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Abstract

In this paper, we introduce a codification of the paths towards synchronization

for synchronizing flows defined over a network. The collection of paths toward

synchronization defines a combinatorial structure: the transition diagram. We

describe the transition diagram corresponding to the Laplacian flow over the

completely connected graph. This applies to the Kuramoto flow over the same

graph when initial conditions close to the diagonal are considered. We present

as well some results concerning the Laplacian and Kuramoto flows over the

complete bipartite graph.

1. Introduction

Synchronization phenomena are a long standing subject dating back at least

to the observations of Huygens see for instance [1] This field of research when

considering coupled dynamical systems on networks has been very active since

Kuramoto’s seminal paper [2]. The first studies considered homogeneously cou-

pled systems like global coupling, completely random coupling or couplings ac-

cording to a regular network. A very complete account of those early work

can be found in [3]. As noticed in [4], the progression in connectivity of the

synchronized subnetwork as times increases qualitatively follows the dictates of

the linearized dynamics. Hence, the path towards synchronization can be un-

derstood through the study of the Laplacian as a linear dynamical system. The

dynamics of the Laplacian is globally synchronizing and as we show below, the

path towards the full synchronization can explicitly determined in that case. In
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contrast, the non-linear dynamics is not always fully synchronizing and some

noticeable differences between linear and non-linear interactions appear as we

increase the size of the system. Counting the number of paths to synchroniza-

tion is a way of measuring the complexity of a system in the case of transient

dynamics, and characterizing the complexity of the system by measuring the di-

versity of paths is a classic topic that has been studied and illustrated in [5, 6, 7].

The aim of this paper is to introduce the notion of synchronization sequences,

which can be related to the connectivity matrix defined in [8]. In the case of

a fully synchronizing system, the set of all the synchronizing sequences forms a

transition diagram which encode the full transient dynamics towards synchro-

nization. We study this combinatorial structure for the Laplacian dynamics on

the complete graphs in full detail, and in some detail for the case of the complete

bipartite graph. We characterize the transient dynamics on those networks by

means of some topological features of the corresponding transition diagram.

The rest of the paper is organized as follows. After establishing the notations

and the basic definitions in Section 2, we study in Section 3 the transition

diagram of synchronization paths for the complete graphKN . Then, in Section 4

we present some results concerning the structure of the transition diagram for

the complete bipartite graph KN,N . Finally, in Section 5 we close the paper

with some final remarks and comments.

2. Set-up

We will refer indistinctly by graph or network to an undirected graph G “

pV,Eq, with vertices in V and edges or links in E. On the contrary, a directed

graph is a couple D “ pV,Aq of vertices in V and arrows in A. An edge is a

two-vertex set, its end vertices, while an arrow is an ordered pair of vertices.

A subgraph of G is a graph G1 “ pV 1, E1q such that V 1 Ă V and all the edges
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in E1 Ă E have end vertices in V 1. A path in G is a sequence of vertices such

that each couple of consecutive vertices form and edge, while a path in D is

an ordered sequence of vertices v1 Ñ v2 Ñ ¨ ¨ ¨ Ñ vn such that each couple

of consecutive vertices form an arrows. In this last case we say that v1 is the

starting vertex of the path and vn the ending one, besides n´ 1, the number of

arrows in the sequence, is the length of the path. A graph is connected if each

couple of vertices belong to a path. Any graph can be decomposed in a unique

way as a disjoint union of connected subgraphs, called connected components.

We fix a graph G “ pV,Eq and consider a system of coupled differential equa-

tions on IV , where I is either R or the circle S1. The flow is generated by a

system of ODEs coupled according to the edges in E which represent the inter-

actions between the particles.

We will focus on the Laplacian flow on G, which is the linear system defined by

dxv
dt

“ pLxqv “
ÿ

uPV :tu,vuPE

pxu ´ xvq, with xv P R for each v P V. (1)

Here L is the Laplacian matrix of G, given by Lpv, v1q “
ř

uPV :tu,vuPEp1tuu ´

1tvuqpv
1q. The synchronizing dynamics of the Laplacian flow is preserved in part

by the Kuramoto flow defined in pS1qV by the system of ODEs

dxv
dt

“ σ
ÿ

uPV :tu,vuPE

sinpxu ´ xvq, (2)

where σ P R` is the strength of the coupling. In both flows, the diagonal

D “ tx P IV : xu “ xv @ u, v P V u, (3)

is an attractor, i.e., it is such that limtÑ8 distpxptq,Dq “ 0, for each initial con-

dition in a neighborhood of D. Indeed, it is a global attractor for the Laplacian

flow and, since the linearization of the Kuramoto flow around the diagonal is

proportional to the Laplacian flow, applying a Hartman-Grobman argument we

conclude that it follows a similar converging dynamics in a small neighborhood
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of the diagonal.

In order to measure the degree of synchronization at a given time, we fix a

precision ε ą 0 and declare that two neighboring sites are ε-synchronized if

their distance does not exceed ε. Seeing as active each connection between

neighboring sites which are ε-close, we define a subnetworks containing all the

active connections. The determination and evolution of this subnetwork is the

main objective of the present work. Hence, to each fixed threshold ε ą 0 and

every configuration x P RV , we associate an ε-synchronized subnetwork Gx “

pV,Exq, where Ex Ă E is the collection of edges

Ex “ ttu, vu P E : |xu ´ xv| ď εu. (4)

For the systems under consideration, Gxptq Ñ G as t Ñ 8 provided the initial

condition is sufficiently close to the diagonal. Since there is a finite number

of subnetworks, then for each suitable initial condition x P RV there exists

a finite sequence of switching times t0 “ 0 ă t1 ă t2 ă ¨ ¨ ¨ ă t` and a

corresponding sequence of ε-synchronized subnetworks pGx, Gxpt1q, . . . , Gxpt`qq

such that Gxptτ q ‰ Gxptτ`1q, for each 0 ď τ ă N , and Gxptq “ Gxptτ q with

τ “ maxt0 ď j ď ` : t ě tju. These sequence of subnetworks of G codify the

progression of transient synchronizing patterns. By taking ε sufficiently small,

all the possible synchronizing sequences can be obtained by varying the initial

condition x inside the basin of attraction of the diagonal.

In the case of highly symmetric networks, instead of the ε-synchronized subnet-

works it is convenient to use another combinatorial structure that at the same

time that encodes the subnetwork and respects some of the symmetries that are

preserved by the dynamics. As we will see below, this easy the description of

the evolution of the synchronized subnetworks. Hence, the whole synchroniz-

ing dynamics on G can be compiled in a single combinatorial superstructure.

This superstructure is a transition diagram whose vertices are in correspondence

(not necessarily injective) with ε-synchronized subnetworks in such a way that
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the collection of all the paths in the transition diagram is equivalent to the set

of all the observable sequences of ε-synchronized subnetworks. To study this

dynamic, it is enough to see the diagram with other labels that allow to en-

code the Gx. To be more precise, the transition diagram is a directed graph

Tε “ pVε, Aεq whose vertices, Vε are combinatorial objects containing all the in-

formation we need to determine the ε-synchronized subnetworks and the arrows,

Aε, are transitions between those structures which are consistent with the evo-

lution of the synchronized subnetworks. The correspondence between objects

in Vε and ε-synchronized subnetworks is achieved via a mapping

λ : Vε Ñ Eε, (5)

that labels each vertex in the transition diagram with an ε-synchronized subnet-

work. The labelling λ is such that pG0, G1, . . . , G`q is a realizable sequence of

ε-synchronized subnetworks if and only if there exists a path v0 Ñ v1 Ñ ¨ ¨ ¨ Ñ v`

in Tε such that Gn “ λpvnq for 0 ď n ď `, we will see these encodings in detail

later.

In general, the set Eε of all the ε-synchronized subnetworks changes with ε. Nev-

ertheless, for ε sufficiently small, the set of ε-synchronized subgraphs defined by

initial conditions in a small neighborhood of D becomes independent of ε. For

the Laplacian flow, the set Eε of all possible synchronized subnetworks is inde-

pendent of ε as long as ε ą 0. Even if Eε is independent of ε, the corresponding

transition diagram may change with ε. This, nevertheless, does not happen

in the linear case, since for each initial condition x P RV , the corresponding

sequence pGx, Gxpt1q, . . . , Gxpt`qq of ε-synchronized subnetworks coincides with

the sequence pGy, Gypt1q, . . . , Gypt`qq of ε1-synchronized subnetworks determined

by y “ x ε1{ε. Indeed, by Equation (4) and by the linearity of the system,

tu, vu P Ex is equivalent to |xu ´ xv| ď ε, hence |xu ´ xv| “ ε{ε1|yu ´ yv| ď ε,

therefore |yu ´ yv| ď ε1, which is equivalent to tu, vu P Ey. From this it fol-

lows that the collection of ε-synchronized sequences does not depend on ε in

the linear case. Clearly, since this number is finite, each synchronized sequence
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can be realized by an infinite number of initial conditions, which could most

likely allow to realize some partition of the initial phase space, i.e., the basin of

attraction of the final synchronized state.

We will restrict our study to the following families of networks:

A. The complete graph KN , for which V “ t1, 2, . . . , Nu and E “ ttu, vu :

1 ď u ă v ď Nu.

B. The complete bipartite graph KN,N , where V “ t1, 2, . . . , 2Nu and E “

ttu,N ` vu : 1 ď u, v ď Nu.

Considering these families, we address the following questions:

1. Given the underlying network, which subgraphs are realizable as synchro-

nizing subnetworks? How large is this collection and how does it grow

with the size of the underlying graph?

2. Given an underlying network, what is the structure of the transition dia-

gram? In particular, what is the longest path in this digraph and what is

the resulting distribution of path lengths?

3. The transition diagram for KN

The Laplacian matrix for KN diagonalizes in the basis tu1, u2, . . . , uNu, where

u1 :“
řN
n“1 e

n and, for each n ě 1, un :“ en ´ e1, where en denotes the n-th

vector of the canonical basis. Indeed, Lu1 “ 0 and Lun “ ´N un for each

n ě 2. Consider now an initial condition x P RN . Such an initial condition can

be decomposed as x “ x̄ u1`
řN´1
n“1 pxn`1´x̄qu

n, where x̄ :“
´

řN
n“1 xnp0q

¯

{N .

Therefore

xptq “ x̄ u1 ` e´N t
N´1
ÿ

n“1

pxn`1 ´ x̄qu
n “

N
ÿ

n“1

`

x̄
`

1´ e´N t
˘

` e´N txn
˘

en,

for all t P R. From this it follows that

xnptq ´ xmptq “ e´N tpxn ´ xmq, (6)
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for all t P R and each 1 ď m,n ď N . Hence, the edge tn,mu belong to the ε-

synchronized subnetworkGxptq, for all times exceeding tn,m “ plog |xn ´ xm| ´ logpεqq {N .

Without lost of generality we may assume that x1p0q ď x2p0q ď ¨ ¨ ¨ ď xN p0q

which, by Equation (6), ensures that x1ptq ď x2ptq ď ¨ ¨ ¨ ď xN ptq for all t.

In order to take advantage of the fact that the Laplacian flow preserves the

order of the coordinates, we will define the transition diagram not over the

synchronized subnetworks but over another combinatorial object that encodes

both the synchronized subnetworks, and recognizes the order of the coordinates.

By doing so we will facilitate the description of the transition diagrams since the

coding we use allows us to easily determine the order of apparition of new edges

in the synchronized sequence. This coding is not only convenient but necessary if

one wants to keep track of the order of the coordinates. We codify ε-synchronized

subnetwork Gx, determined by the ordered configuration x1 ď x2 ď ¨ ¨ ¨ ď xN

by the increasing function φx : t1, 2, . . . , Nu Ñ t1, 2, . . . , Nu given by

φxpmq “ maxtn ě m : xn ď xm ` εu. (7)

Clearly φx is increasing and such that φxpnq ě n for each 1 ď n ď N , i.e.,

φx ě Id. Here and below Id denotes the identity function in t1, 2, . . . , Nu. We

present an example of the construction of the increasing function from a given

initial condition, in Figure 1.

By the arguments in the Appendix Appendix A, the collection

ΦN :“ tφ : t1, . . . , Nu Ñ t1, . . . , Nu increasing and such that φ ě Idu, (8)

is in a one-to-one correspondence with the collection of all ε-synchronized sub-

networks of KN defined by initial conditions satisfying x1 ď x2 ď ¨ ¨ ¨ ď xN .

The correspondence is given by

φ ÞÑ pt1, 2, . . . , Nu, Eφq where Eφ “ ttm,nu : minpm,nq ď φpmaxpn,mqqu.

(9)

In this case, the coding (5) which associates increasing functions to synchronized

subnetworks is given by Equation (9).
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x4x3x2x1

Ó Ó Ó

Link No link Link

4321

φx=(2,2,4,4)

(a)

(b)

(c)

Figure 1: In (a), an example of the values of x “ px1, x2, x3, x4q are illustrated with black

dots. To construct Gx, according to Equation (4), it is enough to observe that x1 and x2 are

inside one ε-neighborhood, and x3 and x4 in another, which implies that in (b) there are a

links between the vertices 1 and 2 as well as vertices 3 and 4. In (c), the increasing function

φx associated with x is depicted. The information in φx can be read as follows: The furthest

vertex connected with vertex 1 is vertex 2, vertex 2 does not reach vertex 3, and vertex 3

reaches vertex 4, which is the last one.

The collection ΦN is equivalent to a well-studied combinatorial set, the set D2N

of Dyck paths of length 2N . This set is in turn equivalent to the set of valid

2N -parenthesis configurations. All these combinatorial sets have a cardinality

given by the Catalan numbers [9],

|ΦN | “ CN :“
1

N ` 1

¨

˝

2N

N

˛

‚. (10)

Taking into account the equivalence established in the previous paragraph, each

sequence of ε-synchronized subnetworks pGx, Gxpt1q, . . . , Gxpt`qq generated by an

ordered initial condition x, is faithfully codified by the corresponding sequences

of increasing functions pφx, φxpt1q, . . . , φxpt`qq in ΦN defined by Equation (7).

Clearly the function t ÞÑ φxptqpnq increases with t for each n fixed, and con-

verges to φxptq “ N at the time t1,N “ plogpxN ´ x1q ´ logpεqq {N . Due to the
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monotonicity, the length ` of an ε-synchronized sequences is upper bounded by

the number of edges in KN , i.e., ` ď NpN ´ 1q{2. As mentioned above, the

switching times t1 ă t2 ă ¨ ¨ ¨ ă t` are completely determined by the increments

xn´xm, with m ă n. Let us assume that all those increments are different from

zero and pairwise different. We will say that a path satisfying this condition is

typical. Clearly, the non-typical paths correspond to initial conditions in a set

of zero Lebesgue measure in RN . Hence, for typical paths, two consecutive func-

tions in the sequence pφ0, φ1, . . . , φ`q :“ pφx, φxpt1q, . . . , φxpt`qq differ at a single

point. Let us denote by δn P t0, 1u the characteristic function of the singleton

tnu. Hence φτ`1 “ φτ ` δnτ for some nτ P t1, 2, . . . , Nu satisfying the condition

φτ pnτ q ă φτ pnτ ` 1q. Hence an admissible sequence pφ0, φ1, . . . , φ`q can be ob-

tained by choosing a valid initial function φ0 P ΦN , then for each τ ě 0, a point

nτ P t1, 2, . . . , N´1u such that φτ pnτ q ă φτ pnτ `1q to update φτ`1 “ φτ `δnτ .

Nevertheless, not all the sequences obtained in this way are realizable as syn-

chronizing sequences. The sequence pnτ q0ďτă` of jump sites is determined by

an order in the increments ∆ :“ t∆n,k :“ xn`k ´ xn : 1 ď n ă n ` k ď Nu in

such a way that the τ -th smallest increment in ∆ is of the kind ∆nτ ,k. Hence,

to each valid strict ordering in ∆ corresponds a unique realizable path towards

synchronization.

One can easily verify that not all the admissible paths are realizable. The sim-

plest counterexample happens for N “ 4 (for N “ 2, 3 all admissible sequences

are realizable). In this case the sequence Id ÞÑ p2, 2, 3, 4q ÞÑ p2, 2, 4, 4q ÞÑ

p2, 3, 4, 4q ÞÑ p2, 4, 4, 4q ÞÑ p3, 4, 4, 4q ÞÑ p4, 4, 4, 4q, which corresponds to the

sequences of jump sites p1, 3, 2, 2, 1, 1q, is not realizable since the first two tran-

sitions indicate that x2 ´ x1 ă x4 ´ x3 but transitions four and five imply that

x4´x2 ă x3´x1, which is contradictory. The total number of admissible paths

for N “ 4 is sixteen. On the other hand, the total number of admissible paths

is ten, and the associated valid strict orderings are shown in Table 1.

Each ordering in Table 1 uniquely determines an observable path towards syn-

chronization. The corresponding paths towards synchronization are organized
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∆1,1 ă ∆2,1 ă ∆3,1 ă ∆1,2 ă ∆2,2 ă ∆1,3 ∆1,1 ă ∆2,1 ă ∆1,2 ă ∆3,1 ă ∆2,2 ă ∆1,3

∆1,1 ă ∆3,1 ă ∆2,1 ă ∆1,2 ă ∆2,2 ă ∆1,3 ∆2,1 ă ∆1,1 ă ∆3,1 ă ∆1,2 ă ∆2,2 ă ∆1,3

∆2,1 ă ∆1,1 ă ∆1,2 ă ∆3,1 ă ∆2,2 ă ∆1,3 ∆2,1 ă ∆3,1 ă ∆1,1 ă ∆2,2 ă ∆1,2 ă ∆1,3

∆2,1 ă ∆3,1 ă ∆2,2 ă ∆1,1 ă ∆1,2 ă ∆1,3 ∆3,1 ă ∆1,1 ă ∆2,1 ă ∆2,2 ă ∆1,2 ă ∆1,3

∆3,1 ă ∆2,1 ă ∆1,1 ă ∆2,2 ă ∆1,2 ă ∆1,3 ∆3,1 ă ∆2,1 ă ∆2,2 ă ∆1,1 ă ∆1,2 ă ∆1,3

Table 1: The ten different orderings of the increments for a typical initial conditions in R4.

in a transition diagram, depicted in Figure 2.

As mentioned above, the path towards synchronization form the initial condition

x is given by the sequence pGx, Gxpt1q, . . . , Gxpt`qq of synchronizing subnetwork,

which is equivalent to a sequences of increasing functions pφx, φxpt1q, . . . , φxpt`qq

in ΦN . The sequence pφx, φxpt1q, . . . , φxpt`qq is completely determined by the

order of the increments ∆. Each ordering of increments determines the sequence

pnτ q0ďτă` of sites where consecutive increasing functions differ, i.e., the sites nτ

such that φxptτ`1q ´ φxptτ q “ δnτ for each 0 ď τ ă `. Hence, each valid ordering

in ∆ corresponds a unique realizable path towards synchronization. Therefore,

the total number of paths toward synchronization is given by the number of

different orderings ∆ which can be obtained from an ordered vector x P RN .

This is a combinatorial problem which has been treated in the literature in the

context of the so called Golomb rulers [10], that is, the problem of counting

the number of valid orders is equivalent to counting the combinatorially distinct

Golomb rulers. Below we will explain how this equivalence is established.

A Golomb ruler with N marks is a vector a P ZN with a1 ă a2 ă ¨ ¨ ¨ ă aN ,

such that no two increments an`k ´ an, where 1 ď n ă N , and 1 ď k ď N ´ n

coincide. Hence, a Golomb ruler is nothing but a typical initial condition with

integer entries.

To each typical initial condition x P RN we may associate a Golomb ruler as
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follows. Since x is typical, then both ε1 “ mint∆n,k : 1 ď n ă N, 1 ď k ă

N ´ nu and ε2 “ mint|∆n,k ´ ∆m,`| : pm, kq ‰ pn, `q : 1 ď n ă N, 1 ď k ă

N´n, 1 ď m ă N, 1 ď ` ă N´mu are strictly positive. Let p P N be such that

p ¨minpε1, ε2{4q ą 1, and for each 1 ď n ď N let qn :“ maxtq P Z : q{p ď xnu.

The vector q “ pq1, q2, . . . , qN q P ZN is the desired Golomb ruler. Indeed, since

p ε1 ą 1, then for each 1 ď n ă N we have

qn ď p xn ď p pxn`1 ´ ε1q ď qn`1 ` 1´ p ε1 ă qn`1.

On the other hand, whenever ∆n,k ą ∆m,` we have

pqn`k ´ qnq ´ pqm`` ´ qmq ě pp∆n,k ´∆m,` ´ 4{pq ą ppε2 ´ 4{pq ą 0.

Two Golomb rulers are combinatorially equivalent if they determine the same

ordering in their differences, i.e., a, b P RN are equivalent if and only if ppan`k´

anq ´ pam`` ´ amqqppbn`k ´ bnq ´ pbm`` ´ bmqq ą 0 for each 1 ď m,n ă N and

1 ď k ă n, 1 ď ` ă m. Hence, the number GolombpNq of classes of Golomb

rulers with N marks, gives the number of paths towards synchronization, i.e.,

Number of paths towards synchronization for KN “ GolombpNq. (11)

The growth of this quantity with the dimension N , is a measure of complexity

similar to the topological complexity of discrete-time dynamical systems. In

the case of a discrete-time dynamical system, the topological complexity counts

the growth of the number of distinguishable trajectories as a function of time.

In our case, GolombpNq counts the number of distinguishable paths towards

synchronization, not as a function of time, but of the dimension of the system.

A Golomb ruler a P Z is also characterized by the fact that all the sums am`an

are different. Indeed, since

signppan`k ´ anq ´ pam`` ´ amqq “ signppan`k ` amq ´ pam`` ` anqq,

the number of combinatorially different Golomb rules is given by the number

of different orderings for S “ tam ` an : 1 ď m ă n ď Nu which is equal to

11



the number of different orderings for P “ tam an : 1 ď m ă n ď Nu. This

number is relevant in problem of quantum entanglement [11]. The sequence

GolombpNq appears in the On-line Encyclopedia of Integer Sequences under

the entry A237749 [12], where the first nine terms, which we present in Table 2,

are explicitly computed.

N GolombpNq

1 1

2 1

3 2

4 10

5 114

6 2608

7 107498

8 7325650

9 771505180

Table 2: Number of classes of Golomb rulers.

The computation of GolombpNq remains an open problem. Easy bounds for

this number are shown in Equation (12). The lower bound can be obtained by

counting all the orderings of the first differences xi`1 ´ xi for 1 ď i ď N ´ 1,

while the upper bound results taking all the ordering of all the differences xi´xk

for 1 ď k ă i ď N . Form this we obtain,

pN ´ 1q! ă GolombpNq ă

ˆ

N

2

˙

!. (12)

An exact non-trivial upper bound, based on a result by M. R. Thrall [13], was

found by N. Johnston [14]. It establishes that

GolombpNq ď

śN´1
n“1 n!

śN
n“1p2n´ 1q!

ˆ

NpN ` 1q

2

˙

! (13)

which furnishes an upper bound for the number of paths towards synchroniza-

tion as well.
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We do not intend to make an exhaustive characterization of the transition di-

agram, but from the concepts already defined, certain characteristics can be

calculated, such as: the number of synchronized sequences of length `, the dis-

tribution of lengths of the path towards synchronization. From this we compute

the mean length and the most frequent length of paths. Furthermore, we can

extrapolate the behavior of these quantities for increasingly large dimensions.

The transition diagram for KN has a hierarchical structure with the discon-

nected subnetwork, codified by the identity function Id P ΦN , at the top, and

the completely connected network, codified by the constant function Npnq “ N ,

at the bottom. Since we are considering only typical initial conditions, at each

transition only one new edge appears in the ε-synchronized subnetwork. At level

`, from top to bottom, we place all the subnetworks which can be reached from

the disconnected subnetwork after exactly ` transition. These subnetworks are

precisely those having exactly n edges, and are therefore codified by increasing

functions φ P ΦN such that
řN
n“1pφpnq ´ nq “ `. In particular, the maximal

length of a synchronizing sequences is lmax “
řN
n“1pN´nq “ NpN´1q{2. From

our discussion above is readily follows that the number FN p`q of synchronized

sequences of length ` is given by number of Dyck paths of length 2N and area

N2 ´ `, i.e.,

FN p`q :“

ˇ

ˇ

ˇ

ˇ

ˇ

#

φ P ΦN :
N
ÿ

n“1

φpnq “ N2 ´ `

+
ˇ

ˇ

ˇ

ˇ

ˇ

. (14)

These quantities can be computed from the generating polynomials

PN ptq :“
ÿ

φPΦN

tareapφq “

NpN´1q
2
ÿ

`“0

FN p`q t
NpN´1q

2 ´`,

where areapφq “
řN
n“1pφpnq ´ nq denotes the area under the Dyck path de-

termined by the increasing function φ. The generating polynomials can be

determined by using the recurrence relation

PN ptq “
N´1
ÿ

n“0

tn PnptqPN´n´1ptq (15)

with initial conditions P0 “ 0, derived by Carlitz and Riordan [15] (see [16] as

well). Although there is no closed form for FN p`q, the recurrence relation above

13



allows to directly compute these distributions and to establish its asymptotic

behavior. In Table 3 we show FN p`q for 2 ď n ď 8.

N FN p`q

2 (1,1)

3 (1,1,2,1)

4 (1,1,2,3,3,3,1)

5 (1,1,2,3,5,5,7,7,6,4,1)

6 (1,1,2,3,5,7,9,11,14,16,16,17, 14,10,5,1)

7 (1,1,2,3,5,7,11,13,18,22,28,32,37,40,44,43,40,35,25,15,6,1)

8 (1,1,2,3,5,7,11,15,20,26,34,42,53,63,73,85,96,106,113,118,118,115,102,86,65,41,21,7,1)

Table 3: Number FN p`q of functions φ P ΦN codifying a subnetworks starting a synchronizing

path of length `.

The normalized cumulative distribution, fN : r0, 1s Ñ r0, 1s, is defined by

fN pxq “
1

CN

ÿ

nďxˆNpN´1q{2

FN pxq, (16)

where FN is given by Equation (14) and CN the N -th Catalan number. By

using the recurrence shown in Equation (15), we numerically computed fN pxq

for increasing values of N , and observe that fN approaches an absolutely con-

tinuous limit distribution x ÞÑ fpxq whose density ρpxq :“ d fpxq{dx is closely

approached by the curve depicted in Figure 3. Hence, for N sufficiently large

and δ ą 0 sufficiently small, the proportion of paths of length NpN´1qpx˘δq{2

is approximatively ρpxq δ. As shown in the figure, our numerical computation

suggest that ρ is continuous, unimodal, and negatively skewed.

Summarizing, the transition diagram forKN is composed by levels L0,L1, . . . ,LNpN´1q{2,

in such a way that each path towards synchronization passes through levels of
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increasing index until reaching level NpN ´ 1q{2 which contains only the com-

plete graph, representing the full ε-synchronization. A typical initial condition

starting at Ln, will take NpN ´ 1q{2 ´ n steps to attain the complete graph.

The number of subnetworks at level n “ NpN ´ 1q{2 ´ ` is given by FN p`q,

defined by Equation (14). The number of subnetworks at each level increases

monotonously from 1 to

modeN p`q :“ max
1ď`ďNpN´1q{2

FN p`q « 0.632
N pN ´ 1q

2
, (17)

and then decreases monotonously to 1 as depicted in Figure 3. Being the dis-

tribution of those lengths negatively skewed, the mean length of these paths is

smaller than the most frequent length and we have

x`yN :“

řNpN´1q{2
`“1 ` FN p`q

CN
« 0.523

N pN ´ 1q

2
ă modeN p`q.

From the calculations above, we can get an idea of some features of a typical

synchronization path in the Laplacian of the complete graph, for example, if we

were to take a random ordered initial condition of dimension N , then its asso-

ciated synchronization path would most likely be of length as in Equation (17).

4. Some results concerning KN,N

Let us recall that the Laplacian matrix of L corresponding to the network KN,N

has the following entries

Lpi, jq “

$

’

’

’

&

’

’

’

%

1, if N ă i ď 2N and 0 ă j ď N or N ă j ď 2N and 0 ă i ď N,

´N, if i “ j, 1 ď i, j ď 2N,

0, otherwise.

An eigenbasis can be computed in terms of the canonical basis and written as the

set B “ tum, vn, wn : 1 ď m ď 2, 1 ď n ď N ´ 1u, where u1 “
ř2N
k“1 e

k, u2 “

řN
k“1pe

k´ ek`N q and for each n ě 1, vn “ en`1´ e1 and wn “ eN`n`1´ eN`1.

The Laplacian matrix L acts on this basis as follows: Lu1 “ 0, Lu2 “ ´2N u2
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and Lvn “ ´N vn, Lwn “ ´N wN for each n “ 1, 2, . . . , N ´ 1. An initial

condition x P R2N can be decomposed as

x “ x̄ u1 ` px̄1 ´ x̄qu
2 `

N´1
ÿ

n“1

ppxn`1 ´ x̄1q v
n ` pxN`n`1 ´ x̄2qw

nq ,

where

x̄ :“

ř2N
n“1 xn
2N

, x̄1 :“

řN
n“1 xn
N

and x̄2 :“

řN
n“1 xN`n
N

. (18)

Therefore, for all t P R we have

xptq “ x̄ u1 ` e´2N tpx̄1 ´ x̄qu
2 ` e´Nt

N´1
ÿ

n“1

ppxn`1 ´ x̄1q, v
n ` pxN`n`1 ´ x̄2qw

nq ,

“

N
ÿ

n“1

``

1´ e´Nt
˘ `

x̄´ e´Ntx̄1

˘

` e´Ntxn
˘

en

`

N
ÿ

n“1

``

1´ e´Nt
˘ `

x̄´ e´Ntx̄2

˘

` e´NtxN`n
˘

eN`n.

From here it follows that

xnptq ´ xN`mptq “ e´N t
`

xn ´ xN`m `
`

1´ e´Nt
˘

px̄1 ´ x̄2q
˘

, (19)

xnptq ´ xmptq “ e´N t pxn ´ xmq , (20)

xN`nptq ´ xN`mptq “ e´N t pxN`n ´ xN`mq ,

for all t P R and each 1 ď m,n ď N . Hence, the distance between coordinates in

the same party ofKN,N decreases monotonously, while the distances between co-

ordinates at different parties oscillates at most once, and then decreases to zero.

All the differences decreases monotonously if and only if the initial condition

satisfies x̄1 “ x̄2. In this case the edges tn,mu would be included in the syn-

chronized subnetwork Gxptq for all t ě tn,m :“ plog |xn ´ xN`m| ´ logpεqq {N .

Without lost of generality, we may assume that the initial condition is ordered

as x1 ď x2 ď ¨ ¨ ¨ ď xN , xN`1 ď xN`2 ď ¨ ¨ ¨ ď x2N . By Equation (20) ensures

that x1ptq ď x2ptq ď ¨ ¨ ¨ ď xN ptq and xN`1ptq ď xN`2ptq ď ¨ ¨ ¨ ď x2N ptq for all

t P R. We will further assume, when convenient, that x̄1 “ x̄2.

Once again, in order to take advantage of the fact that the Laplacian flow pre-

serves the order of the coordinates at each party, we will define the transition
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diagram not over the synchronized subnetworks but over combinatorial objects

that encode the synchronized subnetworks respecting this order. This will sim-

plify the description the transition diagram, mainly in the monotonous case

which is achieved when x̄1 “ x̄2. We codify the ε-synchronized subnetwork Gx

defined by x1 ď x2 ď ¨ ¨ ¨ ď xN , xN`1 ď xN`2 ď ¨ ¨ ¨ ď x2N , by the couple of

functions αx, ωx : t1, 2, . . . , Nu Ñ t0, 1, 2, . . . , N ` 1u given by

αxpnq “

$

&

%

mint` ď N : xn ´ ε ď xN``u if x2N ě xn ´ ε,

N ` 1 if x2N ă xn ´ ε,
(21)

ωxpnq “

$

&

%

maxt` ď N : xn ` ε ě xN``u if xN`1 ď xn ` ε,

0 if xN`1 ą xn ` ε.
(22)

Notice that impαxq Ă r1, N ` 1s while impωxq Ă r0, N s. Both functions are

increasing and such that αxpnq ď ωxpnq ` 1 for each 1 ď n ď N . We present

an example of the construction of the increasing functions from a given initial

condition, in Figure 4.

Let IN :“ tφ : t1, . . . , Nu Ñ t0, . . . , N ` 1u : φpn ` 1q ě φpnq for all 1 ď n ă

Nu. From the discussion in Appendix Appendix B, it follows that the collection

ΦN,N :“ tpα, ωq : α, ω P IN : impαq Ă r1, N`1s, impωq Ă r0, N s and α ď ω`1u,

(23)

codify all the ε-synchronized subnetworks of KN,N compatible with an ordered

initial conditions x1 ď x2 ď ¨ ¨ ¨ ď xN , xN`1 ď xN`2 ď ¨ ¨ ¨ ď x2N . The cor-

respondence is given as follows. To pα, ωq P ΦN,N we associate the subnetwork

Gpα,ωq Ă KN,N with edges in the set

Epα,ωq “ ttn,N `mu : 1 ď n,m ď N, and αpnq ď m ď ωpnqu, (24)

which is consistent with the fact that pα, ωq “ pαx, ωxq if and only if Gpα,ωq “

Gx. The correspondence in Equation (24) establishes a mapping from ΦN,N to
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the collection of ε-synchronized subnetworks defined by ordered initial condi-

tions, in other words, it is in this case the λ mapping associated with Equa-

tion (5). The elements in ΦN,N can be related to combinatorial objects, the

parallelo-polyminoes inscribed in a given rectangle. The number of these ob-

jects is given by the so called the Narayana numbers [9]. A parallelo-polyminoe

in the rectangular lattice of size pˆ q is a connected union of squares delimited

by two increasing boundary functions L,U : t1, 2, . . . , pu Ñ t0, 1, . . . , qu such

that Lp1q “ 0, Uppq “ q, and Lpnq ă Upn´ 1q for each 2 ď n ď p.

The number of parallelo-polyminoes in the lattice of size p ˆ q is given by the

Narayana number [17]

T pp` q ´ 1, qq :“
1

p` q ´ 1

¨

˝

p` q ´ 1

q

˛

‚

¨

˝

p` q ´ 1

q ´ 1

˛

‚. (25)

To each couple pα, ωq P ΦN,N we associate a parallelo-polyminoe in t0, 1, . . . , N`

1uˆt0, 1, . . . , N`1u with border functions L,U : t1, . . . , N`1u Ñ t0, 1, . . . , N`

1u, such that

Lpnq “

$

&

%

0 for n “ 1,

αpn´ 1q ´ 1 for 2 ď n ď N ` 1,
and Upnq “

$

&

%

ωpnq ` 1 for 1 ď n ď N,

N ` 1 for n “ N ` 1.

(26)

In this way, we establish a one-to-one correspondence between parallelo-polyminoes

and couples in ΦN,N , from which we obtain

|ΦN,N | “ T p2N ` 1, N ` 1q “
1

2N ` 1

¨

˝

2N ` 1

N ` 1

˛

‚

¨

˝

2N ` 1

N

˛

‚. (27)

Thanks to the equivalence given by the Equation (9), each sequence of ε-

synchronized subnetworks defined by an ordered initial condition is faithfully

codified by the corresponding sequences of couples of increasing functions given

by the Equations (21) and (22). As mentioned above, for an initial condi-

tion x P R2N such that x̄1 “ x̄2, all the differences xN`mptq ´ xnptq con-
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verge to 0 monotonously and at the same speed. We will say that such ini-

tial conditions are balanced. In this case, each one of the maps t ÞÑ αxptq

and t ÞÑ ωxptq are coordinate-wise monotonous, and they converge respec-

tively to the constant functions 1pnq “ 1 and Npnq “ N at time t1,N “

plog |x1 ´ x2N | ´ logpεqq {N . The sequence of switching times 0 ă t1 ă t2 ă

¨ ¨ ¨ ă t` is such that pαxptτ q, ωxptτ qq ‰ pαxptτ`1q, ωxptτ`1qq. Let us denote αtτ

by ατ , and the corresponding for ω. For a typical initial condition, at each

switching time only one of the functions ατ or ωτ changes and it changes only

at one site. The sequence ppα0, ω0q, pα1, ω1q, . . . , pα`, ω`qq can be determined

by the initial couple pα0, ω0q, the jump sites n1, n2, . . . , n` P t1, 2, . . . , Nu
` and

binary labels q1, q2, . . . , q` P p´1,`1q` as follows:

pατ`1, ωτ`1q “

$

&

%

pατ ´ δnτ , ωτ q if qτ “ ´1,

pατ , ωτ ` δnτ q if qτ “ `1.
(28)

To the couple pατ , ωτ q, we can associate a parallelo-polyminoe according to

Equation (26). In the transition pατ , ωτ q Ñ pατ`1, ωτ`1q, the area inside the

corresponding parallelo-polyminoe increases by one unit until the final area

N ˆN .

Realizable sequences ppn1, q1q, pn2, q2q, . . . , pn`, q`qq, are those compatible with

a balanced initial condition x P R2N and are completely determined by the dif-

ferences ∆n,m :“ xN`m´xn with 1 ď n,m ď N as follows: For ε ă |∆n1,m1 | ă

|∆n2,m2
| ă ¨ ¨ ¨ ă |∆nN2 ,mN2 | we have the sequence ppn1, q1q, pn2, q2q, . . . , pnN2 , qN2qq,

where qτ “ signp∆nτ ,mτ q for each 1 ď τ ď N2. If we consider all the possi-

ble orderings ∆ :“ t∆n,m : 1 ď n,m ď Nu compatible with an initial con-

dition, not necessarily balanced, and we assume that the dynamics towards

synchronization is completely determined by this ordering as in the balanced

case, we obtain a transition diagram with vertices in ΦN,N with maximal paths

starting at the couples pα, ωq codifying the disconnected subnetwork, and end-

ing at the couple p1,Nq which codifies KN,N . This digraph contains all the

paths towards synchronization starting at balanced initial conditions but it

also contains paths which are not compatible with any balanced initial con-
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dition. For instance, in the case N “ 2 there are 20 realizable possible orderings

t∆n,m : 1 ď n,m ď Nu, which we depict in Table 4, defining 20 paths towards

synchronization represented in the transition diagram of Figure 6. Nevertheless,

there are 4 orderings, and therefore 4 paths towards synchronization, which are

incompatible with a balanced initial condition. The coordinate arrangements

incompatible with a balanced initial conditions are x1 ă x2 ă x3 ă x4 and

x3 ă x4 ă x1 ă x2. In general there are 2 arrangements of initial conditions,

x1 ă ¨ ¨ ¨ ă xN ă xN`1 ă ¨ ¨ ¨ ă x2N and xN`1 ă ¨ ¨ ¨ ă x2N ă x1 ă ¨ ¨ ¨ ă xN ,

which are incompatible with a balanced initial condition. These arrangements

define maximal paths starting at vertices p1,0q and pN` 1,Nq, which for the

case N “ 2 we indicate in red in Figure 6.

An easy upper bound for the number of paths towards synchronization start-

ing at typical balanced initial conditions is the following. For each one of the

arrangements xi1 ă xi2 ă ¨ ¨ ¨ ă xi2N , obtaining by inter-placing the first N

coordinates with respect to the last N coordinates while maintaining the or-

der inside each group of coordinates, there are Golombp2Nq different order-

ings for the differences xik ´ xi` . Each one of these orderings give place to

a path towards synchronization, but this path does not depend on the differ-

ences between coordinates of the same group (first N or last N coordinates).

Furthermore, there are two coordinate arrangements which are incompatible

with a balanced initial condition, when x1 ă x2 ă ¨ ¨ ¨ ă x2N and when

xN`1 ă xN`2 ă ¨ ¨ ¨ ă x2N ă x1 ă x2 ă ¨ ¨ ¨ ă xN , hence the number of

paths towards synchronization is upper bounded by

Number of paths towards synchronization for KN,N ď

¨

˝

¨

˝

2N

N

˛

‚´ 2

˛

‚Golombp2Nq.

(29)

As mentioned above, the growth of this quantity with respect to N defines a

complexity function analogous to the topological complexity as a function of

time.
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Similar to the case KN , the number of paths towards synchronization of a given

length, FN,N p`q, is given by the number of couples pα, ωq P ΦN,N such that

the corresponding parallelo-polyminoe has an interior with area of pN ` 1q2´ `

units. Hence,

FN,N p`q :“

ˇ

ˇ

ˇ

ˇ

ˇ

#

pα, ωq P ΦN,N :
N`1
ÿ

n“1

pUpnq ´ Lpnqq “ pN ` 1q2 ´ `

+
ˇ

ˇ

ˇ

ˇ

ˇ

. (30)

Here, L,U : t1, . . . , N ` 1u Ñ t0, 1, . . . , N ` 1u are the polyminoe border func-

tions defined from the couple pα, ωq by Equations (26). Table 5 shows the

distributions FN,N p`q for 2 ď N ď 7.

For each N and 0 ď ` ď N , the integer FN,N p`q coincides with the `-th term

of the Sloans’s sequence (Entry A000712 of the On-line Encyclopedia of Integer

Sequences [18]), which among other things, counts the number of couples of

integer partitions P “ pp1 ě p2 ě ¨ ¨ ¨ ě pkq, Q “ pq1 ě q2 ě ¨ ¨ ¨ ě qrq, such that
řk
i“1 pi `

řr
j“1 qj “ `. Indeed, we can associate to each such couple of integer

partitions pP,Qq, a unique couple L,U : t1, 2, . . . , N ` 1u Ñ t0, 1, . . . , N ` 1u of

upper and lower border functions such that Upiq “ N`1´pi and LpN`2´jq “

qj . Clearly
řk
i“1 pi `

řr
j“1 qj “ ` if and only if the area of the parallelo-

polyminoe with border functions L and U is pN ` 1q2 ´ `. The correspondence

between integer partitions and border functions cannot go further than ` “ N ,

since for ` “ N ` 1 the couple ppN ` 1q, p0qq of partitions does not define

admissible border functions. On the opposite extreme, FN,N pN
2q counts all the

parallelo-polyminoes in t0, 1, . . . , N `1uˆt0, 1, . . . , N `1u composed of 2N `1

squares. These squares are arranged in a path going from p0, 0q to pN`1, N`1q,

the next square place at the left or on top of the previous one. Each one of these

arrangements can therefore by codified a sequences pa1, a2, . . . , a2N q P tL, T u
2N ,

with exactly N entries equal to T . From this it follows that

FN,N pN
2q “

¨

˝

2N

N

˛

‚ (31)
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The normalized cumulative distribution, fN,N : r0, 1s Ñ r0, 1s, is given by

fN,N pxq “
1

|ΦN,N |

ÿ

nďxˆN2

FN,N pxq, (32)

where FN,N is given by Equation (30) and |ΦN,N | by Equation (27). We nu-

merically computed fN,N pxq for increasing N , and observe how it approaches

a limit distribution x ÞÑ fpxq whose density %pxq :“ d fpxq{dx approaches the

curve depicted in Figure 7. As for KN , our numerical computation suggest that

% is continuous, unimodal, and negatively skewed.

As we have already mentioned, in the case of KN,N we do not have the complete

panorama of its paths towards synchronization, since our methodology is limited

to the initial conditions that are balanced. In addition, currently there are no

results in combinatorics that allow us to make calculations for arbitrarily large

sizes. Nevertheless by directly computing these distributions for low dimensions,

we observe a very fast convergence of the normalized distribution fN,N . We

obtain a unimodal distribution with maximum at

modeN,N p`q :“ max
1ď`ďN2

FN,N p`q « 0.74118N2. (33)

as depicted in Figure 7. We observe that the distribution is negatively skewed,

the mean length of these paths being larger than the most frequent length,

x`yN,N :“

řN2

`“1 ` FN,N p`q

T p2N ` 1, N ` 1q
« 0.8125N2 ą modeN,N p`q.

The above estimations were obtained by using a relatively low (N=8) dimen-

sion. As mentioned above, already at this low dimension we obtain the accurate

qualitative behavior of the asymptotic distribution. In this way we can qualita-

tively describe a typical synchronization path for the Laplacian of the complete

bipartite graph, starting at a random balanced ordered initial condition of di-

mension 2N . For instance, such a synchronization path would most likely be of

the length indicated in Equation (33).
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5. Remark and comments

Thanks to the monotonic behavior of the Laplacian flow in KN , it was possible

to completely describe the behavior of the transient dynamics of the system

via a codification of the synchronized subnetworks by increasing functions. On

the other hand, in the case of KN,N , a similar codification is limited only to

synchronizing paths starting at balanced initial conditions, which are the ones

for which a monotonous behavior is obtained.

In both cases we obtained a closed formula for the number of number of real-

izable states, states given by combinatorial objects codifying all the realizable

synchronized subnetworks. Moreover, the number of paths towards the syn-

chronization of the two systems, which can be seen as a complexity function,

remains an open problem. We can nevertheless obtain bounds that give us an

idea of their growth order.

The probability density functions of the asymptotic distribution of the nor-

malized length of a path towards synchronization in both cases are continuous,

unimodal, and negatively skewed. The typical length with respect to the longest

path is larger for KN,N than for KN .

Although the above results concern the Laplacian flow, they apply in some

extend to the Kuramoto flow. In particular, in the case of complete network

KN , the transition diagram obtained from the Laplacian flow describes most of

the paths towards synchronizations stating in a neighborhood of the diagonal.

Inside this neighborhood we can use the coding of ε-synchronized subnetworks

defined for the Laplacian flow in Section 3 since the order of the coordinates is

preserved by the Kuramoto flow, and therefore the increasing functions in ΦN
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are suitable for the coding. Indeed, according to Equation (2) we have

dpxn ´ xmq

dt
“ σ

˜

N
ÿ

k“1

sinpxk ´ xnq ´ sinpxk ´ xmq

¸

,

“ σ R psinpΘ´ xnq ´ sinpΘ´ xmqq ,

where ReiΘ “
´

řN
k“1 cospxkq

¯

` i
´

řN
k“1 sinpxkq

¯

. Hence, whenever xn “ xm,

dpxn´ xmq{dt “ 0, which implies that the order in the coordinates is preserved

under the flow since no crossing of coordinates is possible. Let us assume that

maxt|xn ´ x̄| : 1 ď n ď Nu ă π{4, where x̄ “
řN
n“1 xnp0q. In this case

|Θ ´ x̄| ď π{4 and dpxn ´ xmq{dt “ 0 if and only if xm “ xn. Furthermore,

the sign of sinpΘ ´ xnq ´ sinpΘ ´ xmq is in this case the same as the sign of

xm´xn, and therefore |xn´xm| decreases monotonously for all initial condition.

We have performed some numerical experiments and verify that the transition

diagram defined in Section 3 is respected by the Kuramoto flow if one considers

ε sufficiently small with respect to π{4 and initial conditions x P pS1qV such

that |xn ´ x̄| ă π{4 for all 1 ď n ď N .

For KN,N , the order of the coordinates at each of the two parties is preserved

by the Kuramoto flow. For this we proceed as in the previous paragraph and

obtain

dpxn ´ xmq

dt
“ σ R2 psinpΘ2 ´ xnq ´ sinpΘ2 ´ xmqq ,

dpxN`n ´ xN`mq

dt
“ σ R1 psinpΘ1 ´ xnq ´ sinpΘ1 ´ xmqq ,

where R1 e
iΘ1 “

´

řN
k“1 cospxkq

¯

` i
´

řN
k“1 sinpxkq

¯

and similarity for R2 e
iΘ2 .

From this it follows that if xn “ xm then dpxn ´ xmq{dt “ 0, and similarly for

xN`n´xN`m. Therefore the order in the coordinates at each party is preserved

under the flow which allows us to use the coding of ε-synchronized subnetworks

defined for the Laplacian flow in Section 4.

As already mentioned, the transition diagram defined for the Laplacian flow

over KN,N describes only the paths toward synchronization corresponding to

balanced initial conditions. In Figure 6 we marked in red the subnetworks

incompatible with balanced initial conditions. The whole transition diagram,
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which contains those subnetworks, admits non-monotonous paths. Furthermore,

for unbalanced initial conditions, the order in the differences between coordi-

nates is not preserved by the flow. The description of the full transition diagram

for the Laplacian flow over KN,N , would be the subject of future work.

Finally we would like to emphasize that these synchronizing sequences can be

seen as partitioning the basin of attraction of a given attractor (here the fully

synchronized state). Since for a given finite ε the final synchronized network will

be reached in a finite time τpε,Nq, if the space of initial conditions has a finite

volume, the full space-time will be as well bounded, and these sequences are

partitioning that full space time. Moreover, by associating to a given sequence

an ensemble of initial conditions realizing that sequence, we should be able

to measure that ensemble and add corresponding weights (measures) to each

sequence and characterize even further the space-time complexity.
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Appendix A.

For each increasing function φ : t1, 2, . . . , Nu Ñ t1, 2, . . . , Nu such that φ ě Id,

there exists an ordered initial condition x P RN such that φ “ φx. For this

we use a representation of φ as a disjoint union of directed trees as follows.

Let Fixpφq :“ t1 ď n ď N : φpnq “ nu. To each n P Fixpφq we associate a

directed tree Tn, rooted at n, with vertex set Vn :“
Ťhpnq
l“0 φ´lptnuq and directed

edges in An :“ tpk, φpkqq : k P Vnztnuu. The vertex set Vn splits into hpnq ` 1

disjoint levels, V ln :“ φ´lptnuq, 0 ď l ď hpnq. The number hpnq is the high Tn.

The maximal paths in Tn are completely determined by their starting vertices,
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which have to be leaves. Let `1n ă `2n ă ¨ ¨ ¨ ă `
wpnq
n be the leaves of Tn. Its

number, wpnq, is the width of the tree Tn. Since φ is increasing and such that

φ ě Id, then every element in the l-th level, V ln, is greater than all the elements

in the l1-th level, V l
1

n whenever l ă l1. It implies that the length lpmq of the

path starting at m and ending at the root, is a decreasing function of m. Each

maximal path in Tn starts at a leaf and the longest of those paths have length

hpnq, and start at leaves in the highest level. Furthermore, all vertices in Tn

belong to a maximal path, which means that it is reachable from a leaf.

Now, given φ : t1, 2, . . . , Nu Ñ t1, 2, . . . , Nu increasing and such that φ ě Id,

let tTnk : 1 ď k ď Ru be the associated collection of directed trees and n1 ă

n2 ă ¨ ¨ ¨ ă nR in Fixpφq the corresponding roots. Define x P RN such that

xn1
“ ε hpn1q, and for each 1 ď k ă R,

xnk`1
“ xnk ` phpnkq ` 2q ε. (A.1)

In this way, we fix the value of xn for each n P Fixpφq in such a way that

xnk ` ε ă xnk`1
´ hpnk`1q ε for each 1 ď k ă R. Now, for each n P Fixpφq,

let `1n ă `2n ă ¨ ¨ ¨ ă `
wpnq
n be the leaves of Tn. For each 1 ď j ď wpnq and

0 ď k ď lpnjq for which xφkp`jnq is not yet defined, let

xφkp`jnq “ xn ´ plpnjq ´ kq ε` pj ´ 1q
ε

wpnq
. (A.2)

Let us remind that lpnjq is the length of the maximal path starting at `jn. It is

not difficult to verify that Equations (A.1) and (A.2) define an ordered initial

condition 0 “ x1 ă x2 ă ¨ ¨ ¨ ă xN “
řR
k“1phpnkq ` 2q, such that φx “ φ.

Appendix B.

Each couple of increasing functions α, ω : t1, . . . , Nu Ñ t0, 1, . . . , N ` 1u is

compatible with some x P R2N in terms of the Equations (21) and (22), and

therefore codify an ε-synchronized subnetwork, provided impαq Ă r1, N ` 1s,

impωq Ă r0, N s and α ď ω ` 1. Such an initial condition can be constructed as

follows.
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For each 1 ď n ď N let An :“ t1 ď m ď N : αpnq ď m ď ωpnqu. Let us

partition t1, 2, . . . , Nu “
Ů`
k“1 Ik, where for each 1 ď k ď `, Ik “ tnk, nk `

1, . . . ,mku is such that An X An`1 ‰ H for each nk ď n ă mk and it is

a maximal element in the sense of inclusion (Ik Ĺ I ñ
Ť

nPIk
An is not an

interval). Notice that n1 “ 1 and that Ik “ tnku whenever αpnkq “ ωpnkq ` 1.

For each 1 ă k ď `, let ∆ : Ik Ñ Ik be such that ∆pnq “ maxtm P Ik :

An XAm ‰ Hu. Clearly ∆pnq ě n and ∆pnq “ n if and only if n “ nk “ mk.

We can associate to ∆ a directed tree Tk with vertices in Ik, rooted at mk,

and arrows n ÞÑ ∆pnq. The structure of these trees is similar to that of the

trees described in Appendix Appendix B. Let nk ÞÑ ∆pnkq ÞÑ ¨ ¨ ¨ ÞÑ ∆jpnkq ÞÑ

¨ ¨ ¨ ÞÑ mk “ ∆hkpnkq be the maximal path in Tk and for each 1 ď j ď lk

let Vj “ ∆´jptmkuq be the j-th level of Tk. Clearly minVj “ ∆hk´jpnkq and

maxVj ă minVj´1 for each 0 ď j ď hk.

Assume xnk is given. Let nk,j :“ minVj and define xnk,j :“ xnk ` jε for each

1 ď j ď hk. Now, for nk,j ď n ă nk,j´1, let xn “ xnk,j ` pn ´ nk,jq ε{pnj´1 ´

nk,jq. With δk :“ 1
2 minnkďnămkpxn`1 ´ xnq, for each nk ď n ă mk and

αpnq ď m ă αpn ` 1q, let xN`m “ xn ´ pε ´ δkq. For nk,1 ď n ă nk,0 ” mk

and ωpnq ă m ď ωpn` 1q, let xN`m “ xn`pε´ δkq. Finally, for αpmkq ď m ď

ωpnk,1q, define xN`m “ pxnk,1 ` xmkq{2.

In order to complete the specification of all the coordinate, fix x1 “ xn1 “ 0

and for each 1 ď k ď ` let xnk :“ xmk´1
` 3ε. Finally, for each m R

ŤN
n“1 An,

let kpmq :“ mint1 ď k ď ` : αpnkq ą mu and define xN`m :“ xN`αpnkq ´ 3ε{2.

If ωpNq ă N , then define xN`m :“ xm` ` 3ε{3.
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Id

(2,2,3,4) (1,3,3,4) (1,2,4,4)

(2,2,4,4) (2,3,3,4) (1,3,4,4) (2,2,4,4)

(2,3,4,4)(1,4,4,4)(3,3,3,4)(2,3,4,4)

(3,3,4,4) (2,4,4,4)

(3,4,4,4)

4

Figure 2: The transition diagram which contains all the paths towards synchronization of the

Laplacian dynamics on K4. The synchronized subgraphs are encoded by increasing functions

as defined by Equation (9). At the top is placed the identity function Id :“ p1, 2, 3, 4q which

codifies the completely disconnected graph. All the paths end at the constant function 4 “

p4, 4, 4, 4q, which codifies the globally synchronized state

.
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Figure 3: The probability density function ρpxq of the asymptotic distribution of the normal-

ized length of a path towards synchronization. For N sufficiently large and δ ą 0 sufficiently

small, the proportion of paths of length NpN ´ 1qpx˘ δq{2 is approximatively ρpxq δ.

31



x4

x3

x2

x1

4

3

2

1

αx=(1,2)

ωx=(1,2)

(a) (b) (c)

Figure 4: In (a), an example of the relative position of the coordinates of x “ px1, x2, x3, x4q

is illustrated with black dots. The angles that opens from the first two coordinates indicate

their ε-neighborhood. To construct Gx, according to Equation (24), it is enough to observe

that x3 is inside the ε-neighborhood of x1, and also x4 is inside the ε-neighborhood of x2,

hence in (b), vertices 1 and 3 are connected as well as vertices 2 and 4. In (c), the increasing

functions determined by x are shown. The function αx codified the fact that x3 is the first

coordinate of the second party inside the angle opening from x2 and similarly x4 with respect

to x2. On the other hand, ωx, indicates that x3 is the last coordinate of the second party

inside the angle opening from x1 and respectively x4 with respect to x2.
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Figure 5: A parallelo-polyminoe in the lattice of size 14ˆ 10. The blue path defines the lower

border function L “ p0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5, 5, 5, 5q, while the red one defines the upper

border U “ p1, 1, 1, 3, 3, 3, 5, 5, 6, 6, 6, 6, 7, 7q.
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Coordinates Differences Signs

x1 ă x2 ă x3 ă x4 |∆2,1| ă |∆2,2| ă |∆1,1| ă |∆1,2| p`1,`1,`1,`1q

|∆2,1| ă |∆1,1| ă |∆2,2| ă |∆1,2| p`1,`1,`1,`1q

x1 ă x3 ă x2 ă x4 |∆2,1| ă |∆2,2| ă |∆1,1| ă |∆1,2| p´1,`1,`1,`1q

|∆2,2| ă |∆2,1| ă |∆1,1| ă |∆1,2| p`1,´1,`1,`1q

|∆2,2| ă |∆1,1| ă |∆2,1| ă |∆1,2| p`1,`1,´1,`1q

|∆2,1| ă |∆1,1| ă |∆2,2| ă |∆1,2| p´1,`1,`1,`1q

|∆1,1| ă |∆2,1| ă |∆2,2| ă |∆1,2| p`1,´1,`1,`1q

|∆1,1| ă |∆2,2| ă |∆2,1| ă |∆1,2| p`1,`1,´1,`1q

x1 ă x3 ă x4 ă x2 |∆1,1| ă |∆2,2| ă |∆1,2| ă |∆2,1| p`1,´1,`1,´1q

|∆2,2| ă |∆1,1| ă |∆2,1| ă |∆1,2| p´1,`1,´1,`1q

x3 ă x4 ă x1 ă x2 |∆1,2| ă |∆1,1| ă |∆2,2| ă |∆2,1| p´1,´1,´1,´1q

|∆1,2| ă |∆2,2| ă |∆1,1| ă |∆2,1| p´1,´1,´1,´1q

x3 ă x1 ă x4 ă x2 |∆1,2| ă |∆1,1| ă |∆2,2| ă |∆2,1| p`1,´1,´1,´1q

|∆1,1| ă |∆1,2| ă |∆2,2| ă |∆2,1| p´1,`1,´1,´1q

|∆1,1| ă |∆2,2| ă |∆1,2| ă |∆2,1| p´1,´1,`1,´1q

|∆1,2| ă |∆2,2| ă |∆1,1| ă |∆2,1| p`1,´1,´1,´1q

|∆2,2| ă |∆1,2| ă |∆1,1| ă |∆2,1| p´1,`1,´1,´1q

|∆2,2| ă |∆1,1| ă |∆1,2| ă |∆2,1| p´1,´1,`1,´1q

x3 ă x1 ă x2 ă x4 |∆1,1| ă |∆2,2| ă |∆1,2| ă |∆2,1| p´1,`1,`1,`1q

|∆2,2| ă |∆1,1| ă |∆2,1| ă |∆1,2| p`1,´1,´1,`1q

Table 4: The twenty different orderings of the differences between coordinates at opposite

parties, and corresponding signs, for a typical initial conditions in R4.
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Figure 6: The transition diagram which contains all the paths towards synchronization of

the Laplacian dynamics on K2,2. Each one of the functions α, ω, are codified by a two-digit

string. There are six starting configurations, underlined in the diagram, all of them coding

the disconnected network. The ending vertex, p11, 22q, is the couple codifying the complete

bipartite graph K2,2. In red we indicate the starting couples which are incompatible with

a balanced initial condition. In this case, by erasing the elements in color red, we obtain

the transition diagram codifying all the paths towards synchronization for balanced initial

conditions.
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N FN,N p`q

2 (1,2,5,6,6)

3 (1,2,5,10,16,24,31,36,30,20)

4 (1,2,5,10,20,32,53,78,111,146,187,216,243,240,210,140,70)

5 (1,2,5,10,20,36,61,98,153,228,327,454,611,798,1005,1236,1466,1688,1862,1980,1971,

1850,1540,1120,630,252)

6 (1,2,5,10,20,36,65,106,173,268,409,600,867,1212,1671,2244,2966,3826,4868,6056,

7422,8906,10519,12166,13830,15352,16704,17656,18133,17890,16903,14966,12306,

8988,5670,2772,924)

7 (1,2,5,10,20,36,65,110,181,288,449,680,1013,1474,2107,2958,4088,5558,7450,9842,

12820,16488,20932,26246,32507,39790,48116,57538,67984,79414,91653,104578,117806,

131096,143865,155692,165779,173530,177877,178282,173616,163632,147855,127092,

102060,75432,49434,27720,12012,3432)

8 (1,2,5,10,20,36,65,110,185,296,469,720,1093,1618,2369,3400,4824,6732,9296,12654,

17054,22694,29912,38976,50333,64320,81489,102242,127219, 156850,191841,232602,

279832,333830,395204,464030,540737,625028,716966,815766,920990,1031168,1145253,

1260882,1376172,1487820,1593022,1687242,1766791,1826112,1860845,1865122,

1834995,1765746,1656541,1506540,1320987,1106748,877470,647592,437118,260832,

132132,51480,12870)

Table 5: Number FN,N p`q of couples pα, ωq P ΦN,N codifying a subnetworks starting a syn-

chronizing path of length `.
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Figure 7: The probability density function %pxq of the asymptotic distribution of the normal-

ized length of a path towards synchronization. For N sufficiently large and δ ą 0 sufficiently

small, the number of paths of length N2px˘ δq{2 is approximatively %pxq δ.
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