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Summary

This article introduces a robust and affordable method to compute nullspace and generalized inverse of finite

element operators involved in dual domain decomposition methods. The methodology relies on the operator partial

factorization and on the analysis of a well chosen Schur complement. The sparse linear operator is interpreted as a

network and graph centrality measures are used to select the condensation variables. Eigen vector, Katz and Page

Rank centralities are evaluated. An extension to deal with symmetric indefinite systems arising from mixed finite

elements is also presented. The approach is assessed on highly heterogeneous problems and one industrial

application is presented: the numerical homogenization of solid propellant.
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1 Introduction

Domain decomposition methods such as the Finite Element Tearing and Interconnecting (FETI) [16] and its variants

TFETI [13,28], HTFETI [34,38], AMPFETI [3–5], involve the resolution of semidefinite systems of equations. These

systems arise when the automatic decomposition leads to subdomains whose are not subjected to sufficient Dirichlet

boundary conditions to prevent the existence of rigid body motions. These subdomains are commonly denoted as

“floating subdomains” (or substructures) [15]. The presence of floating substructures also occurs when studying

free-free flexibility matrices for structural analysis [17].
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FETI like methods are able to tackle really really large-size problems while exhibiting a good scalability [34, 43].

The the range of applications of these methods also grows notably covering for example, biomechanics [6], structural

dynamics [30], contact mechanics [14], digital image correlation [2] and isogeometric analysis [20,27].

Also, a continuous effort has been made to be able to deal with real engineering applications. These applications

often exhibit pathological components that hinder the convergence of the underlying Krylov solver, such as jagged

interfaces, bad aspect ratios, strong heterogeneities, incompressibility, etc. [25, 26]. These pathological components

lead to highly ill-conditioned linear systems, making essential the use of enhanced iterative solvers. Two kinds of

strategies have been proposed to increase the robustness of domain decomposition solvers. The first strategy relies

on augmenting the Krylov solver with well chosen supplementary coarse space coming from the solution of local

generalized eigenvalue problems for example [32, 39, 41]. The second one is to use a block Krylov solver [19] or a

multipreconditioned Krylov solver [4, 8, 19,35,40].

If the improvement of the iterative interface solver is often pointed out, it is not the only component of the method

put on severe test when dealing with ill-conditioned problems. The treatment of floating substructures through the

automatic detection of local operator nullspaces and the computation of generalized inverses, are crucial points of

the FETI methods. A misdetection of these kernels leads inevitably to the divergence of the iterative solver and ill

conditioned generalized inverses may slow down its convergence. Since the seminal work of Farhat & Géradin [15],

few authors have investigated the problem. A treatment of substructures with internal mechanisms was proposed

in [37]. More recently, generalized inverse computation and regularization techniques have been proposed in the case

of known nullspace [12]. The use of incomplete factorization, the concept of fixing-nodes and a selection process

based on the Perron vector have been introduced [11]. The impact of the generalized inverse computation on the

convergence of the iterative solver has been investigated in [29]. However, these research articles do not address

the case of ill conditioned local operators and most of the examples remain academic. From our experience in the

development of AMPFETI and from the simulation of ill-conditioned industrial applications, such as the numerical

homogenization of woven composite [4] and solid propellant [5], a robust process to detect local operators nullspaces

and to compute generalized inverse turns out to be essential. The aim of this paper is to present an extension of

the approach proposed in [11] in order to deal with ill conditioned operators. We typically tackle the problem of

material heterogeneity and highly variable finite element mesh size. A procedure for symmetric indefinite systems

is also presented. To this end, we propose several strategies to improve the selection of fixing-nodes. Most of them

are based on the notion of graph centrality. Also, we provide a simple process to handle symmetric indefinite system

arising from mixed finite element method for instance.

The article is organized as follows: Section 2 recalls basic notions about generalized inverse and graph theory,

Section 3 provides a short review on existing methods, while the overall methodology is introduced in Section 4.
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Section 5 details all the fixing-nodes selection strategies. Three numerical examples are provided in Section 6, an

academic Laplace problem, an academic elastic truncated pyramid and a an elastic simplified laminated composite.

The first example is illustrative in order to understand how behave the centrality measures. The second example

is a reproduction of the solid benchmark proposed in [11], it assesses the good performance of proposed methods.

The latter example is a large ill-conditioned problem, it highlights the performance of the proposed approach and

provides a comparison with the MUMPS automatic defect detection. The approach is assessed on the highly ill-

conditioned problem of the numerical homogenization of solid propellant in Section 7. This application also shows

the performance of the specific treatment of symmetric indefinite systems proposed in Section 5.3. Finally, Section 8

concludes the paper and draws some perspectives.

2 Notations and preliminaries

2.1 Generalized inverse

Let A ∈ Rn×n be a real square, possibly singular, matrix, the (i, j) component of the matrix A is denoted Aij . In

the following, In ∈ Rn×n is the identity matrix and 0n ∈ Rn×n the zero matrix. If α ⊆ {1, . . . , n} and β ⊆ {1, . . . , n}

are two nonempty subsets of {1, . . . , n}, we denote by Aαβ the submatrix of A with the components (Aij)i∈α,j∈β .

For convenience, if α ⊆ {1, . . . , n} is a nonempty subset, we denote by α its complement α = {1, . . . , n} \ α. For any

nonempty α and after some permutations of rows and columns, the matrix A can be written by block as :

A? = P>AP =

Aαα Aαα

Aαα Aαα

 (1)

where P is a permutation matrix. In the following, we directly consider the form (1) and we omit the permutation

matrices and the star exponent.

We are interested in finding a solution of the consistent linear system Ax = b where A ∈ Rn×n is singular. The

defect of the matrix A is denoted k and its rank r = n − k. This system of equation is consistent if b ∈ Im(A). A

well known method is to use the Moore-Penrose generalized inverse A† which is the unique matrix satisfying the
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four Moore-Penrose conditions (see Section 5.5.2 [18]).

AXA = A (2)

XAX = X (3)

AX = (AX)> (4)

XA = (XA)> (5)

The Moore-Penrose generalized inverse is computed through a singular value decomposition (SVD), A = UΣV >

where U ∈ Rn×n and V ∈ Rn×n are orthogonal matrices, the diagonal matrix Σ ∈ Rn×n contains all the singular

value of A.

Σ = diag(σ1, . . . , σn) with σ1 ≥ σ2 · · · ≥ σr > σr+1 = · · · = σn = 0

The Moore-Penrose generalized inverse is given by A† = V Σ†U> where Σ† = diag(σ−1
1 , . . . , σ−1

r , 0, . . . , 0). The

Moore-Penrose generalized inverse is often considered as the “best generalized inverse” since it minimizes the Frobe-

nius norm ‖AX − In‖F . It is however very expensive to evaluate, common algorithms have complexities in O(n3).

Considering the treatment of floating subdomains in dual domain decomposition methods, any matrix satisfying (2)

is suitable and it is not necessary to fulfill all Moore-Penrose conditions. This work proposes a robust but cheap

methodology to compute such a matrix.

2.2 Recall on graphs

The present work makes use of tools coming from Graph (also called network) theory, useful notions are recalled

hereafter. Reader interested in a wider documentation can refer to [36].

Undirected graph A graph G is defined by two sets (V,E). The first set V is a collection of vertices while the

second set E contains edges. An edge is a pair of vertices (u, v) ∈ V × V that represents some kind of link between

u and v. If this link does not depend on the ordering, the graph is said undirected. In this work, we only consider

undirected simple graphs e.g. graphs without any self-edge1 nor multi-edge. From now on, we denote by nv the

number of vertices and by ne the number of edges.

Weighted graph It will be useful to characterize the strength of an edge. The strength of the link between u and

v can be characterized by a strictly positive scalar ωuv > 0 (u, v) ∈ E. A weighted graph is thus defined by a graph

and a set of weight Gωe
= (G, ωe) with ωe ∈ (R+∗)ne .

1A self-edge is a pair (u, u), u ∈ V
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The adjacency matrix The adjacency matrix of the graph is the matrix A ∈ Rnv×nv with elements auv such that

auv =

 ωuv > 0 if there is an edge between vertices u and v

0 otherwise.

In the case of unweighted graphs, auv = 1 if the vertices u and v are linked. In this work, we only consider undirected

simple graphs soA remains symmetric and since self-edges are not taken into account in this work we have auu = 0 ∀u.

Degree of a vertex The degree of a vertex u is the scalar du =
∑nv

v=0 auv. Let D be the diagonal matrix of order

nv such that D = diag(d1, . . . , dnv ). For undirected unweighted graph, the degree du is simply the number of edges

connected to u.

The graph Laplacian The graph Laplacian is alternative representation of undirected weighted graph. The matrix

form of the graph Laplacian is the matrix L ∈ Rnv×nv defined by L = D −A. The matrix L remains symmetric.

The graph Laplacian, has various applications such as graph partitioning or network visualization (see for example

Section 6.14 in [36]).

Graph centrality One of the frequent applications of graph theory tools is to find out which vertex is the most

important in a network. This importance can be described in several ways, which translate into different measures of

graph centrality. These measures usually depends on the graph topology and on the strength of the graph edges. It

will be defined by a score vector c ∈ Rnv
+ . The graph centralities used in this work will be presentend in Section 5.2.

3 Brief review of existing approaches

3.1 The pioneering work of Farhat and Géradin

Farhat & Géradin [15] were the first to investigate the treatment of floating subdomains in structural mechanics.

They proposed three strategies to cheaply compute the generalized inverse and the nullspace of the stiffness matrices.

The first one relies on the null pivots detection of the Crout factorization with symmetric pivoting. Indeed, if the

k null pivots are put in the set α, both

A−1
αα 0

0 0

 and

A−1
αα −A−1

ααAαα

0 Ik

 (6)
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fulfill the first Moore-Penrose condition (2) and a basis of the nullspace is given by the n× k matrix R.

R =

−A−1
ααAαα

Ik

 (7)

The defect computation relies on the distinction between null and small pivots which requires an user defined small

constant ε. This parameter may be hard to setup in presence of ill conditioned systems. A “modern” version of this

approach is to let up-to-date direct solvers, such as MUMPS [1] or Dissection [42], detect null pivots and compute the

generalized inverse and nullspace. As will be shown in Section 6.3, even the most advanced solvers such as MUMPS

can be put in severe test with specific pathological tests.

The second method proposed in [15] needs to know a priori an upper bound of the defect q. A Crout factorization

without pivoting is performed up to the step n− q + 1, then a SVD is applied on the remaining Schur complement

to obtain the true defect k. The rest of the factorization is done with full pivoting and last k pivots are considered as

null pivots. This method still relies on an user defined constant but the SVD is applied on a small Schur complement

with a better condition number.

The third method, initially thought for structural mechanics, needs to know the nullspace in the case of a totally

unrestrained subdomain i.e. a subdomain without any Dirichlet boundary condition. Let Ru be a basis of this

totally unrestrained nullspace. In the context of 3D elastostatics, if the subdomain is connexe, without mechanism

and totally unrestrained, this nullspace known. It is composed of the six rigid body modes (3 translations and

3 rotations). These rigid body modes can be built explicitly using a geometric procedure. For an unrestrained

subdomain, the generalized inverse can be computed using (6) and considering the six last pivots as null pivots. For

partially restrained subdomains the strategy is slightly more complex. Let nD be the number of unknowns subjected

to Dirichlet boundary conditions. A boolean matrix E of size n × nD is introduced with eij = 1 if the unknown

j is constrained by the i-th boundary condition and eij = 0 elsewhere. A SVD is then performed on the matrix

Z = E>Ru to compute the actual defect of the operator A. The actual nullspace which is a linear combination of

the columns of Ru can also be retrieved from the singular value decomposition. Once the defect k is known, the

generalized inverse can also be computed considering the last k pivots as null pivots. From a mechanical point of

view, the matrix Z looks like the virtual work produced by the Dirichlet boundary conditions when considering

rigid body motions as virtual displacements. Again, the defect computation involves a small constant for the SVD

of the matrix Z. Since both E and Ru are purely “kinematic”, the defect is insensitive to the condition number

of the stiffness matrix. This property may be useful when dealing with highly heterogeneous subdomains. Only the

condition number of the generalized inverse will be impacted. The condition number of Ru depends however on the
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slenderness of the subdomain. Scaling procedures have been proposed in [37] to improve this point. This algebraic–

geometric method requires the absence of internal mechanism. Their detection and removal have been investigated

in [15] with the mechanism buster algorithm and this constraint has been overcome few years later with geometric

procedures [37]. This method is however hard to generalize to meshes composed of exotic element types such as,

cohesive zone elements [31] or pressure-displacement mixed elements [45] or multipoint constraints (MPC).

3.2 The incomplete factorization and fixing-nodes framework

The previous methods are focused on the defect computation, they do not investigate the condition number of

the resulting generalized inverse. A continuous progress has been made in this field by the research group of Z.

Dostál [11,12,22,23,29] which led to the incomplete factorization framework and the concept of fixing-nodes.

As pointed out in [11], all previous methods can be reformulated in the incomplete factorization framework.

Only symmetric semi-definite matrices are considered in [11] and the framework is expressed in terms of incomplete

Cholesky factorization. If the symmetry provides useful properties such as the Haynsworth inertia additivity formula,

it is not a limitation of the approach. In the following, we use the incomplete LU factorization. In the case of a

symmetric semi-definite matrix, one simply has to replace all matrices U by L>.

If c is a non empty subset of {1, . . . n}, the incomplete LU factorization is

A =

Acc Acc

Acc Acc

 =

Lcc 0

Lcc I


Ucc Ucc

0 Scc

 . (8)

As long as Acc remains full rank, a generalized inverse of A is given by

A+ =

U−1
cc −U

−1
cc UccS

†
cc

0 S†cc


 L−1

cc 0

−LccL−1
cc I

 . (9)

Since the Schur complement Scc is a small dense matrix, the use of the Moore-Penrose generalized inverse is reliable

and affordable here. The matrix Acc being full rank, the Schur complement is rank deficient due to the property

det(A) = det(Scc) · det(Acc)

For well conditioned test cases, the use of a “large enough” set c, for which card(c) > k, suffices. For ill conditioned

systems however, to choose good candidates for the incomplete factorization remains essential, in order to get Acc

and A+ reasonably well conditioned, and to facilitate determination of the defect of Scc. In [11], nodes of the mesh
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corresponding to the unknowns of the set c are called fixing-nodes. Since these fixing-nodes define the unknowns used

for the static condensation. The attributes “fixing” and “condensation” are used interchangeably in the following.

Also, for symmetric indefinite systems, we will use the term fixing-variables since all variables of fixing-nodes will

not be put in the set c.

From a mechanical point of view, these fixing-nodes must not be aligned, and well distributed within the substruc-

ture. From these considerations, a two-step construction process has been proposed in [11]. First, the subdomain

mesh is virtually split into M ≥ k parts (also called color in the following). Then a fixing-node close to the center of

each color is selected using an heuristic.

4 Overall methodology

This section introduces the overall methodology to detect the nullspace and to compute the generalized inverse. It

follows the two-steps construction process proposed in [11]. As before, the subdomain mesh is virtually split into

M ≥ k parts, then one fixing-node is selected in each part. Please note that, if the initial subdomain is not connexe,

the number of part must be adapted. Since an upper bound of the defect is usually known for a connexe subdomain,

the overall methodology is logically applied to each connected components of the subdomain.

However, the selection strategy of fixing-node is improved in order to tackle highly ill-conditioned systems. Indeed,

to pick-up a fixing-node close to the center of each color is not sufficient for ill-conditioned system such as highly

heterogeneous problems. The fixing-variables c should correspond to large diagonal terms in the matrix in order

to improve the condition number of Acc and A+ and to facilitate the estimation of the defect of the matrix. The

methodology is summed up in Algorithm 1 and illustrated with Figure 1.

Figure 1: Schematic representation of the overall methodology.

4.1 Selection process of fixing-nodes

In this work, several selection strategies are proposed and compared, they will be detailed in Section 5. We only

give the common framework here. These selection strategies can be expressed as a vector-valued function f of some
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Algorithm 1 Fixing-nodes selection algorithm
Verify that the initial mesh in connexe (if not apply Algorithm 1 to each connected component).
Virtually split the mesh in M connexe parts
for each part do

Apply selection strategy (see Section 5)
end for
Filter duplicates nodes if needed
Filter mixed variables if needed (see Section 5.3)

graph G such as f(G) = s ∈ R+p where p is the number of nodes of the considered color. All components of the

vector s are positive, they traduce the score of the corresponding node. The node with the highest score is selected

as the fixing-node. The application of this selection process to each color provides a set of fixing-nodes, all unknowns

linked to these nodes are put in the set of fixing-variables c. Once the set of fixing variables is defined, the incomplete

factorization is performed (8).

4.2 Nullspace computation and generalized inverse of the Schur complement

The incomplete factorization framework leads to a small dense Schur complement Scc of order m. The matrix Acc

being full rank, the Schur complement is rank deficient. The use of the Moore-Penrose generalized inverse is affordable

and applied here. The singular value decomposition, Scc = UΣV > where U and V are orthogonal matrices. The

diagonal matrix Σ contains all the singular values of Scc.

Σ = diag(σ1, . . . , σm) with σ1 ≥ σ2 · · · ≥ σr > σr+1 = · · · = σm = 0

The Moore-Penrose generalized inverse is given by S†cc = V Σ†U> where Σ† = diag(σ−1
1 , . . . , σ−1

r , 0, . . . , 0). The

nullspace of the Schur complement Rc is the (m− r) last columns of the matrix V . The nullspace of the full matrix

is deduced from Rc

R =

−A−1
cc AccRc

Rc

 (10)

The estimation of the rank of Scc involves a user defined threshold ε to distinguish between null singular values and

small ones. Two criterion are classically used. The first one compare the current singular values with respect to the

largest one

Relative criterion: σj ≤ ε σ1 (11)
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Another possibility is to look for the jump between two adjacent singular values

Jump criterion: σj+1 ≤ εσj (12)

If the selection strategy is well chosen, both criteria behave similarly most of the time and the validity range of

the threshold covers several decades. The jump criterion may have the advantage when several jump of material

coefficients are present in the underlying physical problem.

More complex strategy may be proposed, based on unsupervised learning for example. Indeed, the problem can

be reformulated as a clustering problem where the singular values of the Schur complement are the sample data.

The clustering problem intends to split singular values into two clusters corresponding to null and not null singular

values. Several models of the machine learning scikit-learn library2 have been tried in this work such as Gaussian

mixture model and K-means. However, these advanced techniques have been used as is, without prior training. We

were not able to build a clustering process outperforming the classical criteria especially for indeterminate cases

such as symmetric indefinite systems (see Section 7.0.3). The sample data are probably too scarce. In the context of

domain decomposition method, an interesting possibility is to share the singular values of all local stiffness operators

to increase the number of data.

4.3 Some practical remarks

About the number of fixing-nodes An important parameter of the method is the number of condensation nodes.

This number must be large enough to remove the non-trivial nullspace of the operator. For example, three nodes per

connected component suffice for a 3D mechanical problem. For very heterogeneous problems and depending on the

type of centrality used, it is possible that two colors select the same node. This node being at the interface between

these two colors. This problem can be solved simply by slightly increasing the number of condensation nodes. For

3D mechanical problems, four condensation nodes per connected component are enough most of the time. Another

strategy is to process the color successively. If a color proposes an already selected node, this node is refused and the

second best node is picked up.

About the implementation The virtual split is performed using an automatic graph partitioner such as METIS

or Scotch. The condensation node selection method is easily implemented in parallel. Each color is processed inde-

pendently with shared memory parallelism. For graph centralities that require solving linear systems, iterative solvers

with low memory cost are used.

2See https://scikit-learn.org/

https://scikit-learn.org/
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5 On the choice of fixing-nodes

In this section, we present different strategies for choosing fixing-nodes. Most of them take advantage of graph theory

and in particular of the notion of centrality. Proposed strategies have to bear in mind various objectives:

• to lead to good fixing-nodes candidates, which means to minimize the condition number of operators, and to

give a clear distinction between null and small singular values.

• to present small computational cost

• to be robust (meaning that the determination barely fail)

5.1 Taking into account the operator

Different graphs naturally arise in the context of finite element problems. The finite element mesh, via its connectivity

table, defines a first graph where the vertices are the nodes of the mesh and two nodes are linked by an edge if they

belong to the same element. Also, the finite element operator can be considered as a graph where the vertices are

the degrees of freedom. An edge links two degrees of freedom if there is an associated non-zero extra-diagonal term.

In the present work, we choosed to use the “nodal” graph because of its smaller size. We note however that for very

anisotropic problems, the latter option may be more suited.

5.1.1 Edge weights approximation

The finite element operator provides a natural way to define the strength of an edge. Indeed, the strength of the

link between two vertices can be defined by the amplitude of the extra-diagonal term. This vision has been exploited

successfully by algebraic multigrid methods [9], where depending on the value of the extra-diagonal term, one unknown

strongly depends (or strongly influences) another.

The main difference here is that the vertices of the graph are the node of the mesh. So except for the case of the

Poisson problem, there is not a direct mapping between nodes and degrees of freedom. Several edge weights may be

proposed:

• Full weight: Let δu (resp. δv) be the set of degrees of freedom associated with the node u (resp. v). For two

linked nodes u and v, the full weight of the edge (u, v) is defined as the sum of all extra diagonal terms

ωuv =
∑
i∈δu

∑
j∈δv

|Aij |

.
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• Lumped weight: Degrees of freedom are associated with physical quantities (temperature, displacement, etc.).

Let φi be the physical quantity associated with the unknown i. The lumped weight of the edge is defined as

the sum of all extra diagonal terms corresponding to the same physical quantity.

ωuv =
∑

i∈δu,j∈δv,φi=φj

|Aij |

.

• Uniform weight : all edges have a weight equal to 1.

The finite element operator is a sparse matrix that is stored most of the time in the CSC or CSR format. Looking

up for a specific term in A involves a binary search which is costly. Also, the lumped and full edge weight leads to

the same centrality measure for isotropic problems. For this reason, the full weight version is not considered in the

following.

5.2 Available selection methodologies

All the methods presented here can be put in the form of a vector function of the considered graph such as f(G) =

s ∈ R+nv . We assume that all components of the score vector s are positive. The node chosen as the fixing-node is

the one with the highest score.

5.2.1 Random selection

Attributing randomly a score to each node is the simplest possible strategy. This approach has been proposed for the

HTFETI method [33] where the choice of the fixing-nodes is based on a random number generator. For a homogeneous

problem with a ruled mesh, it has been shown that the probability of a “bad choice” decreases strongly with the

number of fixing-nodes. Here a “bad choice” corresponds to the choice of collinear nodes. It seems difficult to improve

this approach to deal with ill conditioned cases, except from increasing the number of fixing-nodes.

5.2.2 Gravity center

Bearing in mind that the fixing-nodes must be evenly distributed over the subdomain, one possible approach is to

select the closest node to the center of gravity of each subpart. Letmi ∈ R3 be the position vector of the node i. An

approximation of this gravity center may be:

mg =
∑n
j=1$jmj∑n
j=1$j

(13)
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where $j is a weight associated with the node j. For node i, the score is defined as

si = 1
1 + ‖mi −mg‖2

(14)

such that the closer node i is to the center of gravity, the higher the score is. This geometric approach is simple but

to choose appropriate weights is an inextricable task. Assigning an equal weight to all the nodes of the mesh will

select one close to very refined area. For homogeneous problem, this is typically a bad choice since small elements

are softer than larger ones (see Figure 2). A weight proportional to the diagonal terms of the stiffness matrix may

Figure 2: Small counter example: homogeneous material with variable mesh size.

seems a better choice but it is easy to find simple examples where this strategy fails (see for example Figure 3).

Figure 3: Small counter exemple: heterogeneous material where the red part is mush softer than the blue ones.
Whatever the weight, a gravity center based method will always select the central node.

5.2.3 Eigenvector centrality

Let {λi, qi}1≤i≤nv
be the eigenmodes of the adjacency matrix A with λ1 ≥ λ2 · · · ≥ λnv

. The eigenvector centrality is

simply defined by the components of the dominant eigenvector s = q1. All components of this dominant eigenvector,
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also known as the Perron vector, are of the same sign thanks to the Perron–Frobenius theorem. We assume are that

q1 is positive. With this centrality measure, the centrality of a node i is proportional to the sum of the centralities

of its neighbors. Thus a node can achieve a high centrality score either by having a lot of neighbors with average

centrality, or by having a few neighbors with high centrality. Since A is symmetric, the evaluation of this centrality

measure is really inexpensive and few steps of the Lanczos method leads to a good approximation. The use of the

eigenvector centrality has already been proposed by [11], the adjacency matrix considered was associated with the

unweigted graph. In this work, the eigenvector centrality is computed on the weighted graph which allows to take

into account material heterogeneity for instance.

5.2.4 Katz centrality

The Eigenvector centrality is only influenced by the edges of the graph. In our application, it turns out to be useful to

add an intrinsic contribution to the centrality of each node. Since, from a mechanical point of view, nodes associated

with stiff elements are obviously good fixing-node candidates. We would like to assign a specific importance to each

node based on the diagonal terms of the stiffness matrix. The Katz centrality [24] (see also Section 7.1.3 in [36])

allows such a behavior, it is the solution of the system

(I − α?A)s = β (15)

where α? is a scalar parameter and β ∈ Rnv is the intrinsic part of the centrality. The parameter α? has to be in the

interval [0, λ−1
1 [, where λ1 is the largest eigenvalue of A. It is convenient to express this parameter with respect to

λ1 to get a robust process, the new parameter is α ∈ [0, 1[, such that α? = αλ−1
1 .

The value of the intrinsic personality vector β is a parameter of the method. It has to be consistent with the choice

made for the edges weights. Thus, all nodes have the same intrinsic centrality equal to 1 if the uniform edge weight

is chosen. If full or lumped edge weight are used, the intrinsic personality of node u, βu is defined as:

βu =
∑
i∈δu

|Aii|

where δu be the set of degrees of freedom associated with the node u.

From a computational point of view, the Katz centrality remains cheap since it only requires the estimation of the

largest eigenvalue of A and the resolution of (15). The latter system which is symmetric positive definite, can be

easily to solve with an iterative solver such as the Conjugate Gradient. The dominant eigenvector q1 is a good initial

estimate.
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5.2.5 PageRank centrality

With the Katz centrality, a node shares its centrality whatever the number of its neighbors. It may be undesirable

when the graph exhibits a large vertex degree variation. The PageRank centrality has been proposed to attenuate

this phenomenon [10]. Here, the centrality shared by a node to its neighbors is divided by its degree. Then nodes that

point to many others pass only a small amount of centrality on to each of those others, even if their own centrality

is high. The PageRank centrality is the solution of the system

(I − α?AD−1)s = β (16)

where, as in the Katz centrality, α? ∈ [0, 1[, β ∈ Rnv is the intrinsic part of the centrality. The diagonal matrix D is

the diagonal matrix degree. By construction, the graph is free of any isolated vertex so all diagonal terms are strictly

positive. The intrinsic personality vector β is defined as in Section 5.2.4. In contrast with the Katz centrality, the

computation of the largest eigenvalue of A is no more needed. The system (16) is however unsymmetric, it is solved

with a stabilized BiCG.

5.2.6 Cross-eigenvector

Most of the previous approaches make use of the adjacency matrix. An alternative method using the Laplacian matrix

has been proposed in [21]. The score vector called Cross-eigenvector requires the computation of the eigenvectors

associated with the smallest eigenvalues of the Laplacian matrix. A comparison with the Eigenvector centrality for

an homogeneous Laplace problem has been provided in [21], showing the good performance of the Cross-eigenvector.

However, for three dimensional problems, the four smallest eigenvalues of the Laplacian matrix are needed. Computing

the smallest eigenvalues is a complex and costly task especially when the system is ill conditioned. This method has

not be considered further in this work.

5.3 Treatment of symmetric indefinite systems

Symmetric indefinite systems occurs in many computational science and engineering. In the domain of computational

mechanics, it naturally arises when studying problems involving mixed finite elements such as the Navier-Stokes

equation in fluid mechanics or in the analysis of almost incompressible material with three fields mixed elements

(see [7] and [45] Sections 2.6 and 5.5). For these problems, matrices are highly indefinite in the sense that they have

many eigenvalues of both signs. Moreover, the unknowns are linked to various physical quantities: pressure, velocity

in the former case and displacement, pressure, change of volume in the latter one. If neither specific row-column

scaling nor nondimensionalization are performed, matrices are usually ill conditioned. Typically, the stiffness operator
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obtained with three field mixed elements exhibits small negative eigenvalues. The presence of these small negative

eigenvalues makes the computation of generalized inverse arduous. Indeed, without any specific treatment the Schur

complement Scc also possesses eigenvalues of both signs. The distinction between singular values associated with

small negative eigenvalues due to the mixed form and small positive eigenvalues induced by the presence of rigid

body motions becomes unclear.

Here, the addition theorem for Schur complements of Hermitian matrices (see [44] Chapter 1), also called

Haynsworth inertia additivity formula, is an useful tool. The inertia of a Hermitian matrix A (symmetric in our

case) is defined as the ordered triplet

In(A) = (p(A), q(A), n(A))

whose components are respectively the numbers of positive, negative, and zero eigenvalues of A. Still considering a

splitting of the form (8) and assuming Acc nonsingular, the addition theorem for Schur complements of Hermitian

matrices states that

In(A) = In(Acc) + In(Scc).

Thus, to avoid Scc having negative eigenvalues, it suffices to force them to be in the spectrum of (Acc). In the

context of mixed finite element, after the selection of fixing-nodes, a simple way to proceed is to remove all unknowns

associated with mixed variables from the set c. The benefit of this approach is exemplified in Section 7.

6 Numerical examples

In [11], the quality of a generalized inverse is evaluated from the violation of the Moore-Penrose conditions (2)-(5),

and regarding the effective condition number of A+ and the condition number of Acc. The effective condition number

is defined as

cond(A) = λ1

λr

where λ1 is the largest eigenvalue and λr is the smallest not null eigenvalue. The classical condition number of an

invertible matrix M is denoted cond(M). In this study, we limit our attention to the these two condition numbers.

Again, to compute the small eigenvalues of ill-conditioned matrices is a complex task. These condition numbers are

only computed for the academic examples in Section 6.1 and Section 6.2. For large scale examples, the performance

of the method is analyzed with respect to the validity range of the threshold involved in the defect computation of

the Schur complement Scc.
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Remarks on the implementation and hardware computing resources All strategies have been implemented

in the AMPFETI module of the finite element suite Z-set 3. The MUMPS4 solver (version 5.3.5) [1] is used in

association with the BLAS library provided by Intel 17.0.4 MKL, for partial factorization and associated solves

(reduction and expansion phases). Eigen library5 (version 3.3.8) is used for dense linear algebra, for the Singular

value decomposition of the Schur complement and for all iterative solvers involved in the computation of centrality

measures. The eigenvalues computation needed for the evaluation of condition numbers make use of the ARPACK

library through the Python module scipy.sparse.linalg and the Z-set Python interface.

6.1 Academic thermal 2D examples

This section provides a small academic examples in order to understand the behavior of the various centrality measures

proposed. The problem considered is the steady-state heat equation on the unit square without any boundary Dirichlet

condition ∆u = 0 (see Figure 4).

The square is made of two different materials with thermal conductivity κr (resp. κb) for the red (resp. blue) area.

Three conductivity ratio will be considered κr/κb ∈ (10−2, 1, 102). The unit square is discretized with a 20× 20 Q1

finite elements. The conduction operator arising from the finite element discretization is singular, its nullspace is the

constant vector R = 1nv
. It corresponds to floating sudomains when the FETI method is used to solve steady-state

thermal problems. We use only one fixing-node since the defect is 1.

Figure 4: Academic thermal example, the unit square is made of two different material with conductivity κr and κb.

6.1.1 Comparison of all methods

For Katz and PageRank centralities which depend on the parameter α, nine values are tested

(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). Only the best results, with respect to the value of α, are displayed. The best
3http://www.zset-software.com/
4http://mumps.enseeiht.fr/
5http://eigen.tuxfamily.org/

http://www.zset-software.com/
http://mumps.enseeiht.fr/
http://eigen.tuxfamily.org/ 
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result is marked with an exponent �b. The influence of the parameter α is discussed in Section 6.1.2. The lumped

weight is used in the section.

The results of all methods are shown in Table 1. To visualize the behavior of centrality measures, the normalized

score of the Weighted Perron, Katz and PageRank centralities are plotted in Figure 5, 6 and 7.

cond(A) 2.04e+03
Strategy cond(Acc) cond(A+)
Mumps 2.04e+03 1.76e+03
Gravity center 1.10e+03 1.10e+03
Perron 1.10e+03 1.10e+03
Katzb 1.10e+03 1.10e+03
PageRankb 2.64e+03 2.48e+03
Weighted Perron 1.10e+03 1.10e+03
Weighted Katzb 1.10e+03 1.11e+03
Weighted PageRankb 1.25e+03 1.30e+03

Results for κr/κb = 100

cond(A) 1.82e+06
Strategy cond(Acc) cond(A+)
Mumps 1.82e+06 1.56e+06
Gravity center 9.47e+05 9.56e+05
Perron 9.47e+05 9.56e+05
Katzb 9.47e+05 9.56e+05
PageRankb 6.38e+05 6.38e+05
Weighted Perron 6.37e+05 6.37e+05
Weighted Katzb 6.37e+05 6.37e+05
Weighted PageRankb 3.60e+05 3.61e+05

Results for κr/κb = 10−2

cond(A) 4.35e+03
Strategy cond(Acc) cond(A+)
Mumps 4.35e+03 4.30e+03
Gravity center 4.21e+03 4.22e+03
Perron 4.21e+03 4.22e+03
Katzb 4.21e+03 4.22e+03
PageRankb 4.56e+03 4.85e+03
Weighted Perron 4.21e+03 4.22e+03
Weighted Katzb 4.20e+03 4.21e+03
Weighted PageRankb 4.21e+03 4.22e+03

Results for κr/κb = 102

Table 1: Academic thermal example: comparison of all methods

When κr/κb = 1, the square is homogeneous and the best fixing-node is the central one which coincides with the

gravity center of all mesh nodes. This central node is picked up by almost all methods. Logically, the use of the

weighted graph is not useful for this homogeneous problem. An interesting point is that all PageRank variants do

not select to the optimal fixing-node here. As illustrated in Figure 5, all interior nodes have the same PageRank

centrality and the position of the node has little impact. A similar behavior is seen on the Katz centrality but the

map is slightly smoother. For Katz (with α = 0.5), the transition between low score frontier nodes to high score

interior nodes involves two band of elements. This transition depends on the parameter α and when α→ 1, the Katz

centrality becomes similar to the Eigenvector centrality.

When κr/κb = 102, the red central part of the square is more conductive than the blue one. The central node

remains a good fixing-node candidate and the results are similar to the homogeneous case. As shown in Figure 6,
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PageRank centrality (α = 0.5)

Figure 5: Academic thermal example: centrality map obtained with lumped weights with κr = κb.

the Eigenvector centrality leads to a small area with high centrality while Katz and PageRank precisely detect the

high conductivity areas.

x

y

z

Eigenvector centrality
x

y

z

Katz centrality (α = 0.5)
x

y

z

PageRank centrality (α = 0.5)

Figure 6: Academic thermal example: centrality map obtained with lumped weights with κr/κb = 102.

The case κr/κb = 10−2 is more interesting. Here, the red central part of the square is less conductive than the

blue one and the central node of the square is not a good fixing-node candidate. Without the use of the weighted

graph, Perron, Katz and Gravity center methods still select the central node of the square. By taking into account

this heterogeneity, all weighted methods provide a better fixing-node and decrease the condition numbers of both the

generalized inverse and of the inner block. Due to the simplicity of the test case, the improvement of the condition

number remains limited but the mechanism remains promising. Again, Figure 7 plots the centrality score. Both Katz

and PageRank centralities detect the two high conductivity areas while the Eigenvector centrality only got the right

lower one.
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Figure 7: Academic thermal example: centrality map obtained with lumped weights with κr/κb = 10−2.

6.1.2 Influence of the parameter α

The influence of the parameter α on the condition number are shown in Table 2 for the Katz centrality and in Table 3

and for the PageRank one. As can be seen in Table 2, the damping parameter α has little impact on the fixing-

node selected by the Katz centrality. All α ≥ 0.5 provide the same fixing-node. Regarding the PageRank centrality

in Table 2, results are also clustered but no clear tendency can be drawn. This litte sensitivity may be due to the

intrinsic part of the centrality β which is defined as the diagonal value of the matrix. It may also be reduced by the

simplicity of this test case. This little sensitivity is rather beneficial since a fine tuning of the parameter alpha is not

necessary.

cond(A) 1.42e+05
α cond(Acc) cond(A+)
0.1 6.37e+05 6.37e+05
0.2 6.37e+05 6.37e+05
0.3 6.37e+05 6.37e+05
0.4 6.37e+05 6.37e+05
0.5 6.37e+05 6.37e+05
0.6 6.37e+05 6.37e+05
0.7 6.37e+05 6.37e+05
0.8 6.37e+05 6.37e+05
0.9 6.37e+05 6.37e+05

Results for κr/κb = 10−2

cond(A) 1.87e+02
α cond(Acc) cond(A+)
0.1 1.25e+03 1.30e+03
0.2 1.30e+03 1.37e+03
0.3 1.25e+03 1.30e+03
0.4 1.12e+03 1.13e+03
0.5 1.10e+03 1.11e+03
0.6 1.10e+03 1.10e+03
0.7 1.10e+03 1.10e+03
0.8 1.10e+03 1.10e+03
0.9 1.10e+03 1.10e+03

Results for κr/κb = 100

cond(A) 3.88e+03
α cond(Acc) cond(A+)
0.1 4.20e+03 4.21e+03
0.2 4.26e+03 4.27e+03
0.3 4.24e+03 4.26e+03
0.4 4.24e+03 4.26e+03
0.5 4.24e+03 4.26e+03
0.6 4.24e+03 4.26e+03
0.7 4.24e+03 4.26e+03
0.8 4.23e+03 4.24e+03
0.9 4.23e+03 4.24e+03

Results for κr/κb = 102

Table 2: Academic thermal example: influence of the parameter α for Weighted Katz

6.2 Solid benchmark

This Section provides a 3D elasto-static example. It is a generalization of the solid benchmark proposed in [11]. First

the unit cube is discretized using a 6 × 6 × 6 regular grid made with Q1 elements (c3d8). Then this unit cube is
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cond(A) 1.42e+05
α cond(Acc) cond(A+)
0.1 3.60e+05 3.61e+05
0.2 3.61e+05 3.61e+05
0.3 3.61e+05 3.61e+05
0.4 3.63e+05 3.64e+05
0.5 3.60e+05 3.61e+05
0.6 3.62e+05 3.62e+05
0.7 3.62e+05 3.63e+05
0.8 3.61e+05 3.61e+05
0.9 3.61e+05 3.61e+05

Results for κr/κb = 10−2

cond(A) 1.87e+02
α cond(Acc) cond(A+)
0.1 1.37e+03 1.45e+03
0.2 1.30e+03 1.37e+03
0.3 1.89e+03 3.14e+03
0.4 1.89e+03 2.54e+03
0.5 1.69e+03 1.51e+03
0.6 1.25e+03 1.30e+03
0.7 1.78e+03 1.92e+03
0.8 1.69e+03 1.51e+03
0.9 1.81e+03 2.33e+03

Results for κr/κb = 100

cond(A) 3.88e+03
α cond(Acc) cond(A+)
0.1 4.56e+03 4.85e+03
0.2 4.27e+03 4.29e+03
0.3 4.56e+03 4.85e+03
0.4 4.21e+03 4.22e+03
0.5 4.56e+03 4.85e+03
0.6 4.56e+03 4.85e+03
0.7 4.91e+03 5.10e+03
0.8 4.56e+03 4.85e+03
0.9 4.56e+03 4.85e+03

Results for κr/κb = 102

Table 3: Academic thermal example: influence of the parameter α for Weighted PageRank

deformed using the map f

f :

 [0, 1]3 → R3

(x, y, z) 7→
(
(x− 1

2 )× (1− 0.6
√
z), (y − 1

2 )× (1− 0.6
√
z),
√
z
)

.

As shown in Figure 8, the unit cube becomes a truncated pyramid. This truncated pyramid is made of two different

materials. Both layers share the same Poisson’s coefficient 0.3 but the Young’s modulus alternates between a soft

value Er and a stiff one Eb. Three values of heterogeneity ratio are considered Eb/Er ∈ {1, 102, 103}. The truncated

pyramid is totally floating, the defect of the associated stiffness matrix is 6. Only four condensation nodes are used

in this benchmark, leading to a Schur complement Scc of size 12× 12.

xy

z

xy

z

Figure 8: Solid benchmark: the solid is made of two different material with Young modulus Er and Eb. Inspired by [11]

Again, all proposed methods are compared and results are gathered in Table 4. For Katz and PageRank centralities

which depend on the parameter α, nine values are tested (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). Only the best and
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worst results, with respect to the value of α, are displayed. The best result (resp. worst) is marked with an exponent

�b (resp. �w).

As shown in Table 4, weighted variants perform better than unweighted ones. For the homogeneous case case

(Eb = Er), all results are clustered. For heterogeneous problem, the weighted variants lead to a reduction of the

condition number of a factor 102 in comparison with Mumps. The condition number is approximately reduced by a

factor 10 if we compare with gravity center method or unweighted centralities. The sensitivity to the parameter α is

again reduced since best and worst results are similar.

cond(A) 7.82e+04
Strategy cond(Acc) cond(A+)
Mumps 7.82e+04 7.79e+04
Gravity center 3.81e+03 3.08e+03
Perron 4.52e+03 4.48e+03
Katzb 4.52e+03 4.48e+03
Katzw 4.52e+03 4.48e+03
PageRankb 4.31e+03 4.22e+03
PageRankw 4.60e+04 4.35e+04
Weighted Perron 2.86e+03 2.67e+03
Weighted Katzb 2.86e+03 2.67e+03
Weighted Katzw 4.58e+03 4.49e+03
Weighted PageRankb 5.64e+03 5.50e+03
Weighted PageRankw 6.74e+03 6.68e+03

Results for Eb = Er

cond(A) 6.52e+06
Strategy cond(Acc) cond(A+)
Mumps 6.52e+06 5.96e+06
Gravity center 1.52e+05 5.05e+04
Perron 2.73e+05 2.49e+05
Katzb 2.73e+05 2.49e+05
Katzw 2.73e+05 2.49e+05
PageRankb 9.17e+04 6.39e+04
PageRankw 3.19e+05 2.97e+05
Weighted Perron 3.46e+04 3.09e+04
Weighted Katzb 3.46e+04 3.09e+04
Weighted Katzw 3.96e+04 3.14e+04
Weighted PageRankb 5.16e+04 3.27e+04
Weighted PageRankw 8.70e+04 4.76e+04

Results for Eb/Er = 102

cond(A) 6.56e+07
Strategy cond(Acc) cond(A+)
Mumps 6.56e+07 5.93e+07
Gravity center 1.49e+06 4.80e+05
Perron 2.70e+06 2.44e+06
Katzb 2.70e+06 2.44e+06
Katzw 2.70e+06 2.44e+06
PageRankb 8.82e+05 5.47e+05
PageRankw 2.49e+06 2.21e+06
Weighted Perron 3.42e+05 2.94e+05
Weighted Katzb 3.42e+05 2.94e+05
Weighted Katzw 3.88e+05 2.92e+05
Weighted PageRankb 4.99e+05 2.88e+05
Weighted PageRankw 8.31e+05 3.99e+05

Results for Eb/Er = 103

Table 4: Solid benchmark: comparison of all methods. For Katz and PageRank only the best and worst results are
shown.
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6.3 Robustness of the kernel detection process on a simplified laminated composite

All kernel detection methods rely on thresholds which may be automatically chosen or provided by the user. The

larger is the admissible range, leading to a correct estimation of the kernel dimension, the more robust is the method.

As pointed out in [15], the admissible range becomes narrow when considering ill conditioned systems. It is possible

to put in difficulty most advanced direct solvers such as MUMPS with pathological test cases. In this section, we

provide such a test case and demonstrate the robustness of proposed methods.

A slender heterogeneous (3D) plate with aspect ratio 20 × 10 × 1 discretized into 100 × 50 × 10 regular twenty-

node brick elements (c3d20) (see Figure 9). The surface x = 0 is clamped and a pressure is prescribed at the surface

x = 20. This plate is made of five thin linear elastic layers (see Fig. 9a). All layers share the same Poisson’s coefficient

0.3 but the Young’s modulus alternates between a soft value Er and a stiff one Eb. This case aims at representing

a laminated composite material made out of a soft material reinforced by a stiffer one. Six values of heterogeneity

ratio are considered Eb/Er ∈ {102, 103, 104, 105, 106}.

Soft material is in red, stiff material in blue. Automatic decomposition with 16 subdomains.

Figure 9: Heterogeneous composite.

In order to solve the problem with AMPFETI [4], the mesh is split into 16 domains (see Figure 9b) composed

on average of 3100 elements and contains 45000 degrees of freedom. With this decomposition, there is only one

subdomain in the thickness. Fourteen subdomains are totally floating, the defect of the corresponding local stiffness

operators is six. Also, stiffness operators are ill conditioned due to the bad subdomain aspect ratio and the jump of

material coefficient.
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6.3.1 Kernel detection with MUMPS 5.3.5

There are two user defined parameters, CNTL(1) and CNTL(3), for the detection of the kernel dimension in MUMPS

5.3.5. The control parameter CNTL(1) is a relative threshold for numerical pivoting. The default value CNTL(1)

= 1e-2 is used in this work. The second control parameter CNTL(3) is a threshold to detect null pivots. According

to the documentation, a pivot is considered to be null if the infinite norm of its row/column is smaller than a

threshold thres. The default value of CNTL(3) = 0 provides an automatic process to determines this threshold,

thres = ε × 10−5 × ||Apre|| where Apre is the preprocessed matrix to be factorized and ε is machine precision. A

positive value of CNTL(3) leads to the user defined threshold thres = CNTL(3)× ||Apre||.

The result of the kernel detection procedure for totally unrestrained subdomain is shown in Table 5. The exact

kernel dimension is 6. Whatever the heterogeneity, the automatic threshold does not detect the right kernel size. With

a user defined threshold, it is possible to recover the right kernel one. However, the admissible range for CNTL(3)

decreases when considering high heterogeneity. The validity range for the case Eb/Er = 1e+6 is less than two decades.

Eb/Er threshold for null pivots by CNTL(3)
1e-03 1e-04 1e-05 1e-06 1e-07 1e-08 automatic

1e+02 6 6 6 6 6 6 0
1e+03 6 6 6 6 6 5 0
1e+04 6 6 6 6 4 3 0
1e+05 7 6 6 5 5 3 0
1e+06 9 6 5 4 3 3 0

Table 5: Laminated composite: dependency of kernel detection on a parameter in MUMPS. It corresponds to the red
subdomain in Figure 9.

6.3.2 Graph based methods

The graph based kernel detection methods are applied to the same totally unrestrained subdomain. In order to

highlight the robustness of the proposed methods, the singular values of the Schur complement selected by the Katz

and Page Rank are shown in Figure 10. The validity range of the threshold ε for the Relative criterion (11) and Jump

criterion (12) can be obtained with this graph. The lumped weight is used for both methods and three damping

values are considered α ∈ (0.3, 0.5, 0.9). Only four condensation nodes are used in this benchmark, leading to a Schur

complement Scc of size 12× 12. As shown in Figure 10, whatever the heterogeneity ratio Eb/Er, the singular values

associated with the six rigid body motions are easily recognizable. For all cases, the admissible range for the selection

threshold covers at least five decades.
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1 2 3 4 5 6 7 8 9 10 11 12
Singular value index i

10−13

10−10

10−7

10−4

10−1

S
in

gu
la

r
va

lu
e

ra
ti

o
σ
i/
σ
m
a
x

Eb/Er = 1e+00

Eb/Er = 1e+02

Eb/Er = 1e+03

Eb/Er = 1e+04

Eb/Er = 1e+05

Eb/Er = 1e+06

Katz with damping parameter α = 0.5.

1 2 3 4 5 6 7 8 9 10 11 12
Singular value index i

10−12

10−9

10−6

10−3

100

S
in

gu
la

r
va

lu
e

ra
ti

o
σ
i/
σ
m
a
x

Eb/Er = 1e+00

Eb/Er = 1e+02

Eb/Er = 1e+03

Eb/Er = 1e+04

Eb/Er = 1e+05

Eb/Er = 1e+06

Page Rank with damping parameter α = 0.5.

1 2 3 4 5 6 7 8 9 10 11 12
Singular value index i

10−15

10−12

10−9

10−6

10−3

100

S
in

gu
la

r
va

lu
e

ra
ti

o
σ
i/
σ
m
a
x

Eb/Er = 1e+00

Eb/Er = 1e+02

Eb/Er = 1e+03

Eb/Er = 1e+04

Eb/Er = 1e+05

Eb/Er = 1e+06

Katz with damping parameter α = 0.9.

1 2 3 4 5 6 7 8 9 10 11 12
Singular value index i

10−12

10−9

10−6

10−3

100

S
in

gu
la

r
va

lu
e

ra
ti

o
σ
i/
σ
m
a
x

Eb/Er = 1e+00

Eb/Er = 1e+02

Eb/Er = 1e+03

Eb/Er = 1e+04

Eb/Er = 1e+05

Eb/Er = 1e+06

Page Rank with damping parameter α = 0.9.

Figure 10: Laminated composite: singular values of the Schur complement Scc for Katz and Page Rank. Four con-
densation nodes are used with lumped weight.
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7 Application to engineering problems: numerical homogenization of

the mechanical behavior of solid propellants

Solid propellants are energetic materials composed of an organic matrix and numerous metallic inclusions. This type

of material brings several space scales into play because of the large dispersion of the particles sizes. The numerical

homogenization of this type of material involves the simulation of a Representative Volume Element (RVE) with a

large number of unknowns. Iterative solvers are essential whereas they are put to the test by the condition number

of the linear systems.

Indeed, the material is highly heterogeneous, the jump in Young modulus between the matrix and the metallic

inclusions is approximately 105. Because of the high density of inclusions in the RVE, heterogeneity is very frequently

misplaced with respect to the domain decomposition interface. Also, elements of the mesh of the matrix that are

located between two close inclusions often exhibit poor quality factors which degrade even more the condition number

of the linear system to be solved. Finally, the organic matrix is almost incompressible. If a linear elastic behavior

is assumed for the matrix, the Poisson coefficient is 0.499 such that mixed pressure–displacement–volume variation

finite element needs to be used (see Section 2.6 and Section 5.5 in [45]). For simplicity, the geometrically linearized

problem is considered. This assumption has little impact on the conclusion of the study. In the case of the finite

strain model, the kernel detection and generalized inverse computation are applied to the tangent system.

Domain decomposition methods, such as the FETI method and its derivatives do not escape from these difficulties.

The interface iterative solver needs some special care, this is a typical case where AMPFETI is needed. A robust

process to detect local operators nullspaces and to compute generalized inverse is also essential. Figure 11a shows

results obtained in a previous work [5]. The finite element mesh and the domain decomposition for one distribution of

particles. The finite element mesh contains 5,494,528 quadratic tetrahedrons and the global system has 22 millions of

degrees of freedom; 448 subdomains are used for the partitioning. The RVE is submitted to hydrostatic compression.

The Von Mises stress field is shown in 11c for a hydrostatic compression load. The focus is carried on the two typical

subdomains shown in Figure 12. The first one is in the bulk of the RVE. This subdomain is totally floating and

possesses six rigid body motions. The second one is close to a boundary. Under hydrostatic compression, only the

normal displacement of the external surface of the RVE is constrained. So, this subdomain is partially constrained

and posses only three rigid body motions.

7.0.1 Short recall of three field mixed elements

This section quickly recall the theory of three field mixed elements, more details can be found for example in

Section 2.6 and Section 5.5 in [45]. The treatment of nearly incompressible materials is considered by splitting the
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Finite element mesh of the RVE, the red
and yellow colors correspond to two dif-
ferent types of inclusions.

Domain decomposition in 448 subdo-
mains.

Von Mises stress field, the white color
characterises low stresses area.

Figure 11: Numerical homogenization of the mechanical behavior of solid propellants.

Typical aspect of a subdomain in the bulk
of the RVE. This subdomain is totally un-
restrained.

Typical aspect of a subdomain close to
a boundary. This subdomain is partially
constrained by the boundary condition
(hydrostatic compression).

Figure 12: Solid propellants: typical aspect of subdomain meshes.

stress and strain into their deviatoric and sperical parts. The linearized strain ε is expressed in the mixed form

ε = Idev : ∇su+ 1
3θ1 (17)

where u is the displacement and θ is the volume variation. Classically, ∇su is the symmetrized displacement gradient

and 1 is the second order identify tensor. The fourth-order tensor Idev is a projection operator mapping a symmetric
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second-order tensor into its deviatoric part, such that Idev : ∇su = ∇su− 1
3 trace(∇su)1. Similarly the fourth-order

tensor Ivol is defined, it maps a symmetric second-order tensor into its volumetric part, such that Ivol : ∇su =

1
3 trace(∇su)1. The stresses are also expressed in a mixed form as

σ = Idev : σ̄ + p1 (18)

where p is the pressure and σ̄ is the stresses deduced from the constitutive model σ̄ = σ(ε). Assuming quasi-static

problem, the weak form is given by

∫
Ω

δ∇su : σ dΩ =
∫
Ω

δu · b dΩ +
∫
∂Ω

δu · t dΓ

∫
Ω

δp (Ivol : ∇su− θ) dΩ = 0

∫
Ω

δθ (Ivol : σ̄ − p) dΩ = 0

(19)

where b and t are body and traction forces, respectively. The virtual quantities are denoted δu, δp and δθ. The finite

element approximations are given by u ≈Nu {u}, p ≈Np {p} and θ ≈Nθ {θ}. The same approximations is chosen

for the virtual quantities. The Voigt notation for the strain and stresses tensors are denoted, {ε} and {σ}. With the

notationm = {1 1 1 0 0 0}>, the matrix form of the deviatoric project is Id = I− 1
3mm

> . The strain and stressses

are given by
{ε} = IdB {u}+ 1

3mNθ {θ}

{σ} = Id {σ̄}+mNp {p}
(20)

where B is the standard strain-displacement matrix. In order to obtain the tangent system, the constitutive equation

is linearized

{dσ̄} = DT {dε} (21)

where {dε} is the mixed strain variation and DT is the tangent modulus. Finally, the tangent system is obtained

Kupθ =


Kuu Kuθ Kup

Kθu Kθθ −Kθp

Kpu −Kpθ 0

 (22)
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with

Kuu =
∫
Ω

B>D̄11BdΩ

Kθθ =
∫
Ω

N>θ D̄22NθdΩ

Kθp =
∫
Ω

N>θ NpdΩ = K>pθ

Kpu =
∫
Ω

N>p m
>BdΩ = K>up

Kθu =
∫
Ω

N>θ D̄21BdΩ = K>uθ

(23)

In (23), the modified constitutive tangent matrix are used to be expressed with respect to du and dθ

D̄11 = IdDT Id

D̄22 = (1
3m

>)DT (1
3m)

D̄12 = IdDT (1
3m)

D̄21 = (1
3m

>)DT Id

(24)

The choice of the interpolation for u, p, θ is constrained by the LBB-conditions [7]. In the following, we consider only

two types of tetrahedral elements, the first one, denoted P2P0P0 uses a continuous quadratic interpolation for u

and piecewise constant interpolation for p and θ. The second one, denoted P2P1P1 emploies a continuous quadratic

interpolation for u and linear continuous interpolation for p and θ.

7.0.2 Results with P2P0P0 elements

With P2P0P0 elements, the pressure and volume variation are taken locally in each element and since Np = Nθ,

Kpθ is symmetric positve definite. Both p and θ can be eliminated by static condensation. The modified stiffness

matrix K̃u is symmetric positive definite but remains ill conditioned.

K̃u =
(
Kuu −KuθK

−1
θθ Kθu

)
+
(
Kup +KuθK

−1
θθ Kθp

) (
KpθK

−1
θθ Kθp

)−1 (
Kpu +KpθK

−1
θθ Kθu

)
(25)

The graph based kernel detection methods are applied to the subdomains shown in Figure 12. The lumped weight

is used for both methods and three damping values are considered α ∈ (0.3, 0.5, 0.9). Only four condensation nodes

are used in this benchmark, leading to Schur complements Scc of size 12 × 12. The singular values of the Schur

complement selected by the weighted Katz and Page Rank strategies are shown in Figure 13. For both methods and

whatever the damping values considered, the six null singular values are easily recognizable for the totally floating

subdomain. For the partially constrained subdomain, a uniform normal displacement is prescribed on the external

surface of the RVE. Three rigid body motions are possible corresponding to a planar motion (two translations and
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one rotation in the plane of the external surface). The three null singular values corresponding to these three rigid

body motions are also well clustered.
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Figure 13: Solid propellant with P2P0P0 elements : singular values of the Schur complement Scc for Katz and Page
Rank. Four condensation nodes are used with lumped weight.
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7.0.3 Results with P2P1P1 elements

Here, the displacement is interpolated with quadratic shape functions while the pressure and volumic change are

continuous and interpolated with linear shape functions. This approximation leads to a symmetric highly indefinite

stiffness operator. For such problems, the difference between singular values associated to null eigenvalues and small

negative ones becomes unclear without specific strategy. In order to highlight the efficiency of the approach presented

in Section 5.3 we compare the singular values of the Schur complement with and without filtering mixed degrees of

freedom from the condensation variables.

The graph based kernel detection methods are applied to the subdomains shown in Figure 12. The lumped weight

is used for both methods and three damping values are considered α ∈ (0.3, 0.5, 0.9). Only four condensation nodes

are used in this benchmark, leading to Schur complements Scc of size 20 × 20 when mixed degrees of freedom are

not filtered out, and 12× 12 otherwise.

The singular values of the Schur complement selected by the Katz and Page Rank strategies applied to the floating

subdomain are shown in Figure 14. Please note that in order to know in advance the inertia of the Schur complement,

both the matrix and the inclusions are discretized with P2P1P1 elements. Pressure and volume discontinuities at

the material interface are allowed. It is not a limitation of the method but it facilitates the analysis of the singular

values. The inertia of the Schur complement is known a priori thanks to the Haynsworth additivity formula. When

mixed degrees of freedom are not filtered out, 6 null eigenvalues and 4 (small) negative ones are expected. For both

selection strategies, the detection process tends to identify 10 null singular values. The difference between singular

values associated to null eigenvalues and small negative ones is totally blurred.

On the contrary, when mixed degrees of freedom are filtered out from the condensation variables, the positivity of

the Schur complement is enforced and a clear distinction of null singular values is recovered.

The singular values of the Schur complement selected by the Katz and Page Rank strategies applied to the partially

constrained subdomain are shown in Figure 15. Due to the boundary condition, 3 null eigenvalues are expected.

Again, the filtering process of mixed degrees of freedom leads to a clear distinction of null singular values.
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Figure 14: Solid propellant with P2P1P1 elements: singular values of the Schur complement Scc for Katz and Page
Rank. Four condensation nodes are used with lumped weight.
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Katz method for a partially constrained subdomain.
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Figure 15: Solid propellant with P2P1P1 elements: singular values of the Schur complement Scc for Katz and Page
Rank. Four condensation nodes are used with lumped weight.
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8 Conclusions

This article has introduced a robust and affordable method to compute nullspace and generalized inverse of finite

element operators involved in dual domain decomposition methods. It is a crucial point of the FETI methods since

a misdetection of these kernels leads inevitably to the divergence of the iterative solver.

The methodology follows the fixing-node framework proposed in [11], it relies on the operator partial factorization

and on the analysis of a well chosen Schur complement. The selection process of fixing-nodes has been significantly

improved to tackle ill conditioned problems. It makes use of graph centrality measures and consider weighted graphs

to automatically pick good fixing nodes candidates for heterogeneous problems. Eigen vector, Katz and Page Rank

centralities are evaluated and compared with existing approaches. An extension to deal with symmetric indefinite

systems arising from mixed finite elements is also presented.

The approach has been assessed on three academic but ill conditioned examples. A comparison with the MUMPS

direct solver has been provided showing the good performance of the graph-based strategies. An industrial application

is presented, the numerical homogenization of solid propellant. The efficiency of the specific treatment of symmetric

indefinite systems has been shown on this application.

Rather specific and often hidden under the hood, this robust process to compute nullspace and generalized inverse

of floating subdomains is one of the key component to solve ill-conditioned problems with AMPFETI. It was used in

all industrial applications shown in our previous published work, woven composite [4], non associated plasticity [3]

and high fidelity multiperforated aircraft combustion chamber involving thermomechanical loading and complex

elastoplastic material [5].

We believe that one perspective of this work is to adapt it, to propose a simple, cheap, but efficient method to

improve the selection of the FETI-DP corner nodes. Indeed, all subdomains could build a weighted graph associated

with the sub-mesh made of few layers of elements touching the interface. The two step process detailed in Section 4,

could be used to pick corner-nodes associated with stiff regions of the interface.
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