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Nonparametric estimation of a multivariate
density under Kullback-Leibler loss with ISDE

Louis Pujol∗

Abstract

In this paper, we propose a theoretical analysis of the algorithm ISDE,
introduced in previous work. From a dataset, ISDE learns a density written
as a product of marginal density estimators over a partition of the features.
We show that under some hypotheses, the Kullback-Leibler loss between the
proper density and the output of ISDE is a bias term plus the sum of two
terms which goes to zero as the number of samples goes to infinity. The
rate of convergence indicates that ISDE tackles the curse of dimensionality
by reducing the dimension from the one of the ambient space to the one of
the biggest blocks in the partition. The constants reflect a combinatorial
complexity reduction linked to the design of ISDE.
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1 NOTATIONS

Let f be a density function (a nonnegative real function whose integral is equal to
1) over Rd. If we think of f from a statistical viewpoint, it is natural to refer to
the indices {1, . . . , d} as the features.

Let S ⊂ {1, . . . , d}, we denote by fS the marginal density of f over S. For
all x = (x1, . . . , xd) ∈ Rd

fS(x) =

ˆ
f(x)

∏
i/∈S

dxi. (1.1)

With a slight abuse of notation, to highlight the fact that fS(x) does not depend
on (xi)i/∈S, we write fS(xS) instead of fS(x).

Let k be an positive integer not greater than d. We denote by Setkd the
set of all subsets of {1, . . . , d} with cardinal not greater than k and by Partkd the
collection of all partitions of {1, . . . , d} constructed with blocks in Setkd. We also
use the shortcuts Setd = Setdd and Partd = Partdd.

2 INTRODUCTION

In a previous work ([8]), we have introduced ISDE (Independence Structure Den-
sity Estimation). ISDE estimates a density f from a set of iid realizationsX1, . . . , XN

considering the Independence Structure (IS) hypothesis. This paper is devoted to
a theoretical analysis of this algorithm. In this introduction, we review existing
theory about IS, introduce ISDE, and set the goals of the present work.

2.1 Curse of dimensionality and independence Structure

Minimax Risk Let X1, . . . , XN be iid realizations of a random variable in Rd

admitting a density f . The goal of density estimation is to construct an estimator
f̂ of the density. We can measure the hardness of such an estimation task using
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the minimax framework. Assume that the true density belongs to some known
model F and let D be a (pseudo)distance on F , the minimax risk is defined as
follows:

R(D,F) := inf
f̂

sup
f∈F

E
[
D(f, f̂)

]
(2.1)

where the inf is taken over all measurable functions from the data to F . More
specifically, a great part of the literature on the topic deals with the asymptotic
regime of R(D,F) with respect to N .

Hölder Balls Let U be an open subset of Rd and g : U → R a function. Let
γ = (γ1, . . . , γd) ∈ Nd be a multiindex and let |γ| =

∑d
i=1 γi be its order. The

partial differentiate operator Dγ is defined as follows

Dγg =
∂|γ|g

∂γ11 . . . ∂γdd
. (2.2)

For a positive number β, if we denote by s the larger integer strictly lower
than β and let δ = β − s ∈ (0, 1], g belongs to the Hölder ball H(β, L) where L is
a positive real number if both following conditions are fulfilled


max
|γ|≤s

sup
x∈U
‖Dγg(x)‖ ≤ L

max
|γ|=s

sup
x,y∈U

|Dγg(x)−Dγgi(y)| ≤ L‖x− y‖δ. (2.3)

If g is defined on a close subset C of Rd, we say that g ∈ H(β, L) if the
restriction of g to the interior of C.

Minimax Risk over Hölder Balls In [3], the minimax rate of this family of
functions was studied considering Lp distances. In particular, the result with the
squared L2 distance is the following

R
(
‖.‖2

2,Hβ(d,H)
)
∼ N−

2β
2β+d . (2.4)

2



We can interpret this bound as a manifestation of the curse of dimensionality
because of its dependence on d. A solution is to consider the IS model introduced
in [5].

Independence Structure For k ≤ d, we define a family of functions:

Dkd =

{
f : Rd → R| ∃P ∈ Partkd : f(x) =

∏
S∈P

fS(xS)

}
. (2.5)

In probabilistic terms, a density f over Rd belongs to Dkd if we can group
these features into independent blocks. Another viewpoint is that the random
variable characterized by f admits a graphical model, a collection of disjoint fully
connected cliques of size not greater than k. It was showed in [9] that

R
(
‖.‖2

2,Hβ(d,H) ∩ Dkd
)
∼ N−

2β
2β+k . (2.6)

The striking fact here is that the hardness of the estimation problem is no
longer related to the ambient dimension but instead to the size of the biggest block
of the partition on which the density function is decomposable.

2.2 ISDE

As explained in [8], the density estimation problem under squared L2 loss does
not lead to a feasible algorithm. This is why we change the loss function to the
Kullback-Leibler (KL) divergence. If f̂ is an estimator of f , the KL loss between
f and f̂ is defined as

KL
(
f‖f̂

)
=

ˆ
log

(
f

f̂

)
f. (2.7)

This formulation is well suited to IS as it involves log-densities, and a log of a
product of marginal densities is a sum of log of marginal densities. From an
algorithmic viewpoint, this formulation allowed us to implement an algorithm with
reasonable running time and memory usage (see [8] for details). ISDE operates as
follows.
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1. Two independent datasets W1, . . . ,Wm and Z1, . . . Zn are extracted from
X1, . . . , XN .

2. W1, . . . ,Wm is used to compute marginal density estimators (f̂S)S∈Setkd
. Any

multidimensional density estimation procedure can be used for this step.

3. Z1, . . . , Zn is used to compute (`n(S))S∈Setkd
where

`n(S) =
1

n

n∑
i=1

log f̂S((Zi)S). (2.8)

4. The optimization problem

max
P∈Partkd

∑
S∈P

`n(S) (2.9)

is solved with an exact integer programming optimization procedure (branch-
and-bound).

The output is a partition P̂ and an estimator of f taking the form f̂P̂ =∏
S∈P̂ f̂S. The formulation with log-densities leads to a combinatorial complexity

reduction. At first glance, the problem of density estimation under IS necessitates
manipulating data structures of size P k

d while ISDE only lies on data structures of
size Skd .

2.3 Goal of this work

This paper is intended to provide a theoretical analysis of ISDE by upper-bounding

the quantity KL
(
f‖f̂

)
. In particular, we will show that the introduction of IS

tackles the curse of dimensionality and that the constants in the upper-bound
reflect the combinatorial complexity reduction implemented in ISDE.

2.4 Organization of the paper

In section 3 we establish a first decomposition on the risk involving oracle parti-
tions. In section 4 we introduce the regularity conditions on the proper density
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and establish that an upper-bound for the uniform loss between marginal densities
of f and marginal estimators is sufficient to obtain a convergence result for ISDE.
In section 5 we show that it is possible to obtain an upper-bound for uniform
estimation of marginal densities for a particular estimator. Then in section 6 we
state the desired upper-bound for the estimator outputted by ISDE.

3 KULLBACK-LEIBLER RISK DECOMPOSI-

TION

In this section, we show that the KL loss between f and f̂P̂ , the estimator out-
putted by ISDE, decomposes as the sum of three terms with a clear interpretation.

3.1 Oracles partitions

We denote by P̂ the partition outputted by ISDE. Let Pn[.] denotes the empirical
measure associated with the sample Z1, . . . , Zn and P [.] the measure associated
with the true density f . P̂ is solution of the following optimisation problem :

P̂ ∈ arg min
P∈Partkd

Pn

(
− log(f̂P)

)
(3.1)

The partition P̂ is random depending on both W and Z. Let us define two
other meaningful partitions.

P̃ ∈ arg min
P∈Partkd

P
(
− log(f̂P)

)
= arg min

P∈Partkd

KL
(
f‖f̂P

)
(3.2)

and

P∗ ∈ arg min
P∈Partkd

P (− log(fP)) = arg min
P∈Partkd

KL (f‖fP) . (3.3)
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P̃ is a random partition depending onW but not on Z. it is the best combina-

tion of the estimators (f̂S)S∈Setkd
if we consider that the quantities

(
P (− log f̂S)

)
S∈Setkd

are known.

P∗ is not random. It is only a function of k. fP∗ can be interpreted as the
Kullback-Leibler projection of f on the model Dkd thanks to the following property.

Proposition 3.1

fP∗ ∈ arg min
g∈Dkd

KL (f‖g) (3.4)

Proof. Let g ∈ Dkd and denote by Pg a partition such that g =
∏

S∈Pg gS. We have

KL (f‖g) =

ˆ
log

(
f

g

)
f (3.5)

=

ˆ
log

(
f

fPg

)
f +

ˆ
log

(
fPg
g

)
f (3.6)

= KL
(
f‖fPg

)
+
∑
S∈Pg

KL (fS‖gS) (3.7)

≤ KL
(
f‖fPg

)
(3.8)

with equality if g = fPg . Then

arg min
g∈Dkd

KL (f‖g) = arg min
P∈Partkd

min
g∈Dkd

KL (f‖g) (3.9)

= arg min
P∈Partkd

KL (f‖fP) (3.10)

3.2 Kullback-Leibler risk upper-bound

We are now in a position to establish a control of the Kullback-Leibler risk for f̂P̂
involving the oracles partitions.
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Lemma 3.2: Kullback-Leibler risk control

KL
(
f‖f̂P̂

)
≤ KL (f‖fP∗) +

∑
S∗∈P∗

KL
(
fS∗‖f̂S∗

)
+ (P − Pn)(log f̂P̃ − log f̂P̂)

(3.11)

Proof. We start by decomposing KL
(
f‖f̂P̂

)
as follows

KL
(
f‖f̂P̂

)
= KL (f‖fP∗) (3.12)

+ KL
(
f‖f̂P∗

)
−KL (f‖fP∗) (3.13)

+ KL
(
f‖f̂P̃

)
−KL

(
f‖f̂P∗

)
(3.14)

+ KL
(
f‖f̂P̂

)
−KL

(
f‖f̂P̃

)
. (3.15)

Then, as KL
(
f‖f̂P̃

)
≤ KL

(
f‖f̂P∗

)
,

KL
(
f‖f̂P̂

)
≤ KL (f‖fP∗) (3.16)

+ KL
(
f‖f̂P∗

)
−KL (f‖fP∗) (i) (3.17)

+ KL
(
f‖f̂P̂

)
−KL

(
f‖f̂P̃

)
(ii). (3.18)

Now, we rewrite (i)

KL
(
f‖f̂P∗

)
−KL (f‖fP∗) =

ˆ
log

(
f(x)

f̂P∗(x)

)
f(x)dx−

ˆ
log

(
f(x)

fP∗(x)

)
f(x)dx

(3.19)

=

ˆ
log

(
fP∗(x)

f̂P∗(x)

)
f(x)dx (3.20)

=
∑
S∗∈P∗

ˆ
log

(
fS∗(x)

f̂S∗(x)

)
fS∗(x)dx (3.21)

=
∑
S∗∈P∗

KL
(
fS∗‖f̂S∗

)
. (3.22)
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And we upper-bound (ii). As Pn

[
log f̂P̂ − log f̂P̃

]
≥ 0 :

KL
(
f‖f̂P̂

)
−KL

(
f‖f̂P̃

)
= P

[
− log f̂P̃

]
− P

[
− log f̂P̂

]
(3.23)

≤ P
[
log f̂P̃ − log f̂P̂

]
+ Pn

[
log f̂P̂ − log f̂P̃

]
(3.24)

= (P − Pn)(log f̂P̃ − log f̂P̂). (3.25)

Three terms appear in the upper bound, and they can be easily interpreted.

• KL (f‖fP∗) is a bias term. It is the intrinsic error of the model Dkd and can
be thought of as a distance from f to Dkd thanks to proposition 3.1.

•
∑

S∗∈P∗ KL
(
fS∗‖f̂S∗

)
is an approximation term. It is a random quantity

depending on the sample W and represents the error made when fP∗ is
estimated with f̂P∗ . Conditionally to W , it depends on how the estimation
of log-likelihoods made thanks to Z is accurate and quantifies our ability to
output the optimal partition.

In the sequel of the paper, we will focus on upper-bounding the approxi-
mation and selection terms as they are the random quantities of interest in our
problem. We treat the bias term as a structural error, and we focus on upper-
bounding the quantity

KL
(
f‖f̂P̂

)
−KL (f‖fP∗) . (3.26)

A study of the bias in a multivariate Gaussian framework can be found in appendix
A.

4 CONDITIONS AND OBJECTIVE
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4.1 Regularity conditions

Bounding condition Density estimation under Kullback-Leibler loss is known
to be a challenging problem. One work by [2] has studied the asymptotic conver-
gence rates for kernel estimators in a one-dimensional setting. It was shown that
the tails of the kernel must be chosen appropriately regarding the tails property
of the proper density to have convergent estimators. In this work, we restrict our
attention to densities that are lower and upper bounded by some positive quanti-
ties. This is done to avoid hardly tractable tail behavior issues. In the sequel, we
consider that the following bounding condition is valid for all S ∈ Setkd

e−A|S| ≤ fS ≤ eA|S| ∀S ∈ P∗ (BC)

Note that if we impose a positive lower bound on the marginal densities, we
must consider that f is compactly supported. In the sequel, we will suppose that
the support of f is [0, 1]d.

Hölder Regularity We will consider in the sequel that it exists β ∈ (0, 2]
and L > 0 such that fS ∈ H(β, L) for all S ∈ Setkd. We will use the following
approximation property for functions in Hölder balls.

Lemma 4.1: Approximation

Let us consider that g ∈ H(β,H) with β ∈ (0, 2) and the domain of g is
U ⊂ Rd, then for all x ∈ U and u such that x+ u ∈ U . If β ∈ (0, 1] then

|g(x)− g(x+ u)| ≤ L‖u‖β. (4.1)

If β ∈ (1, 2] then∣∣∣∣∣g(x)− g(x+ u)−
d∑

k=1

∂kukg(x)

∣∣∣∣∣ ≤ L‖u‖β. (4.2)
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4.2 Objective

Our goal is to propose an estimation procedure for the collection of marginal
densities (fS)S∈Setkd

. If we are able to ensure, simultaneously for all S ∈ Setkd a
uniform control

‖f̂S − fS‖∞ ≤ εS < e−A|S|(1− e−A|S|). (UC)

Then we can upper-bound the approximation term and the selection term
thanks to the following proposition.

Proposition 4.2: Consequences of uniform control

If the uniform control (UC) is satisfied and (BC) is true, then

1. A bounding condition is satisfied by all the estimators (f̂S)S∈Setkd

e−2A|S| ≤ f̂S ≤ e2A|S|. (B̂C)

2. For all S ∈ Setkd, the Kullback-Leibler divergence between fS and f̂S
can be upper-bounded

KL
(
fS‖f̂S

)
≤ e2A|S|εS (4.3)

3. Conditionnaly on W , the selection term can be upper-bounded with
high probability. More precisely if δn ∈ (0, 1) we have

P

[∣∣∣(P − Pn)(log f̂P̃ − log f̂P̂)
∣∣∣ ≥ 2d

√
2Ak

n

√
log

(
2Skd
δ

)∣∣∣∣∣W
]
≤ δn.

(4.4)

Proof. Proof of 1 : Under (BC) we have

e−A|S| − ‖f̂S − fS‖∞ ≤ f̂S ≤ eA|S| + ‖f̂S − fS‖∞. (4.5)

Now, under (UC)

e−A|S| − ‖f̂S − fS‖∞ ≥ e−A|S| − e−A|S|(1− e−A|S|) = e−2A|S| (4.6)
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and

eA|S| + ‖f̂S − fS‖∞ ≤ eA|S| + e−A|S|(1− e−A|S|) (4.7)

≤ eA|S| + e3A|S| (e−A|S|(1− e−A|S|)) (4.8)

= eA|S| + e2A|S|(1− e−A|S|) = e2A|S|. (4.9)

Proof of 2 : Let us compute

KL
(
fS‖f̂S

)
=

ˆ
log

(
fS

f̂S

)
fS (4.10)

≤
ˆ (

fS − f̂S
f̂S

)
fS (4.11)

Using (B̂C), 1 / f̂S ≤ e2A|S|

≤ e2A|S|‖fS − f̂S,hm‖∞ (4.12)

≤ e2A|S|εS (4.13)

Proof of 3 : Let S ∈ Setkd, under (B̂C) we have log f̂S ∈ [−2A|S|, 2A|S|].
Using Hoeffding inequality, we obtain

P

[∣∣∣(P − Pn) log f̂S

∣∣∣ ≥√2A|S|
n

√
log

2Skd
δ
|W

]
≤ δ

Skd
. (4.14)

Now, by union bound :

P

[
sup
S∈Setkd

∣∣∣(P − Pn) log f̂S

∣∣∣ ≥√2A|S|
n

√
log

2Skd
δ
|W

]
≤ δ. (4.15)

This leads to :

P

[
2d sup

S∈Setkd

∣∣∣(P − Pn) log f̂S

∣∣∣ ≤ 2d

√
2Ak

n

√
log

2Skd
δ
|W

]
≥ 1− δ. (4.16)
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Now, we remark that

|(P − Pn) log f̂P̃ − log f̂P̂ | =

∣∣∣∣∣∣
∑
S∈P̃

(P − Pn) log f̂S −
∑
S∈P̂

(P − Pn) log f̂S

∣∣∣∣∣∣ (4.17)

≤
∑
S∈P̃

∣∣∣(P − Pn) log f̂S

∣∣∣+
∑
S∈P̂

∣∣∣(P − Pn) log f̂S

∣∣∣ (4.18)

≤ 2d sup
S∈Setkd

∣∣∣(P − Pn) log f̂S

∣∣∣ . (4.19)

Then, we have

P

[
|(P − Pn) log f̂P̃ − log f̂P̂ | ≥ 2d

√
2Ak

n

√
log

2Skd
δ
|W

]
≤ δ. (4.20)

5 UNIFORM DENSITY ESTIMATION

FOR MARGINAL DENSITIES

5.1 For a fixed S

In this subsection, we fix a subset of variables S ∈ Setkd and we study the problem
of constructing an estimator f̂S based on the sample W1, . . . ,Wm giving a control
of ‖fS − f̂S‖∞ in order to verify (UC). We decompose the error as a sum of a bias
and a variance term as follows

‖fS − f̂S‖∞ ≤
∥∥∥fS − E

[
f̂S

]∥∥∥
∞︸ ︷︷ ︸

Bias

+
∥∥∥E
[
f̂S

]
− f̂S

∥∥∥
∞︸ ︷︷ ︸

Variance

. (5.1)
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5.1.1 Bias upper-bound

Choice of the kernel function In the following we will use density estimator
based on an ancillary function K called kernel. K is a nonnegative integrable
function on R such that

´
K(x)dx = 1, we consider the following assumptions on

K: 
∀x ∈ R, K(−x) = K(x)
Supp(K) ∈ [−1, 1]´
xK(x)dx = 0
‖K‖∞ <∞

(A.K)

We will also assume that, if KS
h,x : u 7→ 1

h|S|

∏
k∈SK

(
xk−uk
h

)
, the family of

function
FS =

{
KS
h,x, h > 0, x ∈ R|S|

}
(5.2)

is a bounded VC class of functions. It means that it exists positive numbers A and
ν such that for any probability measure P over R|S| and any τ ∈ (0, 1) we have

N (FS, L2(P ), τ) ≤
(
A‖K‖∞

τ

)ν
(5.3)

where N (FS, L2(P ), τ) is the τ -covering number of FS for the L2(P ) distance. As
proved in [1] this condition is met for almost all classical kernels. An example of
kernel function K satisfying all the assumptions is the Epanechnikov kernel KEpa

KEpa(x) =
3

4
(1− x2)1[−1,1](x). (5.4)

Boundary issue One must be aware of the issue induced by the fact that fS
is supported on [0, 1]|S|. We define the usual kernel density estimator (KDE) as
follows. Let h be a positive real number. The KDE for the marginal density fS
associated with the kernel K, the bandwidth h > 0, and the sample W is defined
as

f̂KDE
h,S (x) =

1

mh|S|

m∑
i=1

∏
k∈S

K

(
(Wi)k − xk

h

)
(5.5)
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We remark that even in the samples W1, . . . ,Wm belong to [0, 1]d, there is
no reason to have f̂KDE

h,S supported in [0, 1]|S|.

In this setting, the bias of the classical KDE does not go to zero as h →
0, illustrating the boundary issue induced by estimating a compactly supported
density.

Proposition 5.1: Boundary issue

Let fS ∈ H(2, L), the bias ∥∥∥E
[
f̂KDE
h,S

]
− fS

∥∥∥
∞

(5.6)

does not tend to 0 as h→ 0.

Proof.

E
[
f̂KDE
h,S

]
(0)− fS(0) =

1

h|S|

ˆ
[0,1]|S|

fS(t)
∏
k∈S

K

(
tk
h

)
dt− fS(0) (5.7)

=

ˆ
[−1,1]|S|

[fS(hu)− fS(0)]
∏
k∈S

K(uk)duk (5.8)

As
´
xK(x) = 0

=

ˆ
[−1,1]|S|

[
fS(hu)− fS(0)− h

∑
k∈S

uk∂kfS(0)

]∏
k∈S

K(uk)duk

(5.9)

Now as fS(x) = 0 for x /∈ [0, 1]|S|

=

ˆ
[0,1]|S|

[
fS(hu)− fS(0)− h

∑
k∈S

uk∂kfS(0)

]∏
k∈S

K(uk)duk

− fS(0)

ˆ
[−1,1]|S|\[0,1]|S|

∏
k∈S

K(uk)duk

− h
∑
k∈S

∂kfS(0)

ˆ
[−1,1]|S|\[0,1]|S|

uk
∏
k∈S

K(uk)duk (5.10)
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The third term in the final sum tends to 0 with h. The same is true for the
first term as∣∣∣ ˆ

[0,1]|S|

[
fS(hu)− fS(0)− h

∑
k∈S

uk∂kfS(0)

]∏
k∈S

K(uk)duk

∣∣∣
≤
ˆ

[0,1]|S|

∣∣∣∣∣fS(hu)− fS(0)− h
∑
k∈S

uk∂kfS(0)

∣∣∣∣∣∏
k∈S

K(uk)duk (5.11)

≤ Lh2
∑
k∈S

ˆ
[0,1]|S|

u2
K

∏
k∈S

K(uk)duk (5.12)

≤ Lσ2
Kh

2. (5.13)

Now, as
´

[−1,1]|S|\[0,1]|S|

∏
k∈SK(uk)duk = 2|S|−1

2|S|
, we conclude that

lim
h→0

E
[
f̂KDE
h,S

]
(0) = fS(0)

2|S| − 1

2|S|
≥ e−A|S|

2|S| − 1

2|S|
> 0. (5.14)

Mirror-Image KDE To correct the boundary bias previously introduced, a
solution is to add a correction to the estimator f̂KDE

h,S near the boundary of the
domain of definition. Let us define three mirroring operations for a number x ∈
[0, 1]

M−1(x) = −x; M0(x) = x; M1(x) = 2− x. (5.15)

We define the mirror-image KDE as a KDE constructed over the sample W
augmented with mirror reflections of each point over all axis. An illustration of
this operation in dimension 2 is given by fig. 1.

This estimator is an extension to every dimension of the one proposed in [6].
The formal definition is
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Figure 1: A datapoint in [0, 1]d (in orange) and his 8 mirror-images (in blue)

(a) A kernel is fitted over all points of the
augmented dataset

(b) Restriction to the unit hypercube

Figure 2: Construction of the mirror-image KDE

f̂MI
m,S(x) = 1[0,1]|S|(x)

1

mh|S|

m∑
i=1

∑
a∈{−1,0,1}|S|

∏
k∈S

K

(
Mak(Wi)k − xk

h

)
. (5.16)

It consists in summing multidimensional kernel over the points of the aug-
mented samples and restrict the domain of the obtained function to [0, 1]|S| as
illustrated in fig. 2. Roughly speaking it consists in flipping the part of f̂KDE

h,S that

fall outside [0, 1]|S| inside it. f̂MI
m,S is supported on [0, 1]|S| and

´
[0,1]|S|

f̂MI
m,S(x)dx = 1.
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Bias for mirror-image KDE Under an ad-hoc condition on the partial deriva-
tives of fS at the boundary of [0, 1]|S| it is possible to bound the bias for the
mirror-image KDE. Our result is an extension of the lemma 3.1 in [6] to every di-
mension and every β ∈ (0, 2] while the analysis in the original paper was restricted
to bi-dimensional densities and β = 2. With our proof strategy, we find a better
constant in the upper-bound for |S| = 2 and β = 2.

Proposition 5.2: Bias for mirror-image KDE

Let us assume that for all sequence (xn)n∈N in [0, 1]|S|, if xn converges to a
boundary point of [0, 1]|S|, then for all k ∈ S limn→∞ ∂kfS(xn) = 0. Then∥∥∥fS − E

[
f̂MI
m,S

]∥∥∥
∞
≤ C1h

β (5.17)

where C1 = L|S|β/2 (2‖K‖∞)|S| if β < 2 and C1 = L|S| if β = 2

Proof. We define fMI
S as the function defined over [−1, 2]|S| such that for all x ∈

[0, 1]|S| and a ∈ {−1, 0, 1}|S|

fMI
S (Ma(x)) = fS(X) (5.18)

where Ma(x) = (Mak(xk))k∈S. The property that the partial derivatives of fS
vanish near the boundary of [0, 1]|S| ensures that ∂kf

MI
S is continuous on (−1, 2)|S|

and so fMI
S ∈ H(2, L).

Let x ∈ [0, 1]|S|, we want to bound
∣∣∣fS(x)− E

[
f̂MI
m,S(x)

]∣∣∣. Assume first that

x ∈ [0, 1/2]|S| and denote by A the set {k ∈ S : xk < h}. We start by considering

the situation where |A| ≥ 1. For all k ∈ A and all t ∈ [0, 1], K
(
t−(2−xk)

h

)
= 0

because the support of K is [−1, 1], h ≤ 1/2 and xk < h. For all k ∈ S \ A and

all t ∈ [0, 1], K
(
t−(2−xk)

h

)
= 0 and K

(
t−(−xk)

h

)
= 0. Then the expected value of

f̂MI
m,S at the point x can be written as

E
[
f̂MI
m,S

]
(x) =

∑
B⊂A

1

h|S|

ˆ
[0,1]|S|

∏
k∈B

K

(
tk + xk
h

) ∏
k∈S\B

K

(
tk − xk
h

)
fS(t)dt

(5.19)
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Now, for B ∈ A, we denote xB the vector such that (xB)k = xk if k /∈ B and
(xB)k = −xk if k ∈ B. We have

E
[
f̂MI
m,S

]
(x) =

∑
B⊂A

ˆ
χSB

∏
k∈S

K (uk) fS(xB + uh)du (5.20)

where χSB =
{
u ∈ [−1, 1)|S| : xB + uh ∈ [0, 1]

}
. We see that χSB =

∏
k∈S[uk, ūk)

where uk = −xk/h if k ∈ B, −1 otherwise and ūk = −xk/h if k ∈ A \ B, 1 other-
wise. What is more, as fMI

S = fS on [0, 1]|S| we have

E
[
f̂MI
m,S

]
(x) =

∑
B⊂A

ˆ
χSB

∏
k∈S

K (uk) f
MI
S (xB + uh)du. (5.21)

Now, as (χSB)B⊂A forms a partition of [−1, 1)|S|, we have

fS(x) =
∑
B⊂A

ˆ
χSB

∏
k∈S

K (uk) fS(x)du (5.22)

=
∑
B⊂A

ˆ
χSB

∏
k∈S

K (uk) f
MI
S (xB)du (5.23)

We denote by δB(u, β) the quantity

{
fMI
S (xB + uh)− fMI

S (xB) if β ∈ (0, 1]
fMI
S (xB + uh)− fMI

S (xB)− h
∑

k∈S uk∂kf
MI
S (xB) if β ∈ (1, 2]

(5.24)

From lemma 4.1 we have

|δB(u, β)| ≤ Lhβ‖u‖β (5.25)
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And, as
´
xK(x) = 0, we have

∣∣∣fS(x)− E
[
f̂MI
m,S

]
(x)
∣∣∣ =

∣∣∣∣∣∑
B⊂A

ˆ
χSB

∏
k∈S

K (uk) δB(u)du

∣∣∣∣∣ (5.26)

≤ Lhβ
ˆ

[−1,1]|S|

∏
k∈S

K(uk)‖u‖βdu (5.27)

If β = 2

ˆ
[−1,1]|S|

∏
k∈S

K(uk)‖u‖βdu =

ˆ
[−1,1]|S|

∏
k∈S

K(uk)
∑
k∈S

u2
kdu (5.28)

=
∑
k∈S

ˆ 1

−1

K(u)u2du (5.29)

≤
∑
k∈S

ˆ 1

−1

K(u)du = |S|. (5.30)

If β < 2

ˆ
[−1,1]|S|

∏
k∈S

K(uk)‖u‖βdu ≤ ‖K‖|S|∞
ˆ

[−1,1]|S|
‖u‖βdu (5.31)

≤ ‖|S|∞
√
|S|

β
ˆ

[−1,1]|S|
du (5.32)

= |S|β/2 (2‖K‖∞)|S| . (5.33)

Then supx∈[0,1/2]|S|

∣∣∣fS(x)− E
[
f̂MI
m,S

]
(x)
∣∣∣ ≤ C1h

β. By symmetry the same

inequality is true when the sup is taken over [0, 1]|S|.

Then considering the mirror-image KDE leads to a correction of the bound-
ary issue previously mentioned.
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5.1.2 Variance upper-bound

To upper-bound the variance of the mirror-image KDE, we will use corollary 15
of [4]. Our setting is not the same as in this paper as we deal with mirror-image
KDE. Then in order to obtain the same result, we must ensure that the family of
functions

FMI
S =

{
KMI
x,h|x ∈ [0, 1]|S|, h ∈ (0, 1/2)

}
(5.34)

where

KMI
x,h : u 7→ 1

h|S|
1[0,1]|S|

∑
a∈{−1,0,1}|S|

∏
k∈S

K

(
Mak(uk)− xk

h

)
(5.35)

is a bounded VC class of function. We know that FS is a bounded VC class
of function. The results of section 2.6 of [11] indicate that a family of functions
is a bounded VC class if and only if the associated collection of sublevels is a VC
class of sets. Now, we remark that the sublevels of functions in FMI

S can be written
as intersections of sublevels of functions in FS intersected with [0, 1]|S|. Then, as
intersections preserve the VC class property for collection of sets (see [10]), FMI

S

is a bounded VC class of functions, and the corollary 15 of [4] applies, leading to
the following result.

Proposition 5.3: Variance

Let hm,S be a bandwidth in (0, 1/2) and δm ∈ (0, 1). With probability 1−δm∥∥∥f̂S,hm,S − E
[
f̂m,hm,S

]∥∥∥
∞
≤ C2

√
log (1/hm,S) + log(2/δm)

mh
|S|
m,S

. (5.36)

The constant C2 depends on |S|, on ‖K‖∞ and on ‖K ′‖∞.
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5.1.3 Conclusion

Now, as we have for a control of the bias and the variance term for every bandwidth
hm,S ∈ (0, 1/2), by choosing appropriately hm,S it is possible to bound ‖fS −
f̂S,hm,S‖∞.

Proposition 5.4: Convergence

Choosing hm,S � (1/m)
1

2β+|S| , it exists a constant CS such that with proba-
bility at least 1− δm

‖fS − f̂S,hm,S‖∞ ≤ CS
√

logm+ 2 log (2/δm)

(
1

m

) β
2β+|S|

. (5.37)

5.2 Uniformity over Setkd

We have just established a control in high probability for the quantity ‖fS −
f̂S,hm,S‖∞ for a given S. Our objective is to have such a control uniformly over

Setkd. Applying a union-bound, we obtain the following result.

Proposition 5.5: Uniform control of uniform error over all subsets

Let us denote Ck = maxS∈Setkd
CS. We have, with probability at least 1 −

Skdδm

sup
S∈Setkd

∥∥∥f̂S,hSm − fS∥∥∥∞ ≤ Ck
√

logm+ 2 log (2/δm)

(
1

m

) 2
4+k

. (5.38)

In particular with the choice δm = 2
mSkd

, we have that with probability 1− 2
m

sup
S∈Setkd

∥∥∥f̂S,hSm − fS∥∥∥∞ ≤ Ck

√
3 logm+ 2 logSkd

(
1

m

) 2
4+k

. (5.39)
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6 THEOREM

Let now m0 be the smallest integer m such that

Ck
√

logm+ 2 log (2/δm)

(
1

m

) 2
4+k

≤ e−A|S|
(
1− e−A|S|

)
. (6.1)

If m ≥ m0, we know that on an event Akm of probability at least 1− Skdδm

‖fS − f̂S,hm‖∞ ≤ Ck
√

logm+ 2 log (2/δm)

(
1

m

) β
2β+k

. (6.2)

Then, on Akm (UC) is satisfied with εS = Ck
√

logm+ 2 log (2/δm)
(

1
m

) β
2β+k

for all S ∈ Setkd. As a consequence, using proposition 4.2, we have

∑
S∈P∗

KL
(
fS‖f̂S,hsm

)
≤ e2Ak|P∗|Ck

√
logm+ 2 log (2/δm)

(
1

m

) 2
4+k

. (6.3)

And, on Akm, for δn ∈ (0, 1/Skd ) with probability 1− Skdδn

(P − Pn)(log f̂P̃ − log f̂P̂) ≤ 2d

√
Ak

n

√
log(2/δn). (6.4)

Now, with the choice δm = 1/(2Skdm) and δn = 1/(2Skdn) we obtain the
following result
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Theorem 6.1: Final bound

If for all S ∈ Setkd, f ∈ H(2, L), and for all sequence (xn)n∈N such that
limn→∞ xn = x∗ where x∗ belongs to the boundary of [0, 1]|S| and for all k ∈ S
limn→∞ ∂kfS(xn) = 0. With the choice f̂S = f̂MI

hm,S ,S
where hm,S ≈

(
1
m

) 1
2+|S| ,

we have with probability at least (1− 1/m)(1− 1/n)

KL
(
f‖f̂P̂

)
−KL (f‖fP∗) ≤e2Ak

√
2|P∗|Ck

√
logm+ log

(
Skd
)( 1

m

) β
2β+k

+ 2d
√

log n+ log
(
Skd
)√Ak

n
(6.5)

Ignoring logarithmic factors, the rate of convergence of the approximation

term is
(

1
m

) β
2β+k . The dependence of this quantity in k illustrates that ISDE tackles

the curse of dimensionality for the density estimation problem under KL loss in
the same spirit that [9] showed that his estimator does for the squared L2 loss.

Ignoring logarithmic factors again, the rate of convergence of the selection
term is 1√

n
. This is a classical rate of convergence for hold-out procedures with

bounded loss (see corollary 8.8 in [7]).

The term log(Skd ) in the upper-bound illustrates the combinatorial complex-
ity reduction operated by ISDE. The presence of the log of the number of hypothe-
ses is classical for hold-out procedures with bounded loss (see again corollary 8.8
in [7]). In our context, we have reduced the combinatorial complexity from the
number of partitions P k

d to the number of subsets Skd .

7 CONCLUSION

In this paper, we have studied the convergence properties of ISDE. In particular,
we have shown that under suitable assumptions on the true density and for the
mirror-image KDE as marginal density estimator, we can provide an upper-bound
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valid with high-probability of the quantity

KL
(
f‖f̂P̂

)
−KL (f‖fP∗) . (7.1)

This bound highlights how ISDE tackles the curse of dimensionality and
reduces the combinatorial complexity of the density estimation problem under IS
compared to a brute-force approach. These results offer a theoretical validation of
the empirical observations presented in [8].

To complete the study, it let to study how the bias term KL (f‖fP∗) behaves.
It is hard to give a precise statement on this quantity in a general setting. One
simple situation is when f ∈ Ddk. In this case KL (f‖fP∗) = 0. This bias can also
be explicitly evaluated in some multivariate Gaussian frameworks, see appendix
A.
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[1] Evarist Giné and Armelle Guillou. Rates of strong uniform consistency for
multivariate kernel density estimators. In Annales de l’Institut Henri Poincare
(B) Probability and Statistics, volume 38, pages 907–921. Elsevier, 2002.

[2] Peter Hall. On kullback-leibler loss and density estimation. The Annals of
Statistics, pages 1491–1519, 1987.

[3] Rafael Hasminskii, Ildar Ibragimov, et al. On density estimation in the view
of kolmogorov’s ideas in approximation theory. The Annals of Statistics,
18(3):999–1010, 1990.

[4] Jisu Kim, Jaehyeok Shin, Alessandro Rinaldo, and Larry Wasserman. Uniform
convergence rate of the kernel density estimator adaptive to intrinsic volume

24

https://www.iledefrance.fr/paris-region-phd-2021
https://www.iledefrance.fr/paris-region-phd-2021
https://www.dim-mathinnov.fr/


dimension. In International Conference on Machine Learning, pages 3398–
3407. PMLR, 2019.

[5] Oleg Lepski. Multivariate density estimation under sup-norm loss: ora-
cle approach, adaptation and independence structure. Annals of Statistics,
41(2):1005–1034, 2013.

[6] Han Liu, Larry Wasserman, and John Lafferty. Exponential concentration
for mutual information estimation with application to forests. Advances in
Neural Information Processing Systems, 25, 2012.

[7] Pascal Massart. Concentration inequalities and model selection. 2007.

[8] Louis Pujol. Isde: Independence structure density estimation. arXiv preprint
arXiv:2203.09783, 2022.

[9] Gilles Rebelles et al. Lp adaptive estimation of an anisotropic density under
independence hypothesis. Electronic journal of statistics, 9(1):106–134, 2015.

[10] Aad Van Der Vaart and Jon A Wellner. A note on bounds for vc dimensions.
Institute of Mathematical Statistics collections, 5:103, 2009.

[11] AW van der Vaart, A.W. van der Vaart, A. van der Vaart, and J. Wellner.
Weak Convergence and Empirical Processes: With Applications to Statistics.
Springer Series in Statistics. Springer, 1996.

25



A Bias term in the multivariate Gaussian frame-

work

In this appendix, we study the bias KL (f‖fP∗) in a multivariate Gaussian frame-
work where exact computations are possibles.

A.1 Model and notations

Model If Σ denotes a d×d definite positive matrix, we denote by fΣ the density
of a multivariate centered Gaussian random variable with covariance Σ and by ΣP
the matrix defined as follows.

ΣP(i, j) =

{
Σ(i, j) if i and j belongs to the same bloc in P
0 else.

(A.1)

If S1 and S2 are subsets of {1, . . . , d}, we denote by Σ(S1, S2) the |S1| × |S2|
submatrix matrix of Σ where we keep the intersection of rows in S1 and columns
in S2, to keep notations compact, we write Σ(S) instead of Σ(S, S)

For a multivariate Gaussian random variable with covariance Σ, fΣ ∈ Dkd is
equivalent to the fact that it exists a permutation σ of {1, . . . , d} such that PσΣP−1

σ

is block-diagonal with blocks of size smaller than k×k. For clarity, in what follows,
we will always consider that this property is met with σ = id, meaning that we
restrict ourselves to partitions in which each block is made of consecutive features.
This does not imply a loss of generality.

We now consider that f = fΣ and

Σ = ΣP + ε (A.2)

where ΣP is a block-diagonal covariance matrix corresponding to the inde-
pendence structure P and ε is a “small” (in a sense to be defined later) definite
positive matrix. The question is how this perturbation influences the bias term.
In order to answer it, we must control KL (f‖fP) for all P in Partkd.
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A.2 Some useful lemmas

Computation of KL losses The first useful result is an explicit computation
of KL (fΣ‖fΣP ) for any P in Partkd.

Lemma A.1: Exact computation of KL between two centered multivariate
Gaussian

For every P ∈ Partkd

KL (fΣ‖fΣP ) =
1

2

(∑
S∈P

log det Σ(S)− log det Σ

)
(A.3)

Or if λ1 ≤ · · · ≤ λd are the eigenvalues of Σ and λP1 ≤ · · · ≤ λPd the
eigenvalues of ΣP

KL (fΣ‖fΣP ) =
1

2

d∑
i=1

log

(
λPi
λi

)
(A.4)

Proof. The density fΣ has the following expression.

fΣ(x) =
1

(2π)d/2(det Σ)1/2
exp

(
−1

2
xTΣ−1x

)
. (A.5)

We compute the KL divergence between fΣ and fΣP
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KL (fΣ‖fΣP ) =

ˆ
log

(
fΣ(x)

fΣP (x)

)
fΣ(x)dx (A.6)

=
1

2
log

det ΣP
det Σ

ˆ
fΣ(x)dx︸ ︷︷ ︸

=1

+
1

2

ˆ
xTΣ−1

P xfΣ(x)dx︸ ︷︷ ︸
=Tr(Σ−1

P Σ)

+
1

2

ˆ
xTΣ−1xfΣ(x)dx︸ ︷︷ ︸

=Tr(Σ−1Σ)=d

(A.7)

=
1

2

(
log det ΣP − log det Σ + Tr

(
Σ−1
P Σ

)
− d
)

(A.8)

Now, we define a permutation σP of {1, . . . , d} such that :

ΣP = PσP


Σ(S1) 0 . . . 0
0 Σ(S2)

. . .
...

...
. . . . . . 0

0 . . . 0 Σ(SM)

P−1
σP

(A.9)

where {S1, . . . , SM} denotes the blocks of P . It is then clear that log det ΣP =∑
S∈P log det Σ(S). We also have

Σ = PσP


Σ(S1) Σ(S1, S2) . . . Σ(S1, SM)

Σ(S2, S1) Σ(S2)
. . .

...
...

. . . . . . Σ(SM−1, SM)
Σ(SM , S1) . . . Σ(SM , SM−1) Σ(SM)

P−1
σP
. (A.10)

Then

Σ−1
P Σ = PσP


I|S1| X1,2 . . . X1,M

X2,1 I|S2|
. . .

...
...

. . . . . . XM−1,M

XM,1 . . . Σ(SM , SM−1) I|SM |

P−1
σP

(A.11)

where for i 6= j, Xi,j is a |Si| × |Sj| matrix. Then Tr
(
Σ−1
P Σ

)
= d.
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The formulation of the result involving the eigenvalues comes from the fact
that det Σ =

∏d
i=1 λi and det ΣP =

∏d
i=1 λ

P
i .

Some computation of determinants We define the p× p matrix

Apσ =


1 σ . . . σ

σ
. . . . . .

...
...

. . . . . . σ
σ . . . σ 1

 . (A.12)

If k divides d we define

Σ(d,k)
σ =


Akσ 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 Akσ

 (A.13)

For ε > 0 we define

Σ(d,k)
σ,ε =


Akσ ε . . . ε

ε
. . . . . .

...
...

. . . . . . ε
ε . . . ε Akσ

 (A.14)

Lemma A.2: Property for block matrices

i detApσ = [1− σ]p−1 [1 + (p− 1)σ]

ii det Σ
(d,k)
σ = [1− σ]

d
k

(k−1)[1 + (k − 1)σ]
d
k

iii det Σ
(d,k)
σ,ε = [1− σ]

d
k

(k−1)[1 + (k − 1)σ + (d− k)ε][1 + (k − 1)σ − kε] dk−1
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Proof. (i) We start by computing the eigenvalues of Apσ. We remark that

A− (1− σ)I =

σ . . . σ
...

...
σ . . . σ

 . (A.15)

Then it is clear that x ∈ Rp ∈ ker (Apσ − (1− σ)I)⇔ x ∈ {y ∈ Rp :
∑p

i=1 yi =
0}, which is a linear subspace of Rp of dimension p− 1.

Then we remark that if 1p =

1
...
1

 then

Apσ1p = (1 + (p− 1)σ) 1p (A.16)

Then 1 + (p− 1)σ is an eigenvalue of A and it could not be of multiplicity greater
than 1 as we have just proven than (1− σ) has a multiplicity of p− 1. Using the
fact that the determinant is the product of the eigenvalues, we obtain

detApσ = (1− σ)p−1 (1 + (p− 1)σ) (A.17)

The proof of (ii) follows immediately as the determinant of a block-diagonal
matrix is the product of the derminants of the diagonal blocks.

(iii) We determine the eigenvalues of Σ
(d,k)
σ,ε . To this end we will find a set of

d linearly independent eigenvectors. We remark that

Σ(d,k)
σ,ε 1d = (1 + (k − 1)σ + (d− k)ε)1d. (A.18)

Then 1 + (k− 1)σ + (d− k)ε is an eigenvalue of Σ
(d,k)
σ,ε with multiplicity at least 1.

Now, we remark that for all integer 0 ≤ i ≤ d
k
− 1 and 2 ≤ j ≤ k we have

Σ(d,k)
σ,ε (eik+1 − eik+j) = (1− σ)(eik+1 − eik+j). (A.19)

Then (1− σ) is an eigenvalue of Σ
(d,k)
σ,ε with multiplicity at least d

k
(k− 1). Finally,

if for i < j we denote by 1ij =
∑j

k=i ek, we remark that for all integer 1 ≤ i ≤ d
k
−1

Σ(d,k)
σ,ε

(
10
k − 1ik+1

(i+1)k

)
= (1 + (k − 1)σ − kε)

(
10
k − 1ik+1

(i+1)k

)
. (A.20)
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Then 1 + (k − 1)σ + (d − k)ε is an eigenvalue of Σ
(d,k)
σ,ε with multiplicity at least

d
k
− 1.

As 1 + d
k
(k − 1) +

(
d
k
− 1
)

= d, we now that the eigenvalues of Σ
(d,k)
σ,ε are

1 + (k − 1)σ + (d − k)ε), 1 − σ and 1 + (k − 1)σ + (d − k)ε with multiplicity 1,
d
k
(k − 1) and d

k
− 1.

A.3 Control of the bias

Almost independence structure the following property precise the KL loss
between f

Σ
(d,k)
σ,ε

and f
Σ

(d,k)
σ

, with a particular look at the situation where ε→ 0.

Proposition A.3: Almost independence

KL
(
f

Σ
(d,k)
σ,ε
‖f

Σ
(d,k)
σ

)
=− 1

2
log

(
1 +

d− k
1 + (k − 1)σ

ε

)
− 1

2

(
d

k
− 1

)
log

(
1− k

1 + (k − 1)σ
ε

)
(A.21)

At the limit ε→ 0

KL
(
f

Σ
(d,k)
σ,ε
‖f

Σ
(d,k)
σ

)
=
ε→0

d(d− k)

4(1 + (k − 1)σ)2
ε2 + o(ε2) (A.22)

Proof. As Σ
(d,k)
σ is a block-diagonal submatrix of Σ

(d,k)
σ,ε , using lemma A.1 we have

KL
(
Σ(d,k)
σ,ε ‖Σ(d,k)

σ

)
=

1

2
log

(
det Σ

(d,k)
σ

det Σ
(d,k)
σ,ε

)
(A.23)
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Let β = 1 + (k − 1)σ Now, using lemma A.2, we have

KL
(
Σ(d,k)
σ,ε ‖Σ(d,k)

σ

)
=

1

2

[
log

(
β
d
k

[β + (d− k)ε][β − kε] dk−1

)]
(A.24)

=
1

2

[
d

k
log β − log(β + (d− k)ε)−

(
d

k
− 1

)
log (β − kε)

]
(A.25)

=
d

2k
log β − log β

2
− 1

2
log

(
1 +

d− k
β

ε

)
− 1

2

(
d

k
− 1

)
log β − 1

2

(
d

k
− 1

)
log

(
1− k

β
ε

)
(A.26)

= −1

2
log

(
1 +

d− k
β

ε

)
− 1

2

(
d

k
− 1

)
log

(
1− k

β
ε

)
(A.27)

Now, we use that

log(1 +
d− k
β

ε) =
ε→0

d− k
β

ε− (d− k)2

2β2
ε2 + o(ε2) (A.28)

and

log(1− k

β
ε) =

ε→0
−k
β
ε− k2

2β2
ε2 + o(ε2). (A.29)

And we obtain

KL
(
Σ(d,k)
σ,ε ‖Σ(d,k)

σ

)
=
ε→0
−d− k

2β
ε+

(d− k)2

4β2
ε2

+

(
d
k
− 1
)
k

2β
ε+

(
d
k
− 1
)
k2

4β2
ε2 + o(ε2) (A.30)

=
ε→0

(d− k)2 + kd− k2

4β2
ε2 + o(ε2) (A.31)

=
ε→0

d2 − 2kd+ k2 + kd− k2

4β2
ε2 + o(ε2) (A.32)

=
ε→0

d(d− k)

4β2
ε2 + o(ε2) (A.33)

32



Optimal structure for small k The following proposition establish that if
Σ = Adσ and k < d, P∗ is composed of a maximum number of blocks of size k.

Proposition A.4: Optimal Structure

Suppose that Σ = Adσ. A structure s = (si)
M
i=1 is a list of positive integer

with
∑M

i=1 si = d. To a structure is associated a partition with blocks of
consecutive features with size s1, . . . , sM . For any structure s we have

KL (fΣ‖fΣs) =
1

2

(
M∑
i=1

log

(
1 + (si − 1)σ

1− σ

)
− log

(
1 + (d− 1)σ

1− σ

))
.

(A.34)
If we denote by p and r the only integers such that d = pk+ r where r < k,
we have

s∗ = (k, . . . , k︸ ︷︷ ︸
p times

, r) (A.35)

Proof. We combine lemma A.1 and lemma A.2 to obtain

KL (fΣ‖fΣs) =
1

2

(∑
S∈P

log detAsiσ − log detAdσ

)
(A.36)

=
1

2
[
∑
S∈P

(si − 1) log(1− σ) + log(1 + (si − 1)σ)

− (d− 1) log(1− σ)− log(1 + (d− 1)σ)] (A.37)

=
1

2


M∑
i=1

(si − 1)︸ ︷︷ ︸
=d−M

−(d− 1)

 log(1− σ)

+
1

2

(
M∑
i=1

log (1 + (si − 1)σ)− log(1 + (d− 1)σ)

)
(A.38)

=
1

2

(
M∑
i=1

log

(
1 + (si − 1)σ

1− σ

)
− log

(
1 + (d− 1)σ

1− σ

))
(A.39)
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Now we want to prove that the structure minimizing KL (fΣ‖fΣs) is (k, . . . , k︸ ︷︷ ︸
p times

, r).

To do so we start by remarking that for any s = (si)
M
i=1 6= (k, . . . , k, r) it exists

i 6= j such that si 6= k and sj 6= k. We will prove that, for our minimization
problem it is always possible to find a better structure s̃ with the following

i if si + sj ≤ k, S̃ = (sk)k/∈{i,j} ∪ (si + sj)

ii if ∃l > 0 : si + sj = k + l, S̃ = (sk)k/∈{i,j} ∪ (k, l)

To prove (i), we start from

2KL (fΣ‖fΣs) =
M∑
k=1

log

(
1 + (sk − 1)σ

1− σ

)
− log

(
1 + (d− 1)σ

1− σ

)
(A.40)

2KL (fΣ‖fΣs̃) =
∑

k=1,...,M,k/∈{i,j}

log

(
1 + (sk − 1)σ

1− σ

)
+ log

(
1 + (si + sj − 1)σ

1− σ

)

− log

(
1 + (d− 1)σ

1− σ

)
. (A.41)

Then to prove that KL (fΣ‖fΣs) > KL (fΣ‖fΣs̃) it is sufficient to prove that for all
a, b ≥ 1, g(a, b) > 0 where

g(a, b) = log

(
1 + (a− 1)σ

1− σ

)
+ log

(
1 + (b− 1)σ

1− σ

)
− log

(
1 + (a+ b− 1)σ

1− σ

)
.

(A.42)

Let us start by computing ∂1g(a, b)

∂1g(a, b) =
σ

1 + (a− 1)σ
− σ

1 + (a+ b− 1)σ
(A.43)

=
σ

(1 + (a− 1)σ) (1 + (a+ b− 1)σ)
(1 + (a+ b− 1)σ − 1− (a− 1)σ)

(A.44)

=
bσ2

(1 + (a− 1)σ) (1 + (a+ b− 1)σ)
≥ 0. (A.45)

Then for any b ≥ 1, g(a, b) is nondecreasing in a. As a and b play similar roles in
g(a, b), we have that for any a ≥ 1, g(a, b) is nondecreasing in b. To prove that
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g(a, b) ≥ 0 it is sufficient to show that g(1, 1) > 0.

g(1, 1) = log

(
1

1− σ

)
+ log

(
1

1− σ

)
− log

(
1 + σ

1− σ

)
(A.46)

= − log ((1− σ)(1 + σ)) . (A.47)

Now, as σ ∈ (0, 1), (1−σ)(1+σ) ∈ (0, 1). Then log ((1− σ)(1 + σ)) < 0, implying
g(1, 1) > 0.

To prove (ii) we start from

2KL (fΣ‖fΣs) =
M∑
k=1

log

(
1 + (sk − 1)σ

1− σ

)
− log

(
1 + (d− 1)σ

1− σ

)
(A.48)

2KL (fΣ‖fΣs̃) =
∑

k=1,...,M,k/∈{i,j}

log

(
1 + (sk − 1)σ

1− σ

)
+ log

(
1 + (k − 1)σ

1− σ

)

+ log

(
1 + (l − 1)σ

1− σ

)
− log

(
1 + (d− 1)σ

1− σ

)
. (A.49)

Then to prove that KL (fΣ‖fΣs) > KL (fΣ‖fΣs̃) it is sufficient to prove that for all
x ∈ [l, k], h(x) attains its minimum at l or k where

h(x) = log (1 + (x− 1)σ) + log (1 + ((k + l)− x− 1)σ) . (A.50)

Let us start by computing h′(x)

h′(x) = σ

(
1

1 + (x− 1)σ
− 1

1 + ((k + l)− x− 1)σ

)
(A.51)

=
σ (1 + ((k + l)− x− 1)σ − 1− (x− 1)σ)

(1 + (x− 1)σ)(1 + ((k + l)− x− 1)σ)
(A.52)

=
σ2

(1 + (x− 1)σ)(1 + ((k + l)− x− 1)σ)
((k + l)− 2x). (A.53)

Then h increases from l to (k+l)/2 and decreases from (k+l)/2 to k and h(l) = h(k)
the minimum of h is attained on l and k.

Conclusion We finish this appendix by establishing a general upper bound of
KL (fΣ‖fP∗) where Σ = Σ

(d,k∗)
σ,ε .
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Theorem A.5: Upper-bound for the bias in a multivariate Gaussian frame-
work

If Σ = Σ
(d,k∗)
σ,ε and if k < k∗. Let (p, r) be the unique couple of integer with

0 ≤ r < k such that k∗ = pk + r, we have

KL (fΣ‖fP∗) ≤ KL
(
f

Σ
(d,k∗)
σ,ε
‖f

Σ
(d,k∗)
σ

)
+

dp

2k∗
log

(
1 + (k − 1)σ

1− σ

)
+

d

2k∗
log

(
1 + (r − 1)σ

1− σ

)
− d

2k∗
log

(
1 + (k∗ − 1)σ

1− σ

)
(A.54)

with

KL
(
f

Σ
(d,k)
σ,ε
‖f

Σ
(d,k)
σ

)
=
ε→0

d(d− k)

4(1 + (k − 1)σ)2
ε2 + o(ε2) (A.55)

Proof. Let us consider

• the structure s̃ = (k, . . . , k︸ ︷︷ ︸
p times

, r), and Ps̃ the associated partition of k∗ features,

• the structure s = ( s̃, . . . , s̃︸ ︷︷ ︸
d/k∗ times

), and Ps the associated partition of d features,

• the structure s0 = (k∗, . . . , k∗︸ ︷︷ ︸
d/k∗ times

) and P0 the associated partition of d features.

We can upper-bound the bias term KL (fΣ‖fP∗) as follows

KL (fΣ‖fP∗) ≤ KL (fΣ‖fPs) (A.56)

=

ˆ
log

(
fΣ

fPs

)
fΣ (A.57)

=

ˆ
log

(
fΣ

fP0

)
fΣ +

ˆ
log

(
fP0

fPs

)
fΣ (A.58)

= KL
(
Σ(d,k∗)
σ,ε ‖Σ(d,k∗)

σ

)
+

ˆ
log

(
fP0

fPs

)
fΣ (A.59)
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The blocks of the partition Ps are subsets of blocks of the partition P0, then

ˆ
log

(
fP0

fPs

)
fΣ =

ˆ
log

( ∏
S∈P0

fS∏
S∈P0

(fPs)S

)
fΣ (A.60)

=
∑
S∈P0

ˆ
log

(
fS

(fPs)S

)
fS (A.61)

=
∑
S∈P0

KL
(
fAdσ‖f(Adσ)Ps̃

)
(A.62)

=
d

k∗
KL
(
fAdσ‖f(Adσ)Ps̃

)
(A.63)

Now, using proposition A.3

KL
(
fAdσ‖f(Adσ)Ps̃

)
=

1

2

(
p log

(
1 + (k − 1)σ

1− σ

)
+ log

(
1 + (r − 1)σ

1− σ

)
− log

(
1 + (k∗ − 1)σ

1− σ

))
(A.64)

And, using proposition A.4, we have that

KL
(
f

Σ
(d,k)
σ,ε
‖f

Σ
(d,k)
σ

)
=
ε→0

d(d− k)

4(1 + (k − 1)σ)2
ε2 + o(ε2). (A.65)

Then we have proven the desired upper-bound.
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