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TOWARDS MULTI-SCALE FEATURE DETECTION REPEATABLE

OVER INTENSITY AND DEPTH IMAGES

Hatem A. Rashwan, Sylvie Chambon, Pierre Gurdjos, Géraldine Morin and Vincent Charvillat

University of Toulouse, CNRS-IRIT

ABSTRACT

Object recognition based on local features computed at multi-

ple locations is robust to occlusions, strong viewpoint changes

and object deformations. These features should be repeatable,

precise and distinctive. We present an operator for repeatable

feature detection on depth images (relative to 3D models) as

well as 2D intensity images. The proposed detector is based

on estimating the curviness saliency at multiple scales in each

kind of image. We also propose quality measures that evalu-

ate the repeatability of the features between depth and inten-

sity images. The experiments show that the proposed detector

outperforms both the most powerful, classical point detectors

(e.g., SIFT) and edge detection techniques.

Index Terms— Feature detectors, Curviness saliency,

2D-3D matching, Repeatability.

1. INTRODUCTION

A growing trend in recognition applications is to require 3D

object models to overcome the limitations due to variations in

viewpoint, texture or lighting that may modify the object ap-

pearance in the images. Since 3D capturing process is cheaper

and faster, accurate 3D models become more available [1, 6,

17, 18]. In addition, 3D models can be integrated through

separate dense depth images captured by range scanners (e.g.,

laser and IR) [4].

Recent approaches are based on 3D model databases [6].

These models can be represented by intermediate representa-

tions [11], like artificial images generated by rotating around

the object through varying yaw, pitch and roll angles and focal

length [4]. To cope with the shape variation independently of

texture and lighting, an adapted representation is range (i.e.,

depth) images, which represent the object shape rather than its

texture [6, 15]. The key features in both depth and intensity

images are then detected to be matched. A key requirement

on these features, as in 2D-2D matching, is to be computed

with a high degree of repeatability (i.e., the probability that

key features in the intensity image are found close to those

extracted in the depth image must be high). In this paper,

we require such assessments of repeatability, as shown in fig-

ure 1. Our objective is to introduce a detector robust to color,

texture and illumination changes.

Fig. 1: The proposed detector based on curviness saliency to align intensity

images to 3D models and the computation of the repeatability score between

an intensity image and a corresponding depth image rendered from the same

viewpoint.

To detect repeatable features in 2D, edges [5], corner de-

tectors [10], eigenvalue analysis [16], multi-scale detectors

(like SIFT [14] and SURF [2]) and curvature detection [9]

are the four most important and the most used techniques.

Recently, [8] presented curvature-based detector that use the

structural cues to find the curvature in a multi-scale space.

All these techniques are robust to lighting changes and trans-

lation; multi-scale approaches are also robust to scale and ro-

tation. However, they depend on texture and/or color changes.

Thus, the question is: what happens if we use these detectors

for 2D-3D matching.

Recently, 2D-3D matching have been developed in the

context of pose estimation. In [17], a sequence of silhouettes

has been extracted from 3D models and input images. Then,

shape similarity is measured between these silhouettes. In our

paper, structural cues (e.g., curvilinear shapes) are extracted

instead of only considering silhouettes since they are more

robust to intensity, color, and pose variations. In fact, they

not only represent outer contours (silhouette), but also inner

(self-occluding) contours that also characterize the object. In

addition, the histogram of gradients (HOG) detector [1, 13] or

a fast version of HOG [6] have been also used to extract the

features from rendering views and real images. All of these

approaches give interesting results, however, they do not eval-

uate the repeatability between the set of points detected in an

intensity image and those detected in an image rendered from



the 3D model. In fact, they all use a learning phase with man-

ual matching but, in the context of our paper, we want to avoid

a learning phase. Finally, in [18], the authors match the image

with the 3D models by using SIFT in 2D and surface variation

in 3D, but they assume that the object in the input image has

no or poor internal texture.

As illustrated in figure 1, this work addresses the problem

of aligning two images generated differently: an intensity im-

age and a depth image that we assume to be taken from the

same viewpoint. Curvature features do highlight geometric

characteristics of an object. We propose a new detector based

on curviness saliency that is a function of the eigenvalues of

the Hessian matrix, an estimation of curvature. Furthermore,

as relevant details exist only over a restricted range of scale,

we further consider these features in a multi-scale analysis.

This detection yields more repeatable key points between in-

tensity and depth images than the classical detectors. Finally,

an intensive evaluation and comparison have been conducted

to highlight the quality of the proposed interest points.

2. PROPOSED MULTI-SCALE CURVINESS

SALIENCY DETECTOR

Given an intensity image I, we define the surface S such that

S(x, y) = (x, y, I(x, y)) under the assumption that I is twice

differentiable. We denote by ∇I the gradient vector of I and

by H =

(
Ixx Ixy
Ixy Iyy

)
the Hessian matrix of I, i.e., the

order-2 matrix of second-order partial derivatives Ixx, Ixy
and Iyy . One key result is that the principal curvatures κ1(p),
κ2(p) of S at point p are the eigenvalues of the matrix:

H̃ , α H, where α = 1/

√
1 + ‖∇I‖2. (1)

We aim at detecting “curvilinear features” in a represen-

tation common to depth and intensity images. By curvilinear

features, we refer to points lying on elongated structures at

which one principal curvature strongly dominates the other

one. The Laplacian-energy is often used for image represen-

tation. So why not to use it here? Usually, the discrete form

∇2I(p) = Ixx(p)+Iyy(p) ≈ (1/h2)
∑

h
I(p+ h)−I(p),

where p = (x, y)⊤ and h varies in {±h} × {±h}, is ap-

plied to each image and the obtained values are then squared.

The problem is that the Laplacian operator clearly behaves

like a mean rate of local intensity change so important direc-

tional information is lost. Linking this to curvatures, using

the rotation invariance of the Laplacian, it can be shown that

∇2I = α trace H̃ = α(κ1+κ2) which means that∇2I com-

putes twice an “intensity-weighted” mean curvature of S.

The image representation proposed in this work is the

so-called curviness saliency representation which relies on a

function computing the difference between principal curva-

tures. We will now justify such a choice. Remind that, on

the tangent plane TS to S at point p, for all unit directions t

in TS , (i) the normal curvatures κt(p) at p associated with t

are the curvatures of the curves obtained by slicing S with the

planes containing p and parallel to t; (ii) ρt(q) , 1/|κt(q)|
are the radii of curvature of these curves. A nice geometry re-

sult [3] is that all the points q = p+
√
ρt(q)t on TS , located

at distance
√
ρt from p, lie on a conic known as the Dupin in-

dicatrix at p. When p is the origin, the conic equation writes

(x, y)H̃(x, y)⊤ = ±1. (2)

Let choose a sign for ±H̃ such that its eigenvalues be λ1, λ2

ensuring λ1 ≥ λ2 and λ1 > 0 (which are in fact equal to the

two principal curvatures up to a common sign). Semi major-

and minor-axes are r2 = |λ2|−1/2 and r1 = |λ1|−1/2 (since

r2 ≥ r1 ) respectively. The conic specializes to an ellipse if

λ1λ2 > 0, or an hyperbola if λ1λ2 < 0 i.e., if λ2 is negative.

The Dupin indicatrix yields a local information on the

surface as the conic shape describes the ‘distribution’ of

all normal curvatures at p (or more exactly of the squared

roots of all radii of curvature). Various measures can de-

scribe this conic shape and we select the linear eccentricity

E∓ ,
√
r22 ∓ r21 , also called half-focal separation, which

is the distance between the center and one focus, with ‘−’

for ellipses and ‘+’ for hyperpolas. Indeed, it can be easily

shown that:
√
λ1 − λ2 = E∓

r1r2
, which provides a unified way

of treating ellipses and hyperbolas (due to lack of space, the

proof is omitted). The function:

CS , λ1 − λ2, (3)

is large when λ1 ≫ λ2, which means distant foci and so a

highly elongated ellipse or a “squashed” hyperbola. This oc-

curs e.g., when the point is located on a ridge (either curved or

straight). In turn, when λ1 ≃ λ2, the conic approaches a cir-

cle and the distance between foci becomes very small. There-

fore after computing (3) for every image pixel, any point with

high value can be considered as a potential keypoint. Noting

that the two eigenvalues λ1 , λ+ and λ2 , λ− of the scaled

Hessian matrix H̃ can be directly computed as:

λ± =
α

2

(
Ixx + Iyy ±

√
(Ixx − Iyy)2 + 4I2xy

)
, (4)

the curviness saliency is then defined as

CS , CS
2
= α2

(
(Ixx − Iyy)2 + 4I2xy

)
. (5)

In figure 2, we show the different detections obtained using

the minimum or the maximum eigenvalue, as proposed by

Deng et al. [8]; the maximum eigenvalue provides a high re-

sponse only for dark lines on a light background, while the

minimum gives the high answer for the light lines on a dark

background. Our proposition, the difference of the eigenval-

ues, improves robustness as it responds in both settings.

Computing the curviness saliency in a single-scale can

only detect points that have high curvature in one scale and



Fig. 2: Curviness saliency of two shapes (columns 1, 5) with minimum

(2, 6), maximum (3, 7) and the difference between maximum and minimum

eigenvalues (4, 8).

high curvature points in other scales are missed. In con-

sequence, in this paper, we compute the curviness saliency

images in a multi-scale space. To build the scale pyramid, an

edge-preserving smoothing approach, anisotropic diffusion

filter [7] is used.

Contrary to depth images which represent textureless 3D

shapes, intensity images are composed of shape and texture

components. Consequently, the CS estimated from intensity

images is affected by the textured regions. Our idea is to put

forward the assumption that multi-scale analysis can discrimi-

nate between keypoints (those with high CS) due to shape and

keypoints due to texture. As shown in figure 3.(b), at a coarse

level, curves detected are reliable with poor localization and

they miss small details. At a fine levels, details are preserved,

but detection suffers greatly from clutters in textured regions.

In addition, the CS values of small details and textures are

high in the coarse level, whereas these values become lower

in the finest levels. To combine the strengths of each scale, the

CS value of each pixel over n scales is analyzed. If this value

in all scales is higher than a threshold T , which is a function

of the number of the smoothed images, m, (i.e., T = e−m),

the maximum curviness saliency (MCS) value of this pixel

over all scales is then kept, see figure 3.(a). However, if the

CS value is lower than T in one level, it is considered as tex-

ture (or small detail) point, thus it is removed from the final

multiscale curviness saliency (MCS) image.
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0.50
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Curviness Saliency Images

Max 0.0 0.71

MCS

(a) (b)

Fig. 3: (a) A pyramid for a curviness saliency image computation: green

values are over a threshold, so, the maximum is kept, whereas red values are

under and replaced by 0. (b) Curviness saliency at different scales, top to

bottom: the original image, the coarsest and finest levels, the final result.

3. EXPERIMENTS

To evaluate the repeatability of the detectors between inten-

sity images and depth images, we apply a set of 9 detectors on

a depth image, and its corresponding real images taken from

the same point of view. The locations of features extracted on

the depth images are considered as the ground-truth. Then,

the extracted features on the real images are compared with

the corresponding ground-truth. For all the tested 3D mod-

els, we generate depth images from approximately uniformly

distributed viewing angles around a circle or a sphere1.

Datasets – First, we use 2 real objects (i.e., stairs), with re-

spectively 4 and 2 different textures, with their 3D CAD mod-

els. A set of depth images from different view is rendered and

for each viewpoint, real images with different texture are cap-

tured, see figure 4. Moreover, we use 3D textureless objects

(available online 2), and we collect a set of 15 real images of

each object on the web by choosing views as close as possi-

ble to the views used for the generation of the depth images.

Moreover, to highlight the robustness of the approach to dif-

ferent acquisition conditions, many real images of a similar

model are taken. Furthermore, we used the PASCAL3D+

dataset [19] that contains real images corresponding to 12
rigid objects categories; we compute average results for all

non occluded objects in each category i.e., around 1000 ob-

jects per category. The real images are acquired under dif-

ferent acquisition conditions (e.g., lighting, complex back-

ground, low contrast). We rendered the depth image of the

corresponding 3D CAD model using the viewpoint informa-

tion from the dataset.

Fig. 4: Points detected with MCS on a depth image (column 1) and images

with different textures rendered from the same viewpoint(column 2-5).

Comparison with existing detectors – The experiments

include comparisons with these 9 following detectors3:

Edge-based detectors: Sobel, Laplacian of Gaussian (Log),

Canny [5] and Fuzzy logic technique [12], corner detectors:

Harris detector, Minimum Eigenvalues detector [16], multi-

scale detectors: SIFT, Scale Invariant Feature Transform [14],

SURF, Speeded Up Robust Features [2], a multi-scale Princi-

pal Curvature Image (PCI) detector [8].

Setup – The images of the MCS results are calculated in scale

space, similar to SIFT (see [7] for details about the construc-

tion of the pyramid). What is important is that we set the

number of smoothed images per octave to 5, and in conse-

quence, we have only 1 image result per octave.

1
http://www.openu.ac.il/home/hassner/projects/poses/

2
http://tf3dm.com/

3
The proposed MCS detector is implemented in MATLAB. All tested point-like detectors and edge detection tech-

niques are tested with the implementation given in MATLAB.



Methods MCS PCI MinEig Harris SIFT SURF Sobel Canny LOG Fuzzy

Sequences Ip Hd Ip Hd Ip Hd Ip Hd Ip Hd Ip Hd Ip Hd Ip Hd Ip Hd Ip Hd

Stairs1 63 29 43 37 39 48 35 41 32 52 42 39 25 67 30 59 31 61 21 75

Stairs2 65 27 44 36 35 45 38 41 40 47 43 35 28 64 34 58 33 54 20 70

Car 50 29 46 40 08 57 04 77 03 85 03 71 10 48 18 46 11 47 05 49

Shoe 31 52 31 67 02 102 03 106 10 111 01 108 04 71 04 71 05 71 02 71

Plane 55 23 38 19 06 37 04 43 10 46 03 47 18 26 21 26 21 24 14 24

T-Rex 64 17 59 25 09 41 06 100 02 143 05 46 16 28 18 28 20 32 12 22

Elephant 32 41 32 55 03 80 03 91 05 114 03 74 06 57 08 58 06 57 04 57

Fhydrant 51 23 42 35 06 62 04 86 02 74 09 67 09 38 14 37 13 36 06 42

Jeep 62 31 58 42 05 70 05 67 05 74 06 89 09 47 15 47 11 46 06 47

Mug 54 56 50 65 02 129 03 133 04 134 03 145 08 72 12 76 07 75 08 75

Teddy 39 24 32 31 04 72 05 69 09 77 04 101 07 47 14 44 08 47 07 47

Pistol 67 16 61 26 09 34 09 96 09 44 04 73 13 30 23 65 14 29 07 26

plane 50 48 37 59 15 61 09 63 08 68 13 73 10 68 13 65 11 69 10 71

bicycle 61 75 57 79 25 90 08 101 16 93 24 100 13 83 15 84 18 82 14 87

boat 36 68 28 75 09 79 10 77 06 87 10 76 09 75 14 71 11 78 09 76

bus 24 110 17 117 05 128 06 123 02 131 04 127 04 121 06 118 04 122 04 123

car 41 85 24 98 08 102 08 100 03 113 06 108 16 89 18 88 14 94 13 97

chair 52 64 43 78 16 84 08 96 09 94 16 86 24 88 20 91 22 86 19 92

table 38 85 19 96 06 117 05 118 04 118 08 111 11 117 12 114 11 116 07 120

train 28 108 14 121 06 126 07 123 03 133 05 127 08 125 07 129 04 129 06 122

METime 0.018 0.041 0.022 0.057 0.121 0.088 0.023 0.024 0.062 0.176

Table 1: Mean Intersection Percentage (IP) (higher is better) and Mean Hausdorff Distance (HD) (lower is better) of all depth image rendered from different

viewpoints and all real images captured under different textures and lighting of, first, the two objects, second the 10 objects, and, third, the PASCAL3D+, with

the proposed method (MCS) and 9 tested detectors. METime is the mean execution time in seconds of MATLAB codes of the MCS and 9 tested detectors

executing on Intel Core(i7) 2.9 GHz.

Evaluation criteria – The behavior of the detectors is eval-

uated with 2 measures: Hausdorff distance, well known and

used, and Intersection percentage, introduced in this paper

and that evaluates the intersection between the set of points

extracted from the 2 considered images. More precisely, for

each point of the depth image, a corresponding point is sought

at the same location in the real image. The intersection per-

centage (IP) counts the number of correspondences over the

total number of points detected in the image.

Results – In figures 4 and 5, for the depth images, MCS gives

points uniformly located on the silhouette of the objects and

also some points inside the shape whereas the corner and the

multi-scale detectors miss some specific parts of the shape,

like the bottom of the car. Moreover, visually MCS performs

best for detecting a set of points in the depth map close to

those detected in the real images. All the detectors are af-

fected by the background, i.e. they detect points that are not

coherent with the depth map. For the edge operators, false

contours are detected inside the car in the real images.

Fig. 5: Features extracted in the depth (row 1) and the real image (2) with:

MCS (column 1), PCI proposed in [8] (2), SIFT (3), Harris (4) and Edge

detector proposed in [12] (5).

As shown in Table 1, MCS is able to find the highest num-

ber of features in the intersection, with real images captured

under different textures and lighting conditions. For real im-

ages, as background is arbitrary, a perfect score (100%) can

not be expected. For the edge-detectors, the intersection per-

centage is less than 30% for all the edge operators. However,

MCS still outperforms the other edge operators. Moreover,

PCI, the closest approach to our, yields to good repeatability

results that are comparable to MCS results. However, MCS

still provides the best results among the 9 tested detectors. In

addition, MCS provides the lowest Hausdorff distance. We

also have to notice that PCI and Edge detectors perform bet-

ter than the corner and the multi-scale detectors.

4. CONCLUSION

We introduce a feature detector, MCS, based on a multi-scale

curviness saliency estimation that can extract points more re-

peatable than classical detectors when it is used between an

intensity image and a depth image. We also proposed a qual-

ity measure, the intersection percentage, to evaluate the re-

peatability of the extracted features. The experiments show

that MCS yields the best repeatability score. Future work aim

at introducing this detector in a robust 2D-3D matching for

robust object recognition. The next step will be to introduce

a descriptor based on shape and common to these different

images to increase the quality of the recognition. In addition,

we aim at using defocus maps [20] to represent real images.
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