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Numerical Investigation of High-Speed Turbulent Boundary
Layers of Dense Gases

Luca Sciacovelli’ - Xavier Gloerfelt' - Donatella Passiatore' - Paola Cinnella’ -
Francesco Grasso?

Abstract

High-speed turbulent boundary layers of a dense gas (PP11) and a perfect gas (air) over flat
plates are investigated by means of direct numerical simulations and large eddy simula-
tions. The thermodynamic conditions of the incoming flow are chosen to highlight dense
gas effects, and laminar-to-turbulent transition is triggered by suction and blowing. In the
paper, the behavior of the fully developed turbulent flow region is investigated. Due to the
low characteristic Eckert number of dense gas flows (Ec = Ufo /€0 T)- the mean velocity
profiles are largely insensitive to the Mach number and very close to the incompressible
case even at high speeds. Second-order velocity statistics are also weakly affected by the
flow Mach number and the velocity spectra are characterized by a secondary peak in the
outer region of the boundary layer because of the higher local friction Reynolds number.
Despite the incompressible-like velocity and Reynolds-stress profiles, the strongly non-
ideal thermodynamic and transport-property behavior of the dense gas results in uncon-
ventional distributions of the fluctuating thermo-physical quantities. Specifically, density
and viscosity fluctuations reach a peak close to the wall, instead of vanishing as in perfect
gas flows. Additionally, dense gas boundary layers exhibit higher values of the fluctuating
Mach number and velocity divergence and a larger dilatational-to-solenoidal dissipation
ratio in the near-wall region, which represents a major deviation from high-Mach-number
perfect gas boundary layers. Other significant deviations are represented by the more sym-
metric probability distributions of fluctuating quantities such as the density and velocity
divergence, due to the more balanced occurrence of strong expansion and compression
events.
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1 Introduction

High-speed flows of gases with complex thermodynamic behavior (often referred to as
“real gases”) are being paid growing interest from the scientific community due to the
manifold applications in aerospace and power generation systems. In this work we focus
more particularly on so-called dense gas flows found in several engineering applications,
ranging from energy production to high-Reynolds wind tunnels. A typical application is
represented by energy conversion cycles like Organic Rankine Cycles (ORC) [see Colonna
et al. (2015) for a review] and heat pumps (Zamfirescu and Dincer 2009), but dense gases
are also of interest for other applications, e.g., high-Reynolds wind tunnels (Bodenschatz
et al. 2014; Berry and Berger 2015; Corliss and Cole 1998). Dense gases are single-phase
fluids with complex molecules, operating at pressure and temperature conditions of the
same order of their thermodynamic critical point. Examples of fluids with dense gas behav-
ior are heavy fluorocarbons and hydrocarbons, refrigerants and siloxanes (Cramer 1989;
Colonna and Silva 2003). The dynamic behavior of such fluids is characterized by means
of the fundamental derivative of gas dynamics (Thompson 1971), I' =1 + f j—;L (where ¢

is the speed of sound, p the density and s the specific entropy), measuring variations of the
sound speed under reversible density perturbations. In gases with sufficiently high molecu-
lar complexity (defined as ¢, (T,,)/R, with R the gas constant and c, ,(T,,) the isochoric
heat capacity in the dilute gas limit, measured at the fluid critical temperature 7,,.), I is less
than one over an extended range of thermodynamic conditions in the vapor phase. This
leads to a reversed variation of the speed of sound in isentropic transformation with respect
to perfect gases: ¢ decreases when the gas is compressed and increases when the gas is
expanded. Even more dramatic deviations from the perfect gas behavior are expected for
gases of the so-called Bethe—Zel’dovich-Thompson (BZT) type, for which a region of neg-
ative values of the fundamental derivative I" (named the “inversion zone”) is predicted to
appear in the vicinity of the liquid/vapor coexistence curve, on the vapor side. In such con-
ditions, nonclassical waves like expansion shocks become physically admissible [see, e.g.,
Cinnella and Congedo (2007) and the references therein].

Although a number of numerical studies have investigated in the past dense gas dynam-
ics, most of them are based on simplified models neglecting viscous effects (potential
flow or Euler equations) or relying on the Reynolds—Averaged Navier—Stokes equations
supplemented with a standard turbulence model (i.e., without any specific calibration or
compressibility correction for dense gases). On the other hand, experimental investigations
of dense gas flows are particularly difficult and costly, and only very recently some local
experimental measurements of pressure and temperature at selected stations in a dense-gas
nozzle have been made available (Spinelli et al. 2018), as well as Schlieren photographs
(Zocca et al. 2019). Unfortunately, to the authors’ best knowledge, no velocity or Reyn-
olds-stress measurements of turbulent dense gas flows have been obtained yet, and the fine
details of transitional and turbulent dense gas flows remain largely unknown. In previous
research, the present authors have investigated the influence of dense-gas effects in com-
pressible decaying isotropic turbulence (Sciacovelli et al. 2016, 2017) and channel flow
(Sciacovelli et al. 2017) configurations by using Direct Numerical Simulations (DNS). Pre-
vious studies (Kluwick 1994; Cinnella and Congedo 2007) show that, due to their high spe-
cific heat capacities, dense gases are characterized by a strong decoupling of dynamic and
thermal fields for any flow configuration. In the turbulent channel flow, this results in tem-
perature fluctuations sensibly smaller than in air, and to a strong correlation between den-
sity and pressure fluctuations, in contrast with perfect gases. The complex thermodynamic



behavior of dense gases at thermodynamic conditions corresponding to I'~0 also modifies
compressibility effects and flow topology: for instance, in freely decaying dense gas turbu-
lence at sufficiently high turbulent Mach numbers, strong compressions are weakened and
strong expansions enhanced. The latter may correspond to sheet-like (rather than tube-like)
structures, suggesting the formation of expansion eddy shocklets. These phenomena are
not observed in confined wall-bounded configurations like turbulent channel flows, because
of the smaller turbulent Mach numbers. For dense-gas channel flows, the most significant
differences are related to the peculiar evolution of the temperature- and density-dependent
transport properties: the temperature variations being small, viscosity and thermal con-
ductivity essentially follow the density profiles, resulting in a liquid-like behavior. At such
conditions, variable property scalings like the van Driest or the Trettel and Larsson scaling
(Trettel and Larsson 2016) were found to collapse adequately the wall-normal profiles even
at large bulk Mach numbers.

In this work we report the first-ever DNS/LES (Large-Eddy Simulation) results for
dense-gas (DG) turbulent boundary layers at supersonic Mach numbers. The objective is
to understand the role of dense-gas effects for wall-bounded, non-confined and spatially-
evolving configurations. For this purpose, a quasi-DNS (a fine wall-resolved implicit LES)
is carried out at M = 6. This value is much higher than those that are typically encoun-
tered in practical dense-gas applications [a remarkable exception being the high-Mach,
high-Reynolds NASA Langley CF4 wind tunnel, dismantled in 2017, which used a light
perfluorocarbon, CF4, as the working fluid up to M = 6 (Berry and Berger 2015)]; never-
theless, such severe operating conditions are of theoretical interest for highlighting dense
gas effects. We also report wall-resolved LES results for a lower Mach number (M = 2.25),
more representative of values encountered in ORC applications, to investigate Mach num-
ber effects. In both cases, dense-gas results are compared with perfect-gas (PG) simulations
at the same Mach number with the objective to show how the intricate DG behavior affects
the turbulent flow statistics and flow topology, and to check the validity of compressibility
scalings.

The paper is organized as follows. Details of the governing equations, numerical meth-
ods, and computational setup are provided in Sect. 2. The results are discussed in Sect. 3,
including the description of first- and second-order statistics, the validity of classical corre-
lations and scalings, and the study of compressibility effects. Lastly, conclusions are drawn
in Sect. 4, along with some perspectives for future research.

2 Simulation Details
2.1 Governing Equations

The numerical simulations are based on the single-phase compressible Navier—Stokes
equations, solved in a conservative form on Cartesian grids and supplemented by suitable
dense-gas constitutive relations. The dense fluid considered in the following simulations
is the perfluoro-perhydrophenanthrene, (chemical formula C,F,,), called hereafter with
its commercial name PP11. Its main thermodynamic properties, extracted from Cramer
(1989), are provided in Table 1. The model of Martin—-Hou Martin and Hou (1955) is used
for the thermal equation of state, which is reasonably accurate for the fluid of interest and
requires a minimum amount of experimental information for setting the gas-dependent
coefficients. The equation of state for the pressure p involves five virial terms and writes:



Table 1 Thermodynamic properties of PP11 (C,,F,,): molecular weight (M), critical temperature (7,),
critical density (p,,), critical pressure (p,,), critical compressibility factor (Z.,), boiling temperature (7},),
ratio of ideal-gas specific heat at constant volume over the gas constant (c,(7,,.)/R) at the critical point, and
parameter for the low-density specific heat power law (n)

M T, Per Per Z,, T, e (T.)/R n
g mol™! K kgm™ MPa - K - -
624.11 650.2 627.14 1.46 0.2688 488.15 97.3 0.5776
RT S f(D)
p= + ) (1)
(v=>b) (v=>b)y

i=2

with b =v,[l —(20.533 —31.883Z.,)/15] and f(T)=A;+B,T+C,exp(—kT/T,),
where v = 1/p denotes the specific volume, v,,, T,, and Z_, are the critical specific vol-
ume, temperature and compressibility factor, and k = 5.475. The coefficients A;, B; and
C; depend on the critical temperature and pressure, the critical compressibility factor, the
Boyle temperature and one point on the vapor pressure curve. Variations of the low-density
specific heat with temperature are modeled by means of a power law:

T n

Cvoo ()= Cvoo (Tcr) ( T_ > 2)
cr

where 7 is a material-dependent parameter.

In addition to the equations of state, suitable models for the dynamic viscosity u and ther-
mal conductivity A of dense gases, which depend on both the gas temperature and pressure
(or density), have to be specified. The present results are based on the model of Chung et al.
(1988), which incorporates a high-pressure correction term to account for the modification of
transport properties values at high pressure (or density) conditions. Such a model has been
used in previous works on dense gases (e.g. Cramer and Tarkenton 1992; Cramer and Park
1999) and is considered to be a reasonably accurate semi-theoretical model for calculating the
viscosity based on the knowledge of a few thermophysical input parameters [see Poling et al.
(2001) for more details], provided that the thermodynamic conditions are far enough from the
transcritical region (Kawai et al. 2015), which is the case for the present study. A full descrip-
tion of the model equations can be found in “Appendix” of ref. Sciacovelli et al. (2017).

For the purpose of comparison, numerical results are also presented for air, modeled as a
polytropic perfect gas:

p = pRT and e=c,T, 3)

where ¢, = R/(y — 1) is the specific heat at constant volume and y the specific heats ratio.
At the lowest Mach number considered in the study (M = 2.25), Sutherland’s law is used to
model the viscosity u:

3/2
o <l> T+ S “)
Href Tiet T'+$,

re!

with pe = 1.716 X 107 Pa s, T,,; = 273.15 K and S, = 110.407K. At the highest Mach
number (M = 6), viscosity follows a power law, y = (T/ Too) ", in order to allow direct
validation with the DNS results of Franko and Lele (2013). In the present dimensional



calculations, the reference values correspond to a stagnation temperature of 533 K and a
stagnation pressure of 37.74 atm. We have noted (¢),, the incoming flow quantities. At both
Mach numbers, a constant Prandtl number assumption is used to determine the thermal
conductivity 4 = ¢, u/Pr (with Pr = 0.71).

2.2 Numerical Method

The inviscid flux derivatives in the governing equations are approximated in space by
means of centered tenth-order accurate differences. In order to introduce a minimal amount
of numerical dissipation while ensuring computational robustness for compressible flow
simulations, the centered scheme is supplemented by a high-order nonlinear artificial vis-
cosity term, similar to the approach of Jameson et al. (1981) and Kim and Lee (2001). In
our case, we use a blend of second- and tenth-order derivatives approximated by stand-
ard central differences. For a 1D problem and a regular Cartesian grid with constant mesh
spacing 6x (so that x; = j 6x), the semi-discrete tenth-order scheme in space writes:

GR _,
(v + sx

where w is the vector of conservative variables, é is the classical difference operator over
one cell, 6(e); 1= (e) bl — (‘),;la and fl 11s the numerical flux at cell interface j + %:
2 k 2 k 2
1 1 1

1
For = [(1 LY LI T —58) - D]
+4 6% *30° “10° T’ M

j+l

where f = f(w)is the physical flux, uis the cell average operator, y(-)j+1 1= %((')Hl + (-)j),
3 )

and D is the numerical dissipation term:

Dj+% = p(A)j+% [626w+61069w]

+3
with p(A) the spectral radius of the flux Jacobian matrix A = df /ow, and

Eajy1 = k, max(v;®;, vi 1 Djyy), Elop4! = max(0, kg — £2j+%),

with k, and k;, adjustable dissipation coefficients. The activation of the low-order term
rests on Jameson’s pressure-based shock sensor v (Jameson et al. 1981) combined with
Ducros’ sensor (Ducros et al. 1999). The sensor is O(1) in high-divergence regions and
tends to zero in vortex dominated regions, which allows the capture of flow discontinuities
with minimal damping of the vortical structures inside the boundary layer. Note that, when
k, =0and k;, = 121% the preceding method becomes equivalent tola ninth-order accurate
upwind scheme. For all computations, we set k, = 2 and kjy = -, except for Mach 6
dense-gas case where the value of &,y is multiplied by a factor of three (due to the near-
wall high density fluctuations that can undermine the robustness of the simulation). Far
from flow discontinuities, the spatial scheme has very low phase and dissipation errors,
as discussed in Sciacovelli et al. (2016). An assessment of the accuracy of the numerical
scheme for freely decaying compressible homogeneous isotropic turbulence can be found
in the same reference. The tenth-order dissipation is selective in the wavenumber space,
and it affects only wavelengths discretized with less than 6 mesh points. As a consequence,
it constitutes a suitable implicit subgrid regularization term for LES simulations (Gloerfelt



and Cinnella 2019), with the capability of seamlessly converging to DNS in smooth flow
regions as the grid is refined.

The viscous flux derivatives are approximated by fourth-order accurate central for-
mulae. Time advancement is carried out by means of an explicit four-stage low-storage
Runge—Kutta scheme. The non-uniformity of the wall-normal mesh spacing is taken into
account by a suitable 1-D coordinate transformation. Near the non-periodic boundaries,
the finite-difference stencil for the convective terms is progressively reduced down to
the second order, whereas the viscous stress terms are evaluated from the interior points
by using fourth-order backward differences.

2.3 Computational Setup

The spatial development of zero-pressure-gradient turbulent boundary layers on a flat
plate is simulated for both PP11 and air flows. Two configurations have been selected:
a hypersonic TBL at M = 6 (HTBL) and a supersonic TBL at M =2.25 (STBL). The
higher value of the Mach number does not correspond to a configuration of practical
use, but is of theoretical interest for highlighting dense-gas effects in wall turbulence.
The lower Mach number is more representative of flow conditions achievable in dense-
gas turbines. The free-stream conditions are chosen such that the fundamental derivative
of gas dynamics I' is negative outside of the boundary layer and remains lower than
unity close to the wall. This allows to investigate strongly non-ideal thermodynamic
effects, although such operating conditions are difficult to reproduce in an experimental
facility.

In order to avoid uncertainties associated with turbulent inflow conditions like syn-
thetic turbulence (Wu 2017) or rescaling/recycling (Lund et al. 1998), which have not
been tuned for flows governed by dense gas equations of state, laminar inflow condi-
tions are set at the entrance of the computational domain and transition to turbulence is
triggered by means of suction/blowing at the wall.

The inlet of the domain corresponds to the leading edge of the flat plate for HTBL
simulations, hence unperturbed free-stream conditions are imposed at the upstream
boundary. On the contrary, STBL simulations start with a finite laminar boundary layer
thickness to save computational time; in this case, the compressible laminar similarity
solution is imposed at the inflow. The inlet Reynolds number is Rez = 1700 for air and
Regz. = 3000 for PP11, with 5:1 the inlet displacement thickness. "

At the wall, no-slip and isothermal conditions are imposed. The wall temperature
value is set equal to the laminar adiabatic wall temperature, calculated by means of a
generalized compressible Blasius solver (Gloerfelt et al. 2020). This corresponds to
a pseudo-adiabatic condition, a common practice in high-speed perfect-gas boundary
layer calculations [see, e.g., Table 1 of Ref. Wenzel et al. (2018)]. We verified that, for
the dense gas cases, the wall heat flux (made non-dimensional with the outer density,
velocity and enthalpy) is of the order of 107° or less at the plate wall. As a consequence,
the flow is much closer to adiabatic conditions than in perfect gas cases and wall cool-
ing/heating effects are not expected to play any significant role. To achieve a turbulent
state, the laminar-to-turbulent transition is triggered using a blowing and suction device
acting on a small strip of the wall plate, which consists in a time-and-space-dependent
wall-normal velocity disturbance of the form:
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v, = Af(x)g(2){ a,p cos(wt) + azp cos(wt + fz) + Z ay cos(wt + 2mpz) 3)

m=1

where A, @ and f are the amplitude, the pulsation and the spanwise wavenumber of the
fundamental mode. The coefficients a,, a3, and ay are used to specify the amplitude of
the 2D fundamental mode, 3D fundamental mode and higher-order modes, respectively.
Following Franko and Lele (2013), the distributions of the forcing in the streamwise (f) and
spanwise (g) directions are defined as:

f@=cF and g@=1+01| () _ (%)

22Us \ith 5%

forc

fore

The Gaussian strip is centered at x, with a half-width & (such that 6> = 0.87

the displacement thickness at the forcing location x;). A small dissymmetry is introduced
in the spanwise direction, centered at z, with width z,, (in all cases z,,/5; = = 6). The forc-
ing frequency and spanwise wavenumber, as well as the forcing Reynolds number are
determined based on a preparatory linear stability analysis (Gloerfelt et al. 2020) and are
different for each of the cases. The forcing parameters used in each simulation are reported
in Table 2. A validation of the forcing procedure against numerical data from the literature
for a turbulent boundary layer at M = 6 (Franko and Lele 2013) is reported in “Appendix”.

At the upper boundary, one-dimensional nonreflecting characteristic boundary condi-
tions (Thompson 1987) are applied, whereas a simple extrapolation of variables is used
at the supersonic/hypersonic outlet. No sponge zones are introduced at the inlet, outlet,
and upper boundaries. Lastly, periodic boundary conditions are set in the spanwise direc-
tion. Figure 1 illustrates the computational domain and the boundary conditions. For all
cases, the Cartesian grid is evenly spaced in the streamwise (x) and spanwise (z) directions,
whereas a geometric stretching is applied in the wall-normal direction (y) with a rate of
1.5%.

A summary of the numerical parameters and of the reference conditions is provided in
Table 3. The reported boundary layer properties are evaluated at the end of the computa-
tional domain and are used to get insight into the resolution of the various simulations. The
values of grid sizes in wall units indicate that the perfect-gas simulation at M = 6 can be
classified as DNS following the standard terminology (see, e.g., Poggie et al. 2015; Wenzel
et al. 2018; Zhang et al. 2018) with the caution, commonly accepted in compressible tur-
bulence studies, that eddy shocklets are captured and not resolved. In the dense gas simula-
tions, the characteristic Reynolds numbers are larger than in perfect gas, due to the high
density (two orders of magnitude higher than air). As a consequence, strict DNS resolu-
tion requirements are more difficult to achieve. For the DG HTBL, the spatial resolution in
wall units is somewhat coarser than in the PG case, and corresponds to a quasi-DNS or a

Table 2 Numerical parameters

of the forcing function in Case AU p ap ay Poy @8y /Us Res
equation (3) for the different AirtM=225 001 0 1 0 02 012 2000
cases
Air M =6 0002 0 1 0 03 015 3000
PPII M =225 0035 0 105 005 03 06 3100
PPIIM=6 002 1 005 005 03 06 1200




Inlet
Profiles

Isothermal wall

Characteristic b.c.

Fig. 1 View of the computational domain for the M = 6 air (top) and PP11 (bottom) cases. Instantaneous
snapshot of the Q-criterion colored by the distance from the wall, and isocontours of log |Vp| on the back-
ground planes. The white symbol “~” denotes the location of the suction and blowing forcing

Table 3 Simulation paramgters Fluid Air PPI1

and boundary layer properties at

the end of the domain M 225 6 225 6
U, [m/s] 363.6 969.7 78.99 198.8
P [kg/m3] 0.13 0.13 348.4 348.4
T, [K] 65 65 650.8 646.83
T, [K] 120.18 422.5 653.4 663.2
Ecy, 2.03 14.4 5.42x 1073 3.31x1073
N, 4000 7700 10000 14336
N, 210 300 270 320
N, 140 400 176 280
Reg: 1700 0 3000 0
Re 5}; 2000 3000 3100 1200
Re, 4600 5720 9200 4402
899 [mm] 543 5.98 0.132 0.032
6 [mm] 0.46 0.23 0.015 0.0031
H 3.66 13.81 1.51 2.12
Ax*t 11.57 3.76 19.57 8.12
Ayt 0.82 0.26 0.98 0.65
Ayt 10 5.1 24 18
Azt 5.63 2.09 12.07 9.77
L,/bgq 62.5 75.2 75.1 90.1
L, /899 1.75 2.13 1.48 1.75
L. /bgq 1.06 2.17 0.85 1.56

fine wall-resolved ILES (implicit LES). The spatial resolution has been also evaluated with
respect to the wall-normal distribution of the Kolmogorov length-scale 1 = [ﬁ3 / (535)]5,
where € is the turbulent kinetic energy dissipation. The values at the wall and at the



boundary layer edges, shown for HTBL simulations in Table 4, confirm the previous state-
ment: despite similar mesh topologies and sizes, resolutions achieved in the DG simula-
tions differ significantly from the PG case, being more unfavorable at the wall and more
favorable at the boundary layer edge. The present results may serve as guideline for mesh
resolution requirements in future studies of dense gas boundary layers. Dense gas behavior
and its influence on mesh resolution requirements are further discussed in the next Sec-
tion. A recent study of resolution requirements in compressible DNS of spatially-evolv-
ing TBL by Poggie et al. (2015) showed that wall-resolved ILES seamlessly converges to
DNS as the grid is refined, which gives us confidence in the interpretation of the present
results, at least in terms of first and second-order statistics. The PG and DG simulations at
M = 2.25, on the other hand, are coarser and correspond to the criteria of a wall-resolved
ILES. Of note, the perfect gas simulations were found to be in good agreement with refer-
ence numerical results of Pirozzoli and Bernardini (2011) (see “Appendix”).

To provide a glimpse of the computational cost, we mention that the M = 6 simulation
for air (924 million points) was run on 7 392 cores and represents approximately 2 millions
CPU hours on Intel Xeon 8168 processors. The corresponding simulation for PP11 (1.13
billion points) was split on 16 384 cores and corresponds to approximately 6 millions CPU
hours on similar processors.

3 Numerical Results

In the following, numerical results for dense-gas boundary layers are compared with
perfect-gas simulations at the same Mach and Reynolds numbers. In the discussion, the
main focus is set on the highest Mach number configuration, which exhibits the largest
deviations from the PG behavior and for which DNS resolution has been achieved. Wall-
resolved LES results at M = 2.25 are also presented with the aim of discussing Mach num-
ber effects.

3.1 Global Flow Properties and First-Order Statistics

Figure 2 provides an overview of the boundary layer evolution for DG and PG cases. The
figure reports the skin friction coefficient distributions along the plate, transformed to
equivalent “incompressible” values by means of the Van Driest II transformation (Van Dri-
est 1956):

Cf,inc = Fch (6)

where

Table 4 Grid resolutions for M = 6 simulations, evaluated at the wall and at the boundary layer edge, nor-
malized with respect to the local averaged Kolmogorov scale

Case (4x),, (4y),, (42),, (4x), (4y), (42),

AirM =6 2.7, 0.2n, 1.51, 4.3n, 3.5n, 2.4n,
PPI11M =6 6.3, 0.5, 7.5, 1.6n, 2.81, 2.1y,
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Fig.2 Evolution of selected properties across the turbulent boundary layers. red dashed line Air M = 2.25,
blue line Air M = 6, orange dotted line PP11 M = 2.25, green dash-dotted line PP11 M = 6. In panel (a),
square: Blasius laminar solution, triangle: turbulent correlation Cy;,. = 0.024Re,, II{C (Smits et al. 1983). In
panel (c), diamond: correlation Re_ = 1. 13Re0 843 (Schlatter and Orlii 2010)
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as a function of Rey;,. = —Reg, being Re, = f=—= U°°9 and 6 the momentum thickness. The

Blasius laminar solution C inc = 0.664 Re_'/ 2 and a classical empirical turbulent correla-
tion Cy;,c = 0.024Re,, ]/ (Srmts et al. 1983) are also reported for reference. In all cases,
the distribution of C, 1n1t1a11y matches the laminar correlation; then it rapidly departs from
it and a significant overshoot is visible for PG flow at M = 6. The transition path and inten-
sity of the overshoot obtained for the PG flow at M = 6 are in very good agreement with
(Franko and Lele 2013), as shown in “Appendix”. At higher Re, the results are close to the
empirical correlation. Similar considerations hold for PG at M = 2.25. The DG skin fric-
tion distribution follows reasonably well the trend of the turbulent correlation but values
are lower, because the van Driest II compressibility correction for the skin friction, derived
by integrating the boundary layer equations under PG assumptions, is not suitable for the
DG. In practice, the van Driest II law has almost no effect on DG results, since 7,,/T,
remains close to the unity, as shown later, leading to F, = 1. An extension of the transfor-
mation to dense gases is not straightforward, due to the complex relations between flow
properties in the dense gas. Interestingly, the skin friction distributions at M = 2.25 and 6
for the dense gas are very close to each other, with no overshoot at the laminar-to-turbulent
transition and almost no influence of the Mach number.

In Fig. 2b, we also report the variation of the incompressible versus compressible
momentum-thickness-based Reynolds numbers along the plate for DG and PG boundary



layers. While the range of Re, is reasonably similar for DG and PG flows, its incompress-
ible counterpart (Rey;,.) differs substantially. For DG at M = 2.25 the compressible and
incompressible Reynolds numbers are very close to each other, due to the negligible fric-
tion heating and small viscosity variations in the DG. For the M = 6 case, Re, ;. becomes
somewhat larger than Re,, unlike PG, for which Rey;,. becomes smaller and smaller as M
is increased. Due to the opposite behavior of Rey ;. in dense and perfect gas flows and to
the fact that PG flows remain transitional over a large portion of the flat plate, the region
of overlapping Re, ;. values in the fully turbulent region for DG and PG is almost void. A
similar effect is observed for the friction Reynolds number Re_, reported in Fig. 2c along
with the incompressible correlation of Schlatter and Orlii (2010), Re, = 1.13Reg‘§§3. The
latter matches very well the DG results, especially at the lowest Mach number, for which
the boundary layer evolution is closer to the incompressible behavior. For PG cases, Re, is
much lower due to the significant friction heating, so that they do not share any common
value with DG cases in the fully developed turbulent flow region. For this reason, in the
following we choose to compare the wall normal profiles of first- and second-order statis-
tics at iso-Re,,.

Figure 3 shows selected profiles of first-order statistics in the turbulent region at
Re, = 4000. We adopt the semi-locally-scaled wall normal coordinate y* = pyu’ /u, based
on the semi-local friction velocity u = v/7,,/p (Huang et al. 1995), and focus on ther-
modynamic and transport properties first. Both for PG and DG, the mean density (panel
a) increases from the wall towards the boundary layer edge and, as expected, this effect is
more pronounced at the highest Mach number. However, the variations are much smaller
in DG, where the ratio of the external to the wall density is about 1.3 at M = 6, against a
factor of more than 6 for PG at the same conditions. We also notice that the DG density
profile exhibits a trend similar to the velocity profile (shown in Fig. 5), with an approxi-
mately linear variation in the viscous sublayer and a nearly logarithmic variation in the
outer region. This is consistent with previous observations (Sciacovelli et al. 2017) that
density is strongly correlated with pressure and, consequently, with velocity in DG flows,
whereas it is more correlated with temperature in PG ones. The temperature profiles for
PG and DG ( panel b) highlight the strong friction heating of the near-wall region for PG
flows, where the wall-to-external temperature ratios are approximately 1.8 and 6.5 for the

Fig.3 Wall-normal profiles of selected first-order statistics for Air and PP11, normalized with respect to
wall values. a, average density; b, average temperature; ¢, average viscosity. Red dashed line Air M = 2.25,
blue line Air M = 6, orange dotted line PP11 M = 2.25, green dash-dotted line PP11 M =6



M = 2.25 and M = 6 cases, respectively. These values are in excellent agreement with the
predictions of the Walz law (Walz 1969) (reported in “Appendix”). For DG, the tempera-
ture also increases toward the wall, but its variations are one to two orders of magnitude
smaller, and do not exceed 3% at the highest Mach number. The average viscosity profiles
(panel c) follow the trend of the temperature profiles in PG, with the well-known friction-
heating increase of viscosity in the wall region. For DG, the viscosity is essentially corre-
lated with density and decreases toward the wall. This opposite behavior has been already
observed for compressible turbulent channel flows (Sciacovelli et al. 2017) although, in
that case, temperature and density increase from the wall toward the channel centerline. As
a consequence, the average viscosities exhibit opposite variations with the wall distance
with respect to the present boundary layer flows.

Figure 4 reports the profiles of the mean molecular Prandtl number and of the funda-
mental derivative of gas dynamics for DG boundary layers at Re, = 4000. The former var-
ies across the boundary layers and decreases monotonically from values higher than 2 in
the outer region to 1.95 and 1.53 at the wall for M = 2.25 and M = 6, respectively. As a
consequence, the thermal boundary layer is somewhat thinner than the dynamic one in DG
cases. The fundamental derivative also varies across the boundary layer and reaches posi-
tive values at the wall, mostly due to density variations. Nevertheless, a region of negative
values of I' persists in the outer region of the boundary layer, characterized by supersonic
flow conditions (vertical lines on the same picture indicate the location of the sonic points
in the boundary layer profiles). Such a region is more extended for the lowest Mach num-
ber case, for which density variations (hence, T variations), are smaller.

The velocity profiles for all cases are plotted in Fig. 5 using the classical incompressible
and van Driest scalings:
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For PG, the velocity profiles depend on the Mach number and deviate from the classical
incompressible law of the wall (panel a). The discrepancy of uj,, with respect to the incom-
pressible logarithmic law (panel b) comes from the use of the semi-local wall coordinate
y*. A better behavior is recovered when plotting against y* (see “Appendix”, Fig. 16¢), but
the results at different Mach numbers do not fully collapse anymore. For DG, the velocity
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Fig. 4 Wall-normal profiles of the average Prandtl number a and fundamental derivative of gas dynamics b
for PP11. Vertical dashed lines in panel b denote the sonic lines for the two cases. Orange dotted line PP11
M =225, green dash-dotted line PP11 M =6
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Fig.5 Velocity profiles for Air and PP11: (a), wall scaling; (b), semi-local Van-Driest scaling. Black
dashed lines denote the linear and logarithmic laws, with ¥ = 0.41 and C = 5.2. Red dashed line Air
M = 2.25, blue line Air M = 6, orange dotted line PP11 M = 2.25, green dash-dotted line PP11 M = 6

profiles at various Mach numbers are very close to each other using the incompressible
scaling, and weakly sensitive to the van Driest scaling, due to the weak variations of p
across the boundary layer. As noticed in previous studies (Cinnella and Congedo 2007;
Sciacovelli et al. 2017), this effect results from the very low Eckert number of DG flows
(Ec,, = Ugo /(¢) 0 T), see Table 3), leading to substantial decoupling of the dynamic and
thermal boundary layers and to significantly smaller friction heating of the boundary layer
compared to PG. The slope of the logarithmic region matches well the standard value of
the von Karman constant k = 0.41 but the intercept constant is higher than the incompress-
ible value (C = 5.2). A possible explanation for this discrepancy may reside in the defini-
tion of the scaling variables: for PG, turbulent fluctuations of fluid properties tend to vanish
at the wall, so that averages of products/ratios of flow properties do not differ much from
products/ratios of the average values. This is not true for DG flows, as discussed in the
following.

3.2 Second-Order Statistics

The wall-normal profiles of the streamwise turbulent intensity u,, (i.e., the root mean
square—rms—streamwise velocity fluctuations) are reported in Fig. 6 using both the
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Fig.6 Wall-normal profiles of streamwise Reynolds stress, using the wall scaling (a) and semi-local scaling
(b). Red dashed line Air M = 2.25, blue line Air M = 6, orange dotted line PP11 M = 2.25, green dash-
dotted line PP11 M =6



incompressible and semi-local scaling. As expected, the latter succeeds in collapsing
results at different Mach numbers for PG and has little effect on DG profiles, which are
very close to each other in both scalings and for all Mach numbers. The peak location cor-
responds to y*~11 + 12 in all cases. However, DG results are characterized by a higher
peak in the inner region and by a plateau in the outer one, and exhibit a general trend remi-
niscent of high Reynolds incompressible boundary layers. Similar considerations hold for
the other Reynolds stresses (not shown).

Second-order statistics for the fluctuating thermodynamic properties are reported in
Fig. 7. The temperature fluctuations (panel a) exhibit similar trends for PG and DG, with
a peak located at y*~12, i.e. close to the turbulent intensity peak. As expected, the values
observed in DG are much lower (two orders of magnitude) than in PG, so that the flow can
be considered as isothermal to a first approximation and the variations of all thermody-
namic quantities can be explained in terms of density fluctuations only. The latter exhibit
striking differences with respect to PG flows (panel b): while p,,./p,, reaches a maximum
in the outer region (the peak value being close to 1 at M = 6), it decreases smoothly and
almost monotonically when departing from the wall for DG. A similar effect has been also
observed in compressible turbulent channel flows of dense gases and can be explained by
the wall-normal variation of the mean density and by the slope of the constant-temperature
and constant-entropy curves in a Clapeyron (p—v) diagram. For gases governed by real-
gas equations of state like the Martin—Hou equation used in this study it can be shown
that p.../p = (Prms/P)/(Op/0p)r [see Sciacovelli et al. (2017) for more details]. Due to
the different trend of the mean density, however, the rms density profile is flatter in bound-
ary layer flows, whereas it exhibits a well-pronounced peak at the wall in channel flows.
Overall, despite the DG flow occurring at thermodynamic conditions of the same order of
magnitude of the critical point, the density fluctuations remain small compared to the aver-
age density and Morkovin’s condition p,,,/p < 1 is well respected. Viscosity fluctuations
(panel c) are clearly correlated with temperature fluctuations for the PG and with density
fluctuations for the DG. It is worth noting that, at the wall, they are strictly zero for the PG
(for which u,, = u(T,) = const.), whereas they are maximum for the DG. The strong den-
sity and viscosity fluctuations at the wall have an impact on the wall friction z,, and friction
velocity u,, leading to different possible definitions.
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Fig.7 Wall-normal profiles of selected second-order statistics for Air and PP11, normalized with respect to
wall values. a, rms temperature; b, rms density; ¢, rms viscosity. Red dashed line Air M = 2.25, blue line
Air M = 6, orange dotted line PP11 M = 2.25, green dash-dotted line PP11 M = 6
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Fig.8 Kolmogorov length scale with incompressible (a) and semi-local (b) wall scaling across turbulent
boundary layers at M = 6: blue line Air, green dash-dotted line PP11
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Fig.9 Premultiplied spanwise spectra of the streamwise velocity fluctuations k.E,, (k,)/ Ufo (a, b) and of

the density fluctuations k. E,,(k,)/ pi (¢, d) for Air (a, ¢) and PP11 (b, d). The vertical and horizontal black
lines denote the location of the peaks

The unconventional variation of the fluid properties has an impact on the character-
istic flow scales and, consequently, on the spatial resolution obtained in the simulations.
The smallest motions scale with the Kolmogorov length scale #, reported in Fig. 8 in both
incompressible and compressible scalings. For both gases, " is close to the incompressible
value 1.5 at the wall. However, #* reaches a minimum close to the boundary layer edge for
PG, due to the decreasing mean viscosity, whereas it monotonically increases in DG, due
to the liquid-like viscosity profile. Application of the semi-local scaling allows to recover
a trend similar to the incompressible limit for PG, while it does not alter much the DG
results, as already observed for other flow properties. As expected (Smits et al. 2011), #*
remains almost constant in the near-wall region (say, y* < 30), then increases with the wall
distance becoming quite large in the non-turbulent region.

For a better understanding of the near-wall turbulent structures, we report in Fig. 9
the fluctuating streamwise velocity and density premultiplied spanwise spectra across the
boundary layer for M = 6 as a function of the spanwise wavelength 47. Using the semi-local
scaling, the small-scale peak corresponding to the characteristic streaks spacing is centred
around A7 ~ 120 and y* ~ 12 in the velocity spectra for both PG and DG. A larger-scale,
outer peak is visible for the DG at 4} ~ 103 and y* ~ 200 (corresponding to y/&49 =~ 0.2),
in accordance with reference data for incompressible boundary layers at similar Reynolds



numbers [see, e.g., results in Eitel-Amor et al. (2014) for Re, = 4400]. On the other hand,
a different spectral behavior is obtained for the density fluctuations. Specifically, the peak
of k E, , is located at the boundary layer edge for PG, whereas it is at the wall for DG; this
is consistent with the different distributions of the wall-normal p,,, profiles, as shown in
Fig. 7b.

3.3 Compressibility Effects

The preceding discussion of first and second-order statistics shows that, in high-speed DG
boundary layers, most flow quantities are largely insensitive to the freestream Mach num-
ber and exhibit a behavior similar to incompressible boundary layers. Nevertheless, the
flow is characterized by strong fluctuations of the fluid properties in the near-wall region.
In order to investigate the role and nature of compressibility effects in DG TBL, we report
in Fig. 10 the wall-normal profiles of the turbulent and rms Mach number, defined as
M, = u,,/c and M, = (u/c),,s- The turbulent Mach number (panel a) is considerably
higher in DG flows with respect to PG at the same M, due to the thinner boundary layer.
In particular, the values reached in the neighborhood of the turbulent intensity peak at
M = 6 are sufficiently high (M, ,,, > 0.5) to enable the formation of eddy shocklets. Even
when M, is lower than this threshold, the existence of eddy shocklets is not excluded (Duan
et al. 2011), since the instantaneous Mach number can be much higher. The profiles of the
rms Mach number (panel b) are considerably different for PG and DG at M = 6. In PG,
the peak in the outer region is greater than the one located in the production region, due to
significant fluctuations of the temperature and speed of sound (not shown). The opposite
is observed in DG since fluctuations of the thermodynamic properties are globally smaller
and M, is mostly driven by u,,.. The outer peak is strongly attenuated for both DG and
PGatM =2.25.

In the following we focus on the hypersonic cases. Figure 11 shows the probability den-
sity functions (pdf) of selected quantities at a wall-normal location corresponding approxi-
mately to the peak of u,,,. and another one in the outer logarithmic layer. More precisely,
the pdf are extracted along spanwise meshlines and for several time instants at y* = 11 and
y* =138 for DG, and at y* = 10, y* = 157 for air. Kernel density estimates of the pdf are
obtained by using a total of about 4 million samples. The pdfs of the Mach number (panel
a) are significantly skewed toward supersonic values, especially for DG, the right tail being
very close to the free-stream Mach value. As a consequence, the probability of supersonic

Fig. 10 Wall-normal evolutions of turbulent Mach number (a) and rms Mach number (b). Red dashed line
Air M = 2.25, blue line Air M = 6, orange dotted line PP11 M = 2.25, green dash-dotted line PP11 M = 6
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Fig. 11 Probability density functions of the Mach number a, normalized density b, fundamental deriva-
tive of gas dynamics ¢ and normalized dilatation d for air and PP11. Blue line Air M = 6, green dash-dot-
ted line PP11 M = 6. Two vertical locations are considered: near the wall (y* = 10 for air and y* = 11 for
PP11), circle symbols; in the logarithmic region (y* = 157 for air and y* = 138 for PP11), triangle symbols

local events is rather high even in the inner region of the TBL. In panel b we report the pdf
of the fluid density (normalized with the local average) at the same locations. Contrary to
the Mach number, the pdf are much more symmetric for DG, whereas states characterized
by density values above the average have a much higher probability in PG. Additionally,
the width of the pdf is approximately constant for DG, whereas it tends to become wider
when y* increases for PG. If a normalization with respect to the wall density is adopted
instead of the local average, then a wider spread of density values is observed for the loca-
tion nearest to the wall in DG, whereas the opposite is true for PG. This is consistent with
the trends observed for the wall-normal profiles of p . /p,, (Fig. 7b). The pdf of the funda-
mental derivative I" for PP11, displayed in Fig. 11c, shows that, even if T becomes positive
near the wall, instantaneous negative values are still present at y* = 10, i.e. close to the
region where M, peaks. More generally, most thermodynamic states in the flow correspond
to I'~0. In such conditions, expansion and compression events tend to become equally
probable even in the absence of nonclassical BZT effets, as discussed in Sciacovelli et al.
(2016, 2017). In Fig. 11d, we report the pdf of the velocity divergence (J = V - u), often
used in the literature to discriminate the preferential occurrence of compression/expansion
events. The values are normalized with the rms divergence and the local mean and rms
Mach number to ease comparisons between different fluids and locations. Given the low
M, reached in PG, the pdf is obviously symmetric at both the wall distances. For DG, the
local Mach numbers are higher, and they would correspond to a pdf skewed toward nega-
tive values in PG homogeneous isotropic turbulence. In the DG, however, the pdf remains
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Fig. 12 Wall-normal distributions of normalized rms dilatation (a) and ratio of dilatational to solenoidal
turbulent dissipation for M = 6 cases. Blue line Air M = 6, green dash-dotted line PP11 M = 6

Fig. 13 Instantaneous snapshots of normalized numerical Schlieren |V p|/(p/ 899 ¢q) for Air (top) and PP11
(bottom) at M = 6

well symmetric, consistently with preceding observations of DG homogeneous isotropic
turbulence at a similar M, (Sciacovelli et al. 2017).

Figure 12 reports the wall-normal distributions of the normalized rms dilatation 9, as
well as the dilatational-to-solenoidal turbulent dissipation ratio €4/¢,, where €4 = % u9?
and €, = 2uw? (Huang et al. 1995) (@ = |V X u). Of note, this ratio tends rapidly to infin-
ity outside the boundary layer, the vorticity of the freestream being zero. In DG, near-wall
values of the dilatation fluctuations are almost twice those of the PG, which is consistent
with the high density fluctuations in the vicinity of the wall. Overall, the contribution of
the dilatational dissipation is more significant in a DG boundary layer, and the differences
are particularly marked in the inner region and in the wake region. This seems consistent
with the highest instantaneous values of the Mach number observed in DG, which increase
the probability of eddy shocklets with respect to PG.

In order to provide a global view of the flow topology, we show instantaneous snapshots
of the magnitude of the density gradients and of the velocity divergence in Figs. 13 and 14,
respectively. The density gradients are normalized by p/8gg ., to obtain comparable ranges
for the two flows. The numerical Schlieren for the PG flow exhibits elongated, sheet-like
structures corresponding to high-density-gradients ejection events moving towards the
boundary layer edge. On the contrary, the high-{Vp| spots for the DG flow are located near
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Fig. 14 Instantaneous snapshots of normalized velocity divergence 9/9
(bottom) at M = 6

for Air (top) and PP11

rms rms

the wall (in a region where the rms density is also at its maximum), whereas sheet-like
structures in the outer region (where I < 0) are more sporadic and intermittent. Such spots
do not seem to be preferentially associated to expansion or compression events, which are
shown to be almost equally likely for both flows. With the aim of relating the occurrence
of strong density gradients with expansion/compression events, joint pdfs of the velocity
divergence and magnitude of the density gradients are reported in Fig. 15. A weak cor-
relation is noted, as indicated by the low values of the Pearson coefficients r, (reported in
the figure), which give a measure of the linear relationship between the two datasets. The
symmetry of the joint pdf for the DG shows that density gradients are not preferentially
correlated to compression nor expansion events, whereas a slight correlation with expan-
sion events is noted for the PG, more marked near the wall. Therefore, we conclude that the
Schlieren-like illustrations are not representative of the presence of shocklets; for the PG,
they rather show the sharp edges of the bulge structures in the outer flow. This picture is
strongly altered for the DG, where the density variations are more uniform across the layer
and intense events are located close to the wall.

4 Conclusions

In this paper, we reported for the first time high-fidelity numerical simulations of super-
sonic and hypersonic boundary layers of dense gas (DG) at M =2.25 and M = 6. The
working fluid selected for the study is the heavy fluorocarbon PP11, already considered
in previous studies of decaying homogeneous isotropic turbulence and turbulent chan-
nel flows. The calculations were conducted by using a high-order numerical solver and
advanced thermodynamic and transport-property models. The dense-gas results are com-
pared with perfect gas (PG) results generated at the same Mach and Reynolds numbers.
For the dense gas, the complex thermodynamics and transport-property variations play
a crucial role. Most of the observed effects are due to the much higher molecular complex-
ity of the dense gas, leading to an increase of more than one order of magnitude of the heat
capacity compared to light gases like air and, consequently, to much smaller Eckert num-
bers. In such conditions, temperature variations are nearly negligible throughout the flow
field and friction heating is very small even at hypersonic conditions. Due to the substantial
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Fig. 15 Joint probability density functions for Air (a, ¢) and PP11 (b, d) at M = 6 near the wall (a, b;
y* =10 for Air and y* = 11 for PP11) and in the logarithmic region (¢, d; y* = 157 for Air and y* = 138 for
PP11)

decoupling of the thermal and dynamic boundary layer, the thickening rate of the boundary
layer in the dense gas is close to that of an incompressible flow and dynamic quantities are
weakly sensitive to the Mach number. On the contrary, wall-normal profiles of mean ther-
modynamic and transport properties depend on the Mach number, although the amplitude
of variation across the boundary layer is much smaller than in perfect gas boundary layers.
Specifically, the wall temperature is less than 3% greater than the free-stream temperature
for the DG boundary layer at M = 6, against a factor close to 7 observed for air at similar
conditions. Similarly, the wall density is reduced by less than 25% in the dense gas, against
a factor of more than 6 in the PG, and variations of the fluid viscosity across the boundary
layer are also greatly reduced and amount to less than 30% for the highest Mach number.
Additionally, since the viscosity mostly depends on density in DG conditions (instead of
temperature, like in PG), it exhibits an opposite trend across the boundary layer; namely,
it decreases when approaching the solid wall. Both of the above-mentioned effects lead to
higher local Reynolds numbers, as shown by the velocity spectra, where an outer peak is



present for the DG. The velocity profiles and turbulent intensities are almost unaffected by
the Mach number, although further work is probably required to adapt compressible wall
scalings, originally derived for perfect gases, in order to improve the matching of dense gas
results with incompressible references. Indeed, significant differences are observed for the
density and viscosity fluctuations, which reach a maximum near the wall in DG instead of
vanishing as in PG. The reduced thickening of the DG boundary layer also leads to a more
extended supersonic region than perfect gases and to higher turbulent and fluctuating Mach
numbers. Probability density functions of the Mach number clearly show that more fre-
quent supersonic events occur within the DG boundary layers. The analysis of the dilata-
tional events provides a first view of the peculiar behavior in the dense-gas regime. In par-
ticular, inspection of the instantaneous divergence fields and their pdf distributions shows
that expansion and compression events are rather balanced, differently from the perfect gas.
Schlieren-like representations, often used to exhibit the compressive character of the flow,
are weakly correlated to compression and expansion events. They, however, depict very
different compressibility effects on the boundary layer structure. Sharp bulges dominate
the outer flow in PG, whereas density variations are severely attenuated in the outer region
of the DG boundary layer, where values of the fundamental derivative of the gas dynam-
ics are close to zero. On the contrary, a strong dilatational activity is located in the near-
wall region. Further work is required to better understand how the peculiar compressibility
effects may affect the turbulent structures or the Mach wave radiation. The definition of
appropriate scalings to ease comparisons with perfect gases and with the incompressible
limit may help in this endeavour.
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Appendix: Validations

In this appendix, we present validations of our numerical solver against well-established
literature results for perfect-gas (air) high-speed boundary layers at M = 2.25 and 6. The
simulation at M = 2.25 is compared to the DNS data of Pirozzoli and Bernardini (2011).
This study focused on the fully turbulent flow behavior and adopted a rescaling/recycling
strategy to shorten the computational domain required to achieve fully-developed turbu-
lence. Sutherland’s law was used to model the viscosity, along with a constant Prandtl
number hypothesis. Figure 16 shows wall-normal profiles of selected flow statistics for the
present PG ILES and the DNS of Pirozzoli and Bernardini (2011). An excellent agreement
is observed.

The calculation at M = 6 has been performed in the same conditions and with the
same thermodynamic and transport-property models as the DNS study of Franko and
Lele (2013), except that our computational domain is much longer to achieve a fully
turbulent state. These authors focused their analysis on the transition mechanisms, so
that a comparison is possible only in the transitional regime. Another difference in our



Fig. 16 Wall-normal profiles of Reynolds stresses (a), normalized wall pressure (b) and Van Driest-scaled
streamwise velocity profile (c¢), for current ILES of Air at M = 2.25 (lines) and Pirozzoli and Bernardini
(2011) (symbols), extracted at Re, = 580

numerical setup is that the inlet of the domain corresponds to the leading edge of the
flat plate, whereas Franko and Lele (2013) started with a finite laminar boundary layer
thickness, such that the Reynolds number based on the inflow displacement thickness,
5;,F&L, is 3000. For the comparisons in Fig. 17, we use this displacement thickness
as reference (5], F&L = 67 ). Panel a shows that the distribution of the skin friction
coefficient for the present and the reference calculation are in excellent agreement. The
present simulation finally reaches a fully developed turbulent state where C; follows
the trend of classical skin friction correlations (see Sect. 3). Selected velocity profiles
at various stations in the laminar, transitional, and nearly turbulent flow regimes are
reported on panel b of the same figure. Once again, the present results match remark-
ably well the reference data, thus confirming the quality of the present simulations.

Finally, in Fig. 18, we compare temperature profiles from the present PG simulations
at M = 2.25 and M = 6 at Re, = 4000 with the classical temperature law of Walz (1969).
The numerical results are found to match very well the analytical model.
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Fig.17 Skin friction coefficient a blue line present DNS; circle DNS of Franko and Lele; dotted line
White’s turbulent correlation. Mean streamwise velocity profiles b present DNS (solid lines) and Franko
and Lele (2013) (symbols) at locations x/8 . = 400 (orange line, orange triangle), 650 (green line, green
diamond), 800 (blue line, blue inverted triangle), and 950 (red line, red circle)
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Fig. 18 Normalized tempera-
ture profiles for PG runs (lines)
and prediction from Walz’s

law (Walz 1969) (symbols) at
Re, = 4000. Red dashed line Air
M = 2.25, blue line Air M =6
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