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The triangular decomposition of a square matrix is the "key interpretation" of Gaussian elimination and is recognized universally as one of the most important and ubiquitous numerical tool for science and industry. It is also one of the most ancient, being known in algebraic form over 2000 years ago in China.

The standard algorithm currently in use for decomposing a symmetric positive definite (SPD) matrices is credited to André-Louis Cholesky (1910). However, the first elegant and modern treatment of Gaussian elimination as a matrix decomposition process has been given by Alan Turing (1948). Such Gaussian elimination still today provides the most economical numerical algorithm for decomposing an SPD matrix, requiring as few as n 2 /2-n/2 divisions, n 3 /6-n/6 multiplications and n 3 /6-n/6 subtractions. In this note we give a synopsis of symmetric Gaussian elimination, including the description of the two major conceptual procedures, one being the one offered by Turing in 1948, an historical overview and exact count of arithmetic operations, identifying the most advantageous algorithms.

Introduction

Nobody knows how many times per day Gaussian elimination is invoked all over the world, but certainly this number is formidable and is destined to increase with the proliferation of electronic devices.

Currently, Gaussian elimination is the method of choice for solving systems of linear equations (the Ax=b problem), which are used routinely to obtain the result of algebraic expression involving A and its inverse A -1 . It is also the method of choice for computing the inverse of a matrix explicitly, for evaluating its determinant, to ascertain if a square matrix is symmetric positive-definite (SPD) and to reveal the rank of a symmetric positive semi-definite matrix (SPSD). These tasks cover already an important portion of the well-established arsenal of numerical analysis [START_REF] Golub | Matrix Computations (4 th Eds)[END_REF]. Somehow less known is that Gaussian elimination provides the fastest option to reduce a matrix in tridiagonal form [START_REF] Trefethen | Three mysteries of Gaussian Elimination[END_REF], to reduce a generalized eigenvalue problem to a symmetric eigenvalue problem [START_REF] Fox | Notes on the solution of algebraic linear simultaneous equations[END_REF], to compute inverse power iterations (Parlett, 1980, p. 62) and to obtain low-rank approximations of a matrix (Townsend and Trefethem, 2013), although more accurate and stable alternatives exist. Gaussian elimination can also recover the eigenvalues of a matrix [START_REF] Fernando | Implicit Cholesky algorithms for singular values and vectors of triangular matrices[END_REF], although not in an efficient way. Remarkably, all this is offered by one of the oldest numerical algorithm worked out by the mankind.

Gaussian elimination was known in algebraic form over 2000 years ago in China and in other ancient civilizations such as the Greek, Roman, Arab and Hindu [START_REF] Grcar | How Ordinary Elimination Became Gaussian Elimination[END_REF]. In his lecture notes Arithmetica Univerʃalis, written in Latin starting about 1670, Isaac Newton called the action of eliminating variables from a system of equations an extermination ("exterminatio"). Leonhard Euler in a German writing of 1771 refers to the elimination process as the most natural way to proceed ("der natürlichtste Weg") [START_REF] Grcar | How Ordinary Elimination Became Gaussian Elimination[END_REF]. Adrien-Marie Legendre in 1806 and Carl Friedrich Gauss in 1807 write about it as ordinary methods, respectively in French ("méthode ordinaire") and Latin ("eliminatio vulgaris") [START_REF] Legendre | Nouvelles méthodes pour la détermination des orbites des comètes; avec un supplement contenant divers perfectionnemens de ces méthodes et leur application aux deux Comètes de 1805[END_REF][START_REF] Stewart | Gauss, Statistics, and Gaussian Elimination[END_REF]. The merit of Gauss has been to introduce a notation helping the computation of linear systems by pencil and paper, which spread out rapidly, before as a professional method for geodesists in the (governmental) field of cartography and then as the solution to Gauss's normal equation. His work has fostered the large demand for solving least-squares problems, such as linear regression in statistics [START_REF] Dwyer | A Matrix Presentation of Least Squares and Correlation Theory with Matrix Justification of Improved Methods of Solution[END_REF] and data fitting in experimental physics, astronomy and engineering [START_REF] Grcar | How Ordinary Elimination Became Gaussian Elimination[END_REF][START_REF] Stewart | Gauss, Statistics, and Gaussian Elimination[END_REF]. The handbook of geodesy published in 1888 by Wilhelm Jordan reports results on his studies on triangularization and triangular diagonalization, what today is known as reduction to row (or column) echelon form and the Gauss-Jordan method for matrix inversion [START_REF] Althoen | Gauss-Jordan Reduction: A Brief History[END_REF]. With remarkable penetration, at the beginning of the twentieth century André-Louis Cholesky discovered a recurrence for the symmetric case dominated by sums of products [START_REF] Brezinski | The life and work of André Cholesky[END_REF][START_REF] Cholesky | Sur la résolution numérique des systèmes d'équations linéaires, hand-writing document[END_REF]. This algorithm was invented to help a computer, which at the time of Cholesky was human or mechanical at best, but turned out to suits electronic ones as well [START_REF] Fox | Notes on the solution of algebraic linear simultaneous equations[END_REF]. By the beginning of the 1940's Gaussian elimination is still found mostly described in algebraic terms [START_REF] Crout | A short method for evaluating determinants and solving systems of linear equations with real or complex coefficients[END_REF][START_REF] Dwyer | The Solution of Simultaneous Equations[END_REF]. A rapid advance in the research on Gaussian elimination is observed in the 40's, stimulated by the imminent realization of the first electronic computer, yielding the widespread conception of Gaussian elimination as one of the big six decomposition problems [START_REF] Stewart | The Decompositional Approach to Matrix Computation[END_REF]. This has provided a unified framework demonstrating the equivalence of the several available algebraic methods and turned out to be inspiring, both for the comprehension of the method and for designing algorithms [START_REF] Higham | Gaussian Elimination[END_REF]. [START_REF] Frazer | Elementary Matrices and Some Applications to Dynamics and Differential Equations[END_REF] appear to be the first to show the process of matrix reduction to triangular and diagonal form under the action of triangular matrices. A similar development is seen in [START_REF] Banachiewicz | An outline of the Cracovian algorithm of the method of least squares[END_REF]. [START_REF] Dwyer | A Matrix Presentation of Least Squares and Correlation Theory with Matrix Justification of Improved Methods of Solution[END_REF] obtained a version of the symmetric decomposition based on outer products, showing the equivalence with the Doolittle algorithm. Gaussian elimination was investigated by von [START_REF] Neumann | Numerical inverting of matrices of high order[END_REF] in the perspective of numerical computing. They anticipated the prolific literature on error bounds in finite precision arithmetic, to flourish soon with the availability of first electronic computers. The Cholesky method, known at the time as the square root method, spread in UK after a talk given by John Todd at King's College of London in 1946 [START_REF] Taussky | Cholesky, Toeplitz and triangular factorization of symmetric matrices[END_REF], where it was taken up by the group at the National Physical Laboratory [START_REF] Fox | Notes on the solution of algebraic linear simultaneous equations[END_REF]. It was Alan [START_REF] Turing | Rounding-off-errors in Matrix Processes[END_REF], also working in this group, who gave the first elegant and simple description of Gaussian elimination as the LU decomposition. He used a strikingly modern notation and his presentation of Gaussian elimination in matrix form is still actual, both conceptually and algorithmically.

Here we give an account of it for the special case when the matrix to be triangularized is symmetric, allowing a valid alternative to the Cholesky method. Turing did not work out the details for this case (Turing, 1948, remark 8, p. 292). They are relevant in that they allow the most parsimonious recurrences for decomposing a matrix. This report complements and links the excellent accounts of Higham on the LU algorithm (2011), i.e., asymmetrical Gaussian elimination, and on the Cholesky algorithm (2008b).

Turing's decomposition for the symmetric case

The symmetric version of Turing's LU decomposition (1948) are the Cholesky, or triangular decomposition [START_REF] Toeplitz | Die Jacobische Transformation der quadratischen Formen von unendlichvielen Veränderlichen[END_REF][START_REF] Cholesky | Sur la résolution numérique des systèmes d'équations linéaires, hand-writing document[END_REF]

) T R R A   1 T R A R I   (1)
and the equivalent LDL T , or unitriangular decomposition [START_REF] Dwyer | A Matrix Presentation of Least Squares and Correlation Theory with Matrix Justification of Improved Methods of Solution[END_REF][START_REF] Satterthwaite | Error control in matrix calculation[END_REF])
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where L is a lower unitriangular matrix, that is, a triangular matrix with 1s on the diagonal, D a positive diagonal matrix and R T = LD 1/2 a lower triangular matrix. A lower atomic matrix of dimension nxn is a unit-determinant lower unitriangular matrix with form

    1 1 1 1 1 1 1 1 n rr qr r qr nr LI Γ                   , 1 ≤ r < n (3)
where Γqr =qrEqr, with Eqr denoting the nxn elementary matrix filled with 1 at entry (q,r) and zero elsewhere. Atomic matrices and their elementary constituents I+Γqr can be also found under the name of addition elementary matrices [START_REF] Frazer | Elementary Matrices and Some Applications to Dynamics and Differential Equations[END_REF], Gaussian transformations (Golub and van Loan, 2013, p. 112), or elementary lower triangular matrices (Stewart, 1998, p. 154). The elements  are named the Gaussian or shear coefficients since for n=2 they are used in computer graphics to perform area-preserving shearing (skewing) of images (e.g., [START_REF] Tsuchida | Hardware for image rotation by twice skew transformations[END_REF]. The inverse of an atomic matrix is readily obtained changing the sign of the Gaussian coefficients, that is,
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Atomic matrices do not commute in general, however the shear coefficients simply add when multiplied in whatever increasing order of subscript, that is
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Multiplication ( 5) is what makes Gaussian elimination so efficient and for this reason it has been referred to as one of the more happy "coincidences" in matrix computations [START_REF] Golub | Matrix Computations (2 th Eds)[END_REF].

Given an SPD matrix X, Touring's method consists in a sequence of n-1 transformations X←L(r) -1 X,

where at each step L(r) -1 is given by setting qr = xrq/xrr, q=r+1…n. Elements xrr are named the pivots and elements xrq the multipliers [START_REF] Higham | Gaussian Elimination[END_REF]. In section 4 (Turing, 1948, p. 290) Turing explains the elimination process as forming the products L(1) -1 A, "recording it", then forming product L(2) -1 (L(1) -1 A), etc., using all matrices L(r) -1 as per (3) for r = 1…n-1. In remark (9) at p. 292 he notes that the application of such recurrence is equivalent to successive conjugations …(L(2

) -1 (L(1) -1 AL(1) -T )L(2) -T )…
, which in Gaussian elimination terminate with the diagonalization of A, hence directly with the inversion of A. In fact, conjugation L(1) -1 AL(1) -T zeroes all non-diagonal elements in the first row and column of A. Next conjugation L(2) -1 (L(1) -1 AL(1) -T )L(2) -T does the same to the second row and column. On completion we have

L(n-1) -1 L(n-2) -1 … L(1) -1 =L -1
, resulting in L -1 A=DL T , and by virtue of ( 4) and ( 5)
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We hence obtain the following general symmetric Gaussian elimination algorithm,
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)
Proposition (8) (Touring, 1948).

Sequence ( 7) terminates with

YL  ,   diag X D  ,   T upper X DL  ,   1 strictly lower X I L   .
 For initialization XA  , only the upper elements of A are needed.

 The line Y←YL(r) amounts to the simple affectations yqr ← xrq/xrr, q=r+1…n, as per (5).

 If L is needed, but not L -1 , as for instance in linear system solvers, only the upper elements of X needs to be updated in X←L(r) -1 X. In fact, therein the strictly lower elements of X are concerned only with the recurrence for computing L -1 .

 Computing D and L can be done in-place and requires n 2 /2-n/2 divisions, n 3 /6-n/6 multiplications and n 3 /6-n/6 subtractions, as detailed by the following algorithm, given here in pseudo-code:

Algorithm LDL T (9). Given an SPD matrix A of order n, of which only the upper elements are needed, overwrites its strictly lower part with the strictly lower part of L, its diagonal part with D and its upper part with DL T . In many situations it will be preferred an equivalent division-free algorithm trading off the divisions for an equal amount of multiplications plus n-1 reciprocations. Also, it is current practice to compute L -1 by computing the LDL T decomposition and then inverting L. A direct method for computing both L, D and L -1 is procedure (7), which adds n 3 /6-n 2 /2+n/3 multiplications and n 3 /6-n 2 /2+n/3 subtractions to the count in (9), those additional operations being needed to update the strictly lower part of X. The computation flow of algorithm (9) for a matrix of dimension 4 is shown in Fig. 1. An important alternative view of the Gaussian elimination process is as it follows: from Fig. 1 we see that the first row of the input matrix is not touched at all by the algorithm. Set r=1 and denote such row ar T . We know that upon completion of the algorithm row ar T holds drrlr T , the first row of DL T , and that its first element is drr, the first element of D. As a consequence / TT r r rr r rr r a a a l d l  , thus rr rr da  and / r r rr l a a  . To find the second row of DL T we compute /

Line Instruction

T r r rr

A A a a a  , which has zeros in the first column and row, and we proceed in the same way with the second row setting r=2. Proceeding this way for r=1…n-1 steps yields the so-called outer-product Cholesky algorithm [START_REF] Golub | Matrix Computations (2 th Eds)[END_REF], also named the "iterative view" of Gaussian elimination (Townsend and Trefethem, 2013). If at each new step we find the permutation matrix P bringing the maximum diagonal element in the r th position by congruence PAP T , which for a symmetric matrix corresponds to complete pivoting, then the matrix 1 / , Townsend and Trefethem, 2013). In the same way, stopping when no more positive pivot can be found, we obtain rank-revealing versions of triangular decompositions, enabling the application of the procedure to SPSD matrices as well (Golub and Van Loan, 2013, p. 166;[START_REF] Higham | Analysis of the Cholesky Decomposition of a Semidefinite Matrix[END_REF]. Since the outer-product scheme we have just seen is equivalent to a symmetric Gaussian elimination, one can apply directly Gaussian elimination as per algorithm ( 9) to obtain a rank-revealing LDL T decomposition, as detailed by the following algorithm:

p T r r rr r a a a p n    is a p-rank approximation of A (
Algorithm PAP T =LDL T (10). Given an SPSD matrix A of order n, overwrites its strictly lower part with the strictly lower part of L and its diagonal part with D.

Procedure Swap (r, m). Swap rows r and m and elements r+1…n of columns r and m of A (if P is needed, update it here).  As stopping criterion we are taking the machine epsilon (macheps) x n x the first pivot, as suggested by [START_REF] Higham | Analysis of the Cholesky Decomposition of a Semidefinite Matrix[END_REF].

Line Instruction

 As compared to algorithm (9), algorithm (10) adds a stopping criterion, pivoting and copies elements aqk into element akq in the main loop (line 11), since those elements may be later on involved in swapping, whereas they are never needed in algorithm (9). Otherwise, the two algorithms are identical and performs the same number of arithmetic operations.

 As it stands algorithm (10) needs the whole matrix A as input and not just the upper triangle as for algorithm (9). This can be avoided with a smart coding of the swap procedure, in which case also the writing of elements akq would no longer be necessary.

 The reason why in the Swap procedure the row of A are swapped entirely while only the elements r+1…n of the columns are swapped is that the elements 1…r of the columns are never used, while the swapping of elements 1…r of the rows belongs to L. They also need to be swapped (see [START_REF] Higham | Analysis of the Cholesky Decomposition of a Semidefinite Matrix[END_REF], while in the algorithm given in Golub and Van Loan, 2013, p. 166, this detail is omitted).

 Unless one is sure that matrix A is SPD and maximal efficiency is of concern, algorithm (10) is to be preferred because is stable regardless the condition number of A and more accurate thanks to complete pivoting.

Operation Count

In table 1 the operation used by LDL T algorithm (9) are compared to state-of-the art algorithms with minimal operation count we have found in the literature, namely, LDL T algorithm 4.1.1 of Golub and Van Loan (2013, p. 158) and the following two R T R algorithms:

 algorithm CholSax of Van Loan (2000, p. 262) and the  algorithm given by Higham (2008b, p. 2).

The most economical algorithms are (9) for the LDL T decomposition and the one given by Higham (2008b, p. 2) for the R T R decomposition, which in addition requires n square roots. Furthermore, the count for the latter increases by n 2 -n multiplications if we try to eliminate the n 2 /2-n/2 divisions as it is possible to do for algorithm (9). 

Discussion

It has been said that "if numerical analysts understand anything, surely it must be Gaussian Elimination", yet, "the closer one looks, the more subtle and remarkable Gaussian elimination appears" [START_REF] Trefethen | Three mysteries of Gaussian Elimination[END_REF]. In fact, Gaussian elimination is not an established knowledge, as demonstrated by the fact that research on it is currently flourishing more than ever; a research using keyword "Gaussian Elimination" in the BIB digital scientific library of CNRS returns 785 results in the period 1980-2000 and more than twice as much since 2000. Current research topics include reduction of complexity for sparse matrices, pivoting strategies, eigenvalue localization and estimation, singular-value decomposition, generalized inverses, parallelization, hardware computing, matrix partitioning, block form, preconditioning, iterative refinement of the solution, equalization, rank-revealing and randomized versions, among others. Above all, the renowned numerical stability of Gaussian elimination is still a puzzling theoretical problem [START_REF] Higham | Gaussian Elimination[END_REF][START_REF] Trefethen | Three mysteries of Gaussian Elimination[END_REF], despite the advances achieved by mathematicians such as Hotelling

Figure 1 .

 1 Figure 1. Computation flow of algorithm (9). The flow proceeds from top to bottom and from left to right, that is, in the order (r=1, q=2), (r=1, q=3), (r=1, q=4), (r=2, q=3)... At each step the entry marked by  indicates the affectation of element aqr at line 3, corresponding to the q th element of Y←YL(r) in procedure (7), while the curved arrows indicates the computations of line 4, corresponding to the upper part of X←L(r) -1 X . Note that the flow may equivalently proceed from left to right and top to bottom, that is, in the order (r=1, q=2), (r=1, q=3), (r=2, q=3), (r=1, q=4)…, yielding different versions of Gaussian elimination algorithms.

|

  If amm > ε then| | If r = 1 then ε = amm n macheps | | If m > r then Swap (r, m) aqk  aqk -(aqr  ark) | | | | akq  aqk | Else EXIT

Table 1 .

 1 Flops count of two LDL T and two R T R algorithms. Legend: sr=square roots, d=divisions, r=reciprocations, m=multiplications; a/s=additions or subtractions.

 (1943), von [START_REF] Neumann | Numerical inverting of matrices of high order[END_REF], [START_REF] Wilkinson | Error Analysis of Direct Methods of Matrix Inversion[END_REF], Higham (2008a) and [START_REF] Golub | Matrix Computations (4 th Eds)[END_REF].

Both for solving systems of linear equations and for explicit inversion, the LDL T decomposition is advantageous over the R T R decomposition. [START_REF] Cho | Efficient implementation of linear system solution block using LDL T factorization[END_REF] give some figures for a highly efficient FPGA (Field Programmable Gate Array) implementation with fixed-point precision. The LDL T decomposition is also preferred because it avoids the computation of the n square roots required by the R T R decomposition, thus it is stable in practice even if the condition number of A is low and suits symbolic computing. In this note we have focused on algorithms for standard processing units, however all Gaussian elimination procedures are recurrences based on triple loops, thus they all can be parallelized in a similar way [START_REF] Higham | Gaussian Elimination[END_REF]. The algorithms we have reported can easily be derived as division-free algorithms, relying only on subtractions, multiplications and reciprocations; this suits x86 processing units, for which divisions necessities more clock cycles than multiplications. Moreover, reciprocations and square roots, the former needed only for the R T R decomposition, can be obtained from a look-up table stored in memory, given normalized input matrices [START_REF] Burian | A fixed-point implementation of matrix inversion using Cholesky decomposition[END_REF]) and refinement can used as needed to match the required precision [START_REF] Golub | Matrix Computations (4 th Eds)[END_REF][START_REF] Higham | Gaussian Elimination[END_REF]. This in turn allows the possibility to exploit fast hardware computing environments operating exclusively subtractions and multiplications.

It is often reported that partitioned decompositions are advantageous over recurrences applied to the entire matrix as treated here, because the former can make use of efficient matrix multiplication routines [START_REF] Higham | Gaussian Elimination[END_REF]. However, triangularization in such algorithms is still for some diagonal partitions. The number of arithmetic operations used by the LDL T algorithm (9) and the R T R algorithm given by [START_REF] Higham | Functions of Matrices: Theory and Computation[END_REF] are minimal (Table 1); n 2 /2-n/2 divisions are needed to compute the Gaussian coefficients qr and the n 3 /6-n/6 multiplications and subtractions are needed for the main recurrence, regardless how it is carried out. These operations appears incompressible, however the question whether one can obtain an equivalent numerical result with a smaller number of operations is still open [START_REF] Trefethen | Three mysteries of Gaussian Elimination[END_REF].