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Partially supported by DGICYT-Spain, Proyectos PB89-0571 and PB91-0142 1 complex structures. By using these manifolds it is possible to construct new examples of higher dimension, but we do not know whether any of these examples admit complex or Kähler structures. The problem is that the above results depend strongly on Kodaira's classification of surfaces.

. But it is amazing that the manifolds M 6 (k) have complex structures.

(3) In [6] Benson and Gordon have constructed two examples of non-nilpotent solvable Lie groups of dimension 8, each one of those satisfies one of the conditions (iv) or (v), but not the another.

 to show that non-abelian compact nilmanifolds are non formal fails for the solvable case.

 proved that every compact even dimensional Lie group possesses a left invariant complex structure. But the same is not true for non-compact Lie groups. In fact, since the manifold M 4 (k) does not admit complex structures then the corresponding Lie group G 4 (k) does not admit left invariant complex structures (see Cordero, Fernández and Gray [8]). In the same paper they have constructed a 6-dimensional nilpotent Lie group with no left invariant complex structure. Since we do not know whether the manifold M 6 admits complex structures or not, we can not use this method to decide whether G admits a left invariant complex structure. But from direct computations we prove, in the last section, that G has no left invariant complex structures.

The authors wish express their thanks to the referee for many valuable suggestions. In particular, to point us the observation of which are the compact Kähler solvmanifolds of (complex) dimension 2, as well as, the conjecture of which are the compact solvmanifolds of (real) dimension 2n with a Kähler structure.

Introduction

There are strong topological conditions for a compact manifold M of dimension 2n to admit a Kähler structure [START_REF] Weil | Introduction a l' étude des variétés kähleriennes[END_REF][START_REF] Deligne | Real homotopy theory of Kähler manifolds[END_REF]:

(i) the Betti numbers b 2i (M ) are non-zero for 1 ≤ i ≤ n;

(ii) the Betti numbers b 2i-1 (M ) are even;

(iii) b i (M ) ≥ b i-2 (M ) for 1 ≤ i ≤ n;

(iv) the Hard Lefschetz Theorem holds for M ; (v) the minimal model of M is formal (so in particular all Massey products of M vanish).

Gordon and Benson have proved that if a compact nilmanifold admits a Kähler structure then it is a torus [START_REF] Ch | Kähler and symplectic structures on nilmanifolds[END_REF]; more precisely they proved that the condition (iv) fails for any symplectic structure on a non-toral nilmanifold M . This result was independently proved by Hasegawa [START_REF] Hasegawa | Minimal models of nilmanifolds[END_REF] by showing that (v) fails for M .

For a compact solvmanifold M of dimension 4 it is known that M has a Kähler structure if and only if it is a complex torus or a hyperelliptic surface. In fact, Auslander and Szczarba in [START_REF] Auslander | Vector bundles over tori and noncompact solvmanifolds[END_REF] proved that if the first Betti number b 1 (M ) of M is 2, M is a fiber bundle over T 2 with fiber T 2 . Then by Ue [START_REF] Ue | Geometric 4-manifolds in the sense of Thurston and Seifert 4-manifolds I[END_REF] M has a complex structure only if it is a hyperelliptic surface or a primary Kodaira surface which is a compact nilmanifold. Thus, if M is a Kähler manifold, it must be a hyperelliptic surface. Since 1 ≤ b 1 (M ) ≤ 4, M can be a Kähler manifold only if it is a complex torus or a hyperelliptic surface. The fact that a hyperelliptic surface is a solvmanifold follows from Auslander [START_REF] Auslander | Some compact solvmanifolds and locally affine spaces[END_REF]. The above result may be generalized as the following conjecture: A compact solvmanifold has a Kähler structure if and only if it is a finite quotient of a complex torus.

In contrast to the case of compact nilmanifolds there are compact symplectic solvmanifolds which are not nilmanifolds that satisfy both conditions (iv) and (v) [START_REF] Ch | Kähler structures on solvmanifolds for completely solvable Lie groups[END_REF][START_REF] Fernández | Compact symplectic four dimensional solvmanifolds not admitting complex structures[END_REF][START_REF] Cordero | Compact symplectic four solvmanifolds without polarizations[END_REF][START_REF] De Andrés | Some six dimensional compact symplectic and complex solvmanifolds[END_REF]. More precisely:

(1) There is a family of 4-dimensional compact solvmanifolds M 4 (k) satisfying (i)-(v) which do not admit Kähler structures [START_REF] Fernández | Compact symplectic four dimensional solvmanifolds not admitting complex structures[END_REF][START_REF] Cordero | Compact symplectic four solvmanifolds without polarizations[END_REF]. In fact, M 4 (k) does not admit [START_REF] De Andrés | Some six dimensional compact symplectic and complex solvmanifolds[END_REF] The Lie group G Let G be the connected and solvable Lie group of dimension 6 consisting of matrices of the form

A =           e t 0 xe t 0 0 y 1 0 e -t 0 xe -t 0 y 2 0 0 e t 0 0 z 1 0 0 0 e -t 0 z 2 0 0 0 0 1 t 0 0 0 0 0 1           where t, x, y i , z i ∈ R, 1 ≤ i ≤ 2 .
Then, a global system of coordinates {t, x, y 1 , y 2 , z 1 , z 2 } for G is given by

t(A) = t , x(A) = x , y i (A) = y i , z i (A) = z i , 1 ≤ i ≤ 2 ;
and a standard computation shows that a basis for the left invariant 1-forms on G consists of

α = dt , β = dx , γ 1 = e -t dy 1 -xe -t dz 1 , γ 2 = e t dy 2 -xe t dz 1 , δ 1 = e -t dz 1 , δ 2 = e t dz 2 .
Then we have

dα = dβ = 0 , dγ 1 = -α ∧ γ 1 -β ∧ δ 1 , dγ 2 = α ∧ γ 2 -β ∧ δ 2 , dδ 1 = -α ∧ δ 1 , dδ 2 = α ∧ δ 2 . (2.1)
We denote by {T, X, Y 1 , Y 2 , Z 1 , Z 2 } the dual basis of left invariant vector fields. From (2.1) we obtain

[T, Y 1 ] = Y 1 , [T, Y 2 ] = -Y 2 , [T, Z 1 ] = Z 1 , [T, Z 2 ] = -Z 2 , [X, Z 1 ] = Y 1 , [X, Z 2 ] = Y 2 . (2.2)
and the other brackets being zero.

Let G be the Lie algebra of G. From (2.2) we compute the derived series of G:

D 0 G = G, D 1 G = [G, G] = Y 1 , Y 2 , Z 1 , Z 2 , D r G = 0, 2 ≤ r.
and the descending central series of G:

C 0 G = G, C 1 G = [G, G] = Y 1 , Y 2 , Z 1 , Z 2 , C r G = [G, C 1 G] = C 1 G, 2 ≤ r.
Then G is a non-nilpotent solvable Lie group. One says that a Lie group G with Lie algebra G is completely solvable if ad(X) : G -→ G has only real eigenvalues for each X ∈ G. Equivalently, G is isomorphic to a Lie subalgebra of the real upper triangular matrices in gl(n, R) for some n. A simple inspection shows that G is completely solvable.

Alternatively, G may be described as a semi-direct product G = R 2 ∝ φ R 4 , where φ(t, x) is the linear transformation of R 4 given by the matrix

     e t 0 xe t 0 0 e -t 0 xe -t 0 0 e t 0 0 0 0 e -t     
We notice that

     e t 0 xe t 0 0 e -t 0 xe -t 0 0 e t 0 0 0 0 e -t      =      e t 0 0 0 0 e -t 0 0 0 0 e t 0 0 0 0 e -t           1 0 x 0 0 1 0 x 0 0 1 0 0 0 0 1     
Thus the operation group in G is given by

(t, x, y 1 , y 2 , z 1 , z 2 )(t , x , y 1 , y 2 , z 1 , z 2 ) = (t + t , x + x , y 1 e t + xz 1 e t + y 1 , y 2 e -t + xz 2 e -t + y 2 , z 1 e t + z 1 , z 2 e -t + z 2 ) Then G = R 2 ∝ φ R 4
, where R 2 is a connected abelian subgroup and R 4 is the nilpotent commutator subgroup.

Remark 1 Let H be the connected Lie group of dimension 7 consisting of matrices of the form

A =           e t 0 x 1 e t 0 0 y 1 0 e -t 0 x 2 e -t 0 y 2 0 0 e t 0 0 z 1 0 0 0 e -t 0 z 2 0 0 0 0 1 t 0 0 0 0 0 1          
where t, x i , y i , z i ∈ R, 1 ≤ i ≤ 2. We notice that G is a closed subgroup of H. In fact, G is the Lie subgroup of the matrices A ∈ H such that x 1 = x 2 . As above H may be described as a semi-direct product

H = R 3 ∝ φ R 4
, where φ(t, x 1 , x 2 ) is the linear transformation of R 4 given by the matrix

     e t 0 x 1 e t 0 0 e -t 0 x 2 e -t 0 0 e t 0 0 0 0 e -t     
A direct computation shows that a basis for the left invariant 1-forms on H consists of

α = dt , β 1 = dx 1 , β 2 = dx 2 , γ 1 = e -t dy 1 -x 1 e -t dz 1 , γ 2 = e t dy 2 -x 2 e t dz 1 , δ 1 = e -t dz 1 , δ 2 = e t dz 2 .
Then we have

dα = 0 , dβ 1 = -α ∧ β 1 , dβ 2 = -α ∧ β 2 , dγ 1 = -α ∧ γ 1 -β ∧ δ 1 , dγ 2 = α ∧ γ 2 -β ∧ δ 2 , dδ 1 = -α ∧ δ 1 , dδ 2 = α ∧ δ 2 .
If we put G 2 = H × S 1 , then G 2 is the Lie group considered by Benson and Gordon [START_REF] Ch | Kähler structures on solvmanifolds for completely solvable Lie groups[END_REF].

3 The solvmanifold M 6 We shall construct a cocompact discrete subgroup Γ of G.

Let B ∈ SL(2, Z) be a unimodular matrix with integer entries and with distinct real eigenvalues, say λ and λ -1 . Take a 0 = log λ, i. e. e a 0 = λ. Then there exists a matrix P ∈ Gl(2, R) such that

P BP -1 = λ 0 0 λ -1
Consider the subgroup Γ 0 = (a 0 Z) × Z of R 2 . We can easily check that the lattice

L on R 4 defined by L = ((m 1 , m 2 )P t , (n 1 , n 2 )P t ),
where m 1 , m 2 , n 1 , n 2 ∈ Z and P t is the transpose of P , is invariant under the subgroup Γ 0 . Thus, Γ = Γ 0 ∝ φ L is a cocompact subgroup of G.

We denote by M 6 = G/Γ the compact quotient manifold. Then M 6 is a six dimensional non-nilpotent completely solvable manifold.

Remark 2 Alternatively, the manifold M 6 may be viewed as the total space of a T 4bundle over T 2 . In fact, let T 4 = R 4 /L be the 4-dimensional torus and ρ : Z 2 -→ Diff (T 4 ) the representation defined as follows: ρ(p, q) represents the transformation of T 4 covered by the linear transformation of R 4 given by the matrix

     e pa 0 0 qe pa 0 0 0 e -pa 0 0 qe -pa 0 0 0 e pa 0 0 0 0 0 e -pa 0     

This representation determines an action

A : Z 2 × (T 4 × R 2 ) -→ T 4 × R 2 defined by A((p, q), [y 1 , y 2 , z 1 , z 2 ], (r 1 , r 2 )) = (ρ(p, q)([y 1 , y 2 , z 1 , z 2 ]), (r 1 + p, r 2 + q)) .
Then π :

T 4 × Z 2 R 2 -→ T 2 is a T 4 -bundle where the projection π is given by π[[y 1 , y 2 , z 1 , z 2 ], (r 1 , r 2 )] = [(r 1 , r 2 )] .
In fact, this bundle is the suspension of the representation ρ (see [START_REF] Hector | Introduction to the Geometry of Foliations, Part A, Aspects of Math[END_REF]). Then it is clear that T 4 × Z 2 R 2 may be canonically identified with M 6 .

Next, we shall compute the real cohomology of M 6 . Since M 6 is completely solvable we can use a theorem of Hattori [START_REF] Hattori | Spectral sequence in the de Rham cohomology of fibre bundles[END_REF] which asserts that the de Rham cohomology ring H * (M 6 , R) is isomorphic with the cohomology ring H * (G) of the Lie algebra G of G. For simplicity we denote the left invariant forms {α, β, γ 1 , γ 2 , δ 1 , δ 2 } and their projections onto M 6 by the same symbols. Thus, we obtain:

H 0 (M 6 , R) = {1} , H 1 (M 6 , R) = {[α], [β]} , H 2 (M 6 , R) = {[α ∧ β], [δ 1 ∧ δ 2 ], [γ 1 ∧ δ 2 + γ 2 ∧ δ 1 ]} , H 3 (M 6 , R) = {[α ∧ δ 1 ∧ δ 2 ], [β ∧ γ 1 ∧ γ 2 ], [β ∧ γ 1 ∧ δ 2 ], [α ∧ γ 1 ∧ δ 2 + α ∧ γ 2 ∧ δ 1 ]} , H 4 (M 6 , R) = {[α ∧ β ∧ γ 1 ∧ γ 2 ], [α ∧ β ∧ γ 1 ∧ δ 2 ], [γ 1 ∧ γ 2 ∧ δ 1 ∧ δ 2 ]} , H 5 (M 6 , R) = {[α ∧ γ 1 ∧ γ 2 ∧ δ 1 ∧ δ 2 ], [β ∧ γ 1 ∧ γ 2 ∧ δ 1 ∧ δ 2 ]} , H 6 (M 6 , R) = {[α ∧ β ∧ γ 1 ∧ γ 2 ∧ δ 1 ∧ δ 2 ]} . Thus, b 0 (M 6 ) = b 6 (M 6 ) = 1 , b 1 (M 6 ) = b 5 (M 6 ) = 2 , b 2 (M 6 ) = b 4 (M 6 ) = 3 , b 3 (M 6 ) = 4 .
Hence M 6 satisfies conditions (i)-(iii). Now let ω be the 2-form on M 6 given by

ω = a(α ∧ β) + b(δ 1 ∧ δ 2 ) + c(γ 1 ∧ δ 2 + γ 2 ∧ δ 1 ) , (3.1)
where a, b, c ∈ R. A simple computation shows that dω = 0 and that

ω 3 = 4ac 2 (α ∧ β ∧ γ 1 ∧ γ 2 ∧ δ 1 ∧ δ 2 ) .
Hence ω 3 = 0 if and only if a = 0, c = 0. This proves the following Proposition 3.1 M 6 is a compact symplectic manifold. Let ω be a 2-form on M 6 given by (3.1), where a, b, c ∈ R and a = 0, c = 0. Then ω is a symplectic form.

A compact Kähler manifold satisfies the Hard Lefschetz Theorem. In order to continue the analysis of the manifold M 6 we introduce the following Definition Let (M 2n , ω) be a compact symplectic manifold. We say that (M 2n , ω) satisfies the Hard Lefschetz Theorem if the mappings

∧ω n-p : H p (M 2n , R) -→ H 2n-p (M 2n , R) are all isomorphisms, 0 ≤ p ≤ n.
(We notice that in [START_REF] Mcduff | The moment map for circle actions on symplectic manifolds[END_REF], McDuff calls (M 2n , ω) a Lefschetz manifold when the mapping ∧ω n-1 : H 1 (M 2n , R) -→ H 2n-1 (M 2n , R) is an isomorphism. Our present definition is more restrictive.) Theorem 3.1 M 6 does not satisfy the Hard Lefschetz Theorem.

Proof: Let us compute the morphism

∧[ω] : H 2 (M 6 , R) -→ H 4 (M 6 , R) .
We obtain

∧[ω]([α ∧ β]) = 2c[α ∧ β ∧ γ 1 ∧ δ 2 ] , ∧[ω]([δ 1 ∧ δ 2 ]) = 0 , ∧[ω]([γ 1 ∧ δ 2 + γ 2 ∧ δ 1 ]) = 2a[α ∧ β ∧ γ 1 ∧ δ 2 ] + 2c[γ 1 ∧ γ 2 ∧ δ 1 ∧ δ 2 ] . This implies that ∧[ω] : H 2 (M 6 , R) -→ H 4 (M 6 , R) is not an isomorphism.
.

Corollary 1

The compact symplectic solvmanifold M 6 does not admit Kähler structures.

We note that a straightforward computation shows that all the (triple) Massey products of M 6 vanish. However we have the following Theorem 3.2 The minimal model of M 6 is not formal.

Proof: It is sufficient to exhibit a (quadruple) non-trivial Massey product. For this we recall that if there are cohomology classes 

[λ 1 ] ∈ H p (M 6 , R), [λ 2 ] ∈ H q (M 6 , R), [λ 3 ] ∈ H r (M 6 , R) and [λ 4 ] ∈ H s (M 6 ,
∈ Ω p+q-1 (M 6 ), f 2 ∈ Ω q+r-1 (M 6 ), f 3 ∈ Ω r+s-1 (M 6 ), µ 1 ∈ Ω p+q+r-2 (M 6 ) and µ 2 ∈ Ω q+r+s-2 (M 6 ) satisfying: (1) λ 1 ∧ λ 2 = df 1 , (2) λ 2 ∧ λ 3 = df 2 , (3) λ 3 ∧ λ 4 = df 3 , (4) λ 1 ∧ f 2 + (-1) p+1 f 1 ∧ λ 3 = dµ 1 , (5) λ 2 ∧ f 3 + (-1) q+1 f 2 ∧ λ 4 = dµ 2 , (6) the cohomology class [(-1) p+1 λ 1 ∧ µ 2 + (-1) q+1 µ 1 ∧ λ 4 + f 1 ∧ f 3 ] is zero in H p+q+r+s-2 (M 6 , R).
Now, because all the (triple) Massey products on M 6 are zero, it is defined the (quadruple

) Massey product [δ 1 ∧ δ 2 ], [β], [β], [β] . We shall prove that is non-zero. Let us suppose that [δ 1 ∧ δ 2 ], [β], [β], [β] = 0. Then, there exist differential forms f 2 , f 3 , µ 2 ∈ Ω 1 (M 6 ) and f 1 , µ 1 ∈ Ω 2 (M 6 ) satisfying (1') δ 1 ∧ δ 2 ∧ β = df 1 , (2') 0 = df 2 , (3') 0 = df 3 , (4') δ 1 ∧ δ 2 ∧ f 2 -f 1 ∧ β = dµ 1 , (5') β ∧ f 3 + f 2 ∧ β = dµ 2 , (6') [-δ 1 ∧ δ 2 ∧ µ 2 + µ 1 ∧ β + f 1 ∧ f 3 ] = 0. Since δ 1 ∧ δ 2 ∧ β = d(-γ 1 ∧ δ 2 ), from (1'
) we get a differential form f 1 with df 1 = 0 and such that [START_REF] Cordero | Compact symplectic manifolds not admitting positive definite Kähler metrics[END_REF] 8) and ( 9) we obtain

f 1 = -γ 1 ∧ δ 2 + f 1 . Substituting (7) in (4') we have (8) δ 1 ∧ δ 2 ∧ f 2 + γ 1 ∧ δ 2 ∧ β + f 1 ∧ β = dµ 1 . From (8) and (2') it follows that the cohomology class [δ 1 ∧ δ 2 ] ∧ [f 2 ] belongs to [β]H * (M 6 , R); and so (9) f 2 = tβ for some t ∈ R. Moreover, because the cohomology class [δ 1 ∧ δ 2 ∧ β] is zero, from (
[β ∧ γ 1 ∧ δ 2 ] = [β] ∧ [f 1 ]
, and then we have [START_REF] Deligne | Real homotopy theory of Kähler manifolds[END_REF] 

f 1 = 1 2 (γ 1 ∧ δ 2 + γ 2 ∧ δ 1 ) + pα ∧ β + qδ 1 ∧ δ 2 ,
for some p, q ∈ R. Now, from ( 7) and [START_REF] Deligne | Real homotopy theory of Kähler manifolds[END_REF] we get [START_REF] Fernández | Compact symplectic four dimensional solvmanifolds not admitting complex structures[END_REF] 

f 1 = 1 2 (γ 2 ∧ δ 1 -γ 1 ∧ δ 2 ) + pα ∧ β + qδ 1 ∧ δ 2 .
On the other hand, from ( 9), (3') and (5') we obtain f 2 -f 3 = sβ for some s ∈ R, and so (12) f 3 = (t -s)β. From ( 9) and ( 12), condition (5') becomes:

(5") dµ 2 = 0. It is easy to get: [START_REF] Hattori | Spectral sequence in the de Rham cohomology of fibre bundles[END_REF] 

f 1 ∧ f 3 = d((t -s)γ 2 ∧ (qδ 1 -1 2 γ 1 )
). From ( 9), [START_REF] Fernández | Compact symplectic four dimensional solvmanifolds not admitting complex structures[END_REF], (5") and [START_REF] Hattori | Spectral sequence in the de Rham cohomology of fibre bundles[END_REF], conditions (4') and (6') become

(4") (t + q)β ∧ δ 1 ∧ δ 2 -1 2 β ∧ (γ 2 ∧ δ 1 -γ 1 ∧ δ 2 ) = dµ 1 , (6") -[δ 1 ∧ δ 2 ] ∧ [µ 2 ] + [µ 1 ∧ β] = 0. But, we can check that β ∧ δ 1 ∧ δ 2 = d(-γ 1 ∧ δ 2 ) and β ∧ (γ 2 ∧ δ 1 -γ 1 ∧ δ 2 ) = d(γ 1 ∧ γ 2 ).
These equations and (4") imply that there is a closed differential form µ 1 such that

µ 1 = -(t + q)γ 1 ∧ δ 2 -1 2 γ 1 ∧ γ 2 + µ 1 , and thus [µ 1 ∧ β] = -(t + q)[γ 1 ∧ δ 2 ∧ β] -1 2 [γ 1 ∧ γ 2 ∧ β] + [µ 1 ] ∧ [β]. Then, condition (6") becomes: -[δ 1 ∧ δ 2 ] ∧ [µ 2 ] -(t + q)[γ 1 ∧ δ 2 ∧ β] -1 2 [γ 1 ∧ γ 2 ∧ β] + [µ 1 ] ∧ [β] = 0. So, the cohomology class [γ 1 ∧ γ 2 ∧ β] belongs to [β]H 2 (M 6 , R) + [δ 1 ∧ δ 2 ]H 1 (M 6 , R), which is generated by {[β ∧ γ 1 ∧ δ 2 ], [α ∧ δ 1 ∧ δ 2 ]}. This is impossible because the family {[γ 1 ∧ γ 2 ∧ β], [β ∧ γ 1 ∧ δ 2 ], [α ∧ δ 1 ∧ δ 2 ]} is free.
Remark 3 Theorem 3.2 also proves that M 6 does not admit Kähler structures.

Next, we shall prove that the minimal model of the complex of left invariant differential forms of G 2 (G 2 = H × S 1 , where H is the Lie group of dimension 7 constructed in Remark 1) is formal, but it does not verify the Hard Lefschetz Theorem (see [START_REF] Ch | Kähler structures on solvmanifolds for completely solvable Lie groups[END_REF]).

Then a compact manifold of the form Γ/G 2 could not be Kähler. Unfortunately we do not know if G 2 admits a cocompact subgroup. We first recall the structure of (ΛG * 2 , d 2 ) and H * (G 2 , R) (cf. [START_REF] Ch | Kähler structures on solvmanifolds for completely solvable Lie groups[END_REF]). A basis of G * 2 is the family {α, β, µ 1 , ν 1 , ξ 1 , µ 2 , ν 2 , ξ 2 } and the differential operator d is given by dα = 0

dβ = 0 dµ 1 = -α ∧ µ 1 , dµ 2 = α ∧ µ 2 , dν 1 = 2α ∧ ν 1 , dν 2 = -2α ∧ ν 2 , dξ 1 = α ∧ ξ 1 -µ 1 ∧ ν 1 , dξ 2 = -α ∧ ξ 2 -µ 2 ∧ ν 2 ,
On the other hand, the cohomology of G 2 can be written as a product Λ{[α], [β]} ⊗ A where A is the following gca: [START_REF] Halperin | Obstructions to Homotopy Equivalences[END_REF]). A straightforward calculation gives (j,k,l) any permutation of (2, 3, 4), and

A 0 = {1} , A 2 = {[µ 1 ∧ µ 2 ] , [ν 1 ∧ ν 2 ] , [µ 1 ∧ ξ 1 ] , [µ 2 ∧ ξ 2 ]} , A 4 = {[ν 1 ∧ ν 2 ∧ ξ 1 ∧ ξ 2 ] , [µ 1 ∧ ξ 1 ∧ ν 1 ∧ ν 2 ] , [ν 1 ∧ ν 2 ∧ µ 2 ∧ ξ 2 ] , [µ 1 ∧ ξ 1 ∧ µ 2 ∧ ξ 2 ]} , A 6 = {[ν 1 ∧ ν 2 ∧ µ 1 ∧ ξ 1 ∧ µ 2 ∧ ξ 2 ]} , and A 1 = A 3 = A 5 = 0. Consider ϕ: (ΛZ, d) -→ A the bigraded model of A (cf.
Z 6 0 = {0} Z 5 1 = {f } Z 5 0 = {0} Z 4 2 = {x i , y j , z j } Z 4 1 = {h j } Z 4 0 = {e} Z 3 3 = {0} Z 3 2 = {0} Z 3 1 = {c i , g j } Z 3 0 = {0} Z 2 4 = {0} Z 2 3 = {0} Z 2 2 = {0} Z 2 1 = {0} Z 2 0 = {b i } Z 1 5 = {0} Z 1 4 = {0} Z 1 3 = {0} Z 1 2 = {0} Z 1 1 = {0} Z 1 0 = {0} with db i = de = 0 , dc i = b 2 i , dg j = b 1 b j , dh j = eb j , df = b 2 b 3 b 4 -eb 1 , dx i = b 1 c i -b i g i , dy j = b j c 1 -b 1 g j , dz j = b k g l -b l g k , 1 ≤ i ≤ 4,
ϕ(b 1 ) = [µ 1 ∧ µ 2 ] , ϕ(b 2 ) = [µ 1 ∧ ξ 1 ] , ϕ(b 3 ) = [µ 2 ∧ ξ 2 ] , ϕ(b 4 ) = [ν 1 ∧ ν 2 ] , ϕ(e) = [ν 1 ∧ ν 2 ∧ ξ 1 ∧ ξ 2 ] ;
We construct a d.g.c.a.-morphism ψ: Λ({α, β}, 0) ⊗ (ΛZ, d) -→ (ΛG * 2 , d) inducing an isomorphism in cohomology. This will end the proof. Put

ψ(α) = α , ψ(β) = β , ψ(b 1 ) = µ 1 ∧ µ 2 , ψ(b 2 ) = µ 1 ∧ ξ 1 , ψ(b 3 ) = µ 2 ∧ ξ 2 , ψ(b 4 ) = ν 1 ∧ ν 2 , ψ(e) = ν 1 ∧ ν 2 ∧ ξ 1 ∧ ξ 2 , ψ(g 4 ) = µ 1 ∧ ν 1 ∧ ξ 2 , ψ( other genarators ) = 0.
This map extends naturally to a g.c.a.-morphism ψ: (Λ{α, β}, 0)⊗(ΛZ, d) -→ (ΛG * 2 , d). It remains to prove that ψ is a differential operator and that ψ * is an isomorphism.

• A direct calculation shows that ψ(dx) = dψ(x) for x = α, β and for each generator

x ∈ p+q≤6 (ΛZ) p q . Consider x ∈ Z p q a generator with p + q > 6; by definition of ψ we have ψ(x) = 0. Since dZ p q ⊂ (ΛZ) p+1 q-1 the writing of dx does not contain any of the following monomials:

b i , e, g 4 , b 1 e, b 1 b 4 , b 2 b 4 , b 3 b 4 .
By construction the operator ψ vanishes when evaluated on the other monomials of Z. We conclude that ψ(dx) is 0.

• ψ * is an isomorphism because ψ * [α] = [α] , ψ * [β] = [β] , ψ * [b 1 ] = [µ 1 ∧ µ 2 ] , ψ * [b 2 ] = [µ 1 ∧ ξ 1 ] , ψ * [b 3 ] = [µ 2 ∧ ξ 2 ] , ψ * [b 4 ] = [ν 1 ∧ ν 2 ] , ψ * [e] = [ν 1 ∧ ν 2 ∧ ξ 1 ∧ ξ 2 ] .
4 The moduli space of complex structures on M 6 First, let us recall the following lemma [START_REF] De Andrés | Moduli spaces of complex structures on compact four dimensional nilmanifolds[END_REF]: Lemma 4.1 Let G be a (real) Lie group of (real) dimension 2n. Then the space of left invariant almost complex structures on G has dimension 2n 2 .

In our case the space of left invariant almost complex structures on G has dimension 18. This lemma gives no information about left invariant complex structures, but since G has a canonical parallelization, it is extremely easy to determine when a left invariant almost complex structure is integrable.

We set

E 1 = T, E 2 = X, E 3 = Y 1 , E 4 = Y 2 , E 5 = Z 1 , E 6 = Z 2 .
Let J be a left invariant almost complex structure on G. Then J has constant coefficients with respect to the basis

{E 1 , E 2 , E 3 , E 4 , E 5 , E 6 }. Write JE j = 6 k=1 a jk E k ,
where the a jk are constants. The Nijenhuis tensor N J of J is defined by

N J (U, V ) = [JU, JV ] -J[JU, V ] -J[U, JV ] -[U, V ],
for all vector fields U, V on G. Proposition 4.1 G has no left invariant complex structures. Equivalently, the manifold M 6 has no complex structures with constant coefficients with respect to the canonical parallelization {E 1 , E 2 , E 3 , E 4 , E 5 , E 6 }.

Proof: Let J be a left invariant integrable almost complex structure on G. Below, we shall prove that the matrix of J with respect to the basis {E i , 1 ≤ i ≤ 6} must have the form Finally we shall give a proof of (4.1): For this we shall show: (I) a 41 = 0, (II) a 31 = 0, (III) a 61 = 0, (IV) a 42 = 0, (V) a 51 = 0, (VI) a 32 = 0, (VII) a 52 = 0, and (VIII) a 62 = 0. ¿From (2.2) we have 0 = N J (E 

J =           a 11 a
= N J (E 2 , E 4 ) = a 46 (a 22 -a 44 )E 4 -a 2 46 E 6 .
This identity implies that a 46 = 0. Then, from (I) and (4.18) we obtain JE 4 = a 44 E 4 which is not possible.

To prove (III), we suppose that a 61 = 0. Then, from (I) and (II) we obtain that the coefficient of E 1 in N J (E To prove (IV), we compute the coefficient of E 2 in N J (E 4 , E 6 ) and we obtain -a 2 42 E 2 = 0, from which we deduce (IV).

To prove (V), let us suppose that a 51 = 0. Then from (IV) we deduce that the coefficient of E 1 in N J (E 2 , E 5 ) is -a 21 a 51 , from which we deduce a 21 = 0 . Because a 32 = 0, (4.27) implies a 43 = 0 and a 2 44 = -1. But it is not possible. Thus, it must be a 32 = 0. From this identity, (4.26), and equating to zero the coefficient of E 2 in N J (E 1 , E 2 ), we get a 26 a 62 = 0 . (4.28) Thus, if a 51 = 0, from (I)-(IV), (4.24), (4.25), (4.26) and a 32 = 0, it follows that the matrix of J is of the form . ¿From (4.28) and J 2 = -Id we obtain a 2 22 = -1, which is not possible. Thus, we have (V).

J =         
To prove (VI) we compute the coefficients of E 2 and E 5 in N J (E 3 , E 5 ). They are -(a 2 32 + a 35 a 52 ) and -a 32 a 35 , respectively. Then we deduce (VI).

To prove (VII), let us suppose that a 52 = 0. If we compute the coefficient of E 2 in N J (E 2 , E 5 ), then we obtain -a 21 a 52 = 0, which implies that a 21 = 0. Thus, if a 52 = 0, according (I)-(VI), the matrix of J would be: and, since J 2 = -Id, we obtain a 2 11 = -1, which is a contradiction. This proves (VII). Finally, to prove (VIII), let us suppose that a 62 = 0. If we compute the coefficient of E 2 in N J (E 2 , E 6 ), then we obtain a 21 a 62 = 0, which implies that a 21 = 0. Then, if a 62 = 0, the matrix of J is of the form (4.29). Again we have a contradiction. This proves (VIII), and the proof of (4.1) is completed.

J =         

  R) (represented by differential forms λ 1 , λ 2 , λ 3 and λ 4 ) such that the (triple) Massey products [λ 1 ], [λ 2 ], [λ 3 ] and [λ 2 ], [λ 3 ], [λ 4 ] are zero, then there exists the (quadruple) Massey product [λ 1 ], [λ 2 ], [λ 3 ], [λ 4 ] . Moreover, it is zero if and only if there are differential forms f 1

Proposition 3 . 2

 32 The complex of the left invariant differential forms of G 2 is formal. Proof: We need to show that the d.g.c.a. (ΛG * 2 , d 2 ), made up of the left invariant differential forms of G 2 , and the d.g.c.a. (H * (G 2 , R), 0) have the same minimal model.

  (4.24) Moreover we have that the coefficient of E 1 in N J (E 1 , E 6 ) and in N J (E 1 , E 3 ) is -a 51 a 65 and -a 35 a 51 , respectively, from which we geta 35 = a 65 = 0 . (4.25) Also we have that the coefficient of E 1 in N J (E 1 , E 2 ) is -a 25 a 51 ,and that the coefficient of E 5 in N J (E 4 , E 5 ) is -2a 45 a 51 , from which we obtain a 25 = a 45 = 0 . (4.26) Now, from (I), (II) and (4.26), we obtain 0= N J (E 3 , E 4 ) = a 32 a 46 E 4 ,and so a 32 a 46 = 0. Suppose that a 32 = 0 and a 46 = 0. Then JE 4 = a 43 E 3 + a 44 E 4 , and since J 2 = -Id, we find a 43 a 32 = 0 , a 43 a 34 + a 2 44 = -1 . (4.27)

  12 a 13 a 14 a 15 a 16 a 21 a 22 a 23 a 24 a 25 a 26 0 0 a 33 a 34 a 35 a 36 0 0 a 43 a 44 a 45 a 46 0 0 a 53 a 54 a 55 a 56 0 0 a 63 a 64 a 65 a 66 Let us suppose (4.1). Since J 2 = -I, we obtain a 2 11 + a 12 a 21 = a 2 22 + a 12 a 21 = -1 , (4.2) a 12 (a 11 + a 22 ) = a 21 (a 11 + a 22 ) = 0 , (4.3) and so a 12 , a 21 are non-zero, and a 11 + a 22 = 0. Moreover, we have 0 = N J (E 2 , E 3 ) = (a 22 a 35 -a 33 a 35 -a 36 a 43 )E 3 + (-2a 21 a 34 + a 22 a 36 -a 34 a 35 -a 36 a 44 )E 4 -(a 2 35 + a 36 a 45 )E 5 -a 36 (2a 21 + a 35 + a 46 )E 6 , 0 = N J (E 2 , E 4 ) = (2a 21 a 43 + a 22 a 45 -a 33 a 45 -a 43 a 46 )E 3 + (a 22 a 46 -a 34 a 45 -a 44 a 46 )E 4 +a 45 (2a 21 -a 35 -a 46 )E 5 -(a 2 46 + a 36 a 45 )E 6 . Assume that a 46 = -a 35 . Since a 21 = 0, then (4.5) and (4.7) imply a 36 = a 45 = 0. Again (4.4) and (4.8) imply a 35 = a 46 = 0. Now, from (4.6) it follows that a 43 = 0; and so JE 4 = a 44 E 4 . This implies a 2 44 = -1, which is a contradiction. Thus, (4.9) must be 36 a 21 = -a 36 a 35 , a 45 a 21 = a 35 a 45 . -a 36 a 45 a 35 = a 21 a 36 a 45 = a 35 a 36 a 45 = -a 3 35 , that is a 35 = 0. Thus a 46 = 0. But a 21 = 0 (4.12) imply a 36 = a 45 = 0. Now, a 21 = 0 and (4.6) imply a 43 = 0, and hence JE 4 = a 44 E 4 , which is not possible. Therefore, G carries no left invariant integrable almost complex structures.

	¿From (4.4) and (4.8) we obtain	
	(4.9)	a 46 = ±a 35 .	
	(4.10)	a 46 = a 35 .	
	¿From (4.10), (4.5) and (4.7) we have	
		a 36 (a 21 + a 35 ) = 0 ,	
	(4.11)	a 45 (a 21 -a 35 ) = 0 ,	
	or equivalently (4.1) a (4.12)	        
	Then, from (4.4) and (4.12) we obtain	
	a 3 35 =		
	These equations imply		
	(4.4)	a 2 35 = -a 36 a 45 ,	
	(4.5)	0 = a 36 (2a 21 + a 35 + a 46 ) ,	
	(4.6)	a 45 (a 22 -a 33 ) = a 43 (a 46 -2a 21 ) ,
	(4.7)	0 = a 45 (2a 21 -a 35 -a 46 ) ,	
	(4.8)	a 2 46 = -a 36 a 45 .	

  3 , E 4 ) = 2a 31 a 41 E 1 + (a 31 a 42 + a 32 a 41 )E 2 + (2a 31 a 43 + a 32 a 45 -a 35 a 42 )E 3 + (2a 34 a 41 + a 32 a 46 -a 36 a 42 )E 4 + 2a 31 a 45 E 5 + 2a 36 a 41 E 6 . (4.13) To prove (I), let us suppose that a 41 = 0. Then from (4.13), equating to zero the coefficients of E 1 , E 2 , E 6 and E 4 , it followsa 31 = a 32 = a 34 = a 36 = 0 . (4.14) Also, from (4.13) we have a 35 a 42 = 0. If a 35 = 0, then JE 3 = a 33 E 3 , and so Since J 2 = -Id and JE 3 = a 33 E 3 + a 35 E 5 we have a 51 = a 52 = a 54 = a 56 = a 12 = a 33 + a 55 = 0 . J (E 2 , E 5 ) = {a 22 (a 55 -a 33 ) -a 33 a 55 -1}E 3 -a 35 (a 22 + a 55 )E 5 . (4.17) Since a 35 = 0, from (4.16) and (4.17) we get a 22 + a 55 = 0 and 2a 22 a 55 + a 2 55 -1 = 0 . Let us suppose that a 31 = 0. Then from (4.13) and (I) we obtain a 42 = a 43 = a 45 = 0 .

	(4.16)	
	¿From (4.14) and (4.16) we obtain
	0 = N These equations imply a 2 55 = -1, which is a contradiction. This proves (I).
	(II) (4.18)	
	¿From (I), (2.2) and (4.18) it follows that
	0	
	a 2 33 = -1, which is a contradiction. Thus, we get
	(4.15)	a 35 = 0 and a 42 = 0 .

  5 , E 6 ) is 2a 51 a 61 , and hence, we get II) and (4.[START_REF] Ue | Geometric 4-manifolds in the sense of Thurston and Seifert 4-manifolds I[END_REF] we deduce that the coefficient of E 1 in N J (E 2 , E 6 ) and in N J (E 1 , E 3 ) is a 21 a 61 and -a 36 a 61 , respectively. Thus, we havea 21 = a 36 = 0 . (4.20) ¿From (4.20) we conclude that the coefficient of E 5 in N J (E 2 , E 3 ) is -a 2 II) and (4.21) we deduce that the coefficient of E 2 in N J (E 3 , E 5 ) is J (E 3 , E 6 ) = 2a 34 a 61 E 4 .Now, from (I), (II) and (4.20)-(4.23) we have JE 3 = a 33 E 3 , which is not possible; and we obtain (III).

	(4.19)	a 51 = 0 .
	¿From (I), (35 . Thus,
	we get	
	(4.21)	a 35 = 0 .
	¿From (I), (-a 2 32 . Thus, we get	
	(4.22)	a 32 = 0 .
	¿From (4.22) we have	
	0 = N This equation implies that	
	(4.23)	a 34 = 0 .

   a 11 a 12 a 13 a 14 a 15 a 16 0 a 22 a 23 a 24 0 a 26 0 0 a 33 a 34 0 a 36 0 0 a 43 a 44 0 a 46 a 51 a 52 a 53 a 54 a 55 a 56 0 a 62 a 63 a 64 0 a 66

	
	        

   a 11 a 12 a 13 a 14 a 15 a 16 0 a 22 a 23 a 24 a 25 a 26 0 0 a 33 a 34 a 35 a 36 0 0 a 43 a 44 a 45 a 46 0 a 52 a 53 a 54 a 55 a 56 0 a 62 a 63 a 64 a 65 a 66

			
	(4.29)	       	,
		