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Combinatorics of the paths towards synchronization

In this paper, we introduce a codification of the paths towards synchronization for synchronizing flows defined over a network, as a way to characterize different possible synchronization sequences, and count them. The collection of paths toward synchronization defines a combinatorial structure: the transition diagram.

We focus on the Laplacian flow over the completely connected graph and describe the corresponding transition diagram. This description applies as well to the Kuramoto flow over the same network, when considering initial conditions close to the synchronization manifold after a finite transient. We present as well some results concerning the Laplacian and Kuramoto flows over the complete bipartite graph.

Introduction

Synchronization phenomena are a long standing subject dating back at least to the observations of Huygens see for instance [START_REF] Pikovsky | Synchronization -a universal concept in nonlinear sciences[END_REF]. This field of research when considering coupled dynamical systems on networks has been very active since Kuramoto's seminal paper [START_REF] Kuramoto | Self-entrainment of a population of coupled non-linear oscillators[END_REF]. The first studies considered homogeneously coupled systems like global coupling, completely random coupling or coupling according to a regular network. A very complete account of those early work can be found in [START_REF] Strogatz | From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators[END_REF].

An approach to study the ways in which the components of an interacting system synchronize, depending on the interaction's topology, leads to the definition of synchronized subnetworks. As noticed in [4], the progression in connectivity of the synchronized subnetwork as times increases qualitatively follows the dictates of the linearized dynamics. Given this remark it appears as natural that as a starting point in understanding paths towards synchronization, we should first try to understand this phenomenon in the context of the linear dynamical system defined by linear coupling among the components, that resumes to the Laplacian matrix on the considered network, for instance with global coupling.

Under this flow, the coordinates of each initial condition converge to a common value, the so-called consensus [5]. This consensus is in fact the point in the synchronization manifold, attracting that particular initial condition, and the whole phenomenon can be regarded as a full synchronization. Furthermore, as will be shown, the paths towards full synchronization can be explicitly determined in this linear case. On the opposite, the nonlinear dynamics is not always necessarily fully synchronizing and noticeable differences between the nonlinear and the linearized flow appear as we increase the number of components, i.e size of the system. In contrast to the linearized flow, which is always landing on an attractor (i.e fully synchronizing), the synchronization when nonlinear couplings are considered, is subject to several conditions regarding the size of the network and its spectral dimension [START_REF] Millán | Synchronization in network geometries with finite spectral dimension[END_REF], among others. So as a starting point of a study of paths towards synchronization, we consider a system for which full synchronization is insured. The asymptotic behavior is then trivial, but this gives us the opportunity to tackle the diversity of distinguishable paths towards synchronization, i.e tackle the transient dynamics and see how possibly the interaction's topology could affect these transient dynamics. Moreover, we can envision that to each distinguishable path towards synchronization we can associate an ensemble of initial conditions all taking the same path; this provides a way to partition the basin of attraction corresponding to the full synchronization, using distinguishable observable paths, and as such use time to uncover the complexity of the phenomenon and possibly encode information. For instance, once established we may be able to characterize the complexity of the system by counting the number of paths towards synchronization. Note that characterizing the complexity of the system by measuring the diversity of paths is a classic topic that has been studied and illustrated, among others, in [START_REF] Afraimovich | Space-time complexity in hamiltonian dynamics[END_REF][START_REF] Zaslavsky | Working with complexity functions[END_REF][START_REF] Leoncini | Jets, stickiness and anomalous transport[END_REF].

So the aim of this paper is to introduce the notion of synchronization sequences as a description of a path towards synchronization, and lay the ground for further possible studies. In fact this notion can be related to the connectivity matrix defined in [START_REF] Arenas | Synchronization reveals topological scales in complex networks[END_REF]. In the case of a fully synchronizing system, the set of all the synchronizing sequences forms a transition diagram that encodes the whole transient dynamics towards synchronization. So after introducing some definitions, in this paper we settled as a starting point to study in full details this combinatorial structure in the case of the Laplacian dynamics on the fully connected network, and in some details in the case of the complete bipartite network. We characterize the transient dynamics on those networks by means of some topological features of the corresponding transition diagrams. We also analyze the applicability of this approach to the corresponding Kuramoto model.

The rest of the paper is organized as follows. After establishing the notations and the basic definitions in Section 2, we study in Section 3 the transition diagram of synchronization paths for the complete graph K N . In Section 4 we study the applicability of the combinatorial description proper to the linear dynamics, to the corresponding Kuramoto model. Then, in Section 5 we present some results concerning the structure of the transition diagram for the complete bipartite graph K N,N . Finally, in Section 6 we close the paper with some final remarks and comments.

Set-up

We will refer indistinctly by graph or network to an undirected graph G " pV, Eq, with vertices in V and edges or links in E. On the contrary, a directed graph is a couple D " pV, Aq of vertices in V and arrows in A. An edge is a two-vertex set, its end vertices, while an arrow is an ordered pair of vertices.

A subgraph of G is a graph G 1 " pV 1 , E 1 q such that V 1 Ă V and all the edges in E 1 Ă E have end vertices in V 1 .
A path in G is a sequence of vertices such that each couple of consecutive vertices form an edge, while a path in D is an ordered sequence of vertices v 1 Ñ v 2 Ñ ¨¨¨Ñ v n such that each couple of consecutive vertices forms an arrows. In this last case we say that v 1 is the starting vertex of the path and v n the ending one, besides n ´1, the number of arrows in the sequence, is the length of the path. A graph is connected if each couple of vertices belongs to a path. Any graph can be decomposed in a unique way as a disjoint union of connected subgraphs, called connected components.

We fix a graph G " pV, Eq and consider a system of coupled differential equations on I V , where I is either R or the circle S 1 . The flow is generated by a system of ODEs coupled according to the edges in E which represent the interactions between the particles.

We will focus on the Laplacian flow on G, which is the linear system defined by

dx v dt " pL xq v " ÿ uPV :tu,vuPE px u ´xv q, with x v P R for each v P V. (1) 
Here L is the Laplacian matrix of G, given by Lpv, v 1 q " ř uPV :tu,vuPE p1 tuu 1tvu qpv 1 q. The synchronizing dynamics of the Laplacian flow is preserved in part by the Kuramoto flow defined in pS 1 q V by the system of ODEs

dx v dt " σ ÿ uPV :tu,vuPE sinpx u ´xv q, (2) 
where σ P R `is the strength of the coupling. In both flows, the diagonal, also known as synchronization manifold :

D " tx P I V : x u " x v @ u, v P V u, (3) 
is an attractor, i.e., it is such that lim tÑ8 distpxptq, Dq " 0, for each initial condition in a neighborhood of D. Indeed, it is a global attractor for the Laplacian flow and, since the linearization of the Kuramoto flow around the diagonal is proportional to the Laplacian flow, applying a Hartman-Grobman argument we conclude that it follows a similar converging dynamics in a small neighborhood of the diagonal.

In order to measure the degree of synchronization at a given time, we fix a precision ą 0 and declare that two neighboring sites are -synchronized if their distance does not exceed . Seeing as active each connection between neighboring sites which are -close, we define a subnetworks containing all the active connections. The determination and evolution of this subnetwork is the main objective of the present work. Hence, to each fixed threshold ą 0 and every configuration x P R V , we associate an -synchronized subnetwork G x "

pV, E x q, where E x Ă E is the collection of edges

E x " ttu, vu P E : |x u ´xv | ď u. (4) 
For the systems under consideration, G xptq Ñ G as t Ñ 8 provided the initial condition is sufficiently close to the diagonal. Since there is a finite number of subnetworks, then for each suitable initial condition x P R V there exists a finite sequence of switching times t 0 " 0 ă t 1 ă t 2 ă ¨¨¨ă t and a corresponding sequence of -synchronized subnetworks pG x , G xpt1q , . . . , G xpt q q such that G xptτ q ‰ G xptτ`1q , for each 0 ď τ ă N , and G xptq " G xptτ q with τ " maxt0 ď j ď : t ě t j u. These sequence of subnetworks of G codify the progression of transient synchronizing patterns. By taking sufficiently small, all the possible synchronizing sequences can be obtained by varying the initial condition x inside the basin of attraction of the diagonal. As a sidenote, we may notice that the synchronizing sequence can be seen as time evolving network as more and more -synchronized neighbours are appearing, and as such the sequence can be seen as a deterministic example of a temporal network [START_REF] Barrat | Modeling temporal networks using random itineraries[END_REF].

In the case of highly symmetric networks, instead of the -synchronized subnetworks it is convenient to use another combinatorial structure that at the same time encodes the subnetwork and respects some of the symmetries which are preserved by the dynamics. As we will see below, this eases the description of the evolution of the synchronized subnetworks. Hence, the whole synchronizing dynamics on G can be compiled in a single combinatorial superstructure.

This superstructure is a transition diagram whose vertices are in correspondence (not necessarily injective) with -synchronized subnetworks in such a way that the collection of all the paths in the transition diagram is equivalent to the set of all the observable sequences of -synchronized subnetworks. To study this dynamics, it is enough to see the diagram with other labels that allows to encode the G x . To be more precise, the transition diagram is a directed graph T " pV , A q whose vertices, V are combinatorial objects containing all the information we need to determine the -synchronized subnetworks and the arrows, A , are transitions between those structures which are consistent with the evolution of the synchronized subnetworks. The correspondence between objects in V and -synchronized subnetworks is achieved via a mapping

λ : V Ñ E , (5) 
that labels each vertex in the transition diagram with an -synchronized subnetwork. The labelling λ is such that pG 0 , G 1 , . . . , G q is a realizable sequence of -synchronized subnetworks if and only if there exists a path v 0 Ñ v 1 Ñ ¨¨¨Ñ v in T such that G n " λpv n q for 0 ď n ď , we will see these encodings in detail later.

In general, the set E of all the -synchronized subnetworks changes with . Nevertheless, for sufficiently small, the set of -synchronized subgraphs defined by initial conditions in a small neighborhood of D becomes independent of . For the Laplacian flow, the set E of all possible synchronized subnetworks is independent of as long as ą 0. Even if E is independent of , the corresponding transition diagram may change with . This, nevertheless, does not happen in the linear case, since for each initial condition x P R V , the corresponding sequence pG x , G xpt1q , . . . , G xpt q q of -synchronized subnetworks coincides with the sequence pG y , G ypt1q , . . . , G ypt q q of 1 -synchronized subnetworks determined by y " x 1 { . Indeed, by Equation (4) and by the linearity of the system,

tu, vu P E x is equivalent to |x u ´xv | ď , hence |x u ´xv | " { 1 |y u ´yv | ď , therefore |y u ´yv | ď 1
, which is equivalent to tu, vu P E y . From this it follows that the collection of -synchronized sequences does not depend on in the linear case. Clearly, since this number is finite, each synchronized sequence can be realized by an infinite number of initial conditions, which in principle allows to realize some partition of the initial phase space, i.e., the basin of attraction of the final synchronized state.

We will restrict our study to the following families of networks:

A. The complete graph K N , for which V " t1, 2, . . . , N u and E " ttu, vu :

1 ď u ă v ď N u.
B. The complete bipartite graph K N,N , where V " t1, 2, . . . , 2N u and E " ttu, N `vu : 1 ď u, v ď N u.

Considering these families, we address the following questions:

1. Given the underlying network, which subgraphs are realizable as synchronizing subnetworks? How large is this collection and how does it grow with the size of the underlying graph? The Laplacian matrix for K N diagonalizes in the basis tu 1 , u 2 , . . . , u N u, where u 1 :" ř N n"1 e n and, for each n ě 1, u n :" e n ´e1 , where e n denotes the n-th vector of the canonical basis. Indeed, Lu 1 " 0 and Lu n " ´N u n for each n ě 2. Consider now an initial condition x P R N . Such an initial condition can be decomposed as x " x u 1 `řN´1

n"1 px n`1 ´xq u n , where x :"

´řN n"1 x n p0q ¯{N . Therefore xptq " x u 1 `e´N t N ´1 ÿ n"1 px n`1 ´xq u n " N ÿ n"1 `x `1 ´e´N t ˘`e ´N t x n
˘en , for all t P R. From this, it follows that

x n ptq ´xm ptq " e ´N t px n ´xm q,

synchronized subnetwork G xptq , for all times exceeding t n,m " plog |x n ´xm | ´logp qq {N .

Without loss of generality we may assume that x 1 p0q ď x 2 p0q ď ¨¨¨ď x N p0q which, by Equation ( 6), ensures that x 1 ptq ď x 2 ptq ď ¨¨¨ď x N ptq for all t.

In order to take advantage of the fact that the Laplacian flow preserves the order of the coordinates, we will define the transition diagram not over the synchronized subnetworks but over another combinatorial object that encodes both the synchronized subnetworks, and recognizes the order of the coordinates.

By doing so we will facilitate the description of the transition diagrams since the coding we use allows us to easily determine the order of apparition of new edges in the synchronized sequence. This coding is not only convenient but necessary if one wants to keep track of the order of the coordinates. We codify -synchronized subnetwork G x , determined by the ordered configuration x 1 ď x 2 ď ¨¨¨ď x N by the increasing function φ x : t1, 2, . . . , N u Ñ t1, 2, . . . , N u given by φ x pmq " maxtn ě m :

x n ď x m ` u. (7) 
Clearly φ x is increasing and such that φ x pnq ě n for each 1 ď n ď N , i.e., φ x ě Id. Here and below Id denotes the identity function in t1, 2, . . . , N u. We 145 present an example of the construction of the increasing function from a given initial condition, in Figure 1.

By the arguments developed in the Appendix Appendix A, we know that the collection Φ N :" tφ : t1, . . . , N u Ñ t1, . . . , N u increasing and such that φ ě Idu, ( 8)

is in a one-to-one correspondence with the collection of all -synchronized subnetworks of K N defined by initial conditions satisfying

x 1 ď x 2 ď ¨¨¨ď x N .
The correspondence is given by φ Þ Ñ pt1, 2, . . . , N u, E φ q where E φ " ttm, nu : minpm, nq ď φpmaxpn, mqqu.

In this case, the coding (5) which associates increasing functions to synchronized subnetworks is given by Equation ( 9).

x 4 x 3 x 2 x 1 Ó Ó Ó Link No link Link 4 3 2 1 φ x =(2,2,4,4) (a) (b) (c)
Figure 1: In (a), an example of the values of x " px 1 , x 2 , x 3 , x 4 q are illustrated with black dots. To construct Gx, according to Equation ( 4), it is enough to observe that x 1 and x 2 are inside one -neighborhood, and x 3 and x 4 in another, which implies that in (b) there are links between the vertices 1 and 2 as well as between vertices 3 and 4. In (c), the increasing function φx associated with x is depicted. The information in φx can be read as follows: The furthest vertex connected with vertex 1 is vertex 2, vertex 2 does not reach vertex 3, and vertex 3 reaches vertex 4, which is the last one.
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The collection Φ N is equivalent to a well-studied combinatorial set, the set D 2N of Dyck paths of length 2N . This set is in turn equivalent to the set of valid 2N -parenthesis configurations. All these combinatorial sets have a cardinality given by the Catalan numbers [START_REF] Stanley | of Cambridge Studies in Advanced Mathematics[END_REF],

|Φ N | " C N :" 1 N `1 ¨2 N N '. ( 10 
)
Taking into account the equivalence established in the previous paragraph, each sequence of -synchronized subnetworks pG x , G xpt1q , . . . , G xpt q q generated by an ordered initial condition x, is faithfully codified by the corresponding sequences of increasing functions pφ x , φ xpt1q , . . . , φ xpt q q in Φ N defined by Equation [START_REF] Afraimovich | Space-time complexity in hamiltonian dynamics[END_REF].

Clearly the function t Þ Ñ φ xptq pnq increases with t for each n fixed, and converges to φ xptq " N at the time t 1,N " plogpx N ´x1 q ´logp qq {N . Due to the monotonicity, the length of an -synchronized sequences is upper bounded by the number of edges in K N , i.e., ď N pN ´1q{2. As mentioned above, the switching times t 1 ă t 2 ă ¨¨¨ă t are completely determined by the increments

x n ´xm , with m ă n. Let us assume that all those increments are different from zero and pairwise different. We will say that a path satisfying this condition is typical. Clearly, the non-typical paths correspond to initial conditions in a set of zero Lebesgue measure in R N . Hence, for typical paths, two consecutive functions in the sequence pφ 0 , φ 1 , . . . , φ q :" pφ x , φ xpt1q , . . . , φ xpt q q differ at a single point. Let us denote by δ n P t0, 1u the characteristic function of the singleton tnu. Hence φ τ `1 " φ τ `δnτ for some n τ P t1, 2, . . . , N u satisfying the condition φ τ pn τ q ă φ τ pn τ `1q. Hence an admissible sequence pφ 0 , φ 1 , . . . , φ q can be obtained by choosing a valid initial function φ 0 P Φ N , then for each τ ě 0, a point n τ P t1, 2, . . . , N ´1u such that φ τ pn τ q ă φ τ pn τ `1q to update φ τ `1 " φ τ `δnτ .

Nevertheless, not all the sequences obtained in this way are realizable as synchronizing sequences. The sequence pn τ q 0ďτ ă of jump sites is determined by an order in the increments ∆ :" t∆ n,k :" x n`k ´xn : 1 ď n ă n `k ď N u in such a way that the τ -th smallest increment in ∆ is of the kind ∆ nτ ,k . Hence, to each valid strict ordering in ∆ corresponds a unique realizable path towards synchronization.

One can easily verify that not all the admissible paths are realizable. The simplest counterexample happens for N " 4 (for N " 2, 3 all admissible sequences are realizable). In this case the sequence Id

Þ Ñ p2, 2, 3, 4q Þ Ñ p2, 2, 4, 4q Þ Ñ p2, 3, 4, 4q Þ Ñ p2, 4, 4, 4q Þ Ñ p3, 4, 4, 4q Þ Ñ p4, 4, 4, 4q
, which corresponds to the sequences of jump sites p1, 3, 2, 2, 1, 1q, is not realizable since the first two transitions indicate that x 2 ´x1 ă x 4 ´x3 but transitions four and five imply that

x 4 ´x2 ă x 3 ´x1
, which is contradictory. The total number of admissible paths for N " 4 is sixteen. On the other hand, the total number of realizable paths is ten, and the associated valid strict orderings are shown in Table 1.

∆ 1,1 ă ∆ 2,1 ă ∆ 3,1 ă ∆ 1,2 ă ∆ 2,2 ă ∆ 1,3 ∆ 1,1 ă ∆ 2,1 ă ∆ 1,2 ă ∆ 3,1 ă ∆ 2,2 ă ∆ 1,3 ∆ 1,1 ă ∆ 3,1 ă ∆ 2,1 ă ∆ 1,2 ă ∆ 2,2 ă ∆ 1,3 ∆ 2,1 ă ∆ 1,1 ă ∆ 3,1 ă ∆ 1,2 ă ∆ 2,2 ă ∆ 1,3 ∆ 2,1 ă ∆ 1,1 ă ∆ 1,2 ă ∆ 3,1 ă ∆ 2,2 ă ∆ 1,3 ∆ 2,1 ă ∆ 3,1 ă ∆ 1,1 ă ∆ 2,2 ă ∆ 1,2 ă ∆ 1,3 ∆ 2,1 ă ∆ 3,1 ă ∆ 2,2 ă ∆ 1,1 ă ∆ 1,2 ă ∆ 1,3 ∆ 3,1 ă ∆ 1,1 ă ∆ 2,1 ă ∆ 2,2 ă ∆ 1,2 ă ∆ 1,3 ∆ 3,1 ă ∆ 2,1 ă ∆ 1,1 ă ∆ 2,2 ă ∆ 1,2 ă ∆ 1,3 ∆ 3,1 ă ∆ 2,1 ă ∆ 2,2 ă ∆ 1,1 ă ∆ 1,2 ă ∆ 1,3
Table 1: The ten different orderings of the increments for a typical initial conditions in R 4 .

Each ordering in Table 1 uniquely determines an observable path towards synchronization. The corresponding paths towards synchronization are organized in a transition diagram, depicted in Figure 2.

As mentioned above, the path towards synchronization for the initial condition

x is given by the sequence pG x , G xpt1q , . . . , G xpt q q of synchronizing subnetwork, which is equivalent to a sequences of increasing functions pφ x , φ xpt1q , . . . , φ xpt q q in Φ N . The sequence pφ x , φ xpt1q , . . . , φ xpt q q is completely determined by the order of the increments ∆. Each ordering of increments determines the sequence pn τ q 0ďτ ă of sites where consecutive increasing functions differ, i.e., the sites n τ such that φ xptτ`1q ´φxptτ q " δ nτ for each 0 ď τ ă . Hence, each valid ordering in ∆ corresponds to a unique realizable path towards synchronization. Therefore, the total number of paths toward synchronization is given by the number of different orderings ∆ which can be obtained from an ordered vector x P R N . This is a combinatorial problem which has been treated in the literature in the context of the so called Golomb rulers [START_REF] Golomb | How to number a graph[END_REF], that is, the problem of counting the number of valid orders is equivalent to counting the combinatorially distinct Golomb rulers. Below we will explain how this equivalence is established.

A Golomb ruler with N marks is a vector a P Z N with a 1 ă a 2 ă ¨¨¨ă a N , such that no two increments a n`k ´an , where 1 ď n ă N , and 1 ď k ď N ´n integer entries.

To each typical initial condition x P R N we may associate a Golomb ruler as follows. Since x is typical, then both 1 " mint∆ n,k :

1 ď n ă N, 1 ď k ă N ´nu and 2 " mint|∆ n,k ´∆m, | : pm, kq ‰ pn, q : 1 ď n ă N, 1 ď k ă N ´n, 1 ď m ă N, 1 ď ă N
´mu are strictly positive. Let p P N be such that p ¨minp 1 , 2 {4q ą 1, and for each 1 ď n ď N let q n :" maxtq P Z : q{p ď x n u.

The vector q " pq 1 , q 2 , . . . , q N q P Z N is the desired Golomb ruler. Indeed, since p 1 ą 1, then for each 1 ď n ă N we have

q n ď p x n ď p px n`1 ´ 1 q ď q n`1 `1 ´p 1 ă q n`1 .
On the other hand, whenever ∆ n,k ą ∆ m, we have pq n`k ´qn q ´pq m` ´qm q ě pp∆ n,k ´∆m, ´4{pq ą pp 2 ´4{pq ą 0.

Two Golomb rulers are combinatorially equivalent if they determine the same ordering in their differences, i.e., a, b P R N are equivalent if and only if ppa n`k án q ´pa m` ´am qqppb n`k ´bn q ´pb m` ´bm qq ą 0 for each 1 ď m, n ă N and 1 ď k ă n, 1 ď ă m. Hence, the number GolombpN q of classes of Golomb rulers with N marks, gives the number of paths towards synchronization, i.e., Number of paths towards synchronization for

K N " GolombpN q. ( 11 
)
The growth of this quantity with the dimension N , is a measure of complexity similar to the topological complexity of discrete-time dynamical systems. In the case of a discrete-time dynamical system, the topological complexity counts the growth of the number of distinguishable trajectories as a function of time.
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In our case, GolombpN q counts the number of distinguishable paths towards synchronization, not as a function of time, but of the dimension of the system.

A Golomb ruler a P Z is also characterized by the fact that all the sums a m `an are different. Indeed, since signppa n`k ´an q ´pa m` ´am qq " signppa n`k `am q ´pa m` `an qq, the number of combinatorially different Golomb rules is given by the number of different orderings for S " ta m `an : 1 ď m ă n ď N u which is equal to the number of different orderings for P " ta m a n : 1 ď m ă n ď N u. This number is relevant in problem of quantum entanglement [START_REF] Hildebrand | Positive partial transpose from spectra[END_REF]. The sequence GolombpN q appears in the On-line Encyclopedia of Integer Sequences under the entry A237749 [START_REF] Johnston | A237749[END_REF], where the first nine terms, which we present in Table 2, are explicitly computed.

N GolombpN q The computation of GolombpN q remains an open problem. Easy bounds for this number are shown in Equation [START_REF] Stanley | of Cambridge Studies in Advanced Mathematics[END_REF]. The lower bound can be obtained by counting all the orderings of the first differences x i`1 ´xi for 1 ď i ď N ´1, while the upper bound results taking all the ordering of all the differences x i ´xk for 1 ď k ă i ď N . Form this we obtain,

pN ´1q! ă GolombpN q ă ˆN 2 ˙!. ( 12 
)
An exact non-trivial upper bound, based on a result by M. R. Thrall [START_REF] Thrall | A combinatorial problem[END_REF], was found by N. Johnston [START_REF] Johnston | Counting the Possible Orderings of Pairwise Multiplication[END_REF]. It establishes that

GolombpN q ď ś N ´1 n"1 n! ś N n"1 p2n ´1q! ˆN pN `1q 2 ˙! (13) 
tion as well.

We do not intend to make an exhaustive characterization of the transition diagram, but from the concepts already defined, certain characteristics can be calculated, such as: the number of synchronized sequences of length , the distribution of lengths of the path towards synchronization. From this we compute , from top to bottom, we place all the subnetworks which can be reached from the disconnected subnetwork after exactly transition. These subnetworks are precisely those having exactly edges, and are therefore codified by increasing functions φ P Φ N such that ř N n"1 pφpnq ´nq " . In particular, the maximal length of a synchronizing sequences is l max " ř N n"1 pN ´nq " N pN ´1q{2. From our discussion above it readily follows that the number F N p q of synchronized sequences of length is given by number of Dyck paths of length 2N and area N 2 ´ , i.e.,

F N p q :" ˇˇˇˇ# φ P Φ N : N ÿ n"1 φpnq " N 2 ´ +ˇˇˇˇˇ. (14) 
These quantities can be computed from the generating polynomials

P N ptq :" ÿ φPΦ N t areapφq " N pN ´1q 2 ÿ "0 F N p q t N pN ´1q 2 
´ , where areapφq :" ř N n"1 pφpnq ´nq denotes the area under the Dyck path determined by the increasing function φ. The generating polynomials can be determined by using the recurrence relation

P N ptq " N ´1 ÿ n"0 t n P n ptq P N ´n´1 ptq (15) 
with initial conditions P 0 " 0, derived by Carlitz and Riordan [START_REF] Carlitz | Two element lattice permutation numbers and their $q$-generalization[END_REF] (see [START_REF] Blanco | Counting dyck paths by area and rank[END_REF] as well). Although there is no closed form for F N p q, the recurrence relation above allows to directly compute these distributions and to establish its asymptotic 230 behavior. In Table 3 we show F N p q for 2 ď N ď 8. The normalized cumulative distribution, f N : r0, 1s Ñ r0, 1s, is defined by

N F N p q 2 (1,1) 3 (1,1,2 ,1) 4 (1,1,2,3,3,3,1) 5 (1,1,2,3,5,5,7,7,6,4,1) 6 (1,1,2,3,5,7,9,11,14,16,16,17, 14,10,5,1) 7 (1 
f N pxq " 1 C N ÿ nďxˆN pN ´1q{2 F N pxq, (16) 
where F N is given by Equation ( 14) and C N the N -th Catalan number. By using the recurrence shown in Equation ( 15), we numerically computed f N pxq for increasing values of N , and observe that f N approaches an absolutely con- The number of subnetworks at level n " N pN ´1q{2 ´ is given by F N p q, defined by Equation ( 14). The number of subnetworks at each level increases monotonously from 1 to mode N p q :" max 1ď ďN pN ´1q{2

F N p q « 0.632 N pN ´1q 2 , (17) 
and then decreases monotonously to 1 as depicted in Figure 3. Being the distribution of those lengths negatively skewed, the mean length of these paths is smaller than the most frequent length and we have

x y N :"

ř N pN ´1q{2 "1 F N p q C N « 0.523 N pN ´1q 2 ă mode N p q.
From the calculations above, we can get an idea of some features of a typical synchronization path in the Laplacian of the complete graph, for example, if we were to take a random ordered initial condition of dimension N , then its associated synchronization path would most likely be of length as in Equation ( 17).

Applicability to the Kuramoto model

Although the above results concern the Laplacian flow, they apply as well to the Kuramoto model for initial conditions inside a neighborhood of the synchronization manifold. To be more precise, inside a neighborhood of the diagonal, the -synchronized subnetworks of the Kuramoto model can be encoded as increasing functions, exactly as in the linear case. Furthermore, for each initial condition in this neighborhood, there is a time from which its path towards synchronization is described by the increasing sequences of increasing functions determined by the order of coordinate's increments, in exactly the same way as in the linear case. Indeed, what determines the applicability of the combinatorial scheme developed in the previous section is not the linear nature of the dynamics but the fact that the order of the coordinates, as well as the order of their increments, are both preserved by the dynamics. This order preservation takes place from a finite time for all initial conditions in a neighborhood around the synchronization manifold.

Let us now determine the neighborhood where the order of the coordinates is preserved by the flow. According to Equation ( 2) the dynamics of an coordinates' difference, x n ´xm , is governed by the equation

dpx n ´xm q dt " σ ˜N ÿ k"1 sinpx k ´xn q ´sinpx k ´xm q ¸,
" σ R psinpΘ ´xn q ´sinpΘ ´xm qq ,

" ´2 σ R cos ˆΘ ´xn `xm 2 ˙sin ˆxn ´xm 2 ˙, (18) 
with R ě 0 and Θ P r´π, πs given by R e iΘ "

´řN k"1 cospx k q ¯`i ´řN k"1 sinpx k q ¯.
According to Equation [START_REF] Carlitz | Two element lattice permutation numbers and their $q$-generalization[END_REF], if x n and x m would merge at a given time τ , then we would have dpx n ´xm q{dt| t"τ " 0 which would imply that x n " x m for all t ě τ . This is impossible being x n ´xm a differentiable function, therefore no crossing of coordinates is possible at finite time, and therefore the cyclic order in the coordinates is preserved under the flow. Now, by taking max 1ďnďN |Θ ´xn | ď π{2 we ensure that cos pΘ ´px n `xm q{2q ě 0 and that the signs of sin ppx n ´xm q{2q and x n ´xm be the same. Hence, in this neighborhood dpx n ´xm q{dt and x n ´xm have opposite signs, which ensures that |x n ´xm | converged monotonously to zero while both x n and x m converge monotonously to Θ. This authorizes us to code the -synchronized subnetworks as increasing function, as we did in the Laplacian case.

By an innocuous change of variables we can make Θ " 0 and, if necessary, relabel the coordinates to ensure that x 1 ă x 2 ă . . . ă x N . Let us consider two coordinate increments ∆ n,k :" x n`k ´xn and ∆ m, :" x m` ´xm . The evolution of the difference between these increments is governed by the equation As we have seen, in the considered neighborhood of the synchronization manifold, the coordinates' difference x m ´xn does not changes its sign. Therefore in case a) there cannot be a second crossing. For the case b), it is enough to notice that

dp∆ n,k ´∆m, q dt " ´2 σ R " cos ´sn,k 2 
dpx n `xm q dt " ´2 σ R sin ˆxn `xm 2 ˙cos ˆxn ´xm 2 ˙.
Following the same argument as for the difference x n ´xm , we readily deduce that x n `xm cannot change sign, there cannot be a second crossing in case b) either. Hence, after all possible crossings have occurred, the path towards synchronization will be the one determined by the order of the resulting increments ∆, exactly as prescribed by the linear case.

It is always possible to find an initial condition x with max 1ďnďN |x n ´Θ| ă δ, and coordinates x n , x n`k , x m , x m` such that ∆ n,k ´∆m, changes its sign. For this it is enough to take a configuration such that ∆ n,k " ∆ m, and 0 ă s n,k ă s m,k , so that dp∆ n,k ´∆m, q{dt ă 0, and then reverse the time to obtain an initial condition with ∆ n,k ą ∆ m, which will necessarily produce a crossing in a finite time.

In summary, the initial conditions satisfying max 1ďnďN |x n ´Θ| ă π{2 define -synchronized subnetworks which can be encoded by increasing function in Φ N , exactly as in the linear case. Furthermore, all these initial conditions will eventually follow a path in the transition diagram obtained for the linear case. This path will be the one prescribed by the order of the increments, just as in the linear case.

Some results concerning K N,N

Let us recall that the Laplacian matrix of L corresponding to the network K N,N

has the following entries Lpi, jq "

$ ' ' ' & ' ' ' % 1, if N ă i ď 2N and 0 ă j ď N or N ă j ď 2N and 0 ă i ď N,
´N, if i " j, 1 ď i, j ď 2N, 0, otherwise.

An eigenbasis can be computed in terms of the canonical basis and written as the

set B " tu m , v n , w n : 1 ď m ď 2, 1 ď n ď N ´1u, where u 1 " ř 2N k"1 e k , u 2 " ř N
k"1 pe k ´ek`N q and for each n ě 1, v n " e n`1 ´e1 and w n " e N `n`1 ´eN`1 . The Laplacian matrix L acts on this basis as follows: Lu 1 " 0, Lu 2 " ´2N u 2 and Lv n " ´N v n , Lw n " ´N w N for each n " 1, 2, . . . , N ´1. An initial condition x P R 2N can be decomposed as

x " x u 1 `px 1 ´xq u 2 `N´1 ÿ n"1 ppx n`1 ´x 1 q v n `px N `n`1 ´x 2 q w n q , where x :" ř 2N n"1 x n 2N , x1 :" ř N n"1 x n N and x2 :" ř N n"1 x N `n N . (19) 
Therefore, for all t P R we have

xptq " x u 1 `e´2N t px 1 ´xq u 2 `e´Nt N ´1 ÿ n"1 ppx n`1 ´x 1 q, v n `px N `n`1 ´x 2 q w n q , " N ÿ n"1 ``1 ´e´Nt ˘`x ´e´Nt x1 ˘`e ´N t x n ˘en `N ÿ n"1 ``1 ´e´Nt ˘`x ´e´Nt x2 ˘`e ´N t x N `n˘e N `n.
From here it follows that

x n ptq ´xN`m ptq " e ´N t `xn ´xN`m ``1 ´e´Nt ˘px 1 ´x 2 q ˘, (20)

x n ptq ´xm ptq " e ´N t px n ´xm q ,

x N `nptq ´xN`m ptq " e ´N t px N `n ´xN`m q , for all t P R and each 1 ď m, n ď N . Hence, the distance between coordinates in the same party of K N,N decreases monotonously, while the distances between coordinates at different parties oscillate at most once, and then decrease to zero.

All the differences decrease monotonously if and only if the initial condition satisfies x1 " x2 . In this case the edges tn, mu would be included in the synchronized subnetwork G xptq for all t ě t n,m :" plog |x n ´xN`m | ´logp qq {N .

Without lost of generality, we may assume that the initial condition is ordered as

x 1 ď x 2 ď ¨¨¨ď x N , x N `1 ď x N `2 ď ¨¨¨ď x 2N
. By Equation ( 21) ensures that x 1 ptq ď x 2 ptq ď ¨¨¨ď x N ptq and x N `1ptq ď x N `2ptq ď ¨¨¨ď x 2N ptq for all t P R. We will further assume, when convenient, that x1 " x2 .

Once again, in order to take advantage of the fact that the Laplacian flow preserves the order of the coordinates at each party, we will define the transition diagram not over the synchronized subnetworks but over combinatorial objects that encode the synchronized subnetworks respecting this order. This will simplify the description the transition diagram, mainly in the monotonous case which is achieved when x1 " x2 . We codify the -synchronized subnetwork G x defined by x 1 ď x 2 ď ¨¨¨ď x N , x N `1 ď x N `2 ď ¨¨¨ď x 2N , by the couple of

α x pnq " $ & % mint ď N : x n ´ ď x N ` u if x 2N ě x n ´ , N `1 if x 2N ă x n ´ , (22) 
ω x pnq " $ & % maxt ď N : x n ` ě x N ` u if x N `1 ď x n ` , 0 if x N `1 ą x n ` . (23) 
Notice that impα x q Ă r1, N `1s while impω x q Ă r0, N s. Both functions are increasing and such that α x pnq ď ω x pnq `1 for each 1 ď n ď N . We present an example of the construction of the increasing functions from a given initial condition, in 

which is consistent with the fact that pα, ωq " pα x , ω x q if and only if G pα,ωq " G x . The correspondence in Equation ( 25) establishes a mapping from Φ N,N to the collection of -synchronized subnetworks defined by ordered initial conditions, in other words, it is in this case the λ mapping associated with Equation (5). The elements in Φ N,N can be related to combinatorial objects, the parallelo-polyminoes inscribed in a given rectangle. The number of these objects is given by the so called the Narayana numbers [START_REF] Stanley | of Cambridge Studies in Advanced Mathematics[END_REF]. A parallelo-polyminoe in the rectangular lattice of size p ˆq is a connected union of squares delimited by two increasing boundary functions L, U : t1, 2, . . . , pu Ñ t0, 1, . . . , qu such that Lp1q " 0, U ppq " q, and Lpnq ă U pn ´1q for each 2 ď n ď p.
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The number of parallelo-polyminoes in the lattice of size p ˆq is given by the Narayana number [START_REF] Barcucci | On directed-convex polyominoes in a rectangle[END_REF] T pp `q ´1, qq :"

1 p `q ´1 ¨p `q ´1 q '¨p `q ´1 q ´1 '. (26) 
To each couple pα, ωq P Φ N,N we associate a parallelo-polyminoe in t0, 1, . . . , N 1uˆt0, 1, . . . , N `1u with border functions L, U : t1, . . . , N `1u Ñ t0, 1, . . . , N 1u,

such that Lpnq " $ & % 0 for n " 1, αpn ´1q ´1 for 2 ď n ď N `1,
and U pnq "

$ & % ωpnq `1 for 1 ď n ď N, N `1 for n " N `1. (27) 
In this way, we establish a one-to-one correspondence between parallelo-polyminoes and couples in Φ N,N , from which we obtain

|Φ N,N | " T p2N `1, N `1q " 1 2N `1 ¨2N `1 N `1 '¨2 N `1 N '. (28) 
Thanks to the equivalence given by the Equation ( 9), each sequence ofsynchronized subnetworks defined by an ordered initial condition is faithfully codified by the corresponding sequences of couples of increasing functions given by the Equations ( 22) and (23). As mentioned above, for an initial condition x P R 2N such that x1 " x2 , all the differences x N `mptq ´xn ptq converge to 0 monotonously and at the same speed. We will say that such initial conditions are balanced. In this case, each one of the maps t Þ Ñ α xptq and t Þ Ñ ω xptq are coordinate-wise monotonous, and they converge respectively to the constant functions 1pnq " 1 and Npnq " N at time t 1,N " plog |x 1 ´x2N | ´logp qq {N . The sequence of switching times 0 ă t 1 ă t 2 ă ¨¨¨ă t is such that pα xptτ q , ω xptτ q q ‰ pα xptτ`1q , ω xptτ`1q q. Let us denote α tτ by α τ , and the corresponding for ω. For a typical initial condition, at each switching time only one of the functions α τ or ω τ changes and it changes only at one site. The sequence ppα 0 , ω 0 q, pα 1 , ω 1 q, . . . , pα , ω qq can be determined by the initial couple pα 0 , ω 0 q, the jump sites n 1 , n 2 , . . . , n P t1, 2, . . . , N u and binary labels q 1 , q 2 , . . . , q P p´1, `1q as follows:

pα τ `1, ω τ `1q " $ & % pα τ ´δnτ , ω τ q if q τ " ´1, pα τ , ω τ `δnτ q if q τ " `1. (29) 
To the couple pα τ , ω τ q, we can associate a parallelo-polyminoe according to Equation ( 27). In the transition pα τ , ω τ q Ñ pα τ `1, ω τ `1q, the area inside the corresponding parallelo-polyminoe increases by one unit until the final area

N ˆN .
Realizable sequences ppn 1 , q 1 q, pn 2 , q 2 q, . . . , pn , q qq, are those compatible with a balanced initial condition x P R 2N and are completely determined by the differences ∆ n,m :" x N `m ´xn with 1 ď n, m ď N as follows:

For ă |∆ n1,m1 | ă |∆ n2,m2 | ă ¨¨¨ă |∆ n N 2 ,m N 2 |
we have the sequence ppn 1 , q 1 q, pn 2 , q 2 q, . . . , pn N 2 , q N 2 qq, where q τ " signp∆ nτ ,mτ q for each 1 ď τ ď N 2 . If we consider all the possible orderings ∆ :" t∆ n,m : 1 ď n, m ď N u compatible with an initial condition, not necessarily balanced, and we assume that the dynamics towards synchronization is completely determined by this ordering as in the balanced case, we obtain a transition diagram with vertices in Φ N,N with maximal paths starting at the couples pα, ωq codifying the disconnected subnetwork, and ending at the couple p1, Nq which codifies K N,N . This digraph contains all the paths towards synchronization starting at balanced initial conditions but it also contains paths which are not compatible with any balanced initial condition. For instance, in the case N " 2 there are 20 realizable possible orderings t∆ n,m : 1 ď n, m ď N u, which we depict in Table 4, defining 20 paths towards synchronization represented in the transition diagram of Figure 6. Nevertheless, there are 4 orderings, and therefore 4 paths towards synchronization, which are incompatible with a balanced initial condition. The coordinate arrangements incompatible with a balanced initial conditions are x 1 ă x 2 ă x 3 ă x 4 and

x 3 ă x 4 ă x 1 ă x 2 .
In general there are 2 arrangements of initial conditions,

x 1 ă ¨¨¨ă x N ă x N `1 ă ¨¨¨ă x 2N and x N `1 ă ¨¨¨ă x 2N ă x 1 ă ¨¨¨ă x N ,
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which are incompatible with a balanced initial condition. These arrangements define maximal paths starting at vertices p1, 0q and pN `1, Nq, which for the case N " 2 we indicate in red in Figure 6.

An easy upper bound for the number of paths towards synchronization starting at typical balanced initial conditions is the following. For each one of the arrangements x i1 ă x i2 ă ¨¨¨ă x i 2N , obtained by inter-placing the first N coordinates with respect to the last N coordinates while maintaining the order inside each group of coordinates, there are Golombp2N q different orderings for the differences x i k ´xi . Each one of these orderings gives place to a path towards synchronization, but this path does not depend on the differences between coordinates of the same group (first N or last N coordinates).

Furthermore, there are two coordinate arrangements which are incompatible with a balanced initial condition, when x 1 ă x 2 ă ¨¨¨ă x 2N and when (30)

x N `1 ă x N `2 ă ¨¨¨ă x 2N ă x 1 ă x 2 ă ¨¨¨ă x N ,
As mentioned above, the growth of this quantity with respect to N defines a 380 complexity function analogous to the topological complexity as a function of time.

Similar to the case K N , the number of paths towards synchronization of a given length, F N,N p q, is given by the number of couples pα, ωq P Φ N,N such that the corresponding parallelo-polyminoe has an interior with area of pN `1q 2 ´ units. Hence, F N,N p q :" ˇˇˇˇ# pα, ωq P Φ N,N :

N `1 ÿ n"1 pU pnq ´Lpnqq " pN `1q 2 ´ +ˇˇˇˇˇ. (31) 
Here, L, U : t1, . . . , N `1u Ñ t0, 1, . . . , N `1u are the polyminoe border functions defined from the couple pα, ωq by Equations ( 27). Table 5 shows the distributions F N,N p q for 2 ď N ď 8.

For each N and 0 ď ď N , the integer F N,N p q coincides with the -th term of the Sloans's sequence (Entry A000712 of the On-line Encyclopedia of Integer Sequences [START_REF] Sloane | A000712[END_REF]), which among other things, counts the number of couples of integer partitions P " pp 1 ě p 2 ě ¨¨¨ě p k q, Q " pq 1 ě q 2 ě ¨¨¨ě q r q, such that ř k i"1 p i `řr j"1 q j " . Indeed, we can associate to each such couple of integer partitions pP, Qq, a unique couple L, U : t1, 2, . . . , N `1u Ñ t0, 1, . . . , N `1u of upper and lower border functions such that U piq " N `1´p i and LpN `2´jq " q j . Clearly ř k i"1 p i `řr j"1 q j " if and only if the area of the parallelopolyminoe with border functions L and U is pN `1q 2 ´ . The correspondence between integer partitions and border functions cannot go further than " N , since for " N `1 the couple ppN `1q, p0qq of partitions does not define admissible border functions. On the opposite extreme, F N,N pN 2 q counts all the parallelo-polyminoes in t0, 1, . . . , N `1u ˆt0, 1, . . . , N `1u composed of 2N `1

squares. These squares are arranged in a path going from p0, 0q to pN `1, N `1q, the next square place at the left or on top of the previous one. Each one of these arrangements can therefore by codified a sequences pa 1 , a 2 , . . . , a 2N q P tL, T u 2N , with exactly N entries equal to T . From this it follows that

F N,N pN 2 q " ¨2N N ' (32) 
The normalized cumulative distribution, f N,N : r0, 1s Ñ r0, 1s, is given by

f N,N pxq " 1 |Φ N,N | ÿ nďxˆN 2 F N,N pxq, (33) 
where F N,N is given by Equation (31) and |Φ N,N | by Equation (28). We numerically computed f N,N pxq for increasing N , and observe how it approaches a limit distribution x Þ Ñ fpxq whose density pxq :" d fpxq{dx approaches the curve depicted in Figure 7. As for K N , our numerical computation suggest that is continuous, unimodal, and negatively skewed.

As we have already mentioned, in the case of K N,N we do not have the complete panorama of its paths towards synchronization, since our methodology is limited to the initial conditions that are balanced. In addition, currently there are no results in combinatorics that allow us to make calculations for arbitrarily large sizes. Nevertheless by directly computing these distributions for low dimensions, we observe a very fast convergence of the normalized distribution f N,N . We obtain a unimodal distribution with maximum at mode N,N p q :" max 1ď ďN 2 F N,N p q « 0.74118 N 2 .

(34) as depicted in Figure 7. We observe that the distribution is negatively skewed, the mean length of these paths being larger than the most frequent length,

x y N,N :"

ř N 2 "1 F N,N p q T p2N `1, N `1q « 0.8125 N 2 ą mode N,N p q.
The above estimations were obtained by using a relatively low (N=8) dimension. As mentioned above, already at this low dimension we obtain the accurate qualitative behavior of the asymptotic distribution. In this way we can qualitatively describe a typical synchronization path for the Laplacian of the complete bipartite graph, starting at a random balanced ordered initial condition of dimension 2N . For instance, such a synchronization path would most likely be of the length indicated in Equation (34).

Remark and comments

Thanks to the monotonic behavior of the Laplacian flow in K N , it was possible to completely describe the behavior of the transient dynamics of the system via a codification of the synchronized subnetworks by increasing functions. In Regarding the applicability of the combinatorial description of the Laplacian flow in K N,N to the corresponding Kuramoto model, we can already verify that the nonlinear dynamics preserves as well the cyclic order of the coordinates at each of the two parties. For this, we proceed as in Section 4 and obtain

dpx n ´xm q dt " ´2R 2 σ sin ˆxN`n ´xN`m 2 ˙cos ˆΘ1 ´xN`n `xM`m 2 ˙, dpx N `n ´xN`m q dt " ´2R 1 σ sin ˆxn ´xm 2 ˙cos ˆΘ1 ´xn `xm 2 ˙, with R 1 e iΘ1 " ´řN k"1 cospx k q ¯`i ´řN k"1 sinpx k q ¯and similarity for R 2 e iΘ2
. Following the same argument as in Section 4, we deduce that two coordinates cannot merge in finite time and therefore the cyclic order of the coordinates at each party is preserved by the Kuramoto flow. This allows us to use the coding of -synchronized subnetworks defined for the Laplacian flow in Section 5.

As already mentioned, the transition diagram defined for the Laplacian flow over K N,N describes only the paths toward synchronization corresponding to balanced initial conditions. In Figure 6, we marked in red the subnetworks incompatible with balanced initial conditions. A complete transition diagram, which would contain those subnetworks, would include non-monotonous paths. Furthermore, for unbalanced initial conditions, the order in the differences between coordinates is not preserved by the flow. The description of the full transition diagram for the Laplacian flow over K N,N as well as the applicability of this description to the nonlinear case, would be the subject of future work.

When considering Kuramoto models on large dimensions or on cyclic networks, another kind of synchronized regime imposes where vortex-like solutions attract a large volume of initial conditions. An extension of our approach is necessary to describe this kind of synchronization.

Finally we would like to emphasize that these synchronizing sequences can be seen as partitioning the basin of attraction of a given attractor (here the fully synchronized state). Since for a given finite the final synchronized network will be reached in a finite time τ p , N q, if the space of initial conditions has a finite volume, the full space-time will be as well bounded, and these sequences are partitioning that full space time. Moreover, by associating to a given sequence an ensemble of initial conditions realizing that sequence, we should be able to measure that ensemble and add corresponding weights (measures) to each sequence and characterize even further the space-time complexity.

For each 1 ă k ď , let ∆ : I k Ñ I k be such that ∆pnq " maxtm P I k :

A n X A m ‰ Hu. Clearly ∆pnq ě n and ∆pnq " n if and only if n " n k " m k .

We can associate to ∆ a directed tree T k with vertices in I k , rooted at m k , and arrows n Þ Ñ ∆pnq. The structure of these trees is similar to that of the trees described in Appendix Appendix B. Let n k Þ Ñ ∆pn k q Þ Ñ ¨¨¨Þ Ñ ∆ j pn k q Þ Ñ ¨¨¨Þ Ñ m k " ∆ h k pn k q be the maximal path in T k and for each 1 ď j ď l k let V j " ∆ ´j ptm k uq be the j-th level of T k . Clearly min V j " ∆ h k ´j pn k q and max V j ă min V j´1 for each 0 ď j ď h k . Assume x n k is given. Let n k,j :" min V j and define x n k,j :" x n k `j for each 1 ď j ď h k . Now, for n k,j ď n ă n k,j´1 , let x n " x n k,j `pn ´nk,j q {pn j´1 ńk,j q. With δ k :" 1 2 min n k ďnăm k px n`1 ´xn q, for each n k ď n ă m k and αpnq ď m ă αpn `1q, let x N `m " x n ´p ´δk q. For n k,1 ď n ă n k,0 " m k and ωpnq ă m ď ωpn `1q, let x N `m " x n `p ´δk q. Finally, for αpm k q ď m ď ωpn k,1 q, define x N `m " px n k,1 `xm k q{2.

In order to complete the specification of all the coordinate, fix x 1 " x n1 " 0 and for each 1 ď k ď let x n k :" x m k´1 `3 . Finally, for each m R Ť N n"1 A n , let kpmq :" mint1 ď k ď : αpn k q ą mu and define x N `m :" x N `αpn k q ´3 {2.

If ωpN q ă N , then define x N `m :" x m `3 {3. is illustrated with black dots. The angles that opens from the first two coordinates indicate their -neighborhood. To construct Gx, according to Equation (25), it is enough to observe that x 3 is inside the -neighborhood of x 1 , and also x 4 is inside the -neighborhood of x 2 , hence in (b), vertices 1 and 3 are connected as well as vertices 2 and 4. In (c), the increasing functions determined by x are shown. The function αx codified the fact that x 3 is the first coordinate of the second party inside the angle opening from x 2 and similarly x 4 with respect to x 2 . On the other hand, ωx, indicates that x 3 is the last coordinate of the second party inside the angle opening from x 1 and respectively x 4 with respect to x 2 .

Figure 5: A parallelo-polyminoe in the lattice of size 14 ˆ10. The blue path defines the lower border function L " p0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5, 5, 5, 5q, while the red one defines the upper border U " p1, 1, 1, 3, 3, 3, 5, 5, 6, 6, 6, 6, 7, 7q.
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Coordinates Differences Signs 

x 1 ă x 2 ă x 3 ă x 4 |∆ 2,1 | ă |∆ 2,2 | ă |∆

2 .

 2 Given an underlying network, what is the structure of the transition diagram? In particular, what is the longest path and what is the resulting distribution of path lengths? 3. The transition diagram for K N
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  the mean length and the most frequent length of paths. Furthermore, we can extrapolate the behavior of these quantities for increasingly large dimensions.The transition diagram for K N has a hierarchical structure with the disconnected subnetwork, codified by the identity function Id P Φ N , at the top, and the completely connected network, codified by the constant function Npnq " N , at the bottom. Since we are considering only typical initial conditions, at each transition only one new edge appears in the -synchronized subnetwork. At level
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  tinuous limit distribution x Þ Ñ f pxq whose density ρpxq :" d f pxq{dx is closely approached by the curve depicted in Figure3. Hence, for N sufficiently large and δ ą 0 sufficiently small, the proportion of paths of length N pN ´1qpx ˘δq{2 is approximatively ρpxq δ. As shown in the figure, our numerical computation suggest that ρ is continuous, unimodal, and negatively skewed.Summarizing, the transition diagram for K N is composed by levels L 0 , L 1 , . . . , L N pN ´1q{2 , in such a way that each path towards synchronization passes through levels of increasing index until reaching level N pN ´1q{2 which contains only the complete graph, representing the full -synchronization. A typical initial condition starting at L n , will take N pN ´1q{2 ´n steps to attain the complete graph.

  with s n,k " x n `xn`k and similarly for s m` . Each time we have a crossing, ∆ n,k " ∆ m, , the sense of the subsequent splitting is determined by the sign of cosps m, {2q ´cosps n,k {2q. Hence, in two consecutive crossings the sign of cosps m, {2q ´cosps n,k {2q has to change. Without lost of generality we may assume that x n ă x m . We have to consider all the possible arrangements for the other two coordinates x n`k , x m` , and the position of the 4-tuple of coordinates with respect to the origin. Being the order of the coordinates preserved by the flow, we can already establish that ∆ n,k ą ∆ m, for all t ě 0 , in the casex n ă x m ă x m` ă x n`k at t " 0.Notice that for initial conditions in the neighborhood max 1ďnďN |x n | ď π{2, the signs of cosps m, {2q ´cosps n,k {2q and |s m, | ´|s n,k | are opposite. Depending on the initial order of the coordinates, one of the following possibilities may occur at the first crossing. a) signps m, q " signps n,k q, in which case |s m, | ´|s n,k | " x m ´xn or |s m, | |s n,k | " x n ´xm . b) signps m, q " ´signps n,k q, in which case |s m, |´|s n,k | " x m `xn or |s m, || s n,k | " ´px n `xm q.

Figure 4 .

 4 Let I N :" tφ : t1, . . . , N u Ñ t0, . . . , N `1u : φpn `1q ě φpnq for all 1 ď n ă N u. From the discussion in Appendix Appendix B, it follows that the collection Φ N,N :" tpα, ωq : α, ω P I N : impαq Ă r1, N `1s, impωq Ă r0, N s and α ď ω`1u, (24) codifies all the -synchronized subnetworks of K N,N compatible with an ordered initial condition x 1 ď x 2 ď ¨¨¨ď x N , x N `1 ď x N `2 ď ¨¨¨ď x 2N . The correspondence is given as follows. To pα, ωq P Φ N,N we associate the subnetwork G pα,ωq Ă K N,N with edges in the set E pα,ωq " ttn, N `mu : 1 ď n, m ď N, and αpnq ď m ď ωpnqu,

  hence the number of paths towards synchronization is upper bounded by Number of paths towards synchronization for K N,N ď ¨¨2 N N '´2 'Golombp2N q.

  the case of K N,N , the monotonic behavior holds separately, for the coordinates at each one of the parties of K N,N , which allows a codification by couples of increasing functions. A global monotonic behavior is verified only by paths towards synchronization starting at balanced initial conditions. Those are precisely the paths that follow the computed transition diagram. It is important to note that this kind of monotonic convergence towards synchronization is only possible in graphs with large spectral degeneracy as it is the case for K N and K N,N . This monotonicity does not hold, for instance, for cycle graphs or ring lattices for which another kind of coding and transition diagram is needed.For both, the Laplacian flow in K N and K N,N , we obtained closed formulae for the number of realizable synchronized subnetworks, which are codified by known combinatorial objects. Although we do not dispose of closed formulae for the number of paths towards synchronization, which can be seen as a complexity function, we can nevertheless easily obtain factorial upper and lower bounds.The probability density functions of asymptotic normalized lengths of paths towards synchronization, in both cases, are continuous, unimodal, and negatively skewed. The typical length relative to the longest path is larger for K N,N than for K N .In Section 4 we studied the applicability of the Kuramoto model, of the combinatorial description proper to the Laplacian flow in K N . Although the codification of synchronized subnetworks by increasing functions is pertinent in the nonlinear case, the transition diagram applies only to initial conditions in a neighborhood of the synchronization manifold, and only after a finite transient that depends on the initial condition.
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 23 Figure 2: The transition diagram which contains all the paths towards synchronization of the Laplacian dynamics on K 4 . The synchronized subgraphs are encoded by increasing functions as defined by Equation (9). At the top is placed the identity function Id :" p1, 2, 3, 4q which codifies the completely disconnected graph. All the paths end at the constant function 4 " p4, 4, 4, 4q, which codifies the globally synchronized state.

Figure 4 :

 4 Figure 4: In (a), an example of the relative position of the coordinates of x " px 1 , x 2 , x 3 , x 4 q

Figure 6 :

 6 Figure 6: The transition diagram which contains all the paths towards synchronization of the Laplacian dynamics on K 2,2 . Each one of the functions α, ω, are codified by a two-digit string. There are six starting configurations, underlined in the diagram, all of them coding the disconnected network. The ending vertex, p11, 22q, is the couple codifying the complete bipartite graph K 2,2 . In red we indicate the starting couples which are incompatible with a balanced initial condition. In this case, by erasing the elements in color red, we obtain the transition diagram codifying all the paths towards synchronization for balanced initial conditions.

Table 2 :

 2 Number of classes of Golomb rulers.

Table 3 :

 3 Number F 

N p q of functions φ P Φ N codifying a subnetworks starting a synchronizing path of length .

  1,1 | ă |∆ 1,2 | p`1, `1, `1, `1q |∆ 2,1 | ă |∆ 1,1 | ă |∆ 2,2 | ă |∆ 1,2 | p`1, `1, `1, `1q x 1 ă x 3 ă x 2 ă x 4 |∆ 2,1 | ă |∆ 2,2 | ă |∆ 1,1 | ă |∆ 1,2 | p´1, `1, `1, `1q |∆ 2,2 | ă |∆ 2,1 | ă |∆ 1,1 | ă |∆ 1,2 | p`1, ´1, `1, `1q |∆ 2,2 | ă |∆ 1,1 | ă |∆ 2,1 | ă |∆ 1,2 | p`1, `1, ´1, `1q |∆ 2,1 | ă |∆ 1,1 | ă |∆ 2,2 | ă |∆ 1,2 | p´1, `1, `1, `1q |∆ 1,1 | ă |∆ 2,1 | ă |∆ 2,2 | ă |∆ 1,2 | p`1, ´1, `1, `1q |∆ 1,1 | ă |∆ 2,2 | ă |∆ 2,1 | ă |∆ 1,2 | p`1, `1, ´1, `1q x 1 ă x 3 ă x 4 ă x 2 |∆ 1,1 | ă |∆ 2,2 | ă |∆ 1,2 | ă |∆ 2,1 | p`1, ´1, `1, ´1q |∆ 2,2 | ă |∆ 1,1 | ă |∆ 2,1 | ă |∆ 1,2 | p´1, `1, ´1, `1q x 3 ă x 4 ă x 1 ă x 2 |∆ 1,2 | ă |∆ 1,1 | ă |∆ 2,2 | ă |∆ 2,1 | p´1, ´1, ´1, ´1q |∆ 1,2 | ă |∆ 2,2 | ă |∆ 1,1 | ă |∆ 2,1 | p´1, ´1, ´1, ´1q x 3 ă x 1 ă x 4 ă x 2 |∆ 1,2 | ă |∆ 1,1 | ă |∆ 2,2 | ă |∆ 2,1 | p`1, ´1, ´1, ´1q |∆ 1,1 | ă |∆ 1,2 | ă |∆ 2,2 | ă |∆ 2,1 | p´1, `1, ´1, ´1q |∆ 1,1 | ă |∆ 2,2 | ă |∆ 1,2 | ă |∆ 2,1 | p´1, ´1, `1, ´1q |∆ 1,2 | ă |∆ 2,2 | ă |∆ 1,1 | ă |∆ 2,1 | p`1, ´1, ´1, ´1q |∆ 2,2 | ă |∆ 1,2 | ă |∆ 1,1 | ă |∆ 2,1 | p´1, `1, ´1, ´1q |∆ 2,2 | ă |∆ 1,1 | ă |∆ 1,2 | ă |∆ 2,1 | p´1, ´1, `1, ´1q x 3 ă x 1 ă x 2 ă x 4 |∆ 1,1 | ă |∆ 2,2 | ă |∆ 1,2 | ă |∆ 2,1 | p´1, `1, `1, `1q |∆ 2,2 | ă |∆ 1,1 | ă |∆ 2,1 | ă |∆ 1,2 | p`1, ´1, ´1, `1q

Table 4 :

 4 The twenty different orderings of the differences between coordinates at opposite parties, and corresponding signs, for a typical initial conditions in R 4 .
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Appendix A.

For each increasing function φ : t1, 2, . . . , N u Ñ t1, 2, . . . , N u such that φ ě Id, there exists an ordered initial condition x P R N such that φ " φ x . For this we use a representation of φ as a disjoint union of directed trees as follows.

Let Fixpφq :" t1 ď n ď N : φpnq " nu. To each n P Fixpφq we associate a directed tree T n , rooted at n, with vertex set V n :" Ť hpnq l"0 φ ´lptnuq and directed edges in A n :" tpk, φpkqq : k P V n ztnuu. The vertex set V n splits into hpnq `1 disjoint levels, V l n :" φ ´lptnuq, 0 ď l ď hpnq. The number hpnq is the high T n .

The maximal paths in T n are completely determined by their starting vertices, which have to be leaves. Let 1 n ă 2 n ă ¨¨¨ă wpnq n be the leaves of T n . Its number, wpnq, is the width of the tree T n . Since φ is increasing and such that φ ě Id, then every element in the l-th level, V l n , is greater than all the elements in the l 1 -th level, V l 1 n whenever l ă l 1 . It implies that the length lpmq of the path starting at m and ending at the root, is a decreasing function of m. Each maximal path in T n starts at a leaf and the longest of those paths have length hpnq, and start at leaves in the highest level. Furthermore, all vertices in T n belong to a maximal path, which means that it is reachable from a leaf. Now, given φ : t1, 2, . . . , N u Ñ t1, 2, . . . , N u increasing and such that φ ě Id, let tT n k : 1 ď k ď Ru be the associated collection of directed trees and n 1 ă n 2 ă ¨¨¨ă n R in Fixpφq the corresponding roots. Define x P R N such that

x n1 " hpn 1 q, and for each 1 ď k ă R,

In this way, we fix the value of x n for each n P Fixpφq in such a way that

be the leaves of T n . For each 1 ď j ď wpnq and 0 ď k ď lpn j q for which x φ k p j n q is not yet defined, let

x φ k p j n q " x n ´plpn j q ´kq `pj ´1q wpnq .

Let us remind that lpn j q is the length of the maximal path starting at j n . It is not difficult to verify that Equations (A.1) and (A.2) define an ordered initial condition 0 " x 1 ă x 2 ă ¨¨¨ă x N " ř R k"1 phpn k q `2q, such that φ x " φ.

Appendix B.

Each couple of increasing functions α, ω : t1, . . . , N u Ñ t0, 1, . . . , N `1u is compatible with some x P R 2N in terms of the Equations ( 22) and (23), and therefore codify an -synchronized subnetwork, provided impαq Ă r1, N `1s, impωq Ă r0, N s and α ď ω `1. Such an initial condition can be constructed as follows.

For each 1 ď n ď N let A n :" t1 ď m ď N : αpnq ď m ď ωpnqu. Let us partition t1, 2, . . . , N u " Ů k"1 I k , where for each 1 ď k ď , I k " tn k , n k 1, . . . , m k u is such that A n X A n`1 ‰ H for each n k ď n ă m k and it is a maximal element in the sense of inclusion (I k Ĺ I ñ Ť nPI k A n is not an interval). Notice that n 1 " 1 and that I k " tn k u whenever αpn k q " ωpn k q `1.