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THREE PROOFS OF TYCHONOFF’S THEOREM

ÉTIENNE MATHERON

Abstract. We give three proofs of Tychonoff’s theorem on the compactness of a product
of compact topological spaces. The first one proceeds “from scratch.” The second one

relies on the characterization of compactness in terms of convergent subnets. The third

one has a “categorical” flavor.

1. Introduction.

The very famous Tychonoff product theorem, “probably the most important single theo-
rem in general topology” according to [5], states that the product of any family of compact
topological spaces is compact when endowed with the product topology.

This result is of course quite well understood, and several extremely nice proofs are
available in the literature. In particular, we mention Tychonoff’s original proof as presented
in [7], the proof using Alexander’s subbasis theorem (see, e.g., [5]), Cartan’s proof using
ultrafilters [1], Kelley’s dual version using ultranets [4], and Chernoff’s proof using nets but
not ultranets [2]. See also the discussion on MathOverflow about people’s “favorite proofs”
of Tychonoff’s theorem.

In this note, we present three more proofs of Tychonoff’s theorem (and no excuse for that,
except perhaps a pedagogical one). The first one relies only on the definition of compactness
in terms of open covers. This proof is not new; indeed, it comes from Wright’s paper [7], and
it might be called the Wisconsin proof since it has been known and used at the University of
Wisconsin for many years. However, in view of its straightforward nature and of its rather
amazing simplicity, it deserves to be better known than it apparently is. (One may also add
that the proof in [7] is fully detailed for a product of 2 spaces, but quite briefly sketched for
an arbitrary product.) The second proof relies on the characterization of compactness in
terms of nets: given a net pxdqdPD in the product space, we directly “construct” a convergent
subnet. This proof seems to be new at least as written; and we find it quite natural because
it is completely naive: a convergent subnet is needed, so we just try to find one by successive
extractions. The third proof is an elementary version of the proof of a more general category-
theoretical result due to Clementino and Tholen [3]. We find it interesting because it relies
on a perhaps not so well-known characterization of compactness; namely, that a topological
space X is compact if and only if, for any topological space Z, the canonical projection
πZ : X ˆ Z Ñ Z is a closed map.

2. A straightforward proof “from scratch.”

Let pXiqiPI be a family of compact spaces, and let X :“
ś

iPI Xi. To show that X is
compact, we proceed as follows. We start with a family U of open subsets of X, and we
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2 ÉTIENNE MATHERON

assume that no finite subfamily of U covers X. Our goal is to show that U is not a cover of
X, i.e., there exists a point x P X which does not belong to any U P U .

We first fix some notations. For any J Ď I, we set XJ :“
ś

iPJ Xi. In particular, XI “ X
and XH “ tHu. If J Ď J 1 Ď I, we denote by πJ 1,J : XJ 1 Ñ XJ the canonical projection
map; and when J 1 “ I we write πJ : X Ñ XJ instead of πI,J . So we see that if A Ď XJ

and if B “ π´1
J 1,JpAq, then π´1

J 1 pBq “ π´1
J pAq.

We denote by P the union of all the spaces XJ , J Ď I. An element of P will be called a
partial point. If p is a partial point, the domain of p is the unique J Ď I such that p P XJ . If
p, q are partial points with disjoint domains, we denote by p_ q their concatenation, which
is a well defined partial point. Finally, we denote by ĺ the natural extension ordering on P.

A partial point p with domain J will be said to be bad if the following holds true: for any
neighborhood V of p in XJ , the set π´1

J pV q cannot be covered by finitely many U P U . (In
particular, H is a bad partial point by our standing assumption.) With this terminology, it
is enough to find a bad partial point p whose domain J is equal to I. In what follows, we
denote by B the set of all bad partial points.

Remark. Since this will be needed later, we point out that B is downward closed for ĺ. In
other words, if q0 is a bad partial point, then any partial point q ĺ q0 is also bad. Indeed, let
us denote by J0 the domain of q0 and by J Ď J0 the domain of q. If V is a neighborhood of
q in XJ , then V0 :“ π´1

J0,J
pV q is a neighborhood of q0 in XJ0 . So π´1

J0
pV0q cannot be covered

by finitely many U P U , which shows that q is bad since π´1
J0
pV0q “ π´1

J pV q.

Fact 2.1. Let p be a bad partial point with domain J ‰ I. For any i0 P IzJ , one can find
a point a P Xi0 such that p_ a P B.

Proof. For notational simplicity, we have written Xi0 instead of Xti0u. Assume that p_a R B
for all a P Xi0 . Then, for each a P Xi0 , one can find an open neighborhood Va of p _ a in
XJYti0u such that π´1

JYti0u
pVaq can be covered by finitely many U P U . Moreover, we may

assume that Va has the form Va “ Op,a ˆWa, where Op,a is an open neighborhood of p
in XJ and Wa is an open neighborhood of a in Xi0 . Since Xi0 is compact, one can find
a1, . . . , aN P Xi0 such that Xi0 “ Wa1 Y ¨ ¨ ¨ YWaN . Then Op :“ Op,a1 X ¨ ¨ ¨ X Op,aN is a

neighborhood of p in XJ , and π´1
J pOpq “ π´1

JYti0u
pOp ˆWa1q Y ¨ ¨ ¨ Y π´1

JYti0u
pOp ˆWaN q is

contained in π´1
JYti0u

pVa1qY ¨ ¨ ¨ Yπ
´1
JYti0u

pVaN q. So π´1
J pOpq can be covered by finitely many

U P U , a contradiction since p is assumed to be a bad partial point. �

Fact 2.2. There is a ĺ-maximal bad partial point.

Proof. By Zorn’s lemma, it is enough to show that any chain C in pB,ĺq has an upper
bound in B. Since C is a chain in pP,ĺq, the “union” of all q P C is a well-defined partial
point p; and of course it is an upper bound for C in P. Let us check that p P B. Let J be
the domain of p, and let V be any neighborhood of p in XJ . We have to show that π´1

J pV q
cannot be covered by finitely many U P U . By definition of the product topology on XJ , we
may assume that V has the form V “ π´1

J,F pW q, where F Ď J is finite and W is an open set

in XF with p|F :“ πJ,F ppq PW . Since F is a finite subset of the domain of p “
Ť

tq; q P Cu
and since C is a chain, one can find q0 P C such that q0 ľ p|F . Since q0 is a bad partial point
and since B is downward closed for ĺ, it follows that p|F is a bad partial point. Since W is

a neighborhood of p|F in XF , this implies that π´1
F pW q cannot be covered by finitely many

U P U ; and since π´1
F pW q “ π´1

J pV q, this shows that p is indeed a bad partial point. �
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The proof of Tychonoff’s theorem is now complete: by Fact 2.2, there is a maximal bad
partial point p; and by Fact 2.1, the domain of p must be equal to I.

3. A proof by extracting a convergent subnet.

We first recall a few definitions concerning directed sets and nets.

A directed set is a non-empty set D endowed with a preordering relation ď (i.e., ď is
reflexive and transitive) such that

@d0, d1 P D Dd P D : d ě d0 and d ě d1.

A net in a space X is a family pxdqdPD of points of X indexed by some directed set D.
If X is a topological space, a net pxdqdPD in X is said to converge to some point a P X if
for every neighborhood V of a, one can find dV P D such that xd P V for all d ě dV . The
well known “subnet characterization” of compactness reads as follows: A topological space
X is compact if and only if every net pxdqdPD has a convergent subnet. (The definition of a
subnet is recalled in the next few lines.)

If D is a directed set, a cofinal map into D is a map ϕ : S Ñ D, where S is a directed
set, which has the following property:

@d0 P D Ds0 P S @s ě s0 : ϕpsq ě d0.

With this terminology, we can state the definition of a subnet as follows: If pxdqdPD is a net
in some space X, then a subnet of pxdqdPD is a net of the form

`

xϕpsq
˘

sPS
, where ϕ : S Ñ D

is a cofinal map.

The following notation will be ueful for the proof. If ϕ : S Ñ D and ϕ1 : S1 Ñ D are
cofinal maps into the same directed set D, we write

ϕ1 ľ ϕ

if the following holds true:

@s0 P S Ds
1
0 P S

1 @s1 ě s10 Ds ě s0 : ϕ1ps1q “ ϕpsq.

For example, it follows directly from the definition of a cofinal map that we have ϕ1 ľ ϕ if
ϕ1 “ ϕ ˝ ψ for some cofinal map ψ : S1 Ñ S. But the converse need not be true, since it
may well happen that ϕ1 ľ ϕ but the range of ϕ1 is not even contained in the range of ϕ.
(Think about the difference between being a subsequence of some given sequence and being
a “subsequence except for finitely many terms.”)

It is easy to check that the relation ľ is reflexive and transitive on the class of all cofinal
maps into D. Moreover, we have the following almost trivial but essential fact. (To prove
it, just write down the definitions.)

Remark. Let pzdqdPD be a net in some topological space Z, and let ϕ : S Ñ D and
ϕ1 : S1 Ñ D be cofinal maps with ϕ1 ľ ϕ. If the net

`

zϕpsq
˘

sPS
is convergent, then so is the

net
`

zϕ1ps1q
˘

s1PS1
, to the same limit.

Now, let pXiqiPI be a family of compact spaces, and let X :“
ś

iPI Xi. Let us show that
any net pxdqdPD in X has a convergent subnet.

In what follows, a point x P X will be written as x “ pxpiqqiPI . So we are looking for a
cofinal map ϕ : S Ñ D such that for every i P I, the net

`

xϕpsqpiq
˘

sPS
is convergent in Xi.

By Zermelo’s theorem, we can well-order the set I. Hence, without loss of generality I is
an ordinal α, so that X “

ś

iăαXi.
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By transfinite induction, we construct a family pϕjqjďα of cofinal maps into D such that
the following properties hold true (where Sj :“ dompϕjq):

(1) the net pxϕjpsqpiqqsPSj is convergent in Xi for every i ă j;
(2) ϕj ľ ϕi for all i ă j.

To start the construction, we set S0 :“ D and we define ϕ0 : S0 Ñ D by ϕ0psq “ s. Then
(1) and (2) are vacuously satisfied.

Let j ď α, and assume that ϕi has been constructed for every i ă j. We have to define
the map ϕj .

If j is a successor ordinal, j “ i0 ` 1, we choose a cofinal map ψ : Si0`1 Ñ Si0 such that
the net pxϕi0 pψpsqqqsPSi0`1 is convergent in Xi0 (which is possible by compactness of Xi0),

and we set ϕi0`1 :“ ϕi0 ˝ ψ : Si0`1 Ñ D. Then (1) holds for j “ i0 ` 1. Indeed, it holds
with i “ i0 by the choice of ψ, and it holds as well with i ă i0 by the induction hypothesis
because pxϕi0`1psqq is a subnet of pxϕi0 psqq. Moreover, we have ϕi0`1 ľ ϕi0 because ψ is a

cofinal map into Si0 ; so (2) holds for j “ i0 ` 1 by the induction hypothesis.
If j is a limit ordinal, we proceed as follows. Set

Sj :“ tpi, sq; i ă j , s P Siu,

and define a preordering relation ď on Sj by declaring that

pi1, s1q ě pi, sq if and only if @t1 ě s1 Dt ě s : ϕi1pt
1q “ ϕiptq.

We claim that Sj is directed by ď. Indeed, let pi0, s0q, pi1, s1q P Sj , and assume that i1 ě i0.
Then ϕi1 ľ ϕi0 by the induction hypothesis. So one can find s11 P Si1 such that

@t1 ě s11 Dt ě s0 : ϕi1pt
1q “ ϕi0ptq.

Next, since Si1 is directed one can find rs1 P Si1 such that rs1 ě s1, s
1
1. Then pi1, rs1q ě pi0, s0q

by the choice of s11 since rs1 ě s11; and we also have obviously pi1, rs1q ě pi1, s1q since rs1 ě s1.
This shows that Sj is indeed a directed set. Moreover, the map ϕj : Sj Ñ D defined by

ϕjpi, sq :“ ϕipsq

is easily seen to be cofinal. To conclude the inductive step, we have to check that for every
i ă j, it holds that ϕj ľ ϕi and that the net pxϕjpsqpiqqsPSj is convergent in Xi. Given
s0 P Si, consider rs0 :“ pi, s0q P Sj . For any pi1, s1q ě rs0 “ pi, s0q, one can find t ě s0 such
that ϕi1ps

1q “ ϕiptq, i.e., ϕjpi
1, s1q “ ϕiptq; so we see that ϕj ľ ϕi. To prove the second

part, choose j1 such that i ă j1 ă j (this is possible since j is a limit ordinal). Then the net
pxϕj1 psqpiqqsPSj1 is convergent by the induction hypothesis, and hence the net pxϕjpsqpiqqsPSj
is convergent as well because ϕj ľ ϕj1 .

To conclude the proof of Tychonoff’s theorem, we now just have to set S :“ Sα and
ϕ :“ ϕα : S Ñ D. By (1) for j :“ α, the subnet

`

xϕpsq
˘

sPS
of pxdq is convergent in

X “
ś

iăαXi.

4. A “categorical” proof.

In [3], Clementino and Tholen give an interesting proof of Tychonoff’s theorem based on
ideas from category theory. Their main result is rather general, and Tychonoff’s theorem
follows as a special case. However, if one is interested in Tychonoff’s theorem only, it seems
desirable to write down carefully what their proof gives in this special case, without any
categorical apparatus. This is what we do in this section.

The proof relies on the following characterization of compactness, which can be found,
for example, in [6]. We include a proof for convenience of the reader. Let us first introduce a
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notation: for any spaces X,Z and any subset F of XˆZ, we denote by DXF the projection
of F into Z:

DXF :“
 

z P Z ; Dx P X : px, zq P F
(

.

Lemma 4.1. A topological space X is compact if and only it has the following property:
For any topological space Z and any closed set F Ď X ˆZ, the set DXF is closed in Z. (In
other words, the canonical projection πZ : X ˆ Z Ñ Z is a closed map.)

Proof. The “only if” part is a simple exercise (the easiest way to do it is probably by using
nets). Conversely, assume that X is not compact. Then there exists a net pxdqdPD in X
without any cluster point. Choose some “point”8 not belonging to D (for example8 :“ D)
and let Z :“ D Y t8u, topologized as follows: On D the topology is the discrete topology;
and a neighborhood basis for 8 consists of all sets of the form t8u Y rd,8q, d P D, where
rd,8q “ td1 P D : d1 ě du. Now consider the set A :“ tpxd, dq ; d P Du Ď X ˆ Z. Since
the net pxdq has no cluster point in X, it is not hard to check that F :“ A does not contain
any point of the form px,8q. So the set DXF is contained in D. Since DXA “ D, it follows
that DXF “ D, which is not closed in Z “ D Y t8u. �

We will also need the following technical-looking but rather simple fact.

Fact 4.2. Let β be a limit ordinal, and let pXsqsăβ be a family of topological spaces. For any
J Ď r0, βq, set XJ :“

ś

sPJ Xs. Also let Z be a topological space, and let A Ď Xr0,βq ˆ Z.
For any 1 ď t ă β, define

At :“ DXrt,βqA “
!

pu, zq P Xr0,tq ˆ Z ; Dv P Xrt,βq : pu, v, zq P A
)

.

Finally, let x “ pxsqsăβ P Xr0,βq, and let a P Z. Assume that for any t ă β, it holds that
`

pxsqsďt, z
˘

P At`1. Then px, aq P A .

Proof. Let U be a neighborhood of px, aq in Xr0,βq ˆ Z; we have to show that U X A ‰ H.
Since β is a limit ordinal, we may suppose that U has the form

U “ π´1
r0,tspOq ˆ V,

where V is a neighborhood of a in Z and O is an open set in Xr0,ts for some t ă β. Then

OˆV is a neighborhood of pπr0,tspxq, aq “
`

pxsqsďt, a
˘

in Xr0,tsˆZ, so pOˆV qXAt`1 ‰ H

by assumption. By the definition of At`1, this means that one can find v P Xrt`1,βq such

that
`

pπr0,tspxq, vq, a
˘

P F . Then
`

pπr0,tspxq, vq, a
˘

P U X F , which concludes the proof. �

Now, let let pXiqiPI be a family of compact spaces. We use Lemma 4.1 to show that
X :“

ś

iPI Xi is compact. Again using Zermelo’s theorem, we may assume that I is an
ordinal α, so that X “

ś

iăαXi.

Let Z be an arbitrary topological space, and let F be a closed subset of X ˆZ. To show

that DXZ is closed in Z, we fix a point a P DXF . Our aim is to show that in fact a P DXF ,
i.e., to find a point x P X such that px, aq P F .

Following the notations of Fact 4.2, for any J Ď r0, αq we set XJ :“
ś

iPJ Xi. If 1 ď j ă α,
we define

F j :“ DXrj,αqF “
!

pu, zq P Xr0,jq ˆ Z; Dv P Xrj,αq : pu, v, zq P F
)

.

We also put Fα :“ F . Observe that with these notations, we have

DXF “ DX0F 1 and F j “ DXjF j`1 for all 1 ď j ă α.
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By transfinite induction, we construct for 0 ď i ă α a point xi P Xi such that the
following holds true for all 0 ď i ă α:

(˚i) the point
`

pxsqsďi, a
˘

belongs to F i`1.

By assumption, we know that a P DXF “ DX0F 1 Ď DX0F 1. Since X0 is compact, the set
DX0F 1 is closed in Z by Lemma 4.1. So we have a P DX0F 1; in other words, one can find
x0 P X0 such that p˚0q holds true.

Let 1 ď i0 ă α, and assume that the points xs have been found for all s ă i0. Then, we
have

`

pxsqsăi0 , a
˘

P F i0 .

Indeed, this is just p˚i0´1q if i0 is a successor ordinal; and if i0 is a limit ordinal this follows
from the induction hypothesis and Fact 4.2 applied with β :“ i0 and A :“ F i0 , because
pF i0qi “ F i for all i ă i0. Since F i0 “ DXi0F i0`1 and since Xi0 is compact, it follows that
`

pxiqiăi0 , a
˘

P DXi0F i0`1 by Lemma 4.1. So we can find xi0 P Xi0 such that p˚i0q holds true.

Now let x :“ pxiqiăα, which is a point of X. Then px, aq P F . Indeed, if α is a successor

ordinal, α “ i0` 1, then px, aq “
`

pxiqiďi0 , a
˘

P F i0`1 “ Fα “ F ; and if α is a limit ordinal,

then px, aq P F “ F by Fact 4.2. This concludes the proof.
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