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Entangling the ro-vibrational modes of a macroscopic mirror using radiation pressure

M. Bhattacharya, P.-L. Giscard, and P. Meystre
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The University of Arizona, Tucson, Arizona 85721
(Dated: January 27, 2008)

We consider the dynamics of a vibrating and rotating end-mirror of an optical Fabry-Pérot cavity
that can sustain Laguerre-Gaussian modes. We demonstrate theoretically that since the intra-
cavity field carries linear as well as angular momentum, radiation pressure can create bipartite
entanglement between a vibrational and a rotational mode of the mirror. Further we show that
the ratio of vibrational and rotational couplings with the radiation field can easily be adjusted
experimentally, which makes the generation and detection of entanglement robust to uncertainties
in the cavity manufacture. This constitutes the first proposal to demonstrate entanglement between
two qualitatively different degrees of freedom of the same macroscopic object.

PACS numbers: 03.67.Bg, 42.50.Pq, 42.65.Sf, 85.85.+j

No known law of physics prevents the application of
quantum mechanics to macroscopic bodies. Characteris-
tic traits of quantum mechanics such as entanglement [1]
can then in principle be displayed even by large objects.
The demonstration of quantum entanglement in macro-
scopic objects would clearly be interesting from the point
of view of fundamental considerations, such as the explo-
ration of the quantum-classical boundary [2]. It is also
expected to have important applied consequences since
entanglement is a crucial resource for information pro-
cessing enabling quantum communication, computation,
and measurement, see Ref. [3] and references therein.

Various mechanisms have been proposed for generat-
ing entanglement between different degrees of freedom of
macroscopic objects. The flexural modes of nanomechan-
ical electrodes can be entangled by the ions they trap,
via Coulomb interactions [4]. Entanglement can be gen-
erated between the vibrations of an array of gold beams
fabricated on a semiconductor membrane using electric
voltages [5]. The motion of a nanomechanical oscillator
carrying a ferromagnetic domain can become entangled
with the collective spin of a mesoscopic Bose Einstein
condensate due to their magnetic coupling [6]. Radia-
tion pressure can entangle two vibrating nanofabricated
mirrors that may belong to an optical cavity [7–11] or not
[12]. In addition a single cavity mode can also entangle
multiple vibrational modes of the same mirror [8].

In this Letter we discuss instead how radiation pressure
can entangle two qualitatively different motional degrees
of freedom of the same classical object. Specifically we
show that the optomechanical coupling produced by a
Laguerre-Gaussian intracavity field can lead to bipartite
entanglement between the modes of rotation and vibra-
tion of a moving mirror. Further, we demonstrate that
the ratio of the coupling of the optical field to the vi-
bration and rotation modes can be adjusted experimen-
tally, resulting in the robust generation of entanglement
against uncertainties in the mass, radius and mechanical
frequencies of the mirror. This is in contrast to previous
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FIG. 1: (Color online). The arrangement proposed in this
work for entangling the vibrational and rotational modes of a
mirror. A Laguerre-Gaussian beam is incident on the resonant
cavity formed by two spiral phase elements, the transmissive
but fixed input coupler and the perfectly reflective moving
rear mirror. The rear mirror is mounted on a helical spring S
which provides a vibrating restoring force along the z axis as
well as torsion opposite the direction φ. The deflection of the
rear mirror from its angular equilibrium position (φ0 = 0) is
indicated by the angle φ; the z deflection of the mirror has not
been shown for clarity. The charge on the Laguerre-Gaussian
beams at various points has been indicated.

proposals in which entanglement relies crucially on the
precise balance of mirror parameters, a situation that is
difficult to attain in practice [7–11, 13].

The configuration that we consider consists of an opti-
cal cavity formed by two spiral phase elements, see Fig. 1.
Spiral phase elements can be reflective or transmissive
and are used to change the angular momentum or ‘opti-
cal charge’ of laser beams [14]. The input coupler trans-
mits light weakly, and without changing its charge. A
beam reflected from it however gains a charge 2l. The
rear mirror on the other hand reflects light perfectly, re-
moving at the same time a charge 2l from it. Designed
in this manner the cavity can provide mode build-up to
an incident Laguerre-Gaussian field of charge +l; a de-
tailed discussion of the cavity conditions has been given
in Ref. [14].

The input coupler is supported rigidly, but the rear
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mirror is mounted in such a way that it can vibrate as
well as rotate. One way to accomplish this may be by
mounting the mirror on a helical spring [15]. A number
of experiments have demonstrated that the linear vibra-
tions of the mirror can be cooled by a Gaussian cavity
mode [16]; in a recent proposal we have shown that if a
Laguerre-Gaussian mode is used instead rotational cool-
ing can also be achieved [14]. In the current design we
combine both effects – since each Laguerre-Gaussian pho-
ton carries linear as well as angular momentum, the same
cavity mode can affect both the vibration as well as the
rotation of the mirror.

The coupling of radiation to the mirror motion can be
derived by using the fact that both the linear and the an-
gular momentum of the incident +l Laguerre-Gaussian
beam are reversed by the rear mirror. The torque per
intracavity photon is the rate of change of angular mo-
mentum 2l~/(2L/c), and similarly for the force, with rate
of change of momentum 2~k/(2L/c). Here k is the wave
vector of the light field, L is the length of the cavity and
c is the velocity of light [14].

Using these arguments we can model the physical sys-
tem described above and shown in Fig. 1 by the Hamil-
tonian

H = ~ωca
†a +

~ωz

2
(p2

z + z2) +
~ωφ

2
(L2

z + φ2)

− ~gza
†az + ~gφa†aφ. (1)

The first term in this Hamiltonian describes the electro-
magnetic energy of the cavity mode, the next two terms
the vibrational and rotational energies of the moving mir-
ror and the last two terms the effects of radiation force
and torque on the rear mirror respectively.

In Eq. (1) a and a† are the bosonic annihilation and
creation operators for the cavity mode. z and pz are
the dimensionless position and momentum of the mirror
scaled to the characteristic length (~/Mωz)1/2 and mo-
mentum (~Mωz)1/2, M being the mass of the mirror and
ωz its frequency of linear vibration. Similarly φ and Lz

are the dimensionless mirror angular displacement and
momentum scaled to (~/Iωφ)1/2 and (~Iωφ)1/2 respec-
tively, I = MR2/2 being the moment of inertia, R the
mirror radius, and ωφ the frequency of angular vibration.
The commutation relations of the dynamical variables
are given by [a, a†] = 1, [z, pz] = i, and [φ,Lz] = i respec-
tively. The frequency ωc = nπc/L is the cavity mode
frequency, where L = nλ/2. Finally, the opto-vibrational
and opto-rotational coupling constants are given by

gz =
ωc

L

√
~

Mωz
, gφ =

cl

L

√
~

Iωφ
, (2)

respectively.
We consider the Heisenberg equations of motion for

the dynamical variables of the Hamiltonian (1), adding

damping and noise to arrive at the nonlinear quantum
Langevin equations for the system [17]:

ȧ = −i(δ − gzz + gφφ)a− γ

2
a +

√
γain,

ż = ωzpz,

ṗz = −ωzz + gza
†a− γzpz + εinz , (3)

φ̇ = ωφLz,

L̇z = −ωφφ− gφa†a− γφLz + εinφ .

Here δ = ωc − ωL is the detuning of the laser frequency
ωL from the cavity resonance, γ is the damping rate
of the cavity, γz and γφ the intrinsic damping rates of
vibration and rotation respectively, and ain is a noise
operator describing the laser field incident on the cav-
ity. The mean value 〈ain(t)〉 = ain

s describes the classical
Laguerre-Gaussian field, and the delta-correlated fluctu-
ations

〈δain(t)δain,†(t′)〉 = δ(t− t′), (4)

describe the vacuum noise injected into the cavity mode
by the driving field. The Brownian noise operator εinz
accounts for the mechanical noise that couples into the
mode of mirror vibration from the thermal environment.
Its mean value is zero and its fluctuations are correlated
at temperature T as [17]

〈δεinz (t)δεinz (t′)〉 =
γz

ωz

∫ ∞

−∞

dω

2π
e−iω(t−t′)ω

[
1 + coth

(
~ω

2kBT

)]
,

(5)

where kB is Boltzmann’s constant. Similar relations hold
for the rotational noise operator εinφ .

The steady-state values of the dynamical variables can
be found from the equations

as =
√

γ|ain
s |[

(γ
2 )2 + (δ − a2

sG)2
]1/2

,

zs =
gza

2
s

ωz
, φs = −gφa2

s

ωφ
, (6)

pz,s = 0, Lz,s = 0,

where G = g2
z/ωz + g2

φ/ωφ, and the phase of the input
field ain

s has been chosen such that as is real. The field
amplitude as is found by solving the first equation, which
is nonlinear, and zs and φs can then be determined. The
solutions to Eq. (6) display bistability for high enough
input power Pin = ~ωc|ain

s |2 [18]. In the rest of the paper
we assume the use of electronic feedback, which allows
us to set the net detuning ∆ = δ− a2

sG independently of
radiation pressure and also to suppress bistability. Such
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a procedure is carried out routinely in mirror cooling ex-
periments [16].

To investigate the behavior of the system for small de-
viations away from its steady-state we expand every op-
erator as the sum of a (steady state) mean value [Eq. (6)]
and a small fluctuation, e.g. a = as + δa. Treating the
other operators in Eq. (3) in a similar way and retaining
only terms linear in the fluctuations yields

δ̇a = −(i∆ +
γ

2
)δa + ias(gzδz − gφδφ) +

√
γδain,

δ̇z = ωzδpz,
˙δpz = −ωzδz + gzas(δa + δa†)− γzδpz + δεinz , (7)
˙δφ = ωφδLz,

˙δLz = −ωφδφ− gφas(δa + δa†)− γφδLz + δεinφ .

We solve Eq. (7) in the frequency domain [20] ensur-
ing that the corresponding dynamical system is Routh-
Hurwitz stable [21]. Combining the solutions of Eq. (7)
with the relations in Eqs. (4) and (5) allows one to ob-
tain the correlations between the quantum fluctuations
of the dynamical variables, and hence the entanglement
in the system [7]. This is because the fluctuations are
continuous Gaussian variables fully determined by their
first and second moments. Computable measures for bi-
partite entanglement between such variables exist [19]
and have been used previously to quantify optomechani-
cal systems [20]. The calculation of entanglement in the
frequency domain is also appropriate since the cavity dy-
namics are experimentally easier to probe spectrally than
in the time domain [8].

More specifically, we consider the operators δu =
δz − δφ and δv = δpz + δLz. We then construct the
corresponding Hermitian operators Ru,v, where Ru =
[δu(ω)+ δu(−ω)]/2, for example. An entanglement mea-
sure E(ω) can then be defined as [7]

E(ω) =
〈R2

u(ω)〉〈R2
v(ω)〉

|〈[Rz(ω),Rpz (ω)]〉|2 . (8)

Ro-vibrational entanglement exists at the system re-
sponse frequency ω whenever E(ω) < 1.

Figure 2 plots E(ω) as a function of the response fre-
quency ω and temperature T for the experimentally ac-
cessible parameters detailed in the caption. A significant
amount of entanglement is available at higher than cryo-
genic temperatures, a regime in which mirror cooling has
been demonstrated [22], and at a usably large bandwidth.

We observe that the entanglement is always maximum
at the arithmetic mean of the two mechanical frequen-
cies, i.e. Emax = E ((ωz + ωφ)/2) [7, 8]. Further, we find
the presence of the symmetry gz = gφ to be crucial to
the generation of entanglement in our system. This is
illustrated in Fig. 3 which plots the maximum entangle-
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FIG. 2: (Color online). Radiation pressure-induced entangle-
ment E(ω) between a vibrational and a rotational mode of the
moving mirror. The parameters are M = 1µg, R = 15µm,
vibrational and rotational quality factors Qz = Qφ = 106,
ωz ' ωφ = 1 MHz, l = 82, L ' 4 mm, cavity finesse
F = 2.5× 104, λ = 812.7nm, ∆ = ωφ, and Pin = 1mW.

ment Emax as a function of the percent fractional imbal-
ance in the couplings. It shows that entanglement van-
ishes rapidly even for small deviations away from equal-
ity. Further investigations indicate that for increasing
coupling asymmetry the bandwidth of entanglement also
vanishes faster with temperature. The requirement of
a symmetric coupling in order to radiation-entangle me-
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FIG. 3: Maximum entanglement Emax at T = 1K between a
vibration and a rotational mode of the rear mirror of Fig. 1
as a function of the percent fractional imbalance in the cou-
plings with the radiation field. The entanglement decreases
with increasing asymmetry in the couplings. In the figure for
a 200 Hz difference between rotational and vibrational fre-
quencies centered at 1 MHz, the coupling imbalance, about
0.02%, destroys the entanglement completely. The remaining
parameters are the same as in Fig. 2.
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chanical modes has been noted previously in the case of
mirror vibration [7–11, 13]. Very recently the effect of
asymmetry has been precisely characterized for the case
of general Gaussian continuous variables [23]. It has been
shown analytically that higher the asymmetry, lower the
entanglement.

It can be seen from the expression (2) for gz that for
the case of entanglement between two vibrational modes
of the same mirror [8] the ratio of the couplings is deter-
mined by the frequencies of these modes. These may be
difficult to control experimentally and are typically un-
equal. For our system the two mirror degrees of freedom
couple differently to the field, with a ratio

gz

gφ
=

2π

lλ

√
Iωφ

Mωz
. (9)

In case the frequencies ωz and ωφ, mass M and moment
of inertia I are all slightly different from their nominal
values, it is possible to equalize the couplings by varying
the radiation wavelength λ, simultaneously adjusting the
cavity length L so as to stay on resonance.

We have used this procedure to arrive at the values pre-
sented in Fig. 2, where the imbalance in the couplings is
assumed to be due to a frequency mismatch ωφ−ωz = 10
Hz. We found that the couplings could be equalized and
the entanglement retained by tuning λ by ∼ 2nm and the
cavity length by ∼ 100µm. Such adjustments are easily
within reach of current experimental techniques. Exper-
imental measurement of the entanglement E(ω) can be
carried out using standard techniques such as homodyne
measurements as described in Ref. [7]. This involves use
of a secondary cavity with a third mirror beyond the rear
mirror.

We note that the linearization approximation used to
derive Eqs. (7) becomes less reliable if the mirror starts
in too hot a thermal state i.e. with T À ~ωz,φ/kB [24].
Gigahertz oscillators and cryogenic base temperatures of
a few millikelvin - which seem to be parameters at the
cutting edge experimentally [25] - will therefore provide
the most stringent test of our theory.

In conclusion we have demonstrated that a vibrational
and a rotational mode of the same macroscopic mir-
ror can be entangled quantum mechanically by radiation
pressure from a Laguerre-Gaussian cavity mode. The
entanglement can be made robust against imprecision in
the cavity manufacture because the ratio of vibrational-
to-rotational coupling with the radiation can be tuned
experimentally.

This work is supported in part by the US Office of
Naval Research, by the National Science Foundation, and
by the US Army Research Office. We thank H. Uys and
O. Dutta for helpful conversations.
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