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ONE-PHASE AND TWO-PHASE FLOW IN HIGHLY PERMEABLE POROUS MEDIA

M. Quintard
Institut de Mécanique des Fluides de Toulouse (IMFT)
Université de Toulouse, CNRS-INPT-UPS, Toulouse

FRANCE

ABSTRACT

Many industrial and natural processes involve flow in highly
permeable media, such as heat and mass exchangers, canopy,
networks of urban canyons, etc. For these systems, the tradi-
tional assumptions made prior to upscaling pore-flow equations
do not hold anymore. Reynolds numbers may be high enough so
Darcy’s law is no longer valid, Capillary and Bond numbers may
be also sufficiently large to invalidate the quasi-static assump-
tions used when upscaling multiphase flows. Several time-scales
of very different order of magnitudes may be at play. Based on
new experimental data and upscaling results, this paper reviews
several approaches that have been developed to handle such
cases. The case of one-phase flow has been largely studied from
various point of views. This led to various forms of the macro-
scale momentum equation: generalized Forchheimer equation,
macro-scale turbulent models. The case of two-phase flow is
more complicated and largely remains an open problem. The
possibility of deriving macro-scale models from the pore-scale
equations is discussed and potential macro-scale models are in-
troduced: generalized Darcy’s laws, model with various form
of inertia terms, cross terms accounting for the viscous interac-
tion between the two flowing phases, dynamic models. Classes
of models suitable for describing flow in structured media like,
for instance, chemical exchangers made with structured pack-
ings, are also introduced. Finally, hybrid models are presented
involving the coupling between two-different scale modeling, for
instance a network approach coupled with dynamic rules com-
ing from pore-scale numerical simulations or experiments. This
is useful, for example, in describing the apparent diffusion of
impinging jets in packed beds which often cannot be described
properly by capillary diffusion.

INTRODUCTION

Current trends in porous media physics involve research on
very small pores, i.e., material with very low permeability, like
oil-shales, nanoporous materials, etc... The opposite case, i.e.,
flow in highly permeable media, is also of current interest. This
is the case in chemical engineering, with, for instance trickle
beds with particles of several millimeters diameter or in the case
of structured packings, for which the pore-scale characteristic
length is about 1 cm. Flow in some fractured media, in very
coarse sand, in canopies, nuclear reactors as well as debris beds
for damaged cores, etc..., are other examples of particular inter-
est in many different fields. In classical applications, macro-scale
models are developed based on a series of assumptions about the
value of the relevant dimensionless numbers. For instance, one-
phase flow are considered in the limit Reynolds number (Re) go-
ing to zero, and this leads to the classical Darcy’s law [1]. In the
case of two-phase flow in porous media, Reynolds (Re), Bond
(Bo) and capillary (Ca) numbers are assumed to be small and
this represents an important assumption justifying the use of the
so-called generalized Darcy’s laws [2]. What happens to these
macro-scale modeling questions when one or all of these num-
bers becomes very high? This has been the subject of intensive
research in the past decades, the underlying multiple-scale anal-
ysis problems are reviewed below in the case of the flow of one
phase and in the two-phase flow case. The emphasis is on the
discussion about the structure of the macro-scale models which
may be developed. Other questions like numerical modeling, or
specific experimental techniques that must be used in such cases,
are beyond the scope of this review.



ONE-PHASE FLOW
The pore-scale problem describing the flow of one phase, β ,

within a porous medium may be written for a Newtonian fluid
with constant density, ρβ , and viscosity, µβ , as

∇ ·vβ = 0 in Vβ (1)

ρβ

∂vβ

∂ t
+ρβ vβ ·∇vβ =−∇pβ +ρβ g+µβ ∇

2vβ in Vβ (2)

B.C.1 vβ = 0 at Aβσ (3)

where vβ and pβ are the fluid velocity and pressure respectively,
g the gravity acceleration, and Aβσ stands for the interface be-
tween the fluid and solid phase.

Depending on the pore-scale Reynolds number that may be
defined as

Re =
ρβUrlβ

µβ

(4)

where Ur is a reference velocity taken usually as the intrinsic
average velocity and lβ a pore-scale characteristic length, one
may distinguish various types of flow patterns [3].

In the limit Re→ 0 (creeping flow) there is a robust consen-
sus that, providing that the separation of scale assumption holds,
the macro-scale model describing the momentum balance may
be written under the form of a Darcy’s law [1] such as

Vβ =− 1
µβ

K ·
(
∇Pβ −ρβ g

)
(5)

where Vβ is the filtration velocity, Pβ the intrinsic average pres-
sure and K the intrinsic permeability tensor. Indeed, starting with
the pore-scale problem described by Eqns 1 through 3, upscaling
theories give a sound physical basis for the use of Darcy’s law.
This is the case by using homogenization theory [4] or by us-
ing a volume averaging technique [5, 6]. This is a well known
theoretical problem and it will not be discussed further.

Increasing the Reynolds number, inertia terms start to play a
dominant role. In this case, the relation pressure drop/velocity is
no-longer linear. While this is the subject of various discussions
and controversies [7–11], the pressure-velocity dependence may
roughly be described as in Fig. 1. The pressure drop - velocity
relationship departs from the linear case with a cubic behavior
≈ Re3 called weak inertia regime. The flow is still laminar but
inertia effects start to affect the friction term. Increasing again the
Re number leads to a strong inertia regime for which the pressure
drop can be approximated as ≈ Re2. Often, the correction to
Darcy’s law in the weak inertia regime is small (while it can be
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FIGURE 1. VARIOUS FLOW REGIMES

measured with a proper accurate experimental system [12]) and
only the quadratic correction has a significant impact. This led to
the proposal of heuristic laws having the form of a Forchheimer
equation, which can be written in a very general manner as

0 =−∇Pβ +ρβ g−µβ K−1 ·Vβ −F
(
Vβ

)
·Vβ (6)

where the term F
(
Vβ

)
·Vβ is called a generalized Forchheimer

term in reference to the work of [13].
If one solves the upscaling problem in terms of an asymp-

totic expansion with the Reynolds number, the first correction to
Darcy’s law, i.e., in the weak inertia regime, is cubic in terms of
the velocity [7–9, 11, 14], i.e.,

F
(
Vβ

)
∼
∥∥〈vβ

〉∥∥2 (7)

Increasing again the Reynolds number while keeping a laminar
flow, inertia effects may be approximated macroscopically by a
quadratic term, i.e.,

F
(
Vβ

)
∼
∥∥〈vβ

〉∥∥ (8)

This is supported by experimental data [13, 15–18] as well as
numerical predictions [11, 19].

While the above expression suggest the potential existence
of anisotropy effects for the Forchheimer terms, simpler expres-
sions are used in the engineering practice, in particular Ergun’s
equation [15] which is written as

0 =−∇Pβ +ρβ g−µβ K−1Vβ −ρβ η
−1∥∥Vβ

∥∥Vβ (9)

where η is called the passability. Based on collected experimen-
tal data, Ergun proposed correlations for K and η in the case of
packed beds which are used frequently in the engineering prac-
tice:

K =
ε3d2

hK (1− ε)2 ; η =
ε3d

hη (1− ε)
(10)



where d is the equivalent particle diameter and hK = 150 and
hη = 1.75 (other values can be found in the literature [12]).

If a generalized Forchheimer equation can be reasonably
used, up to an accuracy about 10%, to describe strong inertia
effects in laminar regimes, this model is also used in the case of
unit-cell localized or periodic turbulence, as shown theoretically
in [10, 20], while the resulting pressure drop is not necessarily
quadratic. If one increases again the Re number, turbulence is not
always of the periodic type as illustrated by the direct numerical
simulations in [21]. One would call such a situation as macro-
scale turbulence and several attempts have been made to develop
macro-scale turbulence models. The velocity and pressure fields
are no longer steady-state and the development of macro-scale
models requires a double averaging with respect to space and
time. While the operators for spatial and time averaging may in
principle be exchanged [22], the application in a sequential man-
ner, as illustrated below

I. vβ →
〈
vβ

〉
→
〈
vβ

〉
(11)

II. vβ → vβ (RANS, ...)→
〈
vβ

〉
(12)

where 〈ϕ〉 stands for the spatial averaging of a variable ϕ while
ϕ stands for the time average, may lead to different macro-scale
models. The fundamental reason is due to the fact that each up-
scaling or averaging step introduces approximations which do
not in general commute. Scheme I, favored by [23, 24] among
others, involves a first spatial averaging. Assuming that the
closed macro-scale equations have the form of a generalized
Forchheimer equation, it is subsequently time averaged. Since
it was found that the assumption in step 1 is difficult to justify
theoretically, most researchers follow scheme II. In this case, it
is assumed that the Navier-Stokes equations may be time aver-
aged and the resulting equations are subsequently spatially aver-
aged [22, 25–27]). The result is in general some sort of effective
RANS macro-scale model. It must be emphasized that, in the
two cases, it is difficult to justify the possibility of a decoupled
closure for both averages. A complete validation through exper-
iments or numerical modeling is still an open problem. The need
for such models has not also been fully assessed. Interestingly, it
has been observed using direct numerical simulations that turbu-
lence generated in a fluid layer or at the interface between fluid
and porous layers may penetrate a distance of several unit cells
into the porous domain and that in this area a macro-scale turbu-
lence model is needed [28].

TWO-PHASE FLOW
The pore-scale problem for two-phase flow in porous media

involves mass and momentum balance equations for both phases,
denoted β and γ , and boundary conditions. To understand what
is at stake in the upscaling problem, it is interesting to have a

look at the condition at the interface between both fluids. The
boundary condition for the momentum equation reads

−nβγ pβ +µβ nβγ ·
(

∇vβ +
(
∇vβ

)T
)
=

−nβγ pγ +µγ nβγ ·
(

∇vγ +
(
∇vγ

)T
)
+2σHβγ nβγ at Aβγ

(13)

where σ is the interfacial tension, Hβγ the interface curvature
and nβγ the normal to the interface. Introducing macro-scale
quantities and deviations, such as

pβ = Pβ + p̃β (14)

for the β -phase, this BC can be transformed into

nβγ

(
Pγ

∣∣
x− Pβ

∣∣
x

)
+nβγ yβ ·

((
∇Pγ

∣∣
x−ργ g

)
−
(

∇Pβ

∣∣
x−ρβ g

))
+nβγ yβ ·

(
ργ −ρβ

)
g+ ...=−nβγ

(
p̃γ − p̃β

)
+µγ nβγ ·

(
∇vγ +

(
∇vγ

)T
)
−µβ nβγ ·

(
∇vβ +

(
∇vβ

)T
)

+2σHβγ nβγ at Aβγ (15)

where yβ describes the position of a point in the β -phase rel-
ative to the centroid of some averaging volume at position x.
The curvature within the averaging volume will depend on (i) the
capillary pressure (Pγ

∣∣
x− Pβ

∣∣
x), (ii) gravity effect, (iii) viscous

effects, (iv) dynamic effects (important values of the pressure
deviations related to the flow or of terms like

(
∇Pγ

∣∣
x−ργ g

)
−(

∇Pβ

∣∣
x−ρβ g

)
).

Depending on the assumptions made, several models can be
developed. Their physical meaning and mathematical structure
are discussed in the next sections.

Quasi-Static Models
The boundary condition Eqn 15 can be replaced, for small

capillary and Bond numbers defined as

Ca =
µrUr

σ
; Bo =

∣∣(ρβ −ργ

)
g
∣∣r2

0

σ
(16)

by

Pγ

∣∣
x− Pβ

∣∣
x = 2σHβγ (17)

As a result, the interface curvature is locally constant and quasi-
static and this allows to introduce a macro-scale capillary pres-
sure condition as

Pγ − Pβ = pc(Sβ , ...) (18)



This is the base for the heuristic generalized Darcy’s laws model
classically used in engineering practice [2]. The whole model
reads

∂εSβ

∂ t
+∇.Vβ = 0 (19)

Vβ =− 1
µβ

Kβ .
(
∇Pβ −ρβ g

)
(20)

∂εSγ

∂ t
+∇.Vγ = 0 (21)

Vγ =−
1
µγ

Kγ .
(
∇Pγ −ργ g

)
(22)

with phase permeabilities generally written with relative perme-
abilities as

Kβ = K krβ (Sβ ) ; Kγ = K krγ(Sγ) (23)

Triple line and wettability effects are taken into account in
the classical model in the non-linear expressions for the capillary
and relative permeability relationships.

If one keeps the viscosity terms in Eqn 15 while making
the assumption of quasi-staticity, small Bond and Reynolds num-
bers, one finds [5, 29–32, . . . ] slightly different macro-scale mo-
mentum balance equations with cross terms which read

Vα =− 1
µα

Kα .(∇Pα −ρα g)+Kακ .Vκ (24)

α,κ = β ,γ α 6= κ

Their importance is the subject of controversies [30, 33, 34, . . . ]
and they are so far discarded in petroleum engineering and many
other fields. They account however for a drag force necessary
to explain the retention of water observed in a vertical column
subject to an upward gas flow in the case of a high permeabil-
ity medium [14, 35–37]. This effect is in particular important in
chemical engineering or in nuclear safety (debris bed reflooding)
applications.

Dynamic Models
One may want to remove the drastic assumptions made pre-

viously (quasi-staticity, etc...) and this has led to various propos-
als for dynamic models which are only mentioned in this paper:

1. Dynamic effects are taken into account in petroleum engi-
neering by introducing additional non-linear dependencies
in the capillary pressure, relative permeabilities, which are
called pseudo-functions [38–42],

2. several models propose different forms of equations taking
into account dynamic effects induced by Darcy-scale hetero-
geneities and multi-zones [43], multi-zones [44], meniscus
propagation [45],

3. using the theory of irreversible thermodynamics leads to
models introducing the specific area of the fluid-fluid inter-
face as a primary variable [46–48, . . . ]

This is beyond the scope of this review to provide a compre-
hensive literature survey of dynamic models. To illustrate the
complexity, equations coming from [43] are given below as

Vβ =− 1
µβ

K∗
β
·
(
∇Pβ −ρβ g

)
−uβ

∂εSβ

∂ t

−Uβ ·∇
∂εSβ

∂ t
− 1

µβ

Mβ : ∇∇Pβ

− 1
µβ

Φβ −
1

µβ

Rβ : ∇Φβ (25)

or

pc−2σHβγ nβγ = L1
∂ (εSl)

∂ t
(26)

taken from [46], where L1 is a phenomenological parameter.

Models with Inertia Effects
When the Reynolds number becomes large, inertia effects

start to play a significant role. The simplest proposals to take
these effects into account are based on variants [49,50] of a gen-
eralized Ergun’s law such as

0 =−∇Pβ +ρβ g−µβ

1
K krβ

Vβ −
ρβ

η ηβ

∥∥Vβ

∥∥Vβ (27)

where krβ is the relative permeability of the β -phase and where
the Forchheimer term involves a relative passability ηβ . These
parameters depends on saturation and are often assigned the fol-
lowing forms

krβ =
(
1−Sγ

)n ; ηβ =
(
1−Sγ

)m (28)

krγ = Sp
γ ; ηγ = Sq

γ (29)

with the exponents taking different values [51–53, . . . ]. While
this form may account for the pressure drop increase due to
inertia effects, it does not fully take into account the drag be-
tween both phases and the resulting retention effect. Several



models have been proposed to reproduce these facts like, for in-
stance [37]

0 =−∇Pβ +ρβ g−µβ

1
K krβ

Vβ −
ρβ

η ηβ

∥∥Vβ

∥∥Vβ +
FS

βγ

Sβ

(30)

0 =−∇Pγ +ργ g−µβ

1
K krβ

Vβ −
ρβ

η ηβ

∥∥Vβ

∥∥Vβ −
FS

βγ

1−Sβ

(31)

A generalized form of two-phase flow equations accounting
for cross terms and inertia effects has been obtained theoretically
through upscaling [54], it reads

Vα =− 1
µα

Kα .(∇Pα −ρα g)−Fαα ·Vα

+Kακ .Vκ −Fακ ·Vκ α,κ = β ,γ α 6= κ (32)

These models require to determine several effective properties
which depend non-linearly upon saturation and velocities, which
today is a challenging task not well understood.

To illustrate the capabilities of the various models, let us
consider flow in a vertical column of high permeability (and
hence low capillary effects) initially saturated by a liquid phase,
β , and subjected to the upward flow of a gas phase, γ . Using the
more general form Eq. 32, the case Vβ = 0 requires that

0 =− 1
µβ

Kβ

(
∂Pβ

∂ z
−ρβ g.ez

)
+
(
Kβγ −Fβγ

)
Vγ (33)

With the classical generalized Darcy’s laws, i.e.,
(
Kβγ −Fβγ

)
=

0, one gets
∂Pβ

∂ z = ρβ g.ez. This result is not supported by exper-
imental data [55, 56]! On the contrary, keeping the extra terms
in Eq. 33 allows to account for liquid retention due to the drag
force imposed on the liquid by the upward flow. Various expres-
sions have been proposed for the non-linear effective parameters,
but the lack of data and the number of parameters to determine
lead to strong difficulties in the identification procedure which
explain the discrepancy often observed between data and predic-
tions [56–58] as it is shown in Figs 2 and 3 adapted from [56].

TWO-PHASE: SPECIAL MODELS
In this section, we review two-phase flow models that have

been proposed to reproduce certain mechanisms observed at high
capillary and Bond numbers. In such cases, the time and length-
scale constraints which are necessary to develop two-phase flow
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models are not fulfilled. This call for specific treatments. Two
types of model have been proposed and are the subject of current
research. They are briefly presented below.

Models with Splitting of Phase
Structured packings have been extensively used in the past

decades in absorption and distillation columns or chemical re-
actors. They are made for instance from assembling corrugated
metal sheets, alternating the orientation from one sheet to an-
other, thus creating a porous medium having the honeycomb
structure illustrated Fig. 4. The resulting material has a relatively
high surface area with very low gas flow resistance.

However, the alternating directions for the liquid spreading
may create preferential paths which are followed by only a por-
tion of the fluid. In this case, a single macro-scale equation for
describing the liquid phase flow is very difficult to develop. Mod-
els with a splitted liquid phase, i.e., one macro-scale equation for
the gas phase but two macro-scale equations for the liquid, have
been proposed to handle such cases [60–62]. In this framework,
one has a balance equation for the gas phase (a single effective



FIGURE 4. PHOTOGRAPH OF STRUCTURED PACKINGS
(WIKIMEDIA COMMONS, AUTHOR: LUIGI CHIESA).

phase is enough in the context of structured packings so far), γ ,
and two balance equations for liquid phase part 1, β1, and liq-
uid phase part 2, β2. For instance, this leads to the three mass
balance equations below:

ε
∂Sγ

∂ t
+∇.Uγ = 0, (34)

ε
∂Sβ1

∂ t
+∇.Uβ1 = ṁ, (35)

ε
∂Sβ2

∂ t
+∇.Uβ2 =−ṁ. (36)

where ṁ is the mass exchange term which must be modeled in
terms of the three "phases" saturation, pressure and velocities.

While there were attempts to develop these models through
some averaging methodology, part of the resulting models are
still heuristic. In particular, the description of the exchange
of mass (and momentum) between the two macro-scale liquid
phases remains an open question. The spreading of a jet im-
pinging such a porous medium as described by these models is
illustrated Fig. 5 taken from [62]. One sees, depending on the
intensity of the exchange term, that the two liquid phases show a
distinct shape with two separate jets when there is barely no ex-
change, while the jet spreads more like the classical solution for
a capillary porous material when the exchange is strong. These
two shapes have been observed experimentally [61]. Therefore,
it seems that these models have the correct structure, but it must
be emphasized that correlations for the effective properties re-
quire further investigations.

Hybrid Models
In porous media with low capillarity effects, the liquid

moves by a series of mechanisms involving films over the grain

FIGURE 5. SATURATION SHOWING THE SPREADING AT A
GIVEN COLUMN CROSS-SECTION OF A TOP OF COLUMN IM-
PINGING JET (FROM [62]): a) EXPERIMENTAL RESULTS FROM
[63], b-h) NUMERICAL RESULTS WITH INCREASING MASS EX-
CHANGE FROM [62].

surfaces, bridges between these films when close to contact
points, bulging films due to either instabilities or high Bond num-
bers, etc... As a consequence of the diversity of mechanisms
at play, several flow regimes are observed as illustrated, for in-
stance, in [64–67, . . . ]. This is the case when looking, for ex-
ample, at the quasi-2D flow of a liquid in a bundle of cylinders
as illustrated in Fig. 6 taken from [68]. In principle, the flow
complexity can be captured by direct numerical modeling [69] as
illustrated in Fig. 6 where the flow between the cylinders is ob-
tained numerically using a Volume of Fluids method. However,
this is very difficult to get accurate solutions, even on a limited
number of pores, and certainly to date beyond the capabilities of
modern computers for a large amount of pores. However, even
for a porous medium with a pore correlation length on the order
of the grain size, the phase repartition pattern may encompass
dozens of pores. Therefore, in such cases, we are faced with the
following difficulties:

1. pore-scale mechanisms complexity, time and spatial char-
acteristic scales, make the development of a macro-scale
model very difficult to achieve,

2. Direct Numerical Solution (DNS) is equally very difficult to
carry on because of the number of pores involved.

When such complex percolation mechanisms are encoun-
tered, it is often convenient to use a meso-scale description of the
porous medium under the form of a pore network model. Rules
describing the flow between nodes must be introduced. This
is relatively straightforward for classical percolation problems
(Poiseuille like pressure drop for instance, quasi-static capillary
effects, ... [70, 71]). These rules must be adapted for the cases
under consideration in this section which feature more dynamic
types of flow. Hybrid models were proposed to handle such sit-
uations. The idea behind hybrid models is to couple the pore-
network description with local pore-scale simulations carried out
with, for instance, a Volume of Fluid numerical model. The lo-



FIGURE 6. EXPERIMENTAL DATA AND NUMERICAL SOLU-
TION FOR TWO-PHASE FLOW IN A BUNDLE OF CYLINDERS,
FROM [68].

cal VOF simulations will provide the dynamic rules necessary
to advance the fluid flow in the pore network model. Published
results show the ability of such tools to handle more dynamic
percolation problems [19, 67, 72, . . . ]. Clearly, however, further
work is needed to make these models operational for the engi-
neering daily practice. It must also be reminded that meso-scale
models need more computational resources than full macro-scale
models. Therefore, efforts to obtain more dynamic macro-scale
models must obviously continue.

CONCLUSIONS
In this paper, we have reviewed the implications in terms of

macro-scale modeling of high values of transport dimensionless
numbers in the case of flow through highly permeable media.
The introduction of inertia effects into the one-phase flow mod-
els is handled by modification of Darcy’s law up to full macro-
scale turbulent models. In the case of two-phase flow with high
Reynolds number, several models were proposed:

1. Extensions of Ergun’s one-phase model to the two-phase
flow case with relative permeabilities and passabilities,

2. Models with interaction terms obtained heuristically or
through some upscaling procedure.

These latter models proved to have the good ingredients to repro-
duce the scarce experimental data available. However, it is clear
from the comparison between predictions and experimental data
that additional work should be done to provide good estimates
for the various non-linear correlations found in these models.

Problems remain also largely open for two-phase flow at
large Bond and Capillary numbers, for which several hybrid
models have been proposed. This is also the case for specific
porous media having a structure favoring the almost independent
behavior of portions of the liquid phase. In this case, models
with a splitting of the liquid (or gas) flow into two macro-scale

fluids have shown the ability to reproduce actual phenomena but,
once again, much work should be devoted to the validation of the
mathematical structure of such models and the estimation of the
relevant effective transport properties.
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