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Optomechanical control of atoms and molecules

M. Bhattacharya, S. Singh, P.-L. Giscard, and P. Meystre
B2 Institute, Department of Physics and College of Optical Sciences,

The University of Arizona, Tucson, Arizona 85721
(Dated: October 8, 2009)

In this article we present recent and ongoing developments in our group related to nanoscale
optomechanics, an emerging area at the confluence of atomic, condensed matter and gravitational
wave physics. The basic paradigm of optomechanics is the placement of a mechanical harmonic
oscillator in its quantum ground state. First we discuss how the motion of such a macroscopic
quantum oscillator can be squeezed, using the laser excitation of a high finesse optical cavity. Next
we show how the placement of a ferroelectric tip on the oscillator allows it to manipulate polar
molecules. Lastly we discuss how the role of the mechanical oscillator can be played by a quantum
degenerate gas placed inside an optical cavity, giving rise to rich optomechanical physics.

PACS numbers: 42.50.Pq, 04.80.Nn, 42.65.Sf,03.67.Lx

I. INTRODUCTION

Vladilen Letokhov’s recent monograph “Laser Control
of Atoms and Molecules” reviews some of the most im-
portant developments in atomic and molecular physics
following the invention of the laser. He personally pio-
neered an astoundingly large fraction of these develop-
ments. His ground-breaking contributions are too nu-
merous to list in any detail. They cover areas ranging
from the laser control of atomic and molecular processes,
including ionization and dissociation, to the detection of
single atoms and molecules, from isotope separation to
laser velocity selection and to laser trapping and cooling,
and much more. According to the ISI Web of Knowledge
he has published well over 700 papers. As just one illus-
tration of his breadth of interests, in the last two years he
has published work on astrophysical lasers, on scanning
near-field optical microscopes, on the quantum theory of
radiation by atoms placed near a microresonator, and on
the excitation and dissociation of polyatomic molecules
under the action of femtosecond laser pulses.

One of us (PM) first met Vladilen in the mid-1970s
during one of his frequent visits to his close friend the
late Peter Franken and to Marlan Scully at The Univer-
sity of Arizona. At the time, laser isotope separation
was a major research topic and he was an undisputed
leader in the field. Everybody wanted to learn his lat-
est thoughts on the subject. We later met again at a
number of occasions, sometimes in Europe, in particu-
lar at the Max-Planck Institute for Quantum Optics, or
back in Tucson, where our interactions increased signif-
icantly following the break-up of the Soviet Union, and
also in Moscow and in Troisk. It is therefore an honor
and a pleasure to contribute an article to the Festschrift
celebrating his seventieth birthday.

Returning to Dr. Letokhov’s recent book, we re-
mark that an important requirement to achieve further
progress in the manipulation and control of atoms and
molecules is the availability of neutral particle detectors
that can operate at the single atom or single molecule
level. With this in mind, this paper briefly reviews some

of our recent work toward that goal, concentrating on
the emerging area of cavity optomechanics, a field that
combines ideas of AMO physics, nanoscience, and con-
densed matter physics. It promises to open up new
routes to the coherent control of atoms and molecules,
relying on their coupling to nanomechanical oscillators
laser-cooled close to their ground state of vibrations by
techniques directly inspired from those originally devel-
oped and demonstrated in the laser cooling of neutral
atoms and ions.

With the detailed understanding of mirror cooling
gained in the last few years, we are now rapidly mov-
ing toward the longer-term goal of coupling nanoscale
cantilevers to atomic or molecular samples. For instance
the coupling of a cantilever carrying a magnetic domain
with a Bose-Einstein condensate was recently described
in Ref. [1]. In another example we have considered the
coupling of a nanomechanical oscillator in the quantum
regime with molecular (electric) dipoles [2]. We found
theoretically that the cantilever can produce single-mode
squeezing of the center-of-mass motion of an isolated
trapped molecule and two-mode squeezing of the phonons
of an array of molecules. This work opens up possi-
bilities for manipulating “crystals” of ultracold dipolar
molecules, which have been recently proposed as quan-
tum memories [3]. More broadly, it indicates the promise
of nanoscale cantilevers for the quantum detection and
control of atomic and molecular systems.

II. CAVITY OPTOMECHANICS

A basic arrangement that can be used to understand
optomechanics theory and experiment consists of a lin-
ear two-mirror optical cavity (2MC) driven by laser ra-
diation tuned close to a resonance of the cavity. One of
the cavity mirrors is movable, and the goal is to optically
cool its vibrational motion to a point as close to its quan-
tum mechanical ground state as possible. This procedure
normally involves the use of two laser beams, the first
one detuned above a cavity resonance so as to increase
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the intrinsic oscillation frequency of the cantilever to a
value ωeff ; and the second one detuned below the cav-
ity resonance, so as to (almost) independently increase
the damping constant of the oscillating mirror from its
field-free value Γm to Γeff [4]. Cooling of moving mirrors
has now been achieved for a remarkably broad range of
systems, from nanogram or picogram mirrors attached to
nano-cantilevers to LIGO-class massive mirrors.

The laser fields change the properties of the moving
mirror in two ways: they increase the energy level spacing
of the harmonic mirror trap from ~ωM to ~ωeff , and cool
the mirror from its initial equilibrium temperature Te to
a lower value given by

Teff =
(

Γm
Γeff

)
Te. (1)

The resultant trapping and cooling thus lowers the num-
ber of quanta of vibrational excitation of the oscillating
mirror to

nm =
kBTeff

~ωeff
=
kBTe

~ωeff

(
Γm
Γeff

)
, (2)

where kB is Boltzmann’s constant. The goal is to achieve
nM < 1, i.e. to place the mirror in its quantum mechan-
ical ground state.

In recent work we proposed an alternative to the “tra-
ditional” two-mirror geometry that allows one to reach
and detect lower nm’s for comparable parameters [5] by
suspending a nearly perfectly reflecting mirror inside a
high-finesse two-mirror cavity. This three-mirror cavity
(3MC) arrangement was shown to possess at least three
advantages. First, it provides a higher value of ωeff for
the mirror [6–9], leading to fewer quanta of excitation,
see Eq. (2). Second it removes bistability problems com-
pletely for the trapping laser fields, and partially for the
cooling fields. Lastly, it increases the time available for
observing the quantum dynamics of the suspended mirror
before thermal decoherence sets in. In addition, the cou-
pling of the mirror to the intracavity field can be either
linear (or dissipative) or quadratic (or dispersive) in the
mirror position. This has several important implications,
including the possibility to measure an energy eigenstate
of the mirror and that of preparing nonclassical squeezed
states of mirror motion.

An experiment that demonstrates the working of the
3MC and points out some of its additional virtues was
recently reported in Ref. [10]. In that work a 50nm thick
dielectric membrane placed inside a high-finesse optical
cavity was cooled down from room temperature (294K)
down to 6.82mK, i.e. by a factor of 4.4× 104.

III. SQUEEZING THE MIRROR MOTION

There is little doubt that the laser cooling of vibrating
mirrors will soon be able to lower one or several modes
of vibration to their quantum mechanical ground state

[5, 11–13]. In addition to metrological applications, this
will represent an important first step in exploring char-
acteristic features of quantum mechanics such as super-
position [14] and entanglement in macroscopic systems
[15]. This section discusses a possible way to realize a
squeezed state of a mechanically moving mirror in a high
finesse optical cavity.

Squeezed states of the harmonic oscillator have at-
tracted much attention, due to their favorable quantum
noise properties [17]. Squeezed states of light are ex-
pected to find applications in precision measurements
[18] and optical communications [19, 20]. The squeez-
ing of classical noise in mechanical oscillators has been
demonstrated in optomechanical cavities [21], ion traps
[22, 23] optical lattices [24] and other systems [25, 26].
Quantum squeezing of phonons has been achieved in
ion traps [27] and in crystals [28]. Proposals to real-
ize squeezed states of nanomechanical oscillators in the
quantum regime have been made involving two-mirror
cavities [29], parametric mixing in solid state circuits [30–
32], microwave coupling to a charge qubit [33], quantum
non-demolition measurements [34] and the parametric
modulation of a mechanical spring [35, 36]. Their ap-
plication to gravitational interferometry has also been
discussed [37].

Previous proposals to achieve squeezing in optome-
chanical systems have relied on a mathematical analogy
between an optical resonator with a moving mirror and
light propagation in Kerr media, and the mechanism of
squeezing has been parametric driving. Here we invoke
compression as an alternative route to squeezing [16]. In
that scheme squeezing of the mirror motion relies on cou-
pling it dispersively with the cavity. More precisely, we
consider a moving mirror coupled dispersively to an opti-
cal field and the modes and dissipatively to a second one,
a configuration that was recently proposed as an efficient
cooling and trapping configuration for semi-transparent
mirrors [39].

This system is described by the model Hamiltonian [39]

H = Hf +Hm + V (3)

where the free field Hamiltonian Hf is

Hf = ~ωDa†a+ ~ωSb†b, (4)

the oscillating middle mirror Hamiltonian Hm is

Hm =
p2

2m
+

1
2
mω2

mq
2, (5)

and the interaction Hamiltonian V is

V = ~ξDa†aq + ~ξSb†bq2. (6)

Here ωm is the oscillation frequency of the middle mirror
of transmittivity T and equilibrium position q0,

|ξD| =
sin 2knq0√

(1− T )−1 − cos2 2knq0

ξ, (7)
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ωn = nπc/L, ξ = ωn/L, kn = ωn/c, and

|ξS | =
τξ2

2

(
1− T
T

)1/2

, (8)

where τ = 2L/c.
The frequencies of the optical fields can be chosen such

that ξD,S are either positive or negative. For ξS this cor-
responds to the use of trapping and anti-trapping modes,
respectively [39]. For low values of ξS the spring poten-
tial energy dominates the anti-trapping due to radiation
pressure, hence the middle mirror still behaves as a har-
monic oscillator. However, for ξs negative, increasing |ξS |
leads to a point

CS = −ωm/2, (9)

where the mirror behaves as a free particle. For even
higher values of |ξS | radiation pressure-induced anti-
trapping dominates and the mirror behaves like an in-
verted harmonic oscillator [40]. We do not consider that
regime here.

In the following we consider a semiclassical version of
the Hamiltonian H valid for situations where the optical
fields can be treated classically. In that case

a→ α, b→ β. (10)

Expressing the mirror displacement in terms of raising
and lowering operators,

q =
√

~
2mωm

(c† + c), (11)

H becomes

H = ~CD(c+ c†) + 2~CRK0 + ~CS(K− +K+) (12)

where we have removed a constant energy E0 = ωD|α|2 +
ωS |β|2, and

CD =
ξD|α|2√
2mωm/~

,

CS =
~ξS |β|2

mωm
,

CR = CS + ωm. (13)

We have also introduced the operators

K0 = (c†c+ cc†)/4, K− = c2/2 , K+ = c†2/2. (14)

which together with c and c† form the basis of a Lie
algebra [41] with

[K0,K±] = ±K±, [K−,K+] = 2K0,

[K−, c] =
[
K+, c

†] = 0,[
K−, c

†] = c,
[
K0, c

†] = c†/2. (15)

The Hamiltonian (12) was previously studied in the con-
text of molecular translational-vibrational interactions

[42], of laser-plasma scattering [43], and of atomic vapors
inside resonators [44].

Using the Lie-algebraic symmetries of H, the associ-
ated evolution operator can be disentangled as [41]

U = exp[−iHt/~] = eiδD(ν)R(φ)S(κ), (16)

where δ is an unimportant overall phase. The operator

D(ν) = eνc
†−ν∗c, (17)

is the displacement operator, with [41]

ν =
CD
χ

[
ωm
χ

(cosχt− 1)− i sinχt
]

(18)

and

χ =
√
C2
R − C2

s = [ωm(ωm + 2CS)]1/2 . (19)

In the bound oscillator regime, i.e. for CS > −ωm/2, we
have χ2 > 0, and we can choose χ > 0 without loss of
generality. That parameter largely determines the time
scale of the mirror dynamics; in the absence of squeezing
(CS = 0) it is just the harmonic oscillator period. The
second operator,

R(φ) = eiφK0 (20)

is a rotation operator, and the third operator,

S(κ) = eκ
∗K−−κK+ (21)

is a squeezing operator, with

|κ| =
∣∣∣∣sinh−1

(
CS
χ

sinχt
)∣∣∣∣ . (22)

As expected that operator does not depend on CD, i.e.
displacement does not affect squeezing.

It turns out that the rotation angle φ in Eq. (20) is
exactly opposite the angle at which the squeeze operator
tilts the error ellipse of the moving mirror in phase space
[45], i.e.

φ = −1
2

[phase(κ) + π] . (23)

The two rotations therefore cancel each other out and φ
effectively plays no role in the dynamics. It is in fact intu-
itively clear that the effects of rotation should cancel, i.e.
the axes of the final error ellipse should be aligned along p
and q in phase space. This is because Eq. (3) stipulates
that position is the only quadrature of the oscillating
middle mirror that can be squeezed or anti-squeezed, the
latter situation corresponding to momentum squeezing.

Figure 1 shows |κ| versus time for typical experimental
parameters. The squeezing first grows linearly in time,
as can be confirmed by analytically expanding Eq. (22)
for the case of t� 1/χ

|κ| '
∣∣∣∣CS [t− (ωm + CS)2

6
t3
]

+O
[
t5
]∣∣∣∣ . (24)
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FIG. 1: Modulus of |κ| from Eq. (22) as a function of time for
L = 5mm, λ = 514nm, m = 1µg, ωm = 2π × 1kHz, mechan-
ical quality factor Q = 5 × 106, end mirrors transmissivity
T = 10−4, q0 = λ/10, background temperature Te = 100mK.
and incident power 10mW. The period of the oscillations is
2π/χ ' 5ms.

If the middle mirror is initially prepared in its quantum
mechanical ground state, the squeezing operator (21)
produces a squeezed vacuum [46]. From Fig. 1, the maxi-
mum value of κ is approximately 5, which implies a max-
imum squeezing of R ∼ e−5 ∼ 0.007, or Log10(0.007) ∼
22dB of squeezing.

Any realistic model should also include the damping
of the mirror. We estimate this effect by including noise
and damping in the Heisenberg equations of the mirror
in a manner consistent with the fluctuation-dissipation
theorem. Setting α = 0 for simplicity and concentrating
therefore solely on the squeezing part of the Hamiltonian
H this leads to the quantum Langevin equations

q̇ = p/m,

ṗ = −mχ2q − Γm
m
p+ ε(t). (25)

Here Γm = mωm/Q is the damping constant of the mirror
of mechanical quality factor Q and ε(t) represents brow-
nian noise with average zero and fluctuations correlated
as

〈δε(t)δε(t′)〉 =

Γm
∫ ∞
−∞

dω

2π
e−iω(t−t′)~ω

[
1 + coth

(
~ω

2kBTe

)]
.(26)

Linearizing all operators in Eq. (25) as sums of a semiclas-
sical steady-state value and small quantum fluctuations
(i.e. q = qs+δq) we obtain linear dynamical equations for
the fluctuations. Following Ref. [47], we find the equal-
time correlation function for the position

〈δq2〉 = (2nT + 1)
~ωm
2mχ2

, (27)

which is independent of time since the noise process is
stationary [Eq. (26)]. In the absence of squeezing (CS =

FIG. 2: (Color online). Nanomechanical oscillator coupled to
A) a single polar molecule B) a one-dimensional dipolar crys-
tal made of many such molecules. In both cases the molecules
are weakly confined by a harmonic trap along the x axis and
oriented along the y axis by a strong uniform electric field.

0), and at high temperatures, (nT ∼ kBTe/~ωm � 1),

〈δq2〉 = kBTe/mω
2
m (28)

while at low temperatures (nT � 1),

〈δq2〉 = ~/2mωm, (29)

which is just the square of the oscillator length of the
ground state of the moving mirror.

IV. MOTIONAL SQUEEZING OF DIPOLAR
MOLECULES

We mentioned already that ultracold mirrors and can-
tilevers operating close to or in the quantum regime pro-
vide a novel class of quantum sensors that may find appli-
cations in matter-wave optics and in new approaches to
the coherent and quantum control of ultracold atomic
and molecular samples. A broad perspective on the
subject can be gained from related successes in atomic
physics where laser cooling and trapping techniques have
enabled impressive coherent control of microscopic sys-
tems. A particularly promising research direction at the
interface between atomic and solid state physics, is the in-
teraction of cold atomic systems with quantum nanome-
chanical oscillators. Proposals along these lines have
included the coupling of cantilevers to cold ions [48],
Bose-Einstein condensates [1], and cold atomic gases [49],
etc. In this section we review some recent work on the
dipole-dipole coupling between ultracold nanomechani-
cal cantilevers with a ferroelectric tip and ultracold polar
molecules [2].

Consider first the case of a single molecule, see Fig. 2.
Its coupling with the cantilever is described by the Hamil-
tonian

H = Hc +Hmol + VI , (30)

where

Hc = ~ωca†a (31)

describes a vibrational mode of the cantilever of effective
mass mc and frequency ωc,

Hmol = ~ωtb†b, (32)

accounts for the center-of-mass motion of the trapped
molecular dipole of mass m oscillating at the trap fre-
quency ωt, and the cantilever-molecule interaction is

VI =
dmoldc
4πε0r3

[
1− 3(R+ yc)2

r2

]
. (33)
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Here

yc =
√

~
2ωcmc

(a+ a†), (34)

dc is the dipole moment of the ferroelectric domain situ-
ated a distance r =

[
(R+ yc)2 + x2

mol

]1/2, and R is the
the equilibrium molecule-cantilever separation. In prac-
tice R� xmol, yc and in this case the dipolar interaction
is approximately

VI ≈
dmoldc
2πε0R6

(−R3 + 3ycR2 + 3x2
molR− 15ycx2

mol) (35)

with

xmol =
√

~
2ωtm

(b+ b†). (36)

For small R the presence of the cantilever results in a
tightening of the trap, with ωt → ω′t. In addition, it
produces a parametric squeezing of the molecular mo-
tion. This can be seen by transforming to an interaction
picture with respect to the free Hamiltonian Hc +Hmol,
choosing ωc = 2ω′t. Performing the rotating-wave ap-
proximation and assuming that the cantilever amplitude
can be treated classically, a→ α, the potential VI reduces
to

VI = −~C
(
b2 + b†2

)
, (37)

where

C = Lc
15dmoldc

4πεomω′tR6
, (38)

and Lc is the classical amplitude of oscillation of the can-
tilever given by

Lc =
√
N̄

(
~

2mcωc

)1/2

. (39)

Equation (37) is the familiar quantum optics squeezing
Hamiltonian of the degenerate parametric amplifier, see
e.g. Ref. [58]. The squeezing resulting from the interac-
tion in Eq. (37) is of course degraded by thermal noise,
which affects the system in the form of phase fluctuations
of the cantilever field. As in the previous section these
fluctuations are related to the cantilever damping rate
Γm by the fluctuation-dissipation theorem. For times t
such that Γm < t−1 < 2C, the variance in the dimen-
sionless molecule position quadrature is given by [58]

(∆x1)2
t =

1
4
e−2u +

1
8
e2uΓmt, (40)

where the squeezing parameter is u = 2Ct.
We now extend these considerations to a one-

dimensional chain of N heteronuclear molecules con-
tained in a harmonic potential Vt, see Fig. 2. A uniform
polarizing electric field is once again applied along the

0 0.2 0.4 0.6 0.8 1 1.2
Squeezing parameter u

0

0.05

0.1

0.15

0.2

0.25

!!x 1"
2

Variancein x1 vs. squeezingparameter

D " 0 Hz
D"1 Hz

FIG. 3: Variance in the molecule position quadrature com-
ponent x1 as a function of the squeezing parameter u. The
parameters are for a SrO molecule interacting with a can-
tilever. Dotted curve: single mode squeezing obtained in the
absence of any thermal noise. Solid curve: effect of a can-
tilever damping rate Γm =1 Hz. Motional squeezing of the
molecular motion occurs for (∆x1)2 < 1/4, and is degraded
by phase noise in the cantilever.

y-axis to align the dipoles. The dipole-dipole interaction
being repulsive in that case, the molecules self-organize
into a linear chain of period l described by the Hamilto-
nian

Hchain =
N∑
i

p2
i

2m
+
d2

mol

4πεo

N∑
i<j

1
|xi − xj |3

+ Vt, (41)

where xi, pi are the position and momentum, of the ith
molecule and Vt is the external trapping potential.

For small molecular oscillations the Hamiltonian (41)
can be reexpressed in terms of acoustic phonon modes of
momentum k and energy ~ωk [59],

Hchain =
∑
k

~ωkb†kbk, (42)

where bk, b
†
k are bosonic phonon annihilation and cre-

ation operators, ωk = 2ω0 |sin(kl/2)|, and ω0 =
dm
(
3/2πε0ml5

)1/2. Only purely harmonic terms have
been retained in arriving at Eq. (42) from Eq. (41).
Higher order terms represent phonon-phonon interac-
tions and in particular determine the lifetime of the
phonons in the crystal [60].

As in the case of a single molecule, a zero-temperature
description is adequate in the regime kBT � ~ω0. The
nanomechanical cantilever energy is still correctly de-
scribed by Eq. (31), and the interaction between the
chain of molecules and the oscillator is given by

VI =
∑
i

dmoldc
4πε0r3

i

[
1− 3(R+ yc)2

r2
i

]
. (43)

Here yc is the displacement of the cantilever along the y
axis, R is now its distance from the center of the dipolar
crystal and ri =

[
(R+ yc)2 + (il + xi)2

]1/2 is its distance
from the i-th molecule.
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Typically xi � l, Nl � R, and we use these relations
to keep only the lowest order terms in Eq. (43). As was
the case for a single molecule, they result in a slight fre-
quency shift ωk → ω′k – now in the phonon frequency
– and to a squeezing interaction, now in the form of a
two-mode squeezing Hamiltonian given in the interaction
picture by

VI = −
∑
k

~C ′k
(
a+ a†

) (
bkb−k + b†kb

†
−k + b†kbk + b−kb

†
−k

)
(44)

where

C ′k = − 17dmdc
16πεomω′kR6

(
~

2mcωc

)1/2

. (45)

We select for concreteness the cantilever frequency
ωc = 2ω′k, with k = π/l, so that it couples mainly to ex-
citations near the edge of the first Brillouin zone, where
the density of phonon states is largest. Assuming as in
the single-molecule case that the motion of the nanome-
chanical cantilever can be described classically, in the ro-
tating wave approximation we then obtain the two-mode
squeezing hamiltonian

VI = −~Ck
(
bkb−k + b†−kb

†
k

)
. (46)

where Ck =
√
N̄C ′k and N̄ is the average occupation

number of the cantilever, related to the classical ampli-
tude of oscillations Lc by Eq. (39).

Two-mode squeezing is conveniently described in terms
of the two dimensionless quadratures

s1 =
1√
2

(bk + b−k + b†k + b†−k) (47)

s2 =
1√
2i

(bk − b†k − b−k + b†−k). (48)

The sum of variances in the two quadratures, taking into
account the phase fluctuations in the cantilever motion
resulting from thermal noise, is then [61]:

(∆s1)2 + (∆s2)2 =

e−
Γmt

2

Ck0
{Γm sinh(Ck0t) + 2Ck0 cosh(Ck0t)}

−
∑

i,j,k,i 6=j,j 6=k

eλit
2Ck0(λi + 4Γm)

(λi − λj)(λi − λk)
, (49)

where u is the phonon squeezing parameter and is equal
to 2Ck0t, with Ck0 = 1

2

√
4C2

k − Γ2
m and the λi’s are the

roots of the cubic equation:

λ3 + 5Γmλ2 + (4Γ2
m − C2

k0)λ− 2C2
k0Γm = 0 (50)

Consider for example a nanomechanical cantilever with
frequency ωc = 2MHz, effective mass mc = 10−16kg,
linewidth Γm = 1Hz, average thermal occupation

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

Squeezing parameter u

Va
ria
nc
e

Variance !!s1"2"!!s2"2 vs. squeezing parameter

D # 0 Hz
D# 1 Hz

FIG. 4: Sum of the variances in s1 and s2 [see Eqs. (47-
49)], as a function of the squeezing parameter u, for a dipolar
crystal of SrO molecules interacting with a cantilever. Dotted
curve: two-mode squeezing in the absence of thermal noise.
Solid curve: effect of thermal noise producing a cantilever
damping rate Γm =1 Hz. Two-mode squeezing and phonon
entanglement occurs for a variance less than 2.

N̄=100, and a ferroelectric domain with dipole mo-
ment dc = 2.1 × 10−23C-m attached to the cantilever
and placed at R = 2µm from a linear chain of dipo-
lar molecules with inter-molecular distance l ≈ 200nm.
These parameters give a phonon frequency ωo = 4MHz,
and thus an interaction Ck = 4.4Hz. Figure 4 gives the
sum of variances of s1 and s2 as a function of the squeez-
ing parameter.

V. CANTILEVER-BASED COHERENT
CONTROL

Building upon these results, we now show that it is
possible to use nanoscale cantilevers to engineer nonclas-
sical center-of-mass states of an atomic or molecular sys-
tem. These results are preliminary and involve two dipo-
lar molecules only. An extension to larger systems will
be the object of a future publication.

The Hamiltonian describing the coupling of the can-
tilever to the two molecules is

H = Hc +Hm + Vdd, (51)

where as before

Hc = ~ωcc†c, (52)

describes a single mode of vibration of the cantilever.
We assume that the two molecules are trapped tightly

in the y and z-direction, such that they align themselves
in the x-direction. As before, we also assume that a
strong polarizing DC field freezes out the rotational free-
dom of the dipoles so that they align along the y-axis.

The vibrations of the two-molecule system are conve-
niently described in terms of their center-of-mass (COM)
and relative modes of motion (see inset in Fig. 5). Ignor-
ing the trap potential, the two-molecule Hamiltonian is
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 x 
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FIG. 5: (Color online). Schematic of the coupling a nanome-
chanical oscillator to two dipolar molecules. The molecules
are along x-axis and interact with both the cantilever and
with each other via dipole-dipole interaction. A weakly con-
fining harmonic trap for the dipoles is shown along the x axis.
The two insets show the center-of-mass and relative modes of
vibration of the molecular system.

then

Hm =
p2

com

4m
+
p2

rel

m
+

6d2
m

πε0l5
x2

rel. (53)

where pcom and prel are the center-of-mass and relative
momenta, and the third term in the Hamiltonian de-
scribes the dipole-dipole interaction between molecules
in the harmonic approximation. Here m is the mass of
each molecule, dm its electric dipole moment, and l their
equilibrium separation.

For x1, x2 � l � R the dipole-dipole interaction be-
tween the ferroelectric domain on the cantilever of dipole
moment dc and the molecules is given approximately by

Vdd =
dmdc

8πε0R7

(
24R2(x2

com + x2
rel + x2

c)

− 48R2xcxcom − 140lx3
rel + 60lxrelx

2
com

− 60lxrelx
2
c + 120lxcxrelxcom

)
, (54)

where

xc =
√

~
2ωcmc

(c+ c†). (55)

The design of appropriate fields for the internal control
of systems of interacting atoms and molecules on their
natural timescales is a difficult task. A ground-breaking
approach using Genetic Algorithms and a pulse-shaping
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FIG. 6: (Color online) Frequency δω(t) corresponding to the
final generation of the genetic algorithm. That pulse shape
results in an average occupation number of 0.98 in the COM
mode, and 1.6 in the relative mode.

element inside a feedback loop to let atoms design their
own optimal field was first proposed by Rabitz and Jud-
son as early as 1992 [50]. In the present example we ap-
ply similar ideas to the center-of-mass motion of the pair
of molecules. We proceed by modulating the frequency
of oscillations of the cantilever so as to achieve specific
populations of the center-of-mass and relative modes of
vibration of the molecular system. We proceed by de-
composing that frequency into a constant term and a
time-dependent part to be determined iteratively via a
genetic algorithm,

ωc = ω0 + δω(t). (56)

In an interaction picture with respect to the molecular
Hamiltonian and the ω0 part of the cantilever Hamilto-
nian and assuming once more that the cantilever motion
can be treated classically the interaction potential Vcm
reduces in the rotating wave approximation to

Vdd =
15~Lc

2πε0
√
ωcomωrel

dmdcl

mR7
(ab†ei(ωrel−ωcom−ωc)t + h.c.),

(57)
where ωcom and ωrel have been redefined to include their
shifts due to the presence of the cantilever. Here a and a†
are the annihilation and creation operators of the COM
mode, and b and b† are the annihilation and creation
operators of the relative mode of vibration. The distances
R and l are defined in Fig. 5, and Lc is defined in Eq. (39).
We have also assumed that the dc cantilever frequency,
ω0 is close to ωrel − ωcom.

Equation (57) indicates that the interaction between
the molecules and the cantilever enables the transfer of
population from one vibrational mode to the other. By
changing the frequency of the cantilever in an iterative
fashion determined by a genetic algorithm, it is then pos-
sible to drive any desired population transfer.

Figure 6 illustrates the design of a pulse that can be
used to cool one of the normal modes of the molecular
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FIG. 7: (Color online) Average occupation number of the
COM and relative modes as functions of the number of gen-
erations of the genetic algorithm.

system. In this example two SrO molecules are trapped
200nm apart from each other, and 2µm from the can-
tilever the specifications for which are the same as in the
previous section. The center-of-mass and relative modes
of the two-molecule system are both initially in a ther-
mal state at a temperature of 100 µK. The specific time
dependence of the cantilever frequency is chosen to min-
imize the average occupation number in the COM mode.
The average occupation number for each genetic algo-
rithm iteration is plotted in Fig. 7. We remark that in
this example the total center-of-mass energy of the molec-
ular system is decreased at the end of the pulse produced
by the last generation of the algorithm (as seen in Fig. 8),
and hence the method can demonstrably cool the molec-
ular system.

VI. OUTLOOK: CONDENSATES IN HIGH-Q
CAVITIES

As we have seen, a central tenet of cavity optomechan-
ics is the cooling of mechanical oscillators close to their
ground state of vibration, and we have shown in a few ex-
amples that these systems have fascinating potential ap-
plications in basic and applied physics. In recent work,
the groups of Esslinger [51] in Zurich and of Stamper-
Kurn at Berkeley [52] have proposed and demonstrated
an alternative approach to cavity optomechanics that
uses Bose condensates instead of “traditional” mechan-
ical oscillators. In these systems, the optical length of
the cavity is controlled and modified via the dispersive
properties of the condensate, just as in usual optical
bistability. In contrast to the moving mirrors and mem-
branes discussed in this paper, the mechanical oscillator
is no longer based on the presence of an external spring.
Rather, it is provided by condensate density excitations
resulting from photon recoil, a situation closely related
to CARL amplification [53–56].

Esslinger et al have shown that in the simplest case
there is a one-to-one mathematical correspondence be-
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FIG. 8: (Color online) Excitation probability P (nrel, ncom)
of the molecule pair (a) initially (upper figure) and after the
final iteration of the genetic algorithm (lower picture.

tween this system and the moving mirror situation. This
can be seen simply by expanding the order parameter of
the condensate as

ψ(x, t) = c0(t) +
√

2c2(t) cos(2kx), (58)

where the second term on the right-hand side accounts
for the photon recoil of the atoms due to virtual transi-
tions involving the absorption and reemission of cavity
photons of momentum k. Assuming that the light-atom
interaction does not significantly deplete the initial con-
densate one can replace the operator c0 by a complex
number, in which case the Hamiltonian describing the
interaction between the atoms and the intracavity field
reduces approximately to

H = ~
[
∆ + g(c2 + c†2)

]
a†a, (59)

where a and a† are the annihilation and creation opera-
tors of the optical field, g is a coupling constant, and ∆
is the detuning between the frequency of the intracavity
optical field and the cavity resonant frequency.

At this point, the analogy between this system and the
case of a cavity with a suspended mirror is fully apparent:
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The condensate side-mode is the analog of the moving
mirror, and the intracavity field acts on this side mode
amplitude exactly in the same way radiation pressure
acts on the moving mirror.

Several experiments exploiting that analogy have al-
ready been performed, demonstrating in particular the
appearance of optical bistability in these systems. But it
is known from general principles that generically, bista-
bility ceases to exist as systems become truly micro-
scopic, due to quantum tunneling between the coexist-
ing metastable state and true ground state that are re-
sponsible for the bistable behavior. In classical systems,
this tunneling time is typically exceedingly long, certainly
much longer than the duration of typical experiments.
This results in the observed bistability. But as the sys-
tems become more microscopic this tunneling time de-
creases, leading to a behavior that, in the open systems
at hand, is somewhat reminiscent of the Maxwell con-
struction familiar from statistical physics. It will be in-
teresting to study this transition by reducing the size of
the initial condensate to a point where its approximate
classical description ceases to be valid and quant um fluc-
tuations dominate the system.

It should also be possible to study quantum phase tran-
sitions in ultracold atomic systems in cavity optomechan-
ical environments. For example, it is known that radia-
tion pressure induced bistability can occur in these sys-

tems. (This closely related to the more familiar bistabil-
ity that occurs when a Kerr nonlinear medium is confined
inside a Fabry-Pérot resonator. The difference is that
instead of an intensity-dependent index of refraction, we
are now in a situation where it is the true, physical length
of the resonator that is changed when the light intensity
inside the resonator is varied.) Radiation pressure in-
duced optical bistability is generally considered as detri-
mental when trying to cool nanoscale cantilevers. How-
ever it can also result, at least in principle, in fascinating
new effects such as a bistable quantum phase transition
between a Mott insulator state and a superfluid state of
the atoms [62].

These examples, and numerous other fascinating as-
pects of cavity optomechanics and of the optomechan-
ical control of atomic and molecular systems, promise
to lead to exciting developments in future years, further
contributing to the merging of AMO physics, nanoscience
and condensed matter physics.
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