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Existence and uniqueness in critical spaces for the
magnetohydrodynamical system in R"

Clément Denis
Aix-Marseille University, 12M

Abstract
We give a description of a magnetohydrodynamical system in n dimension using the exterior
derivative. We then prove existence of global solutions for small initial data and local existence
for arbitrary large data in two classes of critical spaces - L LP and €; L2, as well as uniqueness for
solutions in €.L2.

1 Introduction

In R3, the magnetohydrodynamical system on a time interval ]0,T[ (0 < T < 400) as considered in
[20] and [18] is written as

Ou — Au+Vr —ux (curlu) = (curld) xb in ]0,T[xR3
Ob—Ab = curl(uxb) in ]0,T[xR3 11
divu = 0 in )0, T[xR3 (1.1)

divb = 0 in 0, T[xR3

where the velocity of the (incompressible homogeneous) fluid is denoted by w :]0, T[xR? — R3, the
magnetic field is denoted by b :]0, T[xR3 — R? and the (dynamic) pressure of the fluid is denoted
by 7 :]0, T[xR3 — R.

The first equation in (1.1) corresponds to the Navier-Stokes equations with the fluid subject to
the Laplace force (curlb) x b applied by the magnetic field b. The second equation of (1.1) describes
the evolution of the magnetic field following the so-called induction equation. The condition divu = 0
corresponds to the incompressibility of the fluid, while the divergence-free condition on the magnetic
field b comes from the fact that b is in the range of the curl operator.

Our aim in this paper is to study the same system in higher dimensions - i.e. R™, n > 3. This
requires us to rewrite the system (1.1) using the exterior and interior derivative (see [18]) - an added
benefit of this formulation is that it makes it easy to generalise the results of this paper to Riemannian
manifolds.

Interpreting the scalar function 7 as a 0-form, v as 1-form and b as a 2-form, we can write (1.1)

as:
ou+ Su+dr+usdu = —d*babd in 10, T[xR™
Ob+Mb = —dush) in  ]0,T[xR"
u(t,) € N(@), forall te)o,T] (MHD)
b(t,") € R(d),, for all ¢ €]0,T7,



Where d is the exterior derivative, d* is its adjoint, .S is the Stokes operator and M is the Maxwell
operator. We detail the signification of those notations in section 2, but for now let us add the
following remarks:

Remark 1.1. e All the terms in the first equation are 1-forms, while all the terms in the second
equation are 2-forms.

e N(d) is the null of d ; R(d*) is the range of d*.

e In R3 the magnetic field b is a 2-form, but can be identified as a 1-form in R?® using the
Hodge-star operator. This is however impossible in dimension 7.

As for the Navier-Stokes system, the system (MHD) with 7' = oo is invariant under the scaling

up(t, ) = Mu(N\*t, \x)
ba(t, z) = Ab(A\%t, \x)
ma(t, x) = N2 (A%t \x),

for A > 0, ¢t > 0 and = € R™. This suggests two possible critical spaces for (u,b): either
L ([0, 00[; LP (R, A%)) x L([0, 00[; LP(R", A%)),

With%—l—%:l, or
@([0, 00f; L™ (R", A1) x €([0,00[; L" (R", A?)).

The purpose of this paper is to prove existence and uniqueness of mild solutions (as defined in
Definition 2.8)of the (MHD) system in R™. Section 3 is devoted to L{L% spaces, with Theorem 3.1
and Theorem 3.2 proving respectively the global existence (in time) of mild solutions for small initial
data and the local existence for arbitrary large initial data.

Section 4 and 5 are devoted to 6L spaces. In section 4 we prove the existence of mild solutions
(Theorems 4.1 and 4.2), while in Section 5, Theorem 5.1 we prove that those mild solutions are in
fact unique.

2 Tools and notations

In this section we gathered notations and results about differential forms as well as the Laplacian,
Stokes and Maxwell operators. Most of it is directly taken from [18] (which however focuses on
bounded domains), while the proof for the different results stated can be found in [13] as well as [15]
and [16].

Notation 2.1. Let A be an (unbounded) operator on a Banach space X. We denote by D(A) its
domain, R(A) its range and N(A) its null space.

We also denote by .(R") the usual Schwartz space on R™.



2.1 Differential forms

Exterior algebra We consider the exterior algebra A = A° ® A @ --- @ A" of R", and we denote
by {er,I C [1,n]} the canonic basis of A, where ef = e;, Aej, A--- Nej, for I = {ji,...,J¢} with
J1<jo < -+ <Je

Note that A is in fact R™, and that for £ < 0 or £ > n we set A! = {0}.

The basic operations on the exterior algebra A are

(i) the exterior product A : AF x Af — AR+
(i) the interior product J : AF x A® — A,
(iii) the inner product (-,-) : A* x A* — R.
These correspond to the following operations in R3: Let u be a vector, interpreted as a 1-form:

for ¢ scalar, interpreted as a O-form: u A ¢ = pu, usp = 0.

for ¢ scalar, interpreted as a 3-form: u A vy =0, uip = pu;

v vector, interpreted as a 1-form: u Av =u X v, uav = u - v;

- v vector, interpreted as a 2-form: uAv =wu-v, uav = —u X V.

Exterior and interior derivatives We denote the exterior derivative by d := VA = Z?Zl ojejN
and the interior derivative (or co-derivative) by 6 := =V, = — 2?21 0je;ja. They act on differential
forms from R™ to the exterior algebra A = A’ @ A @ --- ® A™ of R”, and satisfy d> = dod = 0 and
62 =0806=0.

In R? they correspond to the following operators:

d: A =R -5 A =R AR I A3 =R (2.1)
SN =REWA —RIELAZ_RIEY A =R (2.2)

We denote by D(d) the domain of (the differential operator) d and by D(d) the domain of 6. They
are defined by

D(d) := {u € L*(R",A);du € L*(R",A)} and D(4):= {u € L*(R",A);éu € L*(R",A)}. (2.3)
Similarly, their domains in L? are:
DP(d) := {u € LP(R™,A);du € LP(R",A)} and DP(6) := {u € LP(R",A);u € LP(R",A)}. (2.4)

We also consider the maximal adjoint operator of d in L?(R™, A), denoted by d*. In R", § = d*,
and we will use d* in the rest of this paper.

For more details on d and 4, we refer to [3, Section 2] and [7, Section 2]. Both these papers also
contain some historical background.



2.2 Laplacian, Stokes and Maxwell operators
Definition 2.2. The Dirac operator on R" is
D:=d+d" =d+5.
The Laplacian operator on R™ is defined as
—A:=D?=dd" + d*d = do + 5d.

Remark 2.3. For 1 forms in 3 dimension, this last equation correspond to the well-known identity
—A = curlcurl =V div.

D is a closed densely defined operator on L?(R"™, A) and we have the following Hodge decompo-
sition (see [2, Section 4, proof of Proposition 2.2]):

L2(R", A) =R(d) & R(@) & N(D) (H>)
—R(d) & N(d") (2.5)
—N(d) & R(@). (2.6)

Note that the harmonic forms in L? on R are trivial, so N(D) = N(d) N N(d*) = N(A) = {0}. The
orthogonal projection from L?(R", A) onto N(d*) (see (2.5)), restricted to 1-forms, is the well-known
Helmholtz (or Leray) projection denoted by P.

The Hodge decompositions exist also in LP (see [19, Theorems 2.4.2 and 2.4.14]):

(R", A) =RP(d) @ RP(d*) © N(D) (Hp)
—Rp( ) ® NP(d*) 2.7)
=NP(d) & RP(d*) 2.8

for all p €]1, 00| and the projection P : LP(R™, A') — Np(d*)|Al extends accordingly.

Definition 2.4. e We denote by S the Stokes operator:
S :=D?=d"d in N*(d«)z1, (2.9)
where N2 (d*)|a1 is the restriction of N2(d*) to the space of 1-forms A'.
e We denote by M the Maxwell operator:

M := D* = dd* in N*(d)e, (2.10)

where N?(d)|2 is the restriction of N*(d) to the space of 2-forms A2,

Remark 2.5. On R™, § = _A‘NQ(d*)‘AI and M = —Apzg) a2
theorems, written for the Laplacian operator A, are also true for both the Stokes and Maxwell
operator.

This means that the two following



First those operators are sectorial and thus admit a bounded holomorphic functional calculus.

Theorem 2.6. 1. The Laplacian operator —A is sectorial of angle 0 in LP(R™,A) and for all
1 €]0, 5[, —A admits a bounded S, holomorphic functional calculus in LP(R", A).

And secondly they verify the maximal regularity property, which is crucial for our proof:

Theorem 2.7 (Maximal regularity). Let 1 < p,q < oo and let R be the operator defined for f €
Lj,.(]0, 00[; ' (R™)) by

loc

Rf(t) = /Ote(t_S)Af(s)ds, vt > 0. (2.11)

This operator is bounded from L9(]0, co[; LP(R™)) to W4(]0, oo[; LP(R™)) N L4(]0, oo[; W2P(R™)). In
particular the operator AR is bounded in L1(]0,c0[; LP(R™)).
Moreover there exists a constant Cg,, such that

d wod oy
Iz B legre + I1ARF gy + 1(=2)* () "R llpaz < Copllfllrzre, (2.12)

for all a €]0,1].

The proof can be found in [11, Chapter IV, §3].

2.3 The magnetohydrodynamical system
Let us recall the magnetohydrodynamical system (MHD):

ou+ Su+dr+usdu = —d*bab in 10, T[xR™
O0b + Mb —d(usb) in 10, T[xR™

N(d*),, forall ¢€]0,T]

R(d),, for all ¢ €]0,T7.
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Definition 2.8. A mild solution of the system (MHD) with initial condition ug € N(d*)jp1 and
bo € R(d)s2 is a pair (u,b) such that u is 1—form on R", b is a 2—form on R", and (u, b) satisfies

u(t) =e Sug + /O t e~ =P (—u(s)du(s)) ds + /O t e~ =P (—d*b(s)b(s)) ds, (2.13)
—ay (t) + By (u, u)(t) + Bay(b, b) (1) (2.14)
b(t) =eMpg + /0 L <—d(u(s)J b(s))> ds (2.15)
—ay(t) + Bs(u,b)(t) (2.16)

for all ¢ €]0,T7.

In the formalism we use, it is easy to see that the bilinear terms B; and By are almost identical.
In fact we will focus on By and skip the details for By altogether. The bilinear form for the magnetic
field Bj is different however, and in sections 4 and 5 we will need the following Leibniz-style inequality:



Lemma 2.9. Let o, 8, o, 8/ and v be such that é + % = 5 + % = % There exists a constant C,
such that

ld(wiaw2)lly < Cp(1Dwrllallwslls + llwillarl[Dw2llg). (2.17)
for all w; € D*(D) N LY (R™, AY) and all wy € D (D) N LF(R™, A?).

Proof. On R™ we get —A = D? so V = [V(=A)"'D|D = [V(-A)"'?][(-A)"Y2D|D. So V is
controlled by D. O

Remark 2.10. This estimate is an open question for low-regularity domains and in particular for
Lipschitz domains as discussed in [18].

3 Existence in L} spaces

In this section we consider solutions which are L? in time and LP in space. We prove global existence
of those solutions for small initial data and local existence for arbitrary large initial data.

Our proofs are based on the classical Picard fixed point theorem, already used for the Navier-
Stokes equations by Fujita and Kato [8] (see also [17]) and in [6] (see also [5]) for the Boussinesq
system. Our most recent inspiration is a paper by Monniaux [18] on the 3-dimensional (MHD) system.
Most of the tools used here appeared in the paper [16]; see also [13].

Let us start our main theorems:

Theorem 3.1 (Global existence). Let (p,q) such that 3 + % =1,p>n, and ¢ > 3.

Then there exists € > 0 such that for all ug € N"(d*)|,, and by € R"(d)|,, with
luoll . —2 + lluoll 4,1 <e (3.1)
BP,(;I quq
503
and [|bo| . 2 +[|boll 4., <, (3-2)
B, d B,

p,q 2
2

(S

’

the system (MHD) admits a mild solution (u,b) € L4([0,00[; LP(R™, A1) x L4([0, oo[; LP(R™, A?)).

Theorem 3.2 (Local existence). Let (p,q) such that 3 + % =1,p>n, and g > 3.
Then for all ug € N"(d*)|,, and by € R™(d),, there exists T > 0 such that the system (MHD)
admits a mild solution u € LI([0, 0o[; LP(R™, A1) and b € L4([0, 0o[; LP(R", A2)).

Proof. For 0 < T < 00, let us consider the spaces

P
2

Uyp = {u € LU([0, TENP(d*) ar); du € L3([0,T; LE (R, A2))} (3.3)

and
% = {b € LU0, TER () 02); d'b e LE([0, [ LE(R", AY)) } (3.4)

endowed with their natural norms



lullzr = llellzaqorpromn avy) + 4wl g o 1.5 e a2y

HbH@T = HbHLq([O,T[;LP(IR”,AQ)) + Hd*b”L%([O7T[;L5(R",A1))'
The proof relies on the Picard fixed-point theorem (see [12, Theorem 15.1]): the system
u=ay + Bi(u,u) + By(b,b) and b= ay+ Bs(u,b), (u,b) € Xr (3.5)
can be reformulated as
U=a+BU,U) (3.6)
where U = (u,b) € U x Br, a = (a1,a2) and B(U,U’) = (Bi(u,u') + Ba(b,V'), B3(u, b)) if
U = (u,b) and U’ = (v, V). On %r x B we choose the norm ||(u, )|z x 2y = ||ullzy + 110l 2,

We split the proof into two lemmas: Lemma 3.3 concerns the linear part, while Lemma 3.4
concerns the bilinear operator B.

_2 .
Lemma 3.3. For ug € B,J(R",A') N B,
2

S—241 oy
B, % (R™ A®) with dby = 0, then
272

1 L2
TR, AY) with dug = 0 and by € B, (R™,A%) N

[\)\.Q’QN}-

)

1. ay: t— e BSuge U
2. a9 : t+— eithQ S %T,

for all T €]0,+o00]. Besides for all € > 0, there exists T > 0 such that

ol + llasllay < ¢ (3.7)
Lemma 3.4. The bilinear operators By, By and Bs are bounded in the following spaces:

1. By : Ur x Ur — Uy,

2. By : Bpr x Br — Uy,

3. By : Ur x Br — Br

with norms independent from T > 0.

The boundedness of the operator B is now obvious: let U = (u,b) € %p x Br and U’ = (', V') €
%T X ,%’T. Then

|BU,U)

= HB1 (u,u') + Bo(b, V)

< K (|lulla Il + 118
<K|U

Ur + HB3(U’ b,)

21Vl + lulla 1Vl 2, )

%T X%T %T

wrx 2\ U Nwr x5
where K is a constant independent from 7" > 0.

Let then ¢ = . By Lemma 3.3, for ug € N"(d*)|,,, and by € R"(d), ,,
that |a1]l% + |laz||#, < € holds for e = ;. Then by Picard’s fixed point theorem the system (3.6)

admits a unique solution U = (u,b) € %r x Br. O

there exists T' < oo such



Lemma 3.3. Lete > 0. Let ug € By ¢ (R" AYNB

MI»Q*Q |u=

(IR" AY) with d*ug = 0 and by € B, ¢ (IR" A?)N

MI’E

» %4 (IR" A?) with dby = 0.
272

1. First we prove that the semigroups t — a1 (t) = e~

ug and t +— as(t) = e "My are respectively
in %r and %r.

Let T'= +o0. Thanks to [4, Lemma 2.34] we have

LA
ol -3 ~va HtH lereuollug]] o cop e

+o00 A é
o ([ el at)

~pq [t = e_tSUOHLgLZ-

Now, using the fact that (—A)% : BZ q B}’; 4 is an isomorphism we get
272 272

1
U 4 2
| oH.;;q ~pg [[(=4) oHB
2

s |
M"Q»be

Then using [4, Lemma 2.34] again we get

1A
o e IS R 1

t
LA
~pg It = (—A)ze UOHLtngg

—tS
~p.q Hde ! UO”Lt%nga

where the last line comes from the fact that d*ug =0 and ||D - Hg ~ ||(—A)% I
Hence for T € R,

p.
2

larllzr < llaalloe Spa lluoll —g +lluoll 4. (3.8)
Bp,q Bp qq
5.3
The estimate for ag is proven in a similar way:
lazllz < llazllze. Spa llboll .- + llboll . 4 (3.9)
Bp.q ﬂqg
2°2
2. Let ¢ > 0. If up and by have norms smaller than Hu0|| _g +|luoll i and HboH —g+ ool s,
pq Bp q Pq ng%

respectively, then we immediately have ||a1]|2,. + ||az2|l 2, < qs or all T € [0, 00].

Else let T € RT and let u§ € . (R", A!) and b5 € . (R", A?) be such that d*ug = 0, dby = 0,

and
luo —ugll , —a4y < eand [lug —ugll 2 <e,
BP q Bpﬂl
2°2
lbo — Bl 4., <eand ||bo—b§|| _2 <e.
By nd



Let us denote for ¢ € [0, 7] a5(t) = e " u§ and a5(t) = e~ *Mb5, and write

larllz < llar = aillzy + llaillzr < Kpge + llailla, -

By definition [|af[|lz; = llafllLap + HdaiHLt%L? Let us consider [[af| oz first: let s € R be
such that 1 — ¢gs > 0. Then we get

—tSug

laillgre < NIt = ] ooy ||t = t°le 221l £ao,m)

1-sq
Spa T ||t 17 gl

La([0,7],4)

Spa TN p1maa.
p,q

Similarly let s € R be such that 1 — 3 > 0. Then

1
Idasll g 5 Spa [t 2 (=2)3u5
t x

1
S THI(=A)2 0]l _y2mse

Sp,q TSHUSHB—22;;‘Z+1'

q
2

Since uf € L (R",A'), both [[uf]| _,2-s ., and [|uf]| _,1-s are well-defined and finite, al-
BP q ! Bpaq e
though they can be arbitrarily largg ’Eiepending on ug. However taking T small enough we
get
laillzr < Kpge.

And in a similar way we can prove that
gl
lasllz, < Kpqe,

which concludes our proof.

Lemma 5.4. Recall the relations on n, p and q:
n 2
n<p, 3<q and —4+-=1
P q

1. Recall that By (u,v)(t) = fg e~ =SSP (u(s)adv(s)) ds.

o Let 0= %. Then % — 2n—9 = %, so the Sobolev injection W25 < LP holds.



For almost every t > 0, we compute the norm in L% of Bj(u,v)(t) in the following way:

11w o))l = | [ %557 (u(s)s o) a

L

< /t Hseef(tfs)s‘
0 LP—LP

< /Ot(t —s)7" HS*GIP(U(S)_I dv(s)) ije’g ds
< /Ot(t —s)7" [P (u(s)du(s)) HL§ ds
< (=9 ool ds

t
S /0 (t =)~ lu(s) | zzlldv(s)] g ds,

SiGIP(u(s)_n dv(s)) ‘

Ly

ds

where (1) uses the operator norm of S%e~(=%)3  (2) uses the Sobolev injection W25 s Lp,

p
(3) uses the continuity of S=¢ from L3 to w205 (4) uses the continuity of the Leray

D
projector P on Lj and finally (5) is simply Holder’s inequality.

Since s — s~ = s » is in Lw™® (see [9, Definition 1.1.5]) and s = [[u(s)| 2 [|dv(s)| »

a
is in L} by Holder’s inequality, the convolution inequality || f * gllza Snpq || f]]

(see [9, Theorem 1.2.13 ]) yields

e We now compute the norm of dBj(u,v). Let § = 35 be such that

that the Sobolev injection W25 < L% holds. Then, following the same steps

By (u, v)(E)| 2, we get:

4By, )] g

[1B1(w, 0)l[ Loz Snpa l[ullzr 0]l -

_ H /0 " 1596~ §0P (u(s) 2 du(s)) ds

< [ astees
Ot

< /0 (t—5)~

5/0 (t =)= [P u(s)adu(s))]| 5 ds

P
L

j2 P
L2 L2

3

T

t
S [t uls)sdots)] s
0 T

t _ntp
5/0 (t—s) 2 ||u(5)||L§HdU(S)HL§ ds,

10

3

p

S0P (u(s)adv(s)) ‘

S0P (u(s)adv(s)) HWQQ p ds

L2
Lelol s
(3.10)

% = %, SO
as for

p ds
L2



where (1) uses the operator norm of $%e~(=%)3 (2) uses the Sobolev injection W25 s L3,
ya
(3) uses the continuity of S~ from L to W?*3, (4) uses the continuity of the Leray
14
projector P on L3 and finally (5) is simply (again!) Holder’s inequality.

n+p

2
Since s > s~ 2 is in Latp'™® (see [9, Definition 1.1.5]) and s > [[u(s)||pz||dv(s)]|

p 18
L
q
in Lj by Holder’s inequality, the convolution inequality [|f * gl|, ¢ Snp.q HfHan_fpoo lgll, 4
(see [9, Theorem 1.4.24]) yields

ldB1 (u, )| pare S lullzr 0]l - (3.11)

And combining both estimates yields
1B1(u, )l < Nlttllzr [0l 2 (3.12)

2. The boundedness of By : By x B — %r is proved in the exact same way.

n

3. e The estimates on Bs(u,b) is obtained in a similar way: taking 6 = 25 We get

1By, b)) = H /O t MOV d(u(s).b(s)) ) ds

(1)

2

Ly

= /t dS%e=(t=5)5g0 (u(s) b(s))) ds

0

t
</ HdSGBf(tfs)S‘
0

t
s [-s
0

t n
< [ =7 uls)sbs)] g s
0

x

Ly

(s)20(s)l| ds

||Si€u
LP—LP

S~ 0u(s)1b(s)

202 ds.
W, 2

t _ptn
5/0@—8) 2 |lu(s)|l e 16(s)]] e ds,

where (1) uses the fact that Md = dS, (2) uses the operator norm of dS%e~ (=53 (3) uses
Y2

the Sobolev injection W2%5 — LP, (4) uses the continuity of S~¢ from L} to W25 and

(5) is again Holder’s inequality.

Then as before [9, Theorem 1.4.24] gives us

1Ba(u. D)l g1 < u

w7 ||| - (3.13)

11



e To compute ||d*Bs(u,b)(t)||z, we can then apply the maximal regularity theorem:

t
" By(w.D)l 3,5 = Htr—>/0 d*e*“*s)M(—d(u(s)Jb(s)))ds

$.5
LZL2

q
2

%
Lt

Lg

(1) = Htr—>/0t5'e(ts)s(—u(s)_nb(s)) ds

@) 5 bl g

(3) = HUHL;]LI;HbHLgLZ

S llullz bl 2
where (1) uses Md = dS, (2) is Theorem 2.7 applied to S, and (3) is Holder’s inequality.

This last estimate concludes our proof. ]

4 Existence in %;L? spaces

In this section we prove the global and local existence of mild solutions for the magnetohydrodynamic
system (MHD), following closely [18]. The method is roughly the same as in the last section - using
Picard’s fixed point theorem and maximal regularity - with the main difference being that we rely
heavily on the Leibnitz estimate (2.17), which makes it difficult to generalize our results to low-
regularity domains. However, contrary to the L{L% case, we were able to prove the uniqueness of
mild solutions of the system (MHD) in Section 5.

Let us start by stating our two theorems:

Theorem 4.1 (Global existence). There ezists € > 0 such that for all ug € N"(d*), and by €
R™(d),, with [[uol|pn@rn aty + [1ollLnrn a2y < €, the system (MHD) admits a mild solution u €
% ([0, 00[; L" (R, A1) and b € ([0, o[ L (R”, A2)).

Theorem 4.2 (Local existence). For allug € N"(d")| , and by € R"(d),, there exists T' > 0 such that
the system (MHD) admits a mild solution u € € ([0, T[; L"(R™, A')) and b € €([0,T[; L"(R", A?)).

Let p €ln,2n[ and a =1 — %, and define the following Banach spaces for 0 < T < +o0:
Ur ::{u € €(]0,T; Np(d*)|A1); du € €(]0,T7; LP(R",AZ)) : (4.1)

a 1ta
sup (¢ |[u(t) gy +t 2" |[du(t)| ) < oo},
o<t<T

endowed with the norm

lta
2

= sup (£3u(®)llgs + ¢ du(t)]1z). (4.2)
o<t<T

[[u
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and

By ={be (0, T[;R(d), ,); d"b € €(0,T[; LP(R",A")) : (4.3)

lto
2

sup (12 [b(t)llp +¢72 1d*b(t)]| ) < oo},
0<t<T

endowed with the norm

1+«

Ibllzy = sup (¢21b(t)llz + &2 [ld*b(8)]] 1) (4.4)
0<t<T

We split the proof into three lemmas: in Lemma 4.3 we study the action of the Stokes and
Maxwell semi-group on initial data ug € N™(d*)ja1 and by € R"(d)|p2. In Lemma 4.4, we prove
bilinear estimates on By, By and Bjs, and in Lemma 4.5 we show that solutions from the working
spaces %r and % are in fact continuous on [0,7'[ and in L™ in space.

\20 We have

Lemma 4.3. For ug € N"(d*)| , and by € R"(d),

Al
1. ay :t— e Yug e Up,
2. a9 :t— eitho € %T,

for oll T > 0 Moreover, for all € > 0, there exists T > 0 such that

larllz + llazllz, <e. (4.5)

As in Section 3 the second lemma gives us estimates for the bilinear operator:
Lemma 4.4. The bilinear operators By, By and Bs are bounded in the following spaces:
1. By : Ur x Ur — Uy,
2. By : Br x Br — Ur,
S. D:YUr x By — Br
with norms independent from T > 0.

Our last Lemma gives us additional regularity for mild solutions of (MHD):

Lemma 4.5. Let T > 0. Assume that (u,b) € %r x Br is a mild solution of (NMHD) with initial con-
ditions ug € N"(d") , and by € R"(d)| ,. Then u € G,([0, T[;N"(d") ,) and b € €([0,T[;R"(d)|,,)-

Al A2 1 A2

Proof of Theorems /.1 and 4.2. The system
u=a1 + Bi(u,u) + Ba(b,b) and b=ay+ Bs(u,b), (u,b) € Ur (4.6)

can be reformulated as

13



where u = (u,b) € Ur x Br, a = (a1,a3) and B(u,v) = (By(u,v) + Ba(b, V'), Bs(u,V')) if w = (u,b)
and v = (v,V'). On %r x Br we choose the norm ||(u,b)||%, 2, = |ul|lz + ||bll2,. As in section 3,
one can easily check, using Lemma 4.4, that

”B(u7 v)“%TX=@T < CHU‘”%TX%THUHWTX%T

where C is a constant independent from 7" > 0. We can then apply Picard’s fixed point theorem to
prove that for ug € N"(d*)| , and by € R"(d),,,, with T" < oo such that (1.5) holds for € = 16 the
system (4.7) admits a unique solution u = (u,b) € % x ABr. By Lemma 4.5, this provides a mild
solution (u,b) € 6,([0, T[;N™(d*), ,) x €,([0, T[;R™(d), ) of (MHD). O

|A1 |A2

Proof of Lemma /.5. Let ¢ > 0 and let ug € N"(d*)x1 and by € R™(d)p2. By Theorem 2.6, the

semi-group e~ and e *™ are bounded and there exists constants cip and cé\fp such that for all
T>0
S
lasllar + llazllzr < <5 plluoll iz + capllboll 2. (4.8)

Hence if [[ugl|» and |[bg||» are small enough, the inequality (4.5) |la1l|z; + [laz|#, < € holds.
For any ug € N™(d*) 1 and by € R™(d) 52, with arbitrary norms, let uj € NP(d*)1 and b € RP(d) 2

be such that

luo — ugllzy <<
b0 — b5z <.

Let us write a5 () = e " and a5(t) = e ™Mb, Then
larllzy < llar = aillz, + llaill2- (4.9)

Since S generates a bounded semi-group, ||a1 — af||z, < Kape.

a 1ta _ a
and [|af ||z = supgcper (£2 e P ug| rp + 172 |de S ug|lp) < KapT> |Jugllz-

We get the same estimates for by, and combining them together we get

ol + llasllor < &K (T3 (65125 + IE61p) +¢) -

Choosing T small enough, such that T%(HugHLg + 1|05l 12) < &, we get
Hal”%T + HG’QH%T < 2Ka,p €. (410)
U

The proof of Lemma 4.4 proceeds similarly to the proof of Lemma 3.4, except for the third
estimate Bj.

Proof of Lemma /./. Recall that a =1 — %.
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1. Let 0 = 1_70‘ Then % — % = %, so the Sobolev inclusion W2%% < LP holds. For u,v € Ur, by
definition of %7, s — s%‘mu(s)J dv(s) € 6,([0, T[; L2 (R™, A') with bounded L°®-norm in time.
The Leray projector P is bounded from L%(R",Al) to N%(d*) and for # > 0 the operator

S—9 is bounded from W?2%% to L%.
Let ¢ €]0,T[. Then we get:

|A1’

t

| B (u, v)(@)] 1p = H/ 570380 (=9)S g—0p (—S%U(S)J saTldv(s)) ds
0 Lﬁ
t

W s
0
! —a—1 -6 < atl
@ 5 [ = s el s ()] g ds

t 1
3 < ( [ seia-s ds) g 02
0

ds
p

x

Seef(tfs)S‘

S=op (—S%U(S)J saTHdv(s)> ‘

LP—LP

1

(4)  Seion / o3 (1 — o)~ doljully 0] 2
0

) <t ullug ol

where (1) uses the operator norm of S%e~(*=%)5  (2) uses successively the Sobolev injection
w25 L?, the continuity of S~ from W25 to Lg, the continuity of the Leray projector
P and the Holder inequality - the same steps as for Lemma 3.4. (3) uses simply the definition
of the %p norm and (4) and (5) are straightforward integral computations - since n < p < 2n,
both o + % and 0 are strictly lower than 1.
This gives us our first estimate supy_,or (t% | By (u, v)(t)|| 12 ) < +o0.

l1—a

The second estimate proceeds similarly: taking 6 = 2£p = =~ as before, we get

¢
|[dB1(u,v)(#)|lpp = H/ 57073450 (=S g0 (—S%U(S)J saTHdv(s)> ds
0
¢

1 1
< (/ sTYTI(t — S)*Gfﬁ ds> HUHJ//THQ)H%T
0

_lta
St ulleg vl

Ly

with a multiplicative constant independent from 7.

This gives us our second estimate supg;p (tHTa [dB1 (u,v)(t)||p) < +00

2. As for Lemma 3.4, the proof of point 2. proceeds exactly as in the previous point.

3. Let u € % and b € #r, and set again § = 5 = -2 Taking the LP norm of Bs(u,b)(t) now

15



yields

1 Bau b))z = H / M 2019 (~du(s)b(s)) ) ds

< /0 s« HdSGe*(t*s)S‘ - S0 (SQ’U,(S)J s%b(s))‘

' 1
S </0 Sia(t — 8)92(18) H’U,HQZ/T”b”%T

S 2 [ulla 10l 2,

ds
LE

For the last term d*B3(u,v) we use the Leibniz inequality (2.17) to get
d(u(s)2b(s)[[z < luls) g d7b(s)] 1z + [1b(s) e lldu(s) e - (4.11)

We can now use this estimate to compute ||d* Bz (u,b)(t)|| 1z, using the same methods as before:

I B, (1) 3 = H / e b MO V00 (a(u(s)8(5)) ) ds

¢ 1
<[
0

5/t5a(t—s) P=hso s | MO (—d(us) sb(s) )HWW ds

Ly

MY (—d(u(s)_n b(s))) ‘

1
ata ds
LY

d*MGBf(tfs)M‘

S

LP—LP

t
5/ sfafé(t—s)ﬂg*%sa‘% H—d(u(s)_nb(s))H2 ds
2
b1 -1 arl .
5/ 5772 (t— )7 7252 (JJu(s)l| 2 lld0(s)l g + 1Ib() | e lldu(s) ] ) ds

t
< </ 870‘7%(25 — 5)95d5> ||l
0

1+a
St lulleg 0]l 2,

|0l 2y

Which concludes our proof of Lemma 4.4. O

Proof of Lemma /.5. To prove this lemma, first observe that if ug € N"(d*)|Al and by € R"(d)|A2, then
for all T > 0, t = e *uy € 6,([0,T; N"™(d*),,) and ¢ — e ™Mby € 6,([0,T7; R™(d)|,,)- It remains to
show that if u € % and b € Zr, then By(u,u) € G([0, T[;N"(d"), ,), B2(b,b) € G([0, T[;N"(d"), ;)
and Bs(u,b) € 6,([0,T]; R"(d)|A2).

To prove boundedness, we use the same method as in the previous lemma:
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recall that a« =1 — % and chose p = & — %, so that W2#% < ", Then we can proceed similarly:

n
p

a+1

2 du(s)) ds

t
| B1(u,v)(®)],, = / s GPe(1=9)S g—ep (—S%U(S)JS

0

Ly

t
S([sbe-ovas) g,

0

1 1 1 1 2
N / o “72(1 - o) ¥ dol|ullz,
0

2

rg ||u %T'

The continuity in 0 is then straightforward, and the terms By and B3 can be treated similarly. [

5 Uniqueness

Theorem 5.1. Let T € [0,00] and assume there exist two solutions (u;,b;), i = 1,2 of (MHD) with
the same initial data (ug,bo), and such that

du; € 6,([0,T7;
d*bi < Cgb([O,T[;

(R™,A%))
(R™, AY)).

INTEEENT

L
L
Then (ul,bl) = (UQ,bQ).

Remark 5.2. The condition (du, d*b) € €,([0,T[; L= (R", A?)) x €,([0, T[; L= (R”,A"))) in fact implies
(u’ b) € (gb([o’ T[a Nn(d*)|A1) X (gb([o’ T[a Rn(d)\AQ)

Proof. Assume that there exists t* € [0,00[ such that (uj,b;) = (u2,b2) on [0,t*]. We write
(i, bi) (7 ) = (wa)-

Let u = u; —ug and b = by — be. For ¢ = 1,2, since (u;, b;) is a solution of (MHD), we have

u; = a1 + By(u;, u;) + Ba(bs, b)
b; = as + Bs(us, b;).

Hence

U :Bl(u,ul) +B1(U2,u) +B2(b, bl) +B2(b2,b) (5.1)
b =B3(u, bl) + Bg(UQ, b) .
Let € > 0. let (u,b) be such that uf and b5 are in 42[0, T];. (R")) with

)

. € n
ld(wi uz)HL?o(Lg) <e (5.3)
<e. (5.4)

. _IE "
s =), 3, <

17



Note that this in particular implies
lui = uillpgo(rny < € (5.5)

1bi — b5 | oo () < €. (5.6)

We want to prove that there exists some r > 1 and 7 > 0 such that

n < b, ) : 3 ’
HduHLT([t*i*‘i‘T},ng) - Kr7n7ul7b’b € <HduHLT([t*,t*+T]7Lx2) + ” HLT([t*vt*'i_TLLSg )) (5 7)
* n < b . 3 5 ‘
||d bHLr([t*,t*‘i’TLLZ) - Kr7n7u“b1 € (Hd b||L7‘([t*,t*+T],L12) + ||dU||LT([t*7t*+TLLz2 )> (5 8)

Let 7 > 0 and ¢ € [t*,t" + 7].
1. Let us look at dBj(u,u;) first. We can write dBj(u,u1) = dBi(u,uj) + dBi(u, u1 — uj).
e Let us begin with dBj(u,u; — uj). Since P is the projection on N(d*),
dBi(u,u; —ui)(t) = t De~ (=t =9)Sp (u(s)ad(ur — uf)(s)) ds = DBy (u,ug — ui)(t).
o
Using the fact that ||Df||, ~ ||S%f||r for all r €]1, co[, we can estimate S%Bl(u,ul —uj)
instead of dBj(u,u; — uf). Using the maximal regularity Theorem 2.7 we get:

t t
/ Sze(t=9SP (u(s)ad(ur — uf)(s)) ds = Se_(t_S)SS_%IP(u(s)J d(ur — ui)(s)) ds,
t t

So

Sze(t=9SP (u(s)od(ur — uf)(s)) ds

n ~T,N

S_%IP(’U,J d(u; — u‘i))‘

n
LTL2

t Lr(Jt* t*+r[) L2
oo [P =), oe
t W
oo Ml zgaglldCen —uDl, g
t T
Som eldul, 5.
Hence there exists some constant K., such that
4B (s = ul, o < Knelldul, y. (5.9)
e The second term does not require maximal regularity:
t
—(t—s)S
ldBy (u, uf) ()| 2 Sn /t de=(t=9) ‘ La s [P(ul(s)adui(s)) ds|,
|
< u(s duf (s)|n ds.
< [ =l o)1
Using the convolution injection L' x L™ < L™ we get:
4B )1 g0y S 2V Nl o S ey (5.10)
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Now ||duf||pec(zn) is well defined but not necessarily bounded as ¢ goes to 0. However we can
always pick 7 small enough to ensure that /7[|duf ||z (n) < €. Therefore combining estimates

(5.9) and (5.10) there exists a constant K., ,, such that

HdBl(u? ul)‘|Lr([t*7t*T[;L%) S KT,TL,U'L‘guduHLr([t*7t*+T[;L%)-

(5.11)

. Let us write dBj(ua,u) = dBy(uz — u§,u) + dB1(u§, u). Then by maximal regularity we get:

[dB1 (ug — u, u)|

Sié]P(('UQ —u$) du)‘

vk S
S lldull, glluz = uzlloge e
S elldull, -
Besides
t
—(t—s)S
ldB1 (ug, w) (D)2 Sn /t de= (%) ‘L%%% [P ((u5)(5)2du(s)) ds||

t
1
S /t ﬁ“ug(s)\\o@\\du(s)”% ds,

And by convolution we get

4By (u3, w) (D)l n S VTIUS Lo Lo lldull 5
t Hx

Setting 7 such that /7[ju5||pee L < €, we finally get

|dB1 (g, u) < Kol du]

e e o e %) Lr([tr = +r[;LE)°

. The next terms By (b, b1) and Ba(be, b) are treated in the exact same way.

(5.12)

(5.13)

. Recall that b = Bs(u,b;) + Bs(ug,b). We start by writing d*Bs(u,b;) = d*Bs(u,b; — b3) +

d* B(u, b¥).

e Let us recall from section 3 that d*e~ (=M J = Se~(t=9)5 Using the maximal regularity

property 2.7 we then get:
* _KE n < __hE
" Batuw. =), 5 < s (b =W,

e Using the Leibniz-rule (2.17), we get:

t
* 1 €
B 5)Olly S [ 2l (s

<
~n t* \/t—S

And by convolution we can conclude that

1" Bs(u, b)II 5 S VT (0715 Lo + 06 [l e ) il
t
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n.,
LTL2

2 Sea lullornll(br —=b9) | Leern Srn 6||dU||LTL§-

(5.14)

(5.15)



Choosing 7 such that /7 ([|b5]|zseree + [|dbS[|zeorn) < € let us finally get

" Ba(w,bo)ll |, 3 < Kpnupelldul] 5. (5.16)
t—-T t HT

A similar computation shows that

1 By(us, D), 3 < Ko eldDl s (5.17)
ta

n
LTL2

and with this last estimate we have proven that

Ve ey < Kot © (1800 ey + 180 e gesrgny)  (5:18)

1]l < Kornupbi€ (IIdUII + lldoll

Lr([t* t+7[;L3) Lr([t* t*+7[;L %) (1t t*+T[L%)> ’

where K, , ., p, is a constant independent of u, and e can be chosen arbitrarily small. Then
letting e be such that K, ,, 4, p,e¢ < i we get
d d*b 1 d d*b
” u”Lr [t* t*—f—T[LQ + H ”L t* t*+7‘ % 5 <H uHLr t* t*+7’ Lg) + H ”LT [t* t*+T[L2)) )
which proves that du and d*b (and hence v and b) are equal to 0 on [t*,¢* + 7[. Let
I = {t*, the system (MHD) has a unique solution on [0,¢*[.}

Then I is open, and it is also closed by continuity. Thus I = [0, 7] by connectedness.
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