 𝐴 = −△

Case: Ω = [−1, 1]2, 𝑦𝑑 = 1
20 (2 sin(2(𝑥

2 + 𝑦2)) + 1) and
𝐴𝑢 = −𝜕𝑥((𝑥− 𝑦)2𝜕𝑥𝑢)− 𝜕𝑦((𝑥+ 𝑦)2𝜕𝑦𝑢)

Case: Ω = [−1, 1]3, 𝑦𝑑 = 0.025 and 𝐴𝑢 = −△

4 Further comments

We highlight here some open questions and possible way to pursue the research.
Some geometric properties can be conjectured and we address the question of shape
design for semi-linear partial differential equations. Finally, we present shortly a
shape design problem in the context of shallow water equations.

4.1 Symmetries of solutions

On the basis of our numerical examples, we conjecture that if Ω, the operator
𝐴 and the target function 𝑦𝑑 share the same symmetry properties, then optimal
solutions �̄� and 𝜔𝑇 (·) share as well symmetry properties.

For instance, Figure 10(a) highlights four axes of symmetry (𝑥 = 0, 𝑦 = 0, 𝑦 =

𝑥, 𝑦 = −𝑥), Figure 10(b) two axes (𝑦 = 𝑥, 𝑦 = −𝑥) and Figure 10(c) shows up a
central symmetry property (of center (0, 0) and with angle 𝜋).
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 7: (a) Time shape; (b) 𝑡 = 0; (c) 𝑡 = 0.5; (c) 𝑡 ∈ (0.5, 1.5); (e) 𝑡 = 1.5; (f) 𝑡 = 𝑇 ; (g)
Static shape.

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 8: (a) Time shape; (b) 𝑡 = 0; (c) 𝑡 = 0.5; (c) 𝑡 ∈ (0.5, 1.5); (e) 𝑡 = 1.5; (f) 𝑡 = 𝑇 ; (g)
Static shape.
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(a) (b) (c)

(d) (e) (f)

Fig. 9: Time shape: (a) 𝑡 = 0; (b) 𝑡 = 0.1; (b) 𝑡 ∈]0.1, 0.9[; (d) 𝑡 = 0.9; (e) 𝑡 = 𝑇 = 1; (f)
Static shape.

(a) (b) (c)

Fig. 10: Symmetries of static optimal shapes : (a) 𝐴 = −△, 𝑦𝑑 = 0.1; (b) 𝐴 = −△, 𝑦𝑑 =
𝑥𝑦+1
20

; (c) 𝐴𝑢 = −𝜕𝑥((𝑥− 𝑦)2𝜕𝑥𝑢)− 𝜕𝑦((𝑥+ 𝑦)2𝜕𝑦𝑢), 𝑦𝑑 = 1
20

(2 sin(2(𝑥2 + 𝑦2)) + 1)
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(a) (b) (c)

Fig. 11: Semilinear static optimal designs : (a) 𝑓(𝑦) = 𝑦(1− 𝑦2) exp(𝑦) sin(𝑦); (b) 𝑓(𝑦) =

(𝑦 + 0.4)3; (c) 𝑓(𝑦) = 1
𝑦+5

.

4.2 Semilinear PDEs and numerics

An open and interesting issue is to deal with semilinear PDEs

𝜕𝑡𝑦 +𝐴𝑦 + 𝑓(𝑦) = 𝜒𝜔, 𝑦|𝜕Ω = 0, 𝑦(0) = 𝑦0.

Theoretical results are not established in this context but we refer to [10] where
authors are interested in semilinear shape optimization problems and whose exis-
tence proofs involve shape optimization problems close to the one we deal with in
this section. From our side, we provide hereafter several first numerical simulations.
We still use the convexification approach combining IpOpt and FreeFEM++ for
numerical solving. Now, anyway, systems cannot be written as linear quadratic
optimization problem as (6) and (9). We use a fixed point method, so that the
solution of the static problem

𝐴𝑦 + 𝑓(𝑦) = 𝜒𝜔, 𝑦|𝜕Ω = 0 (10)

is sought with an iteration process.
We show on Figure 11 some examples of solutions for several functions 𝑓 and

for 𝐴 = −△.
We observe that the optimal solutions are quite similar to the solutions obtained

in the linear case. For theoretical results, due to the nonlinearity, new assumptions
should be made in order to ensure existence and/or uniqueness of solutions. We
still observe the turnpike phenomenon for the optimal shape design in 1D. We take
Ω = [0, 2], 𝐴 = −△, 𝑦𝑑 = 0.1 and 𝑇 = 10. We plot on Figure 12 the dynamical
optimal shape and we observe that it remains most of the time stationary (which
is the solution of the corresponding static optimal shape problem). Moreover, we
plot the error between both optimal triples and we still observe an exponential
turnpike phenomenon.
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(a) (b)

Fig. 12: Semilinear optimal designs: (a) Dynamical optimal shape; (b) 𝑡 ↦→ ‖𝑦𝑇 (𝑡) − 𝑦‖ +

‖𝑝𝑇 (𝑡)− 𝑝‖+ ‖𝜒𝜔𝑇 )(𝑡) − 𝜒�̄�‖.

ℎ(𝑡, 𝑥)

𝑧(𝑡, 𝑥)

𝑢(𝑡, 𝑥)

𝑥

Fig. 13: Shallow water equations

4.3 Optimal design for shallow water equations

4.3.1 Presentation

We consider the shallow water system in space dimension one, a specific case
of shallow water equations, which is a usual way to understand the behavior
of a fluid when the height of the water level is much smaller than the other
spatial dimensions of the problem, for instance flows in river or in maritime coast.
Using several assumptions (small height of water, hydrostatic pressure, vertical
homogeneity of horizontal velocities, etc), we can derive these from the Euler
system. We describe the behavior of the fluid at time 𝑡 > 0 and at a position
𝑥 ∈ R characterized by the water level ℎ(𝑡, 𝑥) and the flow ℎ(𝑡, 𝑥)𝑢(𝑡, 𝑥) and we
take into account the variation of the topography 𝑧(𝑡, 𝑥) and some viscous effects
𝑆𝑓 . We consider the bottom shape 𝑧 as the control. For 𝑇 > 0, (ℎ0, 𝑢0) initial
conditions and (ℎ𝑑, 𝑢𝑑) given as a static wave profile, we search an optimal solution
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minimizing the functional

𝐽𝑆𝑊 (𝑧) =
1

2

𝑇∫︁
0

‖ℎ(𝑡)− ℎ𝑑‖2 + ‖𝑢(𝑡)− 𝑢𝑑‖2 𝑑𝑡 (11)

subject to the shallow water equations

𝜕𝑡ℎ+ 𝜕𝑥(ℎ𝑢) = 0

𝜕𝑡(ℎ𝑢) + 𝜕𝑥(ℎ𝑢
2 + 𝑔 ℎ2

2 ) = −𝑔ℎ𝜕𝑥𝑧 + 𝑆𝑓

ℎ(0) = ℎ0, 𝑢(0) = 𝑢0

(12)

Since the target (ℎ𝑑, 𝑢𝑑) is static, having in mind the phenomenon of static wave
occuring in the nature (Eisbach Wave in München or wavemaker in [1]), we would
expect that a solution, if it exists, should remain most of the time close to a
stationary state solution of a static problem.

4.3.2 Kinetic interpretation of shallow water equations

To lead this study, we propose a relaxation of the problem via kinetic equations (see
[5, 6, 18]. We consider a real-valued function 𝜒 of class 𝐶1, compactly supported
on R, such that

𝜒(𝜔) = 𝜒(−𝜔),

∫︁
R

𝜒(𝜔) 𝑑𝜔 = 1,

∫︁
R

𝜔2𝜒(𝜔) 𝑑𝜔 =
𝑔2

2
.

Defining 𝑐 =

√︁
𝑔ℎ
2 and

𝑀(𝑡, 𝑥, 𝜉) =
ℎ(𝑡, 𝑥)

𝑐(𝑡, 𝑥)
𝜒
(︁
𝜉 − 𝑢(𝑡, 𝑥)

𝑐(𝑡, 𝑥)

)︁
=

ℎ(𝑡, 𝑥)

𝑐(𝑡, 𝑥)
𝜒
(︁

𝜉 − 𝑞(𝑡, 𝑥)

ℎ(𝑡, 𝑥)𝑐(𝑡, 𝑥)

)︁
(13)

we get ⎛⎜⎝ ℎ

𝑞
𝑔
2ℎ

2 + 𝑞2

ℎ

⎞⎟⎠ =

∫︁
R

⎛⎜⎝ 1

𝜉

𝜉2

⎞⎟⎠𝑀(𝜉) 𝑑𝜉. (14)

Following [18], (ℎ, 𝑢) is a weak solution of (12) if and only if 𝑀 (defined by (13))
satisfies

𝑀𝑡 + 𝜉.𝑀𝑥 − 𝑔𝑧𝑥.𝑀𝜉 = 𝑄 (15)

for some 𝑄, a collision factor such that
∫︀
R
𝑄𝑑𝜉 =

∫︀
R
𝜉𝑄𝑑𝜉 = 0.
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An open question is to write the initial problem as the minimization of some
cost functional

min
𝑧

1

2

𝑇∫︁
0

∫︁
R×Ω

𝑓0
(︀
𝑥, 𝜉,𝑀(𝑡, 𝑥, 𝜉)

)︀
𝑑𝜉 𝑑𝑥 𝑑𝑡

with respect to the kinetic equations

𝑀𝑡 + 𝜉.𝑀𝑥 − 𝑔𝑧𝑥.𝑀𝜉 = 𝑄, 𝑀(0) =
ℎ0
𝑐0

𝜒
(︁
𝜉 − 𝑢0
𝑐0

)︁
(16)

This would have the double benefit to obtain in an easier way theoretical and
numerical results since the nonlinear system (12) is replaced by the linear kinetic
equation (15).

A Appendix

A.1 Optimality conditions

In order to show some theoretical results introduced before and in the framework
provided by the convexification (see Section 2.1) we first give necessary optimality
conditions to optimal solutions of the convexified problems stated in [16, Chapters
2 and 3] or [14, Chapter 4] and infer from these necessary conditions that, under
appropriate assumptions, the optimal controls are indeed characteristic functions.

Necessary optimality conditions for (OCP)T

According to the Pontryagin maximum principle (see [16, Chapter 3, Theorem 2.1],
see also [14]), for any optimal solution (𝑦𝑇 , 𝑎𝑇 ) of (OCP)T there exists an adjoint
state 𝑝𝑇 ∈ 𝐿2(0, 𝑇 ; Ω) such that

𝜕𝑡𝑦𝑇 +𝐴𝑦𝑇 = 𝑎𝑇 , 𝑦𝑇|𝜕Ω
= 0, 𝑦𝑇 (0) = 𝑦0

𝜕𝑡𝑝𝑇 −𝐴*𝑝𝑇 =𝛾1(𝑦𝑇 −𝑦𝑑), 𝑝𝑇|𝜕Ω
=0, 𝑝𝑇 (𝑇 )=𝛾2

(︀
𝑦𝑇 (𝑇 )−𝑦𝑑

)︀ (17)

∀𝑎 ∈ 𝒰𝐿, for a.e. 𝑡 ∈ [0, 𝑇 ] :
(︀
𝑝𝑇 (𝑡), 𝑎𝑇 (𝑡)− 𝑎

)︀
≥ 0. (18)
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Necessary optimality conditions for (SOP)

Similarly, applying [16, Chapter 2, Theorem 1.4], for any optimal solution (𝑦, �̄�) of
(SOP) there exists an adjoint state 𝑝 ∈ 𝐿2(Ω) such that

𝐴𝑦 = �̄�, 𝑦|𝜕Ω = 0

−𝐴*𝑝 = 𝛾1(𝑦 − 𝑦𝑑), 𝑝|𝜕Ω = 0
(19)

∀𝑎 ∈ 𝒰𝐿 : (𝑝, �̄�− 𝑎) ≥ 0. (20)

Using the bathtub principle (see, e.g., [15, Theorem 1.14]), (18) and (20) give

𝑎𝑇 (·) = 𝜒{𝑝𝑇 (·)>𝑠𝑇 (·)} + 𝑐𝑇 (·)𝜒{𝑝𝑇 (·)=𝑠𝑇 (·)} (21)

�̄� = 𝜒{𝑝>𝑠} + 𝑐𝜒{𝑝=𝑠} (22)

with, for a.e. 𝑡 ∈ [0, 𝑇 ],

𝑐𝑇 (𝑡) ∈ 𝐿∞(Ω; [0, 1]) and 𝑐 ∈ 𝐿∞(Ω; [0, 1]) (23)

𝑠𝑇 (·) = inf
{︀
𝜎 ∈ R | |{𝑝𝑇 (·) > 𝜎}| ≤ 𝐿|Ω|

}︀
(24)

𝑠 = inf
{︀
𝜎 ∈ R | |{𝑝 > 𝜎}| ≤ 𝐿|Ω|

}︀
. (25)

A.2 Energy inequalities

We recall some useful inequalities to study existence and turnpike. Since 𝜃 satisfies
(1), we can find 𝛽 > 0, 𝛾 ≥ 0 such that 𝛽 ≥ 𝛾 and

(𝐴𝑢, 𝑢) ≥ 𝛽‖𝑢‖2𝐻1
0 (Ω) − 𝛾‖𝑢‖2𝐿2(Ω). (26)

From this follows the energy inequality (see [8, Chapter 7, Theorem 2]): there exists
𝐶 > 0 such that, for any solution 𝑦 of (5), for almost every 𝑡 ∈ [0, 𝑇 ],

‖𝑦(𝑡)‖2 +

𝑡∫︁
0

‖𝑦(𝑠)‖2𝐻1
0 (Ω) 𝑑𝑠 ≤ 𝐶

⎛⎝‖𝑦0‖2 +

𝑡∫︁
0

‖𝑎(𝑠)‖2 𝑑𝑠

⎞⎠ . (27)

Let us improve this inequality. Having in mind (26), the Poincaré inequality and that
𝑦 verifies (5), we find two constants 𝐶1, 𝐶2 > 0 such that 𝑑

𝑑𝑡‖𝑦(𝑡)‖
2 +𝐶1‖𝑦(𝑡)‖2 =

𝑓(𝑡) ≤ 𝐶2‖𝑎(𝑡)‖2. We solve this differential equation to get ‖𝑦(𝑡)‖2 = ‖𝑦0‖2𝑒−𝐶1𝑡+∫︀ 𝑡
0
𝑒−𝐶1(𝑡−𝑠)𝑓(𝑠) 𝑑𝑠. Since for all 𝑡 ∈ (0, 𝑇 ), 𝑓(𝑡) ≤ 𝐶2‖𝑎(𝑡)‖2, we obtain that

‖𝑦(𝑡)‖2 ≤ ‖𝑦0‖2𝑒−𝐶1𝑡 + 𝐶2

𝑡∫︁
0

𝑒−𝐶1(𝑡−𝑠)‖𝑎(𝑠)‖2 𝑑𝑠 (28)

for almost every 𝑡 ∈ (0, 𝑇 ). The constants 𝐶,𝐶1, 𝐶2 depend only on the domain Ω

(Poincaré inequality) and on the operator 𝐴 but not on final time 𝑇 since (26) is
satisfied with 𝛽 ≥ 𝛾.
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A.3 Proofs

A.3.1 Proof of Theorem 1

Here we first establish existence of optimal solutions for (OCP)T and similarly
for (SOP). Then we focus on the static case in order to highlight a key observa-
tion to derive existence of an optimal shape for (SSD) as well as the relaxation
phenomenon.

We first see that the infimum exists. Let us take a minimizing sequence

(𝑦𝑛, 𝑎𝑛) ∈ 𝐿2(0, 𝑇 ;𝐻1
0 (Ω))× 𝐿∞(︀0, 𝑇 ;𝐿2(︀Ω, [0, 1])︀)︀

such that, for 𝑛 ∈ N, for 𝑎.𝑒. 𝑡 ∈ [0, 𝑇 ], 𝑎𝑛(𝑡) ∈ 𝒰𝐿, the pair (𝑦𝑛, 𝑎𝑛) satisfies (5) and
𝐽𝑇 (𝑎𝑛) → 𝐽𝑇 . The sequence (𝑎𝑛) is bounded in 𝐿∞(︀0, 𝑇 ;𝐿2

(︀
Ω, [0, 1]

)︀)︀
, so using

(27) and (28), the sequence (𝑦𝑛) is bounded in 𝐿∞(0, 𝑇 ;𝐿2(Ω)) ∩𝐿2(0, 𝑇 ;𝐻1
0 (Ω)).

We show then, using (5), that the sequence (𝜕𝑦𝑛

𝜕𝑡 ) is bounded in 𝐿2(0, 𝑇 ;𝐻−1(Ω)).
We subtract a sequence still denoted by (𝑦𝑛, 𝑎𝑛) such that one can find a pair
(𝑦, 𝑎) ∈ 𝐿2(0, 𝑇 ;𝐻1

0 (Ω))× 𝐿∞(︀0, 𝑇 ;𝐿2
(︀
Ω, [0, 1]

)︀)︀
with

𝑦𝑛 ⇀ 𝑦 weakly in 𝐿2(0, 𝑇 ;𝐻1
0 (Ω))

𝜕𝑡𝑦𝑛 ⇀ 𝜕𝑡𝑦 weakly in 𝐿2(0, 𝑇 ;𝐻−1(Ω))

𝑎𝑛 ⇀ 𝑎 weakly * in 𝐿∞(︀0, 𝑇 ;𝐿2(︀Ω, [0, 1])︀)︀. (29)

We deduce that

𝜕𝑡𝑦𝑛 +𝐴𝑦𝑛 − 𝑎𝑛 → 𝜕𝑡𝑦 +𝐴𝑦 − 𝑎 in 𝒟′(︀(0, 𝑇 )× Ω
)︀

𝑦𝑛(0) ⇀ 𝑦(0) weakly in 𝐿2(Ω).
(30)

We get using (30) that (𝑦, 𝑎) is a weak solution of (5). Moreover, since

𝐿∞(︀0, 𝑇 ;𝐿2(︀Ω, [0, 1])︀)︀ = (︁𝐿1(︀0, 𝑇 ;𝐿2(︀Ω, [0, 1])︀)︀)︁′
(see [11, Corollary 1.3.22]) the convergence (29) implies that for every 𝑣 ∈ 𝐿1(0, 𝑇 )

satisfying 𝑣 ≥ 0 and ‖𝑣‖𝐿1(0,𝑇 ) = 1, we have

𝑇∫︁
0

(︁∫︁
Ω

𝑎(𝑡, 𝑥) 𝑑𝑥
)︁
𝑣(𝑡) 𝑑𝑡 ≤ 𝐿|Ω|.

Since the function 𝑓𝑎 defined by

𝑓𝑎(𝑡) =

∫︁
Ω

𝑎(𝑡, 𝑥) 𝑑𝑥
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belongs to 𝐿∞(0, 𝑇 ), we have

‖𝑓𝑎‖𝐿∞(0,𝑇 ) = sup

⎧⎨⎩
𝑇∫︁
0

(︁∫︁
Ω

𝑎(𝑡, 𝑥) 𝑑𝑥
)︁
𝑣(𝑡) 𝑑𝑡

⃒⃒⃒
𝑣 ∈ 𝐿1(0, 𝑇 ), ‖𝑣‖𝐿1(0,𝑇 ) = 1

⎫⎬⎭
Therefore ‖𝑓𝑎‖𝐿∞(0,𝑇 ) ≤ 𝐿|Ω| and

∫︀
Ω
𝑎(𝑡, 𝑥) 𝑑𝑥 ≤ 𝐿|Ω| for a.e. 𝑡 ∈ (0, 𝑇 ). This

shows that the pair (𝑦, 𝑎) is admissible. Since 𝐻1
0 (Ω) is compactly embedded in

𝐿2(Ω) and by using the Aubin-Lions compactness Lemma (see [4]), we obtain

𝑦𝑛 → 𝑦 strongly in 𝐿2(0, 𝑇 ;𝐿2(Ω)).

We get then by weak lower semi-continuity of 𝐽𝑇 and by Fatou Lemma that

𝐽𝑇 (𝑎) ≤ lim inf 𝐽𝑇 (𝑎𝑛).

Hence 𝑎 is an optimal control for (OCP)T, that we rather denote by 𝑎𝑇 (and �̄�

for (SOP)).
Let us now focus on the part 2-(ii) of Theorem 1. We focus on 𝛾1 = 1, 𝛾2 = 0

(Lagrange case) and (SSD). Since �̄� is a s solution of (SOP), it verifies the
optimality conditions stated in (19)-(22). One key observation is to note that, if
|
{︀
𝑝 = 𝑠

}︀
| = 0, then it follows from (22) that the static optimal control �̄� is actually

the characteristic function of a shape �̄� ∈ 𝒰𝐿. With this in mind, we give a useful
lemma.

Lemma 5 ([13, Theorem 3.2]). Given any 𝑝 ∈ [1,+∞) and any 𝑢 ∈ 𝑊 1,𝑝(Ω)

such that |{𝑢 = 0}| > 0, we have ∇𝑢 = 0 𝑎.𝑒. on {𝑢 = 0}.

2-(ii) We assume that 𝐴𝑦𝑑 ≤ 𝛽 in Ω with 𝛽 = 𝑠𝐴𝑐*. Having in mind (19) and (22),
we assume by contradiction that |{𝑝 = 𝑠}| > 0. Since 𝐴 and 𝐴* are differential
operators, applying 𝐴* to 𝑝 on {𝑝 = 𝑠}, we obtain by Lemma 5 that

𝐴*𝑝 = 𝑐*𝑠 on {𝑝 = 𝑠}.

Since (𝑦, 𝑝) verifies (19) we get

𝑦𝑑 − 𝑦 = 𝑐*𝑠 on {𝑝 = 𝑠}.

We apply then 𝐴 to this equation to get that

𝐴𝑦𝑑 − 𝑠𝐴𝑐* = 𝐴𝑦 = �̄� on {𝑝 = 𝑠}.

Therefore
𝐴𝑦𝑑 − 𝑠𝐴𝑐* ∈ (0, 1) on {𝑝 = 𝑠}



22 Gontran Lance, Emmanuel Trélat, and Enrique Zuazua

which contradicts 𝐴𝑦𝑑 ≤ 𝛽. Hence |{𝑝 = 𝑠}| = 0 and thus (22) implies �̄� = 𝜒�̄� for
some �̄� ∈ 𝒰𝐿. Existence of solution for (SSD) is proved.

Uniqueness of optimal controls comes from the strict convexity of the cost
functionals. Indeed, in the dynamical case, whatever (𝛾1, 𝛾2) ̸= (0, 0) may be,
𝐽𝑇 is strictly convex with respect to variable 𝑦. The injectivity of the control-to-
state mapping gives the strict convexity with respect to the variable 𝑎. In addition,
uniqueness of (𝑦, 𝑝) follows by application of the Poincaré inequality and uniqueness
of (𝑦𝑇 , 𝑝𝑇 ) follows from Gronwall inequality (28) in the appendix.

Remark 6. Condition in Theorem 1: 2-(ii) is a necessary condition. We can
construct example, where 𝐴𝑦𝑑 ≤ 𝛽 is not satisfied and where we observe relaxation,
which is closely related to the fact |{𝑝 = 𝑠}| > 0.

Indeed, we plot on Figure 14 the adjoint state 𝑝 for the static problem in 1D.
At the left-hand side, 𝑝 is assumed to be analytic: in this case, all level sets of
𝑝 have zero Lebesgue measure (there is no subset of positive measure on which 𝑝

would remain constant). When 𝑝 is not analytic and remains constant on a subset
of positive measure (see Figure 14 in red), we do not have necessarily zero Lebesgue
measure level sets, and on {𝑝 = 𝑠}, �̄� can take values in (0, 1).

Proof of Theorem 3
For 𝛾1 = 1, 𝛾2 = 0 (Lagrange case), the cost is

𝐽𝑇 (𝜔) =
1

2𝑇

𝑇∫︁
0

‖𝑦(𝑡)− 𝑦𝑑‖2 𝑑𝑡.

We consider the triples (𝑦𝑇 , 𝑝𝑇 , 𝜒𝜔𝑇 ) and (𝑦, 𝑝, 𝜒�̄�) satisfying the optimality con-
ditions (17) and (19). Since 𝜒𝜔𝑇 (𝑡) is bounded at each time 𝑡 ∈ [0, 𝑇 ] and by
application of Gronwall inequality (28) in the appendix to 𝑦𝑇 and 𝑝𝑇 we can find
a constant 𝐶 > 0 depending only on 𝐴, 𝑦0, 𝑦𝑑,Ω, 𝐿 such that

∀𝑇 > 0 ‖𝑦𝑇 (𝑇 )‖2 ≤ 𝐶 and ‖𝑝𝑇 (0)‖2 ≤ 𝐶.

Setting 𝑦 = 𝑦𝑇 − 𝑦, 𝑝 = 𝑝𝑇 − 𝑝, �̃� = 𝜒𝜔𝑇 − 𝜒�̄�, we have

𝜕𝑡𝑦 +𝐴𝑦 = �̃�, 𝑦|𝜕Ω = 0, 𝑦(0) = 𝑦0 − 𝑦 (31)

𝜕𝑡𝑝−𝐴*𝑝 = 𝑦, 𝑝|𝜕Ω = 0, 𝑝(𝑇 ) = −𝑝. (32)

First, using (17) and (19) one has
(︀
𝑝(𝑡), �̃�(𝑡)

)︀
≥ 0 for almost every 𝑡 ∈ [0, 𝑇 ].

Multiplying (31) by 𝑝, (32) by 𝑦 and then adding them, one can use the fact that

(︀
𝑦 − 𝑦0, 𝑝(0)

)︀
−
(︀
𝑦(𝑇 ), 𝑝

)︀
=

𝑇∫︁
0

(︀
𝑝(𝑡), �̃�(𝑡)

)︀
𝑑𝑡+

𝑇∫︁
0

‖𝑦(𝑡)‖2 𝑑𝑡.
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(a)

(b)

Fig. 14: Optimal shape design existence and relaxation: (a) No relaxation: Shape existence;
(b) Relaxation.
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By the Cauchy-Schwarz inequality we get a new constant 𝐶 > 0 such that

1

𝑇

𝑇∫︁
0

‖𝑦(𝑡)‖2 𝑑𝑡+ 1

𝑇

𝑇∫︁
0

(︀
𝑝(𝑡), �̃�(𝑡)

)︀
𝑑𝑡 ≤ 𝐶

𝑇
.

The two terms at the left-hand side are positive and using the inequality (27) with
𝜁(𝑡) = 𝑝(𝑇 − 𝑡), we finally obtain 𝑀 > 0 independent of 𝑇 such that

1

𝑇

𝑇∫︁
0

(︀
‖𝑦𝑇 (𝑡)− 𝑦‖2 + ‖𝑝𝑇 (𝑡)− 𝑝‖2

)︀
𝑑𝑡 ≤ 𝑀

𝑇
.
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