A note on n-Jordan homomorphisms

Mohammed El Azhari

To cite this version:

Mohammed El Azhari. A note on n-Jordan homomorphisms. 2023. hal-03660504v2

HAL Id: hal-03660504 https://hal.science/hal-03660504v2

Preprint submitted on 23 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A note on n-Jordan homomorphisms

M. El Azhari

Abstract

By using a variation of a theorem on n-Jordan homomorphisms due to Herstein, we deduce the following G. An's result: Let A and B be two rings where A has a unit and $\operatorname{char}(B)>n$. If every Jordan homomorphism from A into B is a homomorphism (anti-homomorphism), then every n-Jordan homomorphism from A into B is an n-homomorphism (anti- n-homomorphism).

Keywords: Jordan homomorphism, homomorphism, n-Jordan homomorphism, n-homomorphism.

1. Preliminaries

Let A, B be two rings and $n \geqslant 2$ an integer. An additive map $h: A \rightarrow B$ is called an n-Jordan homomorphism if $h\left(x^{n}\right)=h(x)^{n}$ for all $x \in A$. Also, an additive map $h: A \rightarrow B$ is called an n-homomorphism or an anti- n-homomorphism if $h\left(\prod_{i=1}^{n} x_{i}\right)=\prod_{i=1}^{n} h\left(x_{i}\right)$ or $h\left(\prod_{i=1}^{n} x_{i}\right)=\prod_{i=0}^{n-1} h\left(x_{n-i}\right)$, respectively, for all $x_{1}, \ldots, x_{n} \in A$.
In the usual sense, a 2-Jordan homomorphism is a Jordan homomorphism, a 2-homomorphism is a homomorphism and an anti-2-homomorphism is an antihomomorphism. It is obvious that n-homomorphisms are n-Jordan homomorphisms. Conversely, under certain conditions, n-Jordan homomorphisms are n-homomorphisms.
We say that a ring A is of characteristic greater than $n(\operatorname{char}(B)>n)$ if $n!x=0$ implies $x=0$ for all $x \in A$.

2. Results

Lemma 2.1 [4, Lemma 1]. Let A, B be two rings, $n \geqslant 2$ be an integer and $f: A^{n} \rightarrow B$ be a multi-additive map such that $f(x, x, \ldots, x)=0$ for all x in A. Then $\sum_{\sigma \in S_{n}} f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)=0$ for all $x_{1}, \ldots, x_{n} \in A$, where S_{n} is the set of all permutations on $\{1, \ldots, n\}$.

By using Lemma 2.1, we have the following lemma:
Lemma 2.2. Let A, B be two rings, $n \geqslant 2$ be an integer and $h: A \rightarrow B$ be an n-Jordan homomorphism. Then
$\sum_{\sigma \in S_{n}}\left(h\left(\prod_{i=1}^{n} x_{\sigma(i)}\right)-\prod_{i=1}^{n} h\left(x_{\sigma(i)}\right)\right)=0$ for all $x_{1}, \ldots, x_{n} \in A$, where S_{n} is the set of all permutations on $\{1, \ldots, n\}$.

Proof. Consider the map $f: A^{n} \rightarrow B$,
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=h\left(\prod_{i=1}^{n} x_{i}\right)-\prod_{i=1}^{n} h\left(x_{i}\right), f$ is clearly multi-additive and $f(x, x, \ldots, x)=h\left(x^{n}\right)-h(x)^{n}=0$ for all $x \in A$. By Lemma 2.1, $\sum_{\sigma \in S_{n}} f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)=\sum_{\sigma \in S_{n}}\left(h\left(\prod_{i=1}^{n} x_{\sigma(i)}\right)-\prod_{i=1}^{n} h\left(x_{\sigma(i)}\right)\right)=0$ for all $x_{1}, \ldots, x_{n} \in A$.

It was shown in [3] that if $n \geqslant 2, A, B$ are commutative rings, $\operatorname{char}(B)>n$ and $h: A \rightarrow B$ is an n-Jordan homomorphism, then h is an n-homomorphism. The same was also proved for algebras in [2] and [5]. Here we obtain this result as a consequence of Lemma 2.2.

Theorem 2.3. Let A, B be two commutative rings and $\operatorname{char}(B)>n$. Then every n-Jordan homomorphism from A into B is an n-homomorphism.

Proof. Let $h: A \rightarrow B$ be an n-Jordan homomorphism. By Lemma 2.2 and since A, B are commutative,
$\sum_{\sigma \in S_{n}}\left(h\left(\prod_{i=1}^{n} x_{\sigma(i)}\right)-\prod_{i=1}^{n} h\left(x_{\sigma(i)}\right)\right)=n!\left(h\left(\prod_{i=1}^{n} x_{i}\right)-\prod_{i=1}^{n} h\left(x_{i}\right)\right)=0$ for all $x_{1}, \ldots, x_{n} \in A$, hence h is an n-homomorphism since $\operatorname{char}(B)>n$.

Now we give the following variation of a theorem on n-Jordan homomorphisms due to Herstein [4, Theorem K].

Theorem 2.4. Let h be an n-Jordan homomorphism from a ring A into a ring B with $\operatorname{char}(B)>n$. Suppose further that A has a unit e, then $h=h(e) \tau$ where $h(e)$ is in the centralizer of $h(A)$ and τ is a Jordan homomorphism.

Proof. Since h is an n-Jordan homomorphism, $h(e)=h\left(e^{n}\right)=h(e)^{n}$. By Lemma 2.2 and putting $x_{1}=x, x_{2}=x_{3}=\cdots=x_{n}=e$, $n!h(x)=(n-1)!\left(h(e)^{n-1} h(x)+h(e)^{n-2} h(x) h(e)+\cdots+h(x) h(e)^{n-1}\right)$ and so $n h(x)=h(e)^{n-1} h(x)+h(e)^{n-2} h(x) h(e)+\cdots+h(x) h(e)^{n-1} \quad$ (1) since $\operatorname{char}(B)>n$.
By multiplying on the right by $f(e)$ both sides of the equality (1),
$n h(x) h(e)=h(e)^{n-1} h(x) h(e)+h(e)^{n-2} h(x) h(e)^{2}+\cdots+h(x) h(e) \quad(2)$
Also, by multiplying on the left by $f(e)$ both sides of the equality (1), $n h(e) h(x)=h(e) h(x)+h(e)^{n-1} h(x) h(e)+\cdots+h(e) h(x) h(e)^{n-1} \quad$ (3)
By (2) and (3), $(n-1) h(x) h(e)=(n-1) h(e) h(x)$ and consequently
$h(x) h(e)=h(e) h(x)$ (4) since $\operatorname{char}(B)>n$. Then $h(e)$ is in the centralizer of $h(A)$. By (1) and (4), $n h(x)=n h(e)^{n-1} h(x)$ and so $h(x)=h(e)^{n-1} h(x)$ (5) since $\operatorname{char}(B)>n$. By Lemma 2.2, (4) and putting $x_{1}=x_{2}=x, x_{3}=\cdots=$ $x_{n}=e, n!\left(h\left(x^{2}\right)-h(e)^{n-2} h(x)^{2}\right)=0$ and hence $h\left(x^{2}\right)=h(e)^{n-2} h(x)^{2}$ (6) since $\operatorname{char}(B)>n$. Consider the map $\tau: A \rightarrow B, \tau(x)=h(e)^{n-2} h(x), \tau$ is clearly additive. By (5), $h(x)=h(e)^{n-1} h(x)=h(e) h(e)^{n-2} h(x)=h(e) \tau(x)$ for all $x \in A$. By (6), $\tau\left(x^{2}\right)=h(e)^{n-2} h\left(x^{2}\right)=h(e)^{2(n-2)} h(x)^{2}=\left(h(e)^{(n-2)} h(x)\right)^{2}=\tau(x)^{2}$ for all $x \in A$, thus τ is a Jordan homomorphism.

As a consequence, we obtain the following result of G. An [1].

Corollary 2.5 [1, Theorem 2.4]. Let A and B be two rings where A has a unit e and $\operatorname{char}(B)>n$. If every Jordan homomorphism from A into B is a homomorphism (anti-homomorphism), then every n-Jordan homomorphism from A into B is an n-homomorphism (anti- n-homomorphism).

Proof. Let $h: A \rightarrow B$ be an n-Jordan homomorphism. By Theorem 2.4, $h=h(e) \tau$ where $h(e)$ is in the centralizer of $h(A)$ and τ is a Jordan homomorphism. If τ is a homomorphism,
$h\left(x_{1} x_{2} \cdots x_{n}\right)=h(e) \tau\left(x_{1} x_{2} \cdots x_{n}\right)$
$=h(e) \tau\left(x_{1}\right) \tau\left(x_{2}\right) \cdots \tau\left(x_{n}\right)$
$=h(e)^{n} \tau\left(x_{1}\right) \tau\left(x_{2}\right) \cdots \tau\left(x_{n}\right)$ since $h(e)=h\left(e^{n}\right)=h(e)^{n}$
$=h(e) \tau\left(x_{1}\right) h(e) \tau\left(x_{2}\right) \cdots h(e) \tau\left(x_{n}\right)$ since $h(e)$ commutes with each $\tau(x)$
$=h\left(x_{1}\right) h\left(x_{2}\right) \cdots h\left(x_{n}\right)$ for all $x_{1}, \ldots, x_{n} \in A$,
hence h is an n-homomorphism. Similarly, if τ is an anti-homomorphism, then h is an anti- n-homomorphism.

REFERENCES

[1] G. An, Characterizations of n-Jordan homomorphisms, Linear and Multilinear Algebra, 66(4)(2018), 671-680.
[2] A. Bodaghi and H. Inceboz, n-Jordan homomorphisms on commutative algebras, Acta Math. Univ. Comenianae, 87(1)(2018), 141-146.
[3] E. Gselmann, On approximate n-Jordan homomorphisms, Annales Mathematicae Silesianae, 28(2014), 47-58.
[4] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc., 81(2)(1956), 331-341.
[5] Yang-Hi Lee, Stability of n-Jordan homomorphisms from a normed algebra to a Banach algebra, Abstract and Applied Analysis, 2013(2013), Article ID 691025, 5 pages.

Ecole Normale Supérieure
Avenue Oued Akreuch
Takaddoum, BP 5118, Rabat
Morocco
E-mail: mohammed.elazhari@yahoo.fr

